1981-07-01
process is observed over all of (0,1], the reproducing kernel Hilbert space (RKHS) techniques developed by Parzen (1961a, 1961b) 2 may be used to construct...covariance kernel,R, for the process (1.1) is the reproducing kernel for a reproducing kernel Hilbert space (RKHS) which will be denoted as H(R) (c.f...2.6), it is known that (c.f. Eubank, Smith and Smith (1981a, 1981b)), i) H(R) is a Hilbert function space consisting of functions which satisfy for fEH
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
Aveiro method in reproducing kernel Hilbert spaces under complete dictionary
NASA Astrophysics Data System (ADS)
Mai, Weixiong; Qian, Tao
2017-12-01
Aveiro Method is a sparse representation method in reproducing kernel Hilbert spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro Method. To avoid those difficulties we propose an anew Aveiro Method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm (P-OGA) involving completion of a given dictionary. The new method is called Aveiro Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro Method and the greedy algorithm.
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.
Towards the Geometry of Reproducing Kernels
NASA Astrophysics Data System (ADS)
Galé, J. E.
2010-11-01
It is shown here how one is naturally led to consider a category whose objects are reproducing kernels of Hilbert spaces, and how in this way a differential geometry for such kernels may be settled down.
NASA Astrophysics Data System (ADS)
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
Limitations of shallow nets approximation.
Lin, Shao-Bo
2017-10-01
In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
1985-02-01
0 Here Q denotes the midplane of the plate ?assumed to be a Lipschitzian) with a smooth boundary ", and H (Q) and H (Q) are the Hilbert spaces of...using a reproducing kernel Hilbert space approach, Weinert [8,9] et al, developed a structural correspondence between spline interpolation and linear...597 A Mesh Moving Technique for Time Dependent Partial Differential Equations in Two Space Dimensions David C. Arney and Joseph
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
On Quantile Regression in Reproducing Kernel Hilbert Spaces with Data Sparsity Constraint
Zhang, Chong; Liu, Yufeng; Wu, Yichao
2015-01-01
For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature. In this paper we study quantile regression as an example of learning in a RKHS. In this case, the regular squared norm penalty does not perform training data selection. We propose a data sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a sparse kernel function representation. We demonstrate that the proposed data sparsity method can have competitive prediction performance for certain situations, and have comparable performance in other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity method can serve as a competitive alternative to the squared norm penalty method. Some theoretical properties of our proposed method using the data sparsity constraint are obtained. Both simulated and real data sets are used to demonstrate the usefulness of our data sparsity constraint. PMID:27134575
Structured functional additive regression in reproducing kernel Hilbert spaces.
Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen
2014-06-01
Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application.
Li, Kan; Príncipe, José C.
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568
Li, Kan; Príncipe, José C
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.
Hermite polynomials and quasi-classical asymptotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, S. Twareque, E-mail: twareque.ali@concordia.ca; Engliš, Miroslav, E-mail: englis@math.cas.cz
2014-04-15
We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.
Structured functional additive regression in reproducing kernel Hilbert spaces
Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen
2013-01-01
Summary Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application. PMID:25013362
Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.
Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios
2012-03-01
This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
On Hilbert-Schmidt norm convergence of Galerkin approximation for operator Riccati equations
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An abstract approximation framework for the solution of operator algebraic Riccati equations is developed. The approach taken is based on a formulation of the Riccati equation as an abstract nonlinear operator equation on the space of Hilbert-Schmidt operators. Hilbert-Schmidt norm convergence of solutions to generic finite dimensional Galerkin approximations to the Riccati equation to the solution of the original infinite dimensional problem is argued. The application of the general theory is illustrated via an operator Riccati equation arising in the linear-quadratic design of an optimal feedback control law for a 1-D heat/diffusion equation. Numerical results demonstrating the convergence of the associated Hilbert-Schmidt kernels are included.
Single image super-resolution via an iterative reproducing kernel Hilbert space method.
Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu
2016-11-01
Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.
Study of the convergence behavior of the complex kernel least mean square algorithm.
Paul, Thomas K; Ogunfunmi, Tokunbo
2013-09-01
The complex kernel least mean square (CKLMS) algorithm is recently derived and allows for online kernel adaptive learning for complex data. Kernel adaptive methods can be used in finding solutions for neural network and machine learning applications. The derivation of CKLMS involved the development of a modified Wirtinger calculus for Hilbert spaces to obtain the cost function gradient. We analyze the convergence of the CKLMS with different kernel forms for complex data. The expressions obtained enable us to generate theory-predicted mean-square error curves considering the circularity of the complex input signals and their effect on nonlinear learning. Simulations are used for verifying the analysis results.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
NASA Astrophysics Data System (ADS)
Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.
2014-10-01
In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.
Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)
2002-01-01
We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
Online Pairwise Learning Algorithms.
Ying, Yiming; Zhou, Ding-Xuan
2016-04-01
Pairwise learning usually refers to a learning task that involves a loss function depending on pairs of examples, among which the most notable ones are bipartite ranking, metric learning, and AUC maximization. In this letter we study an online algorithm for pairwise learning with a least-square loss function in an unconstrained setting of a reproducing kernel Hilbert space (RKHS) that we refer to as the Online Pairwise lEaRning Algorithm (OPERA). In contrast to existing works (Kar, Sriperumbudur, Jain, & Karnick, 2013 ; Wang, Khardon, Pechyony, & Jones, 2012 ), which require that the iterates are restricted to a bounded domain or the loss function is strongly convex, OPERA is associated with a non-strongly convex objective function and learns the target function in an unconstrained RKHS. Specifically, we establish a general theorem that guarantees the almost sure convergence for the last iterate of OPERA without any assumptions on the underlying distribution. Explicit convergence rates are derived under the condition of polynomially decaying step sizes. We also establish an interesting property for a family of widely used kernels in the setting of pairwise learning and illustrate the convergence results using such kernels. Our methodology mainly depends on the characterization of RKHSs using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.
Fredholm-Volterra Integral Equation with a Generalized Singular Kernel and its Numerical Solutions
NASA Astrophysics Data System (ADS)
El-Kalla, I. L.; Al-Bugami, A. M.
2010-11-01
In this paper, the existence and uniqueness of solution of the Fredholm-Volterra integral equation (F-VIE), with a generalized singular kernel, are discussed and proved in the spaceL2(Ω)×C(0,T). The Fredholm integral term (FIT) is considered in position while the Volterra integral term (VIT) is considered in time. Using a numerical technique we have a system of Fredholm integral equations (SFIEs). This system of integral equations can be reduced to a linear algebraic system (LAS) of equations by using two different methods. These methods are: Toeplitz matrix method and Product Nyström method. A numerical examples are considered when the generalized kernel takes the following forms: Carleman function, logarithmic form, Cauchy kernel, and Hilbert kernel.
FAST TRACK COMMUNICATION: General approach to \\mathfrak {SU}(n) quasi-distribution functions
NASA Astrophysics Data System (ADS)
Klimov, Andrei B.; de Guise, Hubert
2010-10-01
We propose an operational form for the kernel of a mapping between an operator acting in a Hilbert space of a quantum system with an \\mathfrak {SU}(n) symmetry group and its symbol in the corresponding classical phase space. For symmetric irreps of \\mathfrak {SU}(n) , this mapping is bijective. We briefly discuss complications that will occur in the general case.
Numerical method for solving the nonlinear four-point boundary value problems
NASA Astrophysics Data System (ADS)
Lin, Yingzhen; Lin, Jinnan
2010-12-01
In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.
Out-of-Sample Extensions for Non-Parametric Kernel Methods.
Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang
2017-02-01
Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.
Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.
Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli
2016-05-01
Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.
Investigations of Reactive Processes at Temperatures Relevant to the Hypersonic Flight Regime
2014-10-31
molecule is constructed based on high- level ab-initio calculations and interpolated using the reproducible kernel Hilbert space (RKHS) method and...a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high- level ab initio calculations and interpolated...between O(3P) and NO(2Π) at higher temperatures relevant to the hypersonic flight regime of reentering space- crafts. At a more fundamental level , we
Sinha, Shriprakash
2017-12-04
Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. The results show the advantage of using density based indices over variance based indices mainly due to the former's employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.
NASA Astrophysics Data System (ADS)
Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran
2015-12-01
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
A Regression Design Approach to Optimal and Robust Spacing Selection.
1981-07-01
Hassanein (1968, 1969a, 1969b, 1971, 1972, 1977), Kulldorf (1963), Kulldorf and Vannman (1973), Rhodin (1976), Sarhan and Greenberg (1958, 1962) and...of d0 and Q0 1 d 0 "Q0 ’ are in the reproducing kernel Hilbert space (RKHS) generated by R, the techniques developed by Parzen (1961a, 1961b) may be... Greenberg , B.G. (1958). Estimation problems in the exponential distribution using order statistics. Proceedings of the Statistical Techniques in Missile
Reactive Collisions and Final State Analysis in Hypersonic Flight Regime
2016-09-13
Kelvin.[7] The gas-phase, surface reactions and energy transfer at these tempera- tures are essentially uncharacterized and the experimental methodologies...high temperatures (1000 to 20000 K) and compared with results from experimentally derived thermodynamics quantities from the NASA CEA (NASA Chemical...with a reproducing kernel Hilbert space (RKHS) method[13] combined with Legendre polynomials; (2) quasi classical trajectory (QCT) calculations to study
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan
2018-02-01
In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.
Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features
NASA Astrophysics Data System (ADS)
Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios
2018-04-01
We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
NASA Astrophysics Data System (ADS)
Shiju, S.; Sumitra, S.
2017-12-01
In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.
Tao, Chenyang; Feng, Jianfeng
2016-03-15
Quantifying associations in neuroscience (and many other scientific disciplines) is often challenged by high-dimensionality, nonlinearity and noisy observations. Many classic methods have either poor power or poor scalability on data sets of the same or different scales such as genetical, physiological and image data. Based on the framework of reproducing kernel Hilbert spaces we proposed a new nonlinear association criteria (NAC) with an efficient numerical algorithm and p-value approximation scheme. We also presented mathematical justification that links the proposed method to related methods such as kernel generalized variance, kernel canonical correlation analysis and Hilbert-Schmidt independence criteria. NAC allows the detection of association between arbitrary input domain as long as a characteristic kernel is defined. A MATLAB package was provided to facilitate applications. Extensive simulation examples and four real world neuroscience examples including functional MRI causality, Calcium imaging and imaging genetic studies on autism [Brain, 138(5):13821393 (2015)] and alcohol addiction [PNAS, 112(30):E4085-E4093 (2015)] are used to benchmark NAC. It demonstrates the superior performance over the existing procedures we tested and also yields biologically significant results for the real world examples. NAC beats its linear counterparts when nonlinearity is presented in the data. It also shows more robustness against different experimental setups compared with its nonlinear counterparts. In this work we presented a new and robust statistical approach NAC for measuring associations. It could serve as an interesting alternative to the existing methods for datasets where nonlinearity and other confounding factors are present. Copyright © 2016 Elsevier B.V. All rights reserved.
Yao, Jincao; Yu, Huimin; Hu, Roland
2017-01-01
This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.
Comparing fixed and variable-width Gaussian networks.
Kůrková, Věra; Kainen, Paul C
2014-09-01
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptive multiregression in reproducing kernel Hilbert spaces: the multiaccess MIMO channel case.
Slavakis, Konstantinos; Bouboulis, Pantelis; Theodoridis, Sergios
2012-02-01
This paper introduces a wide framework for online, i.e., time-adaptive, supervised multiregression tasks. The problem is formulated in a general infinite-dimensional reproducing kernel Hilbert space (RKHS). In this context, a fairly large number of nonlinear multiregression models fall as special cases, including the linear case. Any convex, continuous, and not necessarily differentiable function can be used as a loss function in order to quantify the disagreement between the output of the system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. To this end, we demonstrate a way to calculate the subgradients of robust loss functions, suitable for the multiregression task. As it is by now well documented, when dealing with online schemes in RKHS, the memory keeps increasing with each iteration step. To attack this problem, a simple sparsification strategy is utilized, which leads to an algorithmic scheme of linear complexity with respect to the number of unknown parameters. A convergence analysis of the technique, based on arguments of convex analysis, is also provided. To demonstrate the capacity of the proposed method, the multiregressor is applied to the multiaccess multiple-input multiple-output channel equalization task for a setting with poor resources and nonavailable channel information. Numerical results verify the potential of the method, when its performance is compared with those of the state-of-the-art linear techniques, which, in contrast, use space-time coding, more antenna elements, as well as full channel information.
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan
2016-11-01
In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.
Dirac’s magnetic monopole and the Kontsevich star product
NASA Astrophysics Data System (ADS)
Soloviev, M. A.
2018-03-01
We examine relationships between various quantization schemes for an electrically charged particle in the field of a magnetic monopole. Quantization maps are defined in invariant geometrical terms, appropriate to the case of nontrivial topology, and are constructed for two operator representations. In the first setting, the quantum operators act on the Hilbert space of sections of a nontrivial complex line bundle associated with the Hopf bundle, whereas the second approach uses instead a quaternionic Hilbert module of sections of a trivial quaternionic line bundle. We show that these two quantizations are naturally related by a bundle morphism and, as a consequence, induce the same phase-space star product. We obtain explicit expressions for the integral kernels of star-products corresponding to various operator orderings and calculate their asymptotic expansions up to the third order in the Planck constant \\hbar . We also show that the differential form of the magnetic Weyl product corresponding to the symmetric ordering agrees completely with the Kontsevich formula for deformation quantization of Poisson structures and can be represented by Kontsevich’s graphs.
Local coding based matching kernel method for image classification.
Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong
2014-01-01
This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidon, Lyran; The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978; Wilner, Eli Y.
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operatormore » in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.« less
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.
A tensor Banach algebra approach to abstract kinetic equations
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
The study deals with a concrete algebraic construction providing the existence theory for abstract kinetic equation boundary-value problems, when the collision operator A is an accretive finite-rank perturbation of the identity operator in a Hilbert space H. An algebraic generalization of the Bochner-Phillips theorem is utilized to study solvability of the abstract boundary-value problem without any regulatory condition. A Banach algebra in which the convolution kernel acts is obtained explicitly, and this result is used to prove a perturbation theorem for bisemigroups, which then plays a vital role in solving the initial equations.
Direct discriminant locality preserving projection with Hammerstein polynomial expansion.
Chen, Xi; Zhang, Jiashu; Li, Defang
2012-12-01
Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.
Soft and hard classification by reproducing kernel Hilbert space methods.
Wahba, Grace
2002-12-24
Reproducing kernel Hilbert space (RKHS) methods provide a unified context for solving a wide variety of statistical modelling and function estimation problems. We consider two such problems: We are given a training set [yi, ti, i = 1, em leader, n], where yi is the response for the ith subject, and ti is a vector of attributes for this subject. The value of y(i) is a label that indicates which category it came from. For the first problem, we wish to build a model from the training set that assigns to each t in an attribute domain of interest an estimate of the probability pj(t) that a (future) subject with attribute vector t is in category j. The second problem is in some sense less ambitious; it is to build a model that assigns to each t a label, which classifies a future subject with that t into one of the categories or possibly "none of the above." The approach to the first of these two problems discussed here is a special case of what is known as penalized likelihood estimation. The approach to the second problem is known as the support vector machine. We also note some alternate but closely related approaches to the second problem. These approaches are all obtained as solutions to optimization problems in RKHS. Many other problems, in particular the solution of ill-posed inverse problems, can be obtained as solutions to optimization problems in RKHS and are mentioned in passing. We caution the reader that although a large literature exists in all of these topics, in this inaugural article we are selectively highlighting work of the author, former students, and other collaborators.
Reconstruction of Sensory Stimuli Encoded with Integrate-and-Fire Neurons with Random Thresholds
Lazar, Aurel A.; Pnevmatikakis, Eftychios A.
2013-01-01
We present a general approach to the reconstruction of sensory stimuli encoded with leaky integrate-and-fire neurons with random thresholds. The stimuli are modeled as elements of a Reproducing Kernel Hilbert Space. The reconstruction is based on finding a stimulus that minimizes a regularized quadratic optimality criterion. We discuss in detail the reconstruction of sensory stimuli modeled as absolutely continuous functions as well as stimuli with absolutely continuous first-order derivatives. Reconstruction results are presented for stimuli encoded with single as well as a population of neurons. Examples are given that demonstrate the performance of the reconstruction algorithms as a function of threshold variability. PMID:24077610
A mixture model for robust registration in Kinect sensor
NASA Astrophysics Data System (ADS)
Peng, Li; Zhou, Huabing; Zhu, Shengguo
2018-03-01
The Microsoft Kinect sensor has been widely used in many applications, but it suffers from the drawback of low registration precision between color image and depth image. In this paper, we present a robust method to improve the registration precision by a mixture model that can handle multiply images with the nonparametric model. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS).The estimation is performed by the EM algorithm which by also estimating the variance of the prior model is able to obtain good estimates. We illustrate the proposed method on the public available dataset. The experimental results show that our approach outperforms the baseline methods.
Spinor Structure and Internal Symmetries
NASA Astrophysics Data System (ADS)
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Direct Images, Fields of Hilbert Spaces, and Geometric Quantization
NASA Astrophysics Data System (ADS)
Lempert, László; Szőke, Róbert
2014-04-01
Geometric quantization often produces not one Hilbert space to represent the quantum states of a classical system but a whole family H s of Hilbert spaces, and the question arises if the spaces H s are canonically isomorphic. Axelrod et al. (J. Diff. Geo. 33:787-902, 1991) and Hitchin (Commun. Math. Phys. 131:347-380, 1990) suggest viewing H s as fibers of a Hilbert bundle H, introduce a connection on H, and use parallel transport to identify different fibers. Here we explore to what extent this can be done. First we introduce the notion of smooth and analytic fields of Hilbert spaces, and prove that if an analytic field over a simply connected base is flat, then it corresponds to a Hermitian Hilbert bundle with a flat connection and path independent parallel transport. Second we address a general direct image problem in complex geometry: pushing forward a Hermitian holomorphic vector bundle along a non-proper map . We give criteria for the direct image to be a smooth field of Hilbert spaces. Third we consider quantizing an analytic Riemannian manifold M by endowing TM with the family of adapted Kähler structures from Lempert and Szőke (Bull. Lond. Math. Soc. 44:367-374, 2012). This leads to a direct image problem. When M is homogeneous, we prove the direct image is an analytic field of Hilbert spaces. For certain such M—but not all—the direct image is even flat; which means that in those cases quantization is unique.
NASA Astrophysics Data System (ADS)
Chandran, A.; Schulz, Marc D.; Burnell, F. J.
2016-12-01
Many phases of matter, including superconductors, fractional quantum Hall fluids, and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this paper, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free nonintegrable model. We also find that certain nonlocal observables obey ETH.
Cohomologie des Groupes Localement Compacts et Produits Tensoriels Continus de Representations
ERIC Educational Resources Information Center
Guichardet, A.
1976-01-01
Contains few and sometimes incomplete proofs on continuous tensor products of Hilbert spaces and of group representations, and on the irreducibility of the latter. Theory of continuous tensor products of Hilbert Spaces is closely related to that of conditionally positive definite functions; it relies on the technique of symmetric Hilbert spaces,…
Tensor manifold-based extreme learning machine for 2.5-D face recognition
NASA Astrophysics Data System (ADS)
Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin
2018-01-01
We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.
Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z
2016-01-01
Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points.
Clifford coherent state transforms on spheres
NASA Astrophysics Data System (ADS)
Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao
2018-01-01
We introduce a one-parameter family of transforms, U(m)t , t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.
Hybrid Techniques for Quantum Circuit Simulation
2014-02-01
Detailed theorems and proofs describing these results are included in our published manuscript [10]. Embedding of stabilizer geometry in the Hilbert ...space. We also describe how the discrete embedding of stabilizer geometry in Hilbert space complicates several natural geometric tasks. As described...the Hilbert space in which they are embedded, and that they are arranged in a fairly uniform pattern. These factors suggest that, if one seeks a
Testing the Dimension of Hilbert Spaces
NASA Astrophysics Data System (ADS)
Brunner, Nicolas; Pironio, Stefano; Acin, Antonio; Gisin, Nicolas; Méthot, André Allan; Scarani, Valerio
2008-05-01
Given a set of correlations originating from measurements on a quantum state of unknown Hilbert space dimension, what is the minimal dimension d necessary to describe such correlations? We introduce the concept of dimension witness to put lower bounds on d. This work represents a first step in a broader research program aiming to characterize Hilbert space dimension in various contexts related to fundamental questions and quantum information applications.
A Grassmann graph embedding framework for gait analysis
NASA Astrophysics Data System (ADS)
Connie, Tee; Goh, Michael Kah Ong; Teoh, Andrew Beng Jin
2014-12-01
Gait recognition is important in a wide range of monitoring and surveillance applications. Gait information has often been used as evidence when other biometrics is indiscernible in the surveillance footage. Building on recent advances of the subspace-based approaches, we consider the problem of gait recognition on the Grassmann manifold. We show that by embedding the manifold into reproducing kernel Hilbert space and applying the mechanics of graph embedding on such manifold, significant performance improvement can be obtained. In this work, the gait recognition problem is studied in a unified way applicable for both supervised and unsupervised configurations. Sparse representation is further incorporated in the learning mechanism to adaptively harness the local structure of the data. Experiments demonstrate that the proposed method can tolerate variations in appearance for gait identification effectively.
The generalization ability of online SVM classification based on Markov sampling.
Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang
2015-03-01
In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.
Quantum decimation in Hilbert space: Coarse graining without structure
NASA Astrophysics Data System (ADS)
Singh, Ashmeet; Carroll, Sean M.
2018-03-01
We present a technique to coarse grain quantum states in a finite-dimensional Hilbert space. Our method is distinguished from other approaches by not relying on structures such as a preferred factorization of Hilbert space or a preferred set of operators (local or otherwise) in an associated algebra. Rather, we use the data corresponding to a given set of states, either specified independently or constructed from a single state evolving in time. Our technique is based on principle component analysis (PCA), and the resulting coarse-grained quantum states live in a lower-dimensional Hilbert space whose basis is defined using the underlying (isometric embedding) transformation of the set of fine-grained states we wish to coarse grain. Physically, the transformation can be interpreted to be an "entanglement coarse-graining" scheme that retains most of the global, useful entanglement structure of each state, while needing fewer degrees of freedom for its reconstruction. This scheme could be useful for efficiently describing collections of states whose number is much smaller than the dimension of Hilbert space, or a single state evolving over time.
Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A
2011-05-01
Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE
Gradient descent for robust kernel-based regression
NASA Astrophysics Data System (ADS)
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagarello, F., E-mail: fabio.bagarello@unipa.it
In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we willmore » find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.« less
A Primer on Vibrational Ball Bearing Feature Generation for Prognostics and Diagnostics Algorithms
2015-03-01
Atlas -Marks (Cone-Shaped Kernel) ........................................................36 8.7.7 Hilbert-Huang Transform...bearing surface and eventually progress to the surface where the material will separate. Also known as pitting, spalling, or flaking. • Wear ...normal degradation caused by dirt and foreign particles causing abrasion of the contact surfaces over time resulting in alterations in the raceway and
On the physical Hilbert space of loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noui, Karim; Perez, Alejandro; Vandersloot, Kevin
2005-02-15
In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.
Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions
1998-05-01
in Hilbert space and almost always precludes the exis- tence of “large” Schrödinger-cat-like states except on extremely short time scales. A...Hamiltonian Hideal operate on the Hilbert space formed by the ↓l and ↑l states of the L qubits. In practice, for the case of trapped ions, the...auxiliary state (Sec. 3.3). If decoherence mechanisms cause other states to be populated, the Hilbert space must be expanded. Although more streamlined
NASA Astrophysics Data System (ADS)
Gao, Gan; Wang, Li-Ping
2010-11-01
We propose a quantum secret sharing protocol, in which Bell states in the high dimension Hilbert space are employed. The biggest advantage of our protocol is the high source capacity. Compared with the previous secret sharing protocol, ours has the higher controlling efficiency. In addition, as decoy states in the high dimension Hilbert space are used, we needn’t destroy quantum entanglement for achieving the goal to check the channel security.
Rotational relaxation of AlO+(1Σ+) in collision with He
NASA Astrophysics Data System (ADS)
Denis-Alpizar, O.; Trabelsi, T.; Hochlaf, M.; Stoecklin, T.
2018-03-01
The rate coefficients for the rotational de-excitation of AlO+ by collisions with He are determined. The possible production mechanisms of the AlO+ ion in both diffuse and dense molecular clouds are first discussed. A set of ab initio interaction energies is computed at the CCSD(T)-F12 level of theory, and a three-dimensional analytical model of the potential energy surface is obtained using a linear combination of reproducing kernel Hilbert space polynomials together with an analytical long range potential. The nuclear spin free close-coupling equations are solved and the de-excitation rotational rate coefficients for the lower 15 rotational states of AlO+ are reported. A propensity rule to favour Δj = -1 transitions is obtained while the hyperfine resolved state-to-state rate coefficients are also discussed.
Projective flatness in the quantisation of bosons and fermions
NASA Astrophysics Data System (ADS)
Wu, Siye
2015-07-01
We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.
NASA Astrophysics Data System (ADS)
Hsieh, M.; Zhao, L.; Ma, K.
2010-12-01
Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.
Projective loop quantum gravity. I. State space
NASA Astrophysics Data System (ADS)
Lanéry, Suzanne; Thiemann, Thomas
2016-12-01
Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.
Quantum Computation of Fluid Dynamics
1998-02-16
state of the quantum computer’s "memory". With N qubits, the quantum state IT) resides in an exponentially large Hilbert space with 2 N dimensions. A new...size of the Hilbert space in which the entanglement occurs. And to make matters worse, even if a quantum computer was constructed with a large number of...number of qubits "* 2 N is the size of the full Hilbert space "* 2 B is the size of the on-site submanifold, denoted 71 "* B is the size of the
A sparse grid based method for generative dimensionality reduction of high-dimensional data
NASA Astrophysics Data System (ADS)
Bohn, Bastian; Garcke, Jochen; Griebel, Michael
2016-03-01
Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.
Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa
2017-09-01
A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.
Observables and density matrices embedded in dual Hilbert spaces
NASA Astrophysics Data System (ADS)
Prosen, T.; Martignon, L.; Seligman, T. H.
2015-06-01
The introduction of operator states and of observables in various fields of quantum physics has raised questions about the mathematical structures of the corresponding spaces. In the framework of third quantization it had been conjectured that we deal with Hilbert spaces although the mathematical background was not entirely clear, particularly, when dealing with bosonic operators. This in turn caused some doubts about the correct way to combine bosonic and fermionic operators or, in other words, regular and Grassmann variables. In this paper we present a formal answer to the problems on a simple and very general basis. We illustrate the resulting construction by revisiting the Bargmann transform and finding the known connection between {{L}}2({{R}}) and the Bargmann-Hilbert space. We pursue this line of thinking one step further and discuss the representations of complex extensions of linear canonical transformations as isometries between dual Hilbert spaces. We then use the formalism to give an explicit formulation for Fock spaces involving both fermions and bosons thus solving the problem at the origin of our considerations.
A Hilbert Space Representation of Generalized Observables and Measurement Processes in the ESR Model
NASA Astrophysics Data System (ADS)
Sozzo, Sandro; Garola, Claudio
2010-12-01
The extended semantic realism ( ESR) model recently worked out by one of the authors embodies the mathematical formalism of standard (Hilbert space) quantum mechanics in a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide here a Hilbert space representation of the generalized observables introduced by the ESR model that satisfy a simple physical condition, propose a generalization of the projection postulate, and suggest a possible mathematical description of the measurement process in terms of evolution of the compound system made up of the measured system and the measuring apparatus.
NASA Astrophysics Data System (ADS)
Zhang, Yunlu; Yan, Lei; Liou, Frank
2018-05-01
The quality initial guess of deformation parameters in digital image correlation (DIC) has a serious impact on convergence, robustness, and efficiency of the following subpixel level searching stage. In this work, an improved feature-based initial guess (FB-IG) scheme is presented to provide initial guess for points of interest (POIs) inside a large region. Oriented FAST and Rotated BRIEF (ORB) features are semi-uniformly extracted from the region of interest (ROI) and matched to provide initial deformation information. False matched pairs are eliminated by the novel feature guided Gaussian mixture model (FG-GMM) point set registration algorithm, and nonuniform deformation parameters of the versatile reproducing kernel Hilbert space (RKHS) function are calculated simultaneously. Validations on simulated images and real-world mini tensile test verify that this scheme can robustly and accurately compute initial guesses with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation.
Vertical integration from the large Hilbert space
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian
2017-12-01
We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Znojil, Miloslav
For many quantum models an apparent non-Hermiticity of observables just corresponds to their hidden Hermiticity in another, physical Hilbert space. For these models we show that the existence of observables which are manifestly time-dependent may require the use of a manifestly time-dependent representation of the physical Hilbert space of states.
Applications of rigged Hilbert spaces in quantum mechanics and signal processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid; Gadella, M., E-mail: manuelgadella1@gmail.com
Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them ismore » obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.« less
Basis-neutral Hilbert-space analyzers
Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.
2017-01-01
Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331
On the BV formalism of open superstring field theory in the large Hilbert space
NASA Astrophysics Data System (ADS)
Matsunaga, Hiroaki; Nomura, Mitsuru
2018-05-01
We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.
Source imaging of potential fields through a matrix space-domain algorithm
NASA Astrophysics Data System (ADS)
Baniamerian, Jamaledin; Oskooi, Behrooz; Fedi, Maurizio
2017-01-01
Imaging of potential fields yields a fast 3D representation of the source distribution of potential fields. Imaging methods are all based on multiscale methods allowing the source parameters of potential fields to be estimated from a simultaneous analysis of the field at various scales or, in other words, at many altitudes. Accuracy in performing upward continuation and differentiation of the field has therefore a key role for this class of methods. We here describe an accurate method for performing upward continuation and vertical differentiation in the space-domain. We perform a direct discretization of the integral equations for upward continuation and Hilbert transform; from these equations we then define matrix operators performing the transformation, which are symmetric (upward continuation) or anti-symmetric (differentiation), respectively. Thanks to these properties, just the first row of the matrices needs to be computed, so to decrease dramatically the computation cost. Our approach allows a simple procedure, with the advantage of not involving large data extension or tapering, as due instead in case of Fourier domain computation. It also allows level-to-drape upward continuation and a stable differentiation at high frequencies; finally, upward continuation and differentiation kernels may be merged into a single kernel. The accuracy of our approach is shown to be important for multi-scale algorithms, such as the continuous wavelet transform or the DEXP (depth from extreme point method), because border errors, which tend to propagate largely at the largest scales, are radically reduced. The application of our algorithm to synthetic and real-case gravity and magnetic data sets confirms the accuracy of our space domain strategy over FFT algorithms and standard convolution procedures.
NASA Astrophysics Data System (ADS)
Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira
2014-06-01
Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.
Elliptic complexes over C∗-algebras of compact operators
NASA Astrophysics Data System (ADS)
Krýsl, Svatopluk
2016-03-01
For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suchanecki, Z.; Antoniou, I.; Tasaki, S.
We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. {copyright} {ital 1996 American Institute of Physics.}
Spherical harmonics and rigged Hilbert spaces
NASA Astrophysics Data System (ADS)
Celeghini, E.; Gadella, M.; del Olmo, M. A.
2018-05-01
This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.
On Replacing "Quantum Thinking" with Counterfactual Reasoning
NASA Astrophysics Data System (ADS)
Narens, Louis
The probability theory used in quantum mechanics is currently being employed by psychologists to model the impact of context on decision. Its event space consists of closed subspaces of a Hilbert space, and its probability function sometimes violate the law of the finite additivity of probabilities. Results from the quantum mechanics literature indicate that such a "Hilbert space probability theory" cannot be extended in a useful way to standard, finitely additive, probability theory by the addition of new events with specific probabilities. This chapter presents a new kind of probability theory that shares many fundamental algebraic characteristics with Hilbert space probability theory but does extend to standard probability theory by adjoining new events with specific probabilities. The new probability theory arises from considerations about how psychological experiments are related through counterfactual reasoning.
Group-theoretical approach to the construction of bases in 2{sup n}-dimensional Hilbert space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, A.; Romero, J. L.; Klimov, A. B., E-mail: klimov@cencar.udg.mx
2011-06-15
We propose a systematic procedure to construct all the possible bases with definite factorization structure in 2{sup n}-dimensional Hilbert space and discuss an algorithm for the determination of basis separability. The results are applied for classification of bases for an n-qubit system.
Averaging of random walks and shift-invariant measures on a Hilbert space
NASA Astrophysics Data System (ADS)
Sakbaev, V. Zh.
2017-06-01
We study random walks in a Hilbert space H and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on H. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure λ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space H containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in H. We define the Hilbert space H of equivalence classes of complex-valued functions on H that are square integrable with respect to a shift-invariant measure λ. Using averaging of the shift operator in H over random vectors in H with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on H, we define a one-parameter semigroup of contracting self-adjoint transformations on H, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.
Interference in the classical probabilistic model and its representation in complex Hilbert space
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei Yu.
2005-10-01
The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.
Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories
NASA Astrophysics Data System (ADS)
Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto
2014-01-01
This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.
Independence and totalness of subspaces in phase space methods
NASA Astrophysics Data System (ADS)
Vourdas, A.
2018-04-01
The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.
An algorithm for the split-feasibility problems with application to the split-equality problem.
Chuang, Chih-Sheng; Chen, Chi-Ming
2017-01-01
In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.
MURI: Optimal Quantum Dynamic Discrimination of Chemical and Biological Agents
2008-06-12
multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve statistics to laser-based mass...Adaptive reshaping of objects in (multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve...Doctoral Associate Muhannad Zamari, Graduate Student Ilya Greenberg , Computer Consultant Getahun Menkir, Graduate Student Lalinda Palliyaguru, Graduate
Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula
NASA Astrophysics Data System (ADS)
Remizov, I. D.
2012-07-01
The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.
Inverse Problems and Imaging (Pitman Research Notes in Mathematics Series Number 245)
1991-01-01
Multiparamcter spectral theory in Hilbert space functional differential cquations B D Sleeman F Kappel and W Schappacher 24 Mathematical modelling...techniques 49 Sequence spaces R Aris W 11 Ruckle 25 Singular points of smooth mappings 50 Recent contributions to nonlinear C G Gibson partial...of convergence in the central limit T Husain theorem 86 Hamilton-Jacobi equations in Hilbert spaces Peter Hall V Barbu and G Da Prato 63 Solution of
NASA Astrophysics Data System (ADS)
Ganor, Ori J.; Moore, Nathan P.; Sun, Hao-Yu; Torres-Chicon, Nesty R.
2014-07-01
We develop an equivalence between two Hilbert spaces: (i) the space of states of U(1) n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T 2; and (ii) the space of ground states of strings on an associated mapping torus with T 2 fiber. The equivalence is deduced by studying the space of ground states of SL(2, ℤ)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T 2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group.
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.
Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics
NASA Astrophysics Data System (ADS)
Simon, R.; Mukunda, N.; Chaturvedi, S.; Srinivasan, V.
2008-11-01
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
Reactive collisions for NO(2Π) + N(4S) at temperatures relevant to the hypersonic flight regime.
Denis-Alpizar, Otoniel; Bemish, Raymond J; Meuwly, Markus
2017-01-18
The NO(X 2 Π) + N( 4 S) reaction which occurs entirely in the triplet manifold of N 2 O is investigated using quasiclassical trajectories and quantum simulations. Fully-dimensional potential energy surfaces for the 3 A' and 3 A'' states are computed at the MRCI+Q level of theory and are represented using a reproducing kernel Hilbert space. The N-exchange and N 2 -formation channels are followed by using the multi-state adiabatic reactive molecular dynamics method. Up to 5000 K these reactions occur predominantly on the N 2 O 3 A'' surface. However, for higher temperatures the contributions of the 3 A' and 3 A'' states are comparable and the final state distributions are far from thermal equilibrium. From the trajectory simulations a new set of thermal rate coefficients of up to 20 000 K is determined. Comparison of the quasiclassical trajectory and quantum simulations shows that a classical description is a good approximation as determined from the final state analysis.
Assessing Predictive Properties of Genome-Wide Selection in Soybeans
Xavier, Alencar; Muir, William M.; Rainey, Katy Martin
2016-01-01
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786
NASA Astrophysics Data System (ADS)
Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter
2014-06-01
In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader
2012-09-01
In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moretti, Valter; Oppio, Marco
As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. This complex structure reveals a nice interplay of Poincaré symmetry and the classification of the commutant of irreducible real von Neumann algebras.
Unbounded Violations of Bipartite Bell Inequalities via Operator Space Theory
NASA Astrophysics Data System (ADS)
Junge, M.; Palazuelos, C.; Pérez-García, D.; Villanueva, I.; Wolf, M. M.
2010-12-01
In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order {Ω left(sqrt{n}/log^2n right)} when observables with n possible outcomes are used. A central tool in the analysis is a close relation between this problem and operator space theory and, in particular, the very recent noncommutative L p embedding theory. As a consequence of this result, we obtain better Hilbert space dimension witnesses and quantum violations of Bell inequalities with better resistance to noise.
The canonical quantization of chaotic maps on the torus
NASA Astrophysics Data System (ADS)
Rubin, Ron Shai
In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several examples.
The Riemann-Hilbert problem for nonsymmetric systems
NASA Astrophysics Data System (ADS)
Greenberg, W.; Zweifel, P. F.; Paveri-Fontana, S.
1991-12-01
A comparison of the Riemann-Hilbert problem and the Wiener-Hopf factorization problem arising in the solution of half-space singular integral equations is presented. Emphasis is on the factorization of functions lacking the reflection symmetry usual in transport theory.
Global Bifurcation of Periodic Solutions with Symmetry,
1987-07-01
C4-family of sectorial operators on a real Hilbert (2.32.a) space X, with dense domain D(A(A)) which is independent of A E E, and with compact...Vanl, theorem 2.5.91. If .F and E’ are both Hilbert spaces with orthogonal action of r, we may drop the assumption that 1 is compact. Just take...some meandering. Let us define a limit for any sequence Si of subsets of some metric space . Following Whyburn [Why], we define lir sup Si {z: z
Performance Characteristics of a Kernel-Space Packet Capture Module
2010-03-01
Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.
Semiclassical propagation: Hilbert space vs. Wigner representation
NASA Astrophysics Data System (ADS)
Gottwald, Fabian; Ivanov, Sergei D.
2018-03-01
A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.
2008-07-01
operators in Hilbert spaces. The homogenization procedure through successive multi- resolution projections is presented, followed by a numerical example of...is intended to be essentially self-contained. The mathematical ( Greenberg 1978; Gilbert 2006) and signal processing (Strang and Nguyen 1995...literature listed in the references. The ideas behind multi-resolution analysis unfold from the theory of linear operators in Hilbert spaces (Davis 1975
Experimental Test of Nonclassicality for a Single Particle
2008-08-01
photon Greenberger -Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000). 15. G. Brida, M. Genovese, C. Novero, and E. Predazzi, “New experimental...33, 34]) and its ability to show that some quantum states in a two dimensional Hilbert space cannot be classical. We note that because this is a...dimensional Hilbert space and a physical implementation of that test. Appendix A necessary requirement for a convincingly realizing the Alicki-Van Ryn’s
Spectral Automorphisms in Quantum Logics
NASA Astrophysics Data System (ADS)
Ivanov, Alexandru; Caragheorgheopol, Dan
2010-12-01
In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.
Isomonodromy for the Degenerate Fifth Painlevé Equation
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap
2017-05-01
This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.
H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps.
Vallicrosa, Guillem; Ridao, Pere
2018-05-01
Occupancy Grid maps provide a probabilistic representation of space which is important for a variety of robotic applications like path planning and autonomous manipulation. In this paper, a SLAM (Simultaneous Localization and Mapping) framework capable of obtaining this representation online is presented. The H-SLAM (Hilbert Maps SLAM) is based on Hilbert Map representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous probabilistic representation with a small memory footprint. We present a series of experimental results carried both in simulation and with real AUVs (Autonomous Underwater Vehicles). These results demonstrate that our approach is able to represent the environment more consistently while capable of running online.
Bhattacharya, Abhishek; Dunson, David B.
2012-01-01
This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels. PMID:22984295
Coarse graining of entanglement classes in 2 ×m ×n systems
NASA Astrophysics Data System (ADS)
Hebenstreit, M.; Gachechiladze, M.; Gühne, O.; Kraus, B.
2018-03-01
We consider three-partite pure states in the Hilbert space C2⊗Cm⊗Cn and investigate to which states a given state can be locally transformed with a nonvanishing probability. Whenever the initial and final states are elements of the same Hilbert space, the problem can be solved via the characterization of the entanglement classes which are determined via stochastic local operations and classical communication (SLOCC). In the particular case considered here, the matrix pencil theory can be utilized to address this point. In general, there are infinitely many SLOCC classes. However, when considering transformations from higher to lower dimensional Hilbert spaces, an additional hierarchy among the classes can be found. This hierarchy of SLOCC classes coarse grains SLOCC classes which can be reached from a common resource state of higher dimension. We first show that a generic set of states in C2⊗Cm⊗Cn for n =m is the union of infinitely many SLOCC classes, which can be parameterized by m -3 parameters. However, for n ≠m there exists a single SLOCC class which is generic. Using this result, we then show that there is a full-measure set of states in C2⊗Cm⊗Cn such that any state within this set can be transformed locally to a full measure set of states in any lower dimensional Hilbert space. We also investigate resource states, which can be transformed to any state (not excluding any zero-measure set) in the smaller dimensional Hilbert space. We explicitly derive a state in C2⊗Cm⊗C2 m -2 which is the optimal common resource of all states in C2⊗Cm⊗Cm . We also show that for any n <2 m it is impossible to reach all states in C2⊗Cm⊗Cn ˜ whenever n ˜>m .
Differentiable representations of finite dimensional Lie groups in rigged Hilbert spaces
NASA Astrophysics Data System (ADS)
Wickramasekara, Sujeewa
The inceptive motivation for introducing rigged Hilbert spaces (RHS) in quantum physics in the mid 1960's was to provide the already well established Dirac formalism with a proper mathematical context. It has since become clear, however, that this mathematical framework is lissome enough to accommodate a class of solutions to the dynamical equations of quantum physics that includes some which are not possible in the normative Hilbert space theory. Among the additional solutions, in particular, are those which describe aspects of scattering and decay phenomena that have eluded the orthodox quantum physics. In this light, the RHS formulation seems to provide a mathematical rubric under which various phenomenological observations and calculational techniques, commonly known in the study of resonance scattering and decay as ``effective theories'' (e.g., the Wigner- Weisskopf method), receive a unified theoretical foundation. These observations lead to the inference that a theory founded upon the RHS mathematics may prove to be of better utility and value in understanding quantum physical phenomena. This dissertation primarily aims to contribute to the general formalism of the RHS theory of quantum mechanics by undertaking a study of differentiable representations of finite dimensional Lie groups. In particular, it is shown that a finite dimensional operator Lie algebra G in a rigged Hilbert space can be always integrated, provided one parameter integrability holds true for the elements of any basis for G . This result differs from and extends the well known integration theorem of E. Nelson and the subsequent works of others on unitary representations in that it does not require any assumptions on the existence of analytic vectors. Also presented here is a construction of a particular rigged Hilbert space of Hardy class functions that appears useful in formulating a relativistic version of the RHS theory of resonances and decay. As a contexture for the construction, a synopsis of the new relativistic theory is presented.
Remote preparation of a qudit using maximally entangled states of qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Changshui; Song Heshan; Wang Yahong
2006-02-15
Known quantum pure states of a qudit can be remotely prepared onto a group of particles of qubits exactly or probabilistically with the aid of two-level Einstein-Podolsky-Rosen states. We present a protocol for such kind of remote state preparation. We are mainly focused on the remote preparation of the ensembles of equatorial states and those of states in real Hilbert space. In particular, a kind of states of qudits in real Hilbert space have been shown to be remotely prepared in faith without the limitation of the input space dimension.
Weak Solution Classes for Parabolic Integro-Differential Equations
1982-09-01
different existence argument for solutions of (I). It is partly based on a method that was used in (2) and (6] to treat a Hilbert - space version of (I) and...xx Differential Equations 35 (1980), 200-231. 121 V. Barbut Integro-Oifferential Squatton. in Hilbert Spaces. Ann. St. Univ. *Al. 1. Cuaxa 19 (1973... Greenberg : O,% the Existence, Uniqueness, and stability of the Equation 00 Xtt - 3(XX)X) AX *x . J Math. Anal. Appl. 25 (1969), S75-591. (131 7
Effect of Hilbert space truncation on Anderson localization
NASA Astrophysics Data System (ADS)
Krishna, Akshay; Bhatt, R. N.
2018-05-01
The 1D Anderson model possesses a completely localized spectrum of eigenstates for all values of the disorder. We consider the effect of projecting the Hamiltonian to a truncated Hilbert space, destroying time-reversal symmetry. We analyze the ensuing eigenstates using different measures such as inverse participation ratio and sample-averaged moments of the position operator. In addition, we examine amplitude fluctuations in detail to detect the possibility of multifractal behavior (characteristic of mobility edges) that may arise as a result of the truncation procedure.
1980-12-09
34, Symp. on Non-well-posed Problems and Logarithmic Convexity (Lecture Notes on Math. #316), pp. 31-5h, Springer, 1973. 3. Greenberg , J.M., MacCamy, R.C...34Continuous Data Dependence for an Abstract Volterra Integro- Differential Equation in Hilbert Space with Applications to Viscoelasticity", Annali Scuola... Hilbert Space", to appear in the J. Applicable Analysis. 8. Slemrod, M., "Instability of Steady Shearing Flows in a Nonlinear Viscoelastic Fluid", Arch
Functional identification of spike-processing neural circuits.
Lazar, Aurel A; Slutskiy, Yevgeniy B
2014-02-01
We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.
NASA Astrophysics Data System (ADS)
Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.
2017-05-01
Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.
Genome-wide regression and prediction with the BGLR statistical package.
Pérez, Paulino; de los Campos, Gustavo
2014-10-01
Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.
Multitask SVM learning for remote sensing data classification
NASA Astrophysics Data System (ADS)
Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo
2010-10-01
Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.
Remarks on entanglement entropy in string theory
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Parrikar, Onkar
2018-03-01
Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.
Bulk entanglement gravity without a boundary: Towards finding Einstein's equation in Hilbert space
NASA Astrophysics Data System (ADS)
Cao, ChunJun; Carroll, Sean M.
2018-04-01
We consider the emergence from quantum entanglement of spacetime geometry in a bulk region. For certain classes of quantum states in an appropriately factorized Hilbert space, a spatial geometry can be defined by associating areas along codimension-one surfaces with the entanglement entropy between either side. We show how radon transforms can be used to convert these data into a spatial metric. Under a particular set of assumptions, the time evolution of such a state traces out a four-dimensional spacetime geometry, and we argue using a modified version of Jacobson's "entanglement equilibrium" that the geometry should obey Einstein's equation in the weak-field limit. We also discuss how entanglement equilibrium is related to a generalization of the Ryu-Takayanagi formula in more general settings, and how quantum error correction can help specify the emergence map between the full quantum-gravity Hilbert space and the semiclassical limit of quantum fields propagating on a classical spacetime.
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius
NASA Astrophysics Data System (ADS)
Rabounski, Dmitri; Borissova, Larissa
2010-04-01
Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 < 0 and p = -ρ0 c^2 > 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.
Combinatorial quantisation of the Euclidean torus universe
NASA Astrophysics Data System (ADS)
Meusburger, C.; Noui, K.
2010-12-01
We quantise the Euclidean torus universe via a combinatorial quantisation formalism based on its formulation as a Chern-Simons gauge theory and on the representation theory of the Drinfel'd double DSU(2). The resulting quantum algebra of observables is given by two commuting copies of the Heisenberg algebra, and the associated Hilbert space can be identified with the space of square integrable functions on the torus. We show that this Hilbert space carries a unitary representation of the modular group and discuss the role of modular invariance in the theory. We derive the classical limit of the theory and relate the quantum observables to the geometry of the torus universe.
Near-complete teleportation of a superposed coherent state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Yong Wook; Kim, Hyunjae; Lee, Hai-Woong
2004-09-01
The four Bell-type entangled coherent states, {alpha}>-{alpha}>{+-}-{alpha}>{alpha}> and {alpha}>{alpha}>{+-}-{alpha}>-{alpha}>, can be discriminated with a high probability using only linear optical means, as long as {alpha} is not too small. Based on this observation, we propose a simple scheme to almost completely teleport a superposed coherent state. The nonunitary transformation that is required to complete the teleportation can be achieved by embedding the receiver's field state in a larger Hilbert space consisting of the field and a single atom and performing a unitary transformation on this Hilbert space00.
Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
NASA Astrophysics Data System (ADS)
Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.
2018-06-01
We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.
Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet.
Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E; Sols, Fernando; Carr, Lincoln D
2018-06-08
We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.
Majorana fermions and orthogonal complex structures
NASA Astrophysics Data System (ADS)
Calderón-García, J. S.; Reyes-Lega, A. F.
2018-05-01
Ground states of quadratic Hamiltonians for fermionic systems can be characterized in terms of orthogonal complex structures. The standard way in which such Hamiltonians are diagonalized makes use of a certain “doubling” of the Hilbert space. In this work, we show that this redundancy in the Hilbert space can be completely lifted if the relevant orthogonal structure is taken into account. Such an approach allows for a treatment of Majorana fermions which is both physically and mathematically transparent. Furthermore, an explicit connection between orthogonal complex structures and the topological ℤ2-invariant is given.
NASA Astrophysics Data System (ADS)
Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.
2013-09-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its clustering in 2D.
The Laplace method for probability measures in Banach spaces
NASA Astrophysics Data System (ADS)
Piterbarg, V. I.; Fatalov, V. R.
1995-12-01
Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography
A Robustness Testing Campaign for IMA-SP Partitioning Kernels
NASA Astrophysics Data System (ADS)
Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David
2015-09-01
With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Kernel K-Means Sampling for Nyström Approximation.
He, Li; Zhang, Hong
2018-05-01
A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.
ψ-Epistemic Models are Exponentially Bad at Explaining the Distinguishability of Quantum States
NASA Astrophysics Data System (ADS)
Leifer, M. S.
2014-04-01
The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping probability measures over the true ontic states. This naturally accounts for a large number of otherwise puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality that could distinguish the two states. For this to work, the amount of overlap of the probability measures should be comparable to the indistinguishability of the quantum states. In this Letter, I exhibit a family of states for which the ratio of these two quantities must be ≤2de-cd in Hilbert spaces of dimension d that are divisible by 4. This implies that, for large Hilbert space dimension, the epistemic explanation of indistinguishability becomes implausible at an exponential rate as the Hilbert space dimension increases.
Reduced multiple empirical kernel learning machine.
Wang, Zhe; Lu, MingZhe; Gao, Daqi
2015-02-01
Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.
Properties of highly frustrated magnetic molecules studied by the finite-temperature Lanczos method
NASA Astrophysics Data System (ADS)
Schnack, J.; Wendland, O.
2010-12-01
The very interesting magnetic properties of frustrated magnetic molecules are often hardly accessible due to the prohibitive size of the related Hilbert spaces. The finite-temperature Lanczos method is able to treat spin systems for Hilbert space sizes up to 109. Here we first demonstrate for exactly solvable systems that the method is indeed accurate. Then we discuss the thermal properties of one of the biggest magnetic molecules synthesized to date, the icosidodecahedron with antiferromagnetically coupled spins of s = 1/2. We show how genuine quantum features such as the magnetization plateau behave as a function of temperature.
NASA Astrophysics Data System (ADS)
Plymen, Roger; Robinson, Paul
1995-01-01
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.
Noisy bases in Hilbert space: A new class of thermal coherent states and their properties
NASA Technical Reports Server (NTRS)
Vourdas, A.; Bishop, R. F.
1995-01-01
Coherent mixed states (or thermal coherent states) associated with the displaced harmonic oscillator at finite temperature, are introduced as a 'random' (or 'thermal' or 'noisy') basis in Hilbert space. A resolution of the identity for these states is proved and used to generalize the usual coherent state formalism for the finite temperature case. The Bargmann representation of an operator is introduced and its relation to the P and Q representations is studied. Generalized P and Q representations for the finite temperature case are also considered and several interesting relations among them are derived.
Geometry of quantum dynamics in infinite-dimensional Hilbert space
NASA Astrophysics Data System (ADS)
Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana
2018-04-01
We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.
The pre-image problem in kernel methods.
Kwok, James Tin-yau; Tsang, Ivor Wai-hung
2004-11-01
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl
In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less
Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.
Stępień, Grzegorz
2018-03-17
The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.
The open quantum Brownian motions
NASA Astrophysics Data System (ADS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2014-09-01
Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H_z : orbital (walker) Hilbert space, {C}^{{Z}} in the discrete, L^2({R}) in the continuum H_c : internal spin (or gyroscope) Hilbert space H_sys=H_z\\otimesH_c : system Hilbert space H_p : probe (or quantum coin) Hilbert space, H_p={C}^2 \\rho^tot_t : density matrix for the total system (walker + internal spin + quantum coins) \\bar \\rho_t : reduced density matrix on H_sys : \\bar\\rho_t=\\int dxdy\\, \\bar\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | \\hat \\rho_t : system density matrix in a quantum trajectory: \\hat\\rho_t=\\int dxdy\\, \\hat\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | . If diagonal and localized in position: \\hat \\rho_t=\\rho_t\\otimes| X_t \\rangle _z\\langle X_t | ρt: internal density matrix in a simple quantum trajectory Xt: walker position in a simple quantum trajectory Bt: normalized Brownian motion ξt, \\xi_t^\\dagger : quantum noises
Evolution inclusions governed by the difference of two subdifferentials in reflexive Banach spaces
NASA Astrophysics Data System (ADS)
Akagi, Goro; Ôtani, Mitsuharu
The existence of strong solutions of Cauchy problem for the following evolution equation du(t)/dt+∂ϕ1(u(t))-∂ϕ2(u(t))∋f(t) is considered in a real reflexive Banach space V, where ∂ϕ1 and ∂ϕ2 are subdifferential operators from V into its dual V*. The study for this type of problems has been done by several authors in the Hilbert space setting. The scope of our study is extended to the V- V* setting. The main tool employed here is a certain approximation argument in a Hilbert space and for this purpose we need to assume that there exists a Hilbert space H such that V⊂H≡H*⊂V* with densely defined continuous injections. The applicability of our abstract framework will be exemplified in discussing the existence of solutions for the nonlinear heat equation: ut(x,t)-Δpu(x,t)-|u|u(x,t)=f(x,t), x∈Ω, t>0, u|=0, where Ω is a bounded domain in RN. In particular, the existence of local (in time) weak solution is shown under the subcritical growth condition q
de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity
NASA Astrophysics Data System (ADS)
Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan
2017-12-01
We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.
Rotational relaxation of CF+(X1Σ) in collision with He(1S)
NASA Astrophysics Data System (ADS)
Denis-Alpizar, O.; Inostroza, N.; Castro Palacio, J. C.
2018-01-01
The carbon monofluoride cation (CF+) has been detected recently in Galactic and extragalactic regions. Therefore, excitation rate coefficients of this molecule in collision with He and H2 are necessary for a correct interpretation of the astronomical observations. The main goal of this work is to study the collision of CF+ with He in full dimensionality at the close-coupling level and to report a large set of rotational rate coefficients. New ab initio interaction energies at the CCSD(T)/aug-cc-pv5z level of theory were computed, and a three-dimensional potential energy surface was represented using a reproducing kernel Hilbert space. Close-coupling scattering calculations were performed at collisional energies up to 1600 cm-1 in the ground vibrational state. The vibrational quenching cross-sections were found to be at least three orders of magnitude lower than the pure rotational cross-sections. Also, the collisional rate coefficients were reported for the lowest 20 rotational states of CF+ and an even propensity rule was found to be in action only for j > 4. Finally, the hyperfine rate coefficients were explored. These data can be useful for the determination of the interstellar conditions where this molecule has been detected.
Study of the formation of interstellar CF+ from the HF + C + →CF+ + H reaction
NASA Astrophysics Data System (ADS)
Denis-Alpizar, Otoniel; Guzmán, Viviana V.; Inostroza, Natalia
2018-06-01
The detection of the carbon monofluoride cation CF+ was considered as a support of the theories of the fluorine chemistry in the interstellar medium (ISM). This molecule is formed by the reaction of HF with C+. The rates of this reaction have been estimated previously by two different groups. However, these two estimations led to different results. The main goal of the present work is to study the HF + C+ reaction and determine new reactive rate coefficients. A large set of ab initio energies at the MRCI-F12/cc-pVQZ-F12 level was computed. The first reactive potential energy surface (PES) for the HF + C+ → CF+ + H reaction was developed using a reproducing kernel Hilbert space (RKHS) based method. The dynamics of the reaction was followed from quasiclassical trajectories (QCT). The results of such calculations showed that CF+ is produced in excited vibrational states. The rate coefficients for the HF + C+ → CF+ + H reaction from 50 K up to 2000 K are reported. The impact of these new data in the astrophysical models for the determination of the interstellar conditions is also explored.
On a canonical quantization of 3D Anti de Sitter pure gravity
NASA Astrophysics Data System (ADS)
Kim, Jihun; Porrati, Massimo
2015-10-01
We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice.
Minimal sufficient positive-operator valued measure on a separable Hilbert space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuramochi, Yui, E-mail: kuramochi.yui.22c@st.kyoto-u.ac.jp
We introduce a concept of a minimal sufficient positive-operator valued measure (POVM), which is the least redundant POVM among the POVMs that have the equivalent information about the measured quantum system. Assuming the system Hilbert space to be separable, we show that for a given POVM, a sufficient statistic called a Lehmann-Scheffé-Bahadur statistic induces a minimal sufficient POVM. We also show that every POVM has an equivalent minimal sufficient POVM and that such a minimal sufficient POVM is unique up to relabeling neglecting null sets. We apply these results to discrete POVMs and information conservation conditions proposed by the author.
Local quantum measurement and no-signaling imply quantum correlations.
Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S
2010-04-09
We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.
Application of the Hilbert space average method on heat conduction models.
Michel, Mathias; Gemmer, Jochen; Mahler, Günter
2006-01-01
We analyze closed one-dimensional chains of weakly coupled many level systems, by means of the so-called Hilbert space average method (HAM). Subject to some concrete conditions on the Hamiltonian of the system, our theory predicts energy diffusion with respect to a coarse-grained description for almost all initial states. Close to the respective equilibrium, we investigate this behavior in terms of heat transport and derive the heat conduction coefficient. Thus, we are able to show that both heat (energy) diffusive behavior as well as Fourier's law follows from and is compatible with a reversible Schrödinger dynamics on the complete level of description.
An Alternative to the Gauge Theoretic Setting
NASA Astrophysics Data System (ADS)
Schroer, Bert
2011-10-01
The standard formulation of quantum gauge theories results from the Lagrangian (functional integral) quantization of classical gauge theories. A more intrinsic quantum theoretical access in the spirit of Wigner's representation theory shows that there is a fundamental clash between the pointlike localization of zero mass (vector, tensor) potentials and the Hilbert space (positivity, unitarity) structure of QT. The quantization approach has no other way than to stay with pointlike localization and sacrifice the Hilbert space whereas the approach built on the intrinsic quantum concept of modular localization keeps the Hilbert space and trades the conflict creating pointlike generation with the tightest consistent localization: semiinfinite spacelike string localization. Whereas these potentials in the presence of interactions stay quite close to associated pointlike field strengths, the interacting matter fields to which they are coupled bear the brunt of the nonlocal aspect in that they are string-generated in a way which cannot be undone by any differentiation. The new stringlike approach to gauge theory also revives the idea of a Schwinger-Higgs screening mechanism as a deeper and less metaphoric description of the Higgs spontaneous symmetry breaking and its accompanying tale about "God's particle" and its mass generation for all the other particles.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
Friedrichs systems in a Hilbert space framework: Solvability and multiplicity
NASA Astrophysics Data System (ADS)
Antonić, N.; Erceg, M.; Michelangeli, A.
2017-12-01
The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.
Diversions: Hilbert and Sierpinski Space-Filling Curves, and beyond
ERIC Educational Resources Information Center
Gough, John
2012-01-01
Space-filling curves are related to fractals, in that they have self-similar patterns. Such space-filling curves were originally developed as conceptual mathematical "monsters", counter-examples to Weierstrassian and Reimannian treatments of calculus and continuity. These were curves that were everywhere-connected but…
Geometry of matrix product states: Metric, parallel transport, and curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haegeman, Jutho, E-mail: jutho.haegeman@gmail.com; Verstraete, Frank; Faculty of Physics and Astronomy, University of Ghent, Krijgslaan 281 S9, 9000 Gent
2014-02-15
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold,more » which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.« less
Effective Numerical Methods for Solving Elliptical Problems in Strengthened Sobolev Spaces
NASA Technical Reports Server (NTRS)
D'yakonov, Eugene G.
1996-01-01
Fourth-order elliptic boundary value problems in the plane can be reduced to operator equations in Hilbert spaces G that are certain subspaces of the Sobolev space W(sub 2)(exp 2)(Omega) is identical with G(sup (2)). Appearance of asymptotically optimal algorithms for Stokes type problems made it natural to focus on an approach that considers rot w is identical with (D(sub 2)w - D(sub 1)w) is identical with vector of u as a new unknown vector-function, which automatically satisfies the condition div vector of u = 0. In this work, we show that this approach can also be developed for an important class of problems from the theory of plates and shells with stiffeners. The main mathematical problem was to show that the well-known inf-sup condition (normal solvability of the divergence operator) holds for special Hilbert spaces. This result is also essential for certain hydrodynamics problems.
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
2013-01-01
In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328
Modeling and Control of Large Flexible Structures.
1984-07-31
59 4.5 Spectral factorization using the Hilbert transform 62 4.6 Gain computations 64 4.7 Software development and control system performance 66 Part...in the Hilbert space - L2(S) with the natural inner product, ,>. In many cases A O has a discrete spectrum with associated 2 eigenfunctions which...Davis and Barry 1977) ( Greenberg , MacCamy Nisel and 1968). The natural boundary~.; ’? , : conditions for (17) are in terms of s(zt) at s-O and 1
Anisotropic hydrodynamics with a scalar collisional kernel
NASA Astrophysics Data System (ADS)
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
On the emergence of the structure of physics
NASA Astrophysics Data System (ADS)
Majid, S.
2018-04-01
We consider Hilbert's problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space-time as motivated by this non-standard philosophy, including a new toy model of gravity on a space-time consisting of four points forming a square. This article is part of the theme issue `Hilbert's sixth problem'.
Bell - Kochen - Specker theorem for any finite dimension ?
NASA Astrophysics Data System (ADS)
Cabello, Adán; García-Alcaine, Guillermo
1996-03-01
The Bell - Kochen - Specker theorem against non-contextual hidden variables can be proved by constructing a finite set of `totally non-colourable' directions, as Kochen and Specker did in a Hilbert space of dimension n = 3. We generalize Kochen and Specker's set to Hilbert spaces of any finite dimension 0305-4470/29/5/016/img2, in a three-step process that shows the relationship between different kinds of proofs (`continuum', `probabilistic', `state-specific' and `state-independent') of the Bell - Kochen - Specker theorem. At the same time, this construction of a totally non-colourable set of directions in any dimension explicitly solves the question raised by Zimba and Penrose about the existence of such a set for n = 5.
On the emergence of the structure of physics.
Majid, S
2018-04-28
We consider Hilbert's problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space-time as motivated by this non-standard philosophy, including a new toy model of gravity on a space-time consisting of four points forming a square.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System
NASA Astrophysics Data System (ADS)
Anderson, B. E.; Sosa-Martinez, H.; Riofrío, C. A.; Deutsch, Ivan H.; Jessen, Poul S.
2015-06-01
Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6 S1 /2 ground state of 133Cs, achieving fidelities >0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.
Geometry of spin coherent states
NASA Astrophysics Data System (ADS)
Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.
2018-04-01
Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \
Hilbert space structure in quantum gravity: an algebraic perspective
Giddings, Steven B.
2015-12-16
If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loubenets, Elena R.
We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence ofmore » this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)].« less
Hilbert space structure in quantum gravity: an algebraic perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giddings, Steven B.
If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less
Model representations for systems of selfadjoint operators satisfying commutation relations
NASA Astrophysics Data System (ADS)
Zolotarev, Vladimir A.
2010-12-01
Model representations are constructed for a system \\{B_k\\}_1^n of bounded linear selfadjoint operators in a Hilbert space H such that \\displaystyle \\lbrack B_k,B_s \\rbrack =\\frac i2\\varphi^*R_{k,s}^-\\varphi, \\qquad\\sigma_k\\varphi B_s-\\sigma_s\\varphi B_k=R_{k,s}^+\\varphi, \\displaystyle \\sigma_k\\varphi\\varphi^*\\sigma_s-\\sigma_s\\varphi\\varphi^*\\sigma_k=2iR_{k,s}^-,\\qquad1\\le k, s\\le n, where \\varphi is a linear operator from H into a Hilbert space E and \\{\\sigma_k,R_{k,s}^+/-\\}_1^n are some selfadjoint operators in E. A realization of these models in function spaces on a Riemann surface is found and a full set of invariants for \\{B_k\\}_1^n is described. Bibliography: 11 titles.
Phase operator problem and macroscopic extension of quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, M.
1997-06-01
To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less
NASA Astrophysics Data System (ADS)
Man'ko, V. I.; Markovich, L. A.
2018-02-01
Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.
Miao, Jun; Wong, Wilbur C K; Narayan, Sreenath; Wilson, David L
2011-11-01
Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (N(C)). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = N(C). K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B(1) inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support ("KARAOKE") algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding N(C). KARAOKE performed comparably to GRAPPA at low Rs. As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and/or high field strength.
Miao, Jun; Wong, Wilbur C. K.; Narayan, Sreenath; Wilson, David L.
2011-01-01
Purpose: Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (NC). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = NC. Methods: K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B1 inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. Results: A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support (“KARAOKE”) algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding NC. KARAOKE performed comparably to GRAPPA at low Rs. Conclusions: As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and∕or high field strength. PMID:22047378
NASA Astrophysics Data System (ADS)
Fernandes, Adji Achmad Rinaldo; Solimun, Arisoesilaningsih, Endang
2017-12-01
The aim of this research is to estimate the spline in Path Analysis-based on Nonparametric Regression using Penalized Weighted Least Square (PWLS) approach. Approach used is Reproducing Kernel Hilbert Space at sobolev space. Nonparametric path analysis model on the equation y1 i=f1.1(x1 i)+ε1 i; y2 i=f1.2(x1 i)+f2.2(y1 i)+ε2 i; i =1 ,2 ,…,n Nonparametric Path Analysis which meet the criteria of minimizing PWLS min fw .k∈W2m[aw .k,bw .k], k =1 ,2 { (2n ) -1(y˜-f ˜ ) TΣ-1(y ˜-f ˜ ) + ∑k =1 2 ∑w =1 2 λw .k ∫aw .k bw .k [fw.k (m )(xi) ] 2d xi } is f ˜^=Ay ˜ with A=T1(T1TU1-1∑-1T1)-1T1TU1-1∑-1+V1U1-1∑-1[I-T1(T1TU1-1∑-1T1)-1T1TU1-1∑-1] columnalign="left">+T2(T2TU2-1∑-1T2)-1T2TU2-1∑-1+V2U2-1∑-1[I1-T2(T2TU2-1∑-1T2) -1T2TU2-1∑-1
Oversampling the Minority Class in the Feature Space.
Perez-Ortiz, Maria; Gutierrez, Pedro Antonio; Tino, Peter; Hervas-Martinez, Cesar
2016-09-01
The imbalanced nature of some real-world data is one of the current challenges for machine learning researchers. One common approach oversamples the minority class through convex combination of its patterns. We explore the general idea of synthetic oversampling in the feature space induced by a kernel function (as opposed to input space). If the kernel function matches the underlying problem, the classes will be linearly separable and synthetically generated patterns will lie on the minority class region. Since the feature space is not directly accessible, we use the empirical feature space (EFS) (a Euclidean space isomorphic to the feature space) for oversampling purposes. The proposed method is framed in the context of support vector machines, where the imbalanced data sets can pose a serious hindrance. The idea is investigated in three scenarios: 1) oversampling in the full and reduced-rank EFSs; 2) a kernel learning technique maximizing the data class separation to study the influence of the feature space structure (implicitly defined by the kernel function); and 3) a unified framework for preferential oversampling that spans some of the previous approaches in the literature. We support our investigation with extensive experiments over 50 imbalanced data sets.
Basis adaptation in homogeneous chaos spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, Ramakrishna; Ghanem, Roger
2014-02-01
We present a new meth for the characterization of subspaces associated with low-dimensional quantities of interet (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.
Minimum Dimension of a Hilbert Space Needed to Generate a Quantum Correlation.
Sikora, Jamie; Varvitsiotis, Antonios; Wei, Zhaohui
2016-08-05
Consider a two-party correlation that can be generated by performing local measurements on a bipartite quantum system. A question of fundamental importance is to understand how many resources, which we quantify by the dimension of the underlying quantum system, are needed to reproduce this correlation. In this Letter, we identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to generate a given two-party quantum correlation. We show that our bound is tight on many well-known correlations and discuss how it can rule out correlations of having a finite-dimensional quantum representation. We show that our bound is multiplicative under product correlations and also that it can witness the nonconvexity of certain restricted-dimensional quantum correlations.
Cooling schemes for two-component fermions in layered optical lattices
NASA Astrophysics Data System (ADS)
Goto, Shimpei; Danshita, Ippei
2017-12-01
Recently, a cooling scheme for ultracold atoms in a bilayer optical lattice has been proposed (A. Kantian et al., arXiv:1609.03579). In their scheme, the energy offset between the two layers is increased dynamically such that the entropy of one layer is transferred to the other layer. Using the full-Hilbert-space approach, we compute cooling dynamics subjected to the scheme in order to show that their scheme fails to cool down two-component fermions. We develop an alternative cooling scheme for two-component fermions, in which the spin-exchange interaction of one layer is significantly reduced. Using both full-Hilbert-space and matrix-product-state approaches, we find that our scheme can decrease the temperature of the other layer by roughly half.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2010-12-01
A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2009-08-01
One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R-1)-diagonal matrices.
Quantum Search in Hilbert Space
NASA Technical Reports Server (NTRS)
Zak, Michail
2003-01-01
A proposed quantum-computing algorithm would perform a search for an item of information in a database stored in a Hilbert-space memory structure. The algorithm is intended to make it possible to search relatively quickly through a large database under conditions in which available computing resources would otherwise be considered inadequate to perform such a task. The algorithm would apply, more specifically, to a relational database in which information would be stored in a set of N complex orthonormal vectors, each of N dimensions (where N can be exponentially large). Each vector would constitute one row of a unitary matrix, from which one would derive the Hamiltonian operator (and hence the evolutionary operator) of a quantum system. In other words, all the stored information would be mapped onto a unitary operator acting on a quantum state that would represent the item of information to be retrieved. Then one could exploit quantum parallelism: one could pose all search queries simultaneously by performing a quantum measurement on the system. In so doing, one would effectively solve the search problem in one computational step. One could exploit the direct- and inner-product decomposability of the unitary matrix to make the dimensionality of the memory space exponentially large by use of only linear resources. However, inasmuch as the necessary preprocessing (the mapping of the stored information into a Hilbert space) could be exponentially expensive, the proposed algorithm would likely be most beneficial in applications in which the resources available for preprocessing were much greater than those available for searching.
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2014-09-01
In quantum mechanics, the selfadjoint Hilbert space operators play a triple role as observables, generators of the dynamical groups and statistical operators defining the mixed states. One might expect that this is typical of Hilbert space quantum mechanics, but it is not. The same triple role occurs for the elements of a certain ordered Banach space in a much more general theory based upon quantum logics and a conditional probability calculus (which is a quantum logical model of the Lueders-von Neumann measurement process). It is shown how positive groups, automorphism groups, Lie algebras and statistical operators emerge from one major postulate - the non-existence of third-order interference (third-order interference and its impossibility in quantum mechanics were discovered by R. Sorkin in 1994). This again underlines the power of the combination of the conditional probability calculus with the postulate that there is no third-order interference. In two earlier papers, its impact on contextuality and nonlocality had already been revealed.
Invariance of Topological Indices Under Hilbert Space Truncation
Huang, Zhoushen; Zhu, Wei; Arovas, Daniel P.; ...
2018-01-05
Here, we show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z 2 topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possiblemore » application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.« less
Nomura, Yasunori; Salzetta, Nico
2016-08-04
The firewall paradox for black holes is often viewed as indicating a conflict between unitarity and the equivalence principle. We elucidate how the paradox manifests as a limitation of semiclassical theory, rather than presents a conflict between fundamental principles. Two principal features of the fundamental and semiclassical theories address two versions of the paradox: the entanglement and typicality arguments. First, the physical Hilbert space describing excitations on a fixed black hole background in the semiclassical theory is exponentially smaller than the number of physical states in the fundamental theory of quantum gravity. Second, in addition to the Hilbert space formore » physical excitations, the semiclassical theory possesses an unphysically large Fock space built by creation and annihilation operators on the fixed black hole background. Understanding these features not only eliminates the necessity of firewalls but also leads to a new picture of Hawking emission contrasting pair creation at the horizon.« less
Invariance of Topological Indices Under Hilbert Space Truncation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhoushen; Zhu, Wei; Arovas, Daniel P.
Here, we show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z 2 topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possiblemore » application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.« less
Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials
NASA Astrophysics Data System (ADS)
Kalla, C.; Korotkin, D.
2014-11-01
In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.
Test spaces and characterizations of quadratic spaces
NASA Astrophysics Data System (ADS)
Dvurečenskij, Anatolij
1996-10-01
We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.
Nana, Roger; Hu, Xiaoping
2010-01-01
k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.
Connes distance function on fuzzy sphere and the connection between geometry and statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devi, Yendrembam Chaoba, E-mail: chaoba@bose.res.in; Chakraborty, Biswajit, E-mail: biswajit@bose.res.in; Prajapat, Shivraj, E-mail: shraprajapat@gmail.com
An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which ismore » shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2.« less
Possible treatment of the ghost states in the Lee-Wick standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalaby, Abouzeid M.; Physics Department, Faculty of Science, Qassim University
2009-07-15
In this work, we employ the techniques used to cure the indefinite norm problem in pseudo-Hermitian Hamiltonians to show that the ghost states in a higher derivative scalar field theory are not real ghosts. For the model under investigation, an imaginary auxiliary field is introduced to have an equivalent non-Hermitian two-field scalar theory. We were able to calculate exactly the positive definite metric operator {eta} for the quantum mechanical as well as the quantum field versions of the theory. While the equivalent Hamiltonian is non-Hermitian in a Hilbert space characterized by the Dirac sense inner product, it is, however, amore » Hermitian in a Hilbert space endowed with the inner product
Exact dimension estimation of interacting qubit systems assisted by a single quantum probe
NASA Astrophysics Data System (ADS)
Sone, Akira; Cappellaro, Paola
2017-12-01
Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.
NASA Astrophysics Data System (ADS)
Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara
2012-10-01
Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety of concrete instances with special properties. The aim of this special section is to provide a forum for highly topical ongoing work in the area of regularization in Banach spaces, its numerics and its applications. Indeed, we have been lucky enough to obtain a number of excellent papers both from colleagues who have previously been contributing to this topic and from researchers entering the field due to its relevance in practical inverse problems. We would like to thank all contributers for enabling us to present a high quality collection of papers on topics ranging from various aspects of regularization via efficient numerical solution to applications in PDE models. We give a brief overview of the contributions included in this issue (here ordered alphabetically by first author). In their paper, Iterative regularization with general penalty term—theory and application to L1 and TV regularization, Radu Bot and Torsten Hein provide an extension of the Landweber iteration for linear operator equations in Banach space to general operators in place of the inverse duality mapping, which corresponds to the use of general regularization functionals in variational regularization. The L∞ topology in data space corresponds to the frequently occuring situation of uniformly distributed data noise. A numerically efficient solution of the resulting Tikhonov regularization problem via a Moreau-Yosida appriximation and a semismooth Newton method, along with a δ-free regularization parameter choice rule, is the topic of the paper L∞ fitting for inverse problems with uniform noise by Christian Clason. Extension of convergence rates results from classical source conditions to their generalization via variational inequalities with a priori and a posteriori stopping rules is the main contribution of the paper Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities by Klaus Frick and Markus Grasmair, again in the context of some iterative method. A powerful tool for proving convergence rates of Tikhonov type but also other regularization methods in Banach spaces are assumptions of the type of variational inequalities that combine conditions on solution smoothness (i.e., source conditions in the Hilbert space case) and nonlinearity of the forward operator. In Parameter choice in Banach space regularization under variational inequalities, Bernd Hofmann and Peter Mathé provide results with general error measures and especially study the question of regularization parameter choice. Daijun Jiang, Hui Feng, and Jun Zou consider an application of Banach space ideas in the context of an application problem in their paper Convergence rates of Tikhonov regularizations for parameter identifiation in a parabolic-elliptic system, namely the identification of a distributed diffusion coefficient in a coupled elliptic-parabolic system. In particular, they show convergence rates of Lp-H1 (variational) regularization for the application under consideration via the use and verification of certain source and nonlinearity conditions. In computational practice, the Lp norm with p close to one is often used as a substitute for the actually sparsity promoting L1 norm. In Norm sensitivity of sparsity regularization with respect to p, Kamil S Kazimierski, Peter Maass and Robin Strehlow consider the question of how sensitive the Tikhonov regularized solution is with respect to p. They do so by computing the derivative via the implicit function theorem, particularly at the crucial value, p=1. Another iterative regularization method in Banach space is considered by Qinian Jin and Linda Stals in Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Using a variational formulation and under some smoothness and convexity assumption on the preimage space, they extend the convergence analysis of the well-known iterative Tikhonov method for linear problems in Hilbert space to a more general Banach space framework. Systems of linear or nonlinear operators can be efficiently treated by cyclic iterations, thus several variants of gradient and Newton-type Kaczmarz methods have already been studied in the Hilbert space setting. Antonio Leitão and M Marques Alves in their paper On Landweber---Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces carry out an extension to Banach spaces for the fundamental Landweber version. The impact of perturbations in the evaluation of the forward operator and its derivative on the convergence behaviour of regularization methods is a practically and highly relevant issue. It is treated in the paper Convergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators by Shuai Lu and Jens Flemming for variational regularization of nonlinear problems in Banach spaces. In The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting, Thomas Schuster, Andreas Rieder and Frank Schöpfer extend the concept of approximate inverse to the practically and highly relevant situation of finitely many measurements and a general smooth and convex Banach space as preimage space. They devise two approaches for computing the reconstruction kernels required in the method and provide convergence and regularization results. Frank Werner and Thorsten Hohage in Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data prove convergence rates results for variational regularization with general convex regularization term and the Kullback-Leibler distance as data fidelity term by combining a new result on Poisson distributed data with a deterministic rates analysis. Finally, we would like to thank the Inverse Problems team, especially Joanna Evangelides and Chris Wileman, for their extraordinary smooth and productive cooperation, as well as Alfred K Louis for his kind support of our initiative.
Design of k-Space Channel Combination Kernels and Integration with Parallel Imaging
Beatty, Philip J.; Chang, Shaorong; Holmes, James H.; Wang, Kang; Brau, Anja C. S.; Reeder, Scott B.; Brittain, Jean H.
2014-01-01
Purpose In this work, a new method is described for producing local k-space channel combination kernels using a small amount of low-resolution multichannel calibration data. Additionally, this work describes how these channel combination kernels can be combined with local k-space unaliasing kernels produced by the calibration phase of parallel imaging methods such as GRAPPA, PARS and ARC. Methods Experiments were conducted to evaluate both the image quality and computational efficiency of the proposed method compared to a channel-by-channel parallel imaging approach with image-space sum-of-squares channel combination. Results Results indicate comparable image quality overall, with some very minor differences seen in reduced field-of-view imaging. It was demonstrated that this method enables a speed up in computation time on the order of 3–16X for 32-channel data sets. Conclusion The proposed method enables high quality channel combination to occur earlier in the reconstruction pipeline, reducing computational and memory requirements for image reconstruction. PMID:23943602
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.
Construction of CASCI-type wave functions for very large active spaces.
Boguslawski, Katharina; Marti, Konrad H; Reiher, Markus
2011-06-14
We present a procedure to construct a configuration-interaction expansion containing arbitrary excitations from an underlying full-configuration-interaction-type wave function defined for a very large active space. Our procedure is based on the density-matrix renormalization group (DMRG) algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space. Since the dimension of the Hilbert space scales binomially with the size of the active space, a sophisticated Monte Carlo sampling routine is employed. This sampling algorithm can also construct such configuration-interaction-type wave functions from any other type of tensor network states. The configuration-interaction information obtained serves several purposes. It yields a qualitatively correct description of the molecule's electronic structure, it allows us to analyze DMRG wave functions converged for the same molecular system but with different parameter sets (e.g., different numbers of active-system (block) states), and it can be considered a balanced reference for the application of a subsequent standard multi-reference configuration-interaction method.
NASA Astrophysics Data System (ADS)
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
Oreshkov, Ognyan; Calsamiglia, John
2010-07-30
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Nakarmi, Ukash; Wang, Yanhua; Lyu, Jingyuan; Liang, Dong; Ying, Leslie
2017-11-01
While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.
Problematic projection to the in-sample subspace for a kernelized anomaly detector
Theiler, James; Grosklos, Guen
2016-03-07
We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. Here, we show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a widemore » range of bandwidths.« less
Potoček, Václav; Miatto, Filippo M; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Liapis, Andreas C; Oi, Daniel K L; Boyd, Robert W; Jeffers, John
2015-10-16
In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.
Resonance and decay phenomena lead to quantum mechanical time asymmetry
NASA Astrophysics Data System (ADS)
Bohm, A.; Bui, H. V.
2013-04-01
The states (Schrödinger picture) and observables (Heisenberg picture) in the standard quantum theory evolve symmetrically in time, given by the unitary group with time extending over -∞ < t < +∞. This time evolution is a mathematical consequence of the Hilbert space boundary condition for the dynamical differential equations. However, this unitary group evolution violates causality. Moreover, it does not solve an old puzzle of Wigner: How does one describe excited states of atoms which decay exponentially, and how is their lifetime τ related to the Lorentzian width Γ? These question can be answered if one replaces the Hilbert space boundary condition by new, Hardy space boundary conditions. These Hardy space boundary conditions allow for a distinction between states (prepared by a preparation apparatus) and observables (detected by a registration apparatus). The new Hardy space quantum theory is time asymmetric, i.e, the time evolution is given by the semigroup with t0 <= t < +∞, which predicts a finite "beginning of time" t0, where t0 is the ensemble of time at which each individual system has been prepared. The Hardy space axiom also leads to the new prediction: the width Γ and the lifetime τ are exactly related by τ = hslash/Γ.
Dissipation and entropy production in open quantum systems
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2010-11-01
A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.
A Probabilistic Framework for the Validation and Certification of Computer Simulations
NASA Technical Reports Server (NTRS)
Ghanem, Roger; Knio, Omar
2000-01-01
The paper presents a methodology for quantifying, propagating, and managing the uncertainty in the data required to initialize computer simulations of complex phenomena. The purpose of the methodology is to permit the quantitative assessment of a certification level to be associated with the predictions from the simulations, as well as the design of a data acquisition strategy to achieve a target level of certification. The value of a methodology that can address the above issues is obvious, specially in light of the trend in the availability of computational resources, as well as the trend in sensor technology. These two trends make it possible to probe physical phenomena both with physical sensors, as well as with complex models, at previously inconceivable levels. With these new abilities arises the need to develop the knowledge to integrate the information from sensors and computer simulations. This is achieved in the present work by tracing both activities back to a level of abstraction that highlights their commonalities, thus allowing them to be manipulated in a mathematically consistent fashion. In particular, the mathematical theory underlying computer simulations has long been associated with partial differential equations and functional analysis concepts such as Hilbert spares and orthogonal projections. By relying on a probabilistic framework for the modeling of data, a Hilbert space framework emerges that permits the modeling of coefficients in the governing equations as random variables, or equivalently, as elements in a Hilbert space. This permits the development of an approximation theory for probabilistic problems that parallels that of deterministic approximation theory. According to this formalism, the solution of the problem is identified by its projection on a basis in the Hilbert space of random variables, as opposed to more traditional techniques where the solution is approximated by its first or second-order statistics. The present representation, in addition to capturing significantly more information than the traditional approach, facilitates the linkage between different interacting stochastic systems as is typically observed in real-life situations.
Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter
2014-12-29
Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.
Fast metabolite identification with Input Output Kernel Regression.
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-06-15
An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Fast metabolite identification with Input Output Kernel Regression
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-01-01
Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628
A self-calibrated angularly continuous 2D GRAPPA kernel for propeller trajectories
Skare, Stefan; Newbould, Rexford D; Nordell, Anders; Holdsworth, Samantha J; Bammer, Roland
2008-01-01
The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging (PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the angular variation of the weights is parameterized. This new angularly continuous kernel formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing the generation of fully sampled diagnostic quality images using only the undersampled propeller data. PMID:19025911
Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming
2014-01-01
To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P
Knowledge Driven Image Mining with Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj
2004-01-01
This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels; which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper, we present the theory of Mercer Kernels, describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.
NASA Astrophysics Data System (ADS)
Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.
2016-03-01
A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.
Domain adaptation via transfer component analysis.
Pan, Sinno Jialin; Tsang, Ivor W; Kwok, James T; Yang, Qiang
2011-02-01
Domain adaptation allows knowledge from a source domain to be transferred to a different but related target domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we first propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a reproducing kernel Hilbert space using maximum mean miscrepancy. In the subspace spanned by these transfer components, data properties are preserved and data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. Furthermore, in order to uncover the knowledge hidden in the relations between the data labels from the source and target domains, we extend TCA in a semisupervised learning setting, which encodes label information into transfer components learning. We call this extension semisupervised TCA. The main contribution of our work is that we propose a novel dimensionality reduction framework for reducing the distance between domains in a latent space for domain adaptation. We propose both unsupervised and semisupervised feature extraction approaches, which can dramatically reduce the distance between domain distributions by projecting data onto the learned transfer components. Finally, our approach can handle large datasets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach are verified by experiments on five toy datasets and two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.
1983-02-01
real part is the Hilbert transform of its imaginary part. Thus we have o) d4’ . (5.1)+," _ Here r(o) and 6(o) denote respectively T(4’,0-) and 0(o,0...linear operators A in a Hilbert space H, eigenuv.aueA are critical values of the Raqt.igh quo 5ient (5.1) R(y) = (Ay,y)/(y,y), y # 0. An eigenvalue X...Das Gupta Ballistic Research Laboratory Jim Greenberg National Science Foundation Charles Giardina Fairleigh-Dickinson University Frank P. Kuhl U. S
A Functional Central Limit Theorem for the Becker-Döring Model
NASA Astrophysics Data System (ADS)
Sun, Wen
2018-04-01
We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.
Tsirelson's bound and supersymmetric entangled states
Borsten, L.; Brádler, K.; Duff, M. J.
2014-01-01
A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964
No chiral truncation of quantum log gravity?
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Marolf, Donald
2010-03-01
At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.
Bath-induced correlations in an infinite-dimensional Hilbert space
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2017-09-01
Quantum correlations between two free spinless dissipative distinguishable particles (interacting with a thermal bath) are studied analytically using the quantum master equation and tools of quantum information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown. We show that for temperature T> 0 the time-evolution of the reduced density matrix cannot be written as the direct product of two independent particles. We have found a time-scale that characterizes the time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the induced correlations among particles. We have supported the quantum character of the correlations by analyzing the geometric quantum discord.
The MFA ground states for the extended Bose-Hubbard model with a three-body constraint
NASA Astrophysics Data System (ADS)
Panov, Yu. D.; Moskvin, A. S.; Vasinovich, E. V.; Konev, V. V.
2018-05-01
We address the intensively studied extended bosonic Hubbard model (EBHM) with truncation of the on-site Hilbert space to the three lowest occupation states n = 0 , 1 , 2 in frames of the S = 1 pseudospin formalism. Similar model was recently proposed to describe the charge degree of freedom in a model high-T c cuprate with the on-site Hilbert space reduced to the three effective valence centers, nominally Cu1+;2+;3+. With small corrections the model becomes equivalent to a strongly anisotropic S = 1 quantum magnet in an external magnetic field. We have applied a generalized mean-field approach and quantum Monte-Carlo technique for the model 2D S = 1 system with a two-particle transport to find the ground state phase with its evolution under deviation from half-filling.
A Factorization Approach to the Linear Regulator Quadratic Cost Problem
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.
Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe
NASA Astrophysics Data System (ADS)
Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim
2017-11-01
The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalay, Berfin; Demiralp, Metin
2014-10-06
The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integermore » powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin.« less
On the Hilbert-Huang Transform Data Processing System Development
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Flatley, Thomas P.; Huang, Norden E.; Cornwell, Evette; Smith, Darell
2003-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The Fourier view of nonlinear mechanics that had existed for a long time, and the associated FFT (fairly recent development), carry strong a-priori assumptions about the source data, such as linearity and of being stationary. Natural phenomena measurements are essentially nonlinear and nonstationary. A very recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT) proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using the Empirical Mode Decomposition (EMD) followed by the Hilbert Transform of the empirical decomposition data (HT), the HHT allows spectrum analysis of nonlinear and nonstationary data by using an engineering a-posteriori data processing, based on the EMD algorithm. This results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF) that can be further analyzed for spectrum interpretation by the classical Hilbert Transform. This paper describes phase one of the development of a new engineering tool, the HHT Data Processing System (HHTDPS). The HHTDPS allows applying the "T to a data vector in a fashion similar to the heritage FFT. It is a generic, low cost, high performance personal computer (PC) based system that implements the HHT computational algorithms in a user friendly, file driven environment. This paper also presents a quantitative analysis for a complex waveform data sample, a summary of technology commercialization efforts and the lessons learned from this new technology development.
Chiral Bosonization of Superconformal Ghosts
NASA Technical Reports Server (NTRS)
Shi, Deheng; Shen, Yang; Liu, Jinling; Xiong, Yongjian
1996-01-01
We explain the difference of the Hilbert space of the superconformal ghosts (beta,gamma) system from that of its bosonized fields phi and chi. We calculate the chiral correlation functions of phi, chi fields by inserting appropriate projectors.
NASA Technical Reports Server (NTRS)
McNab, A. David; woo, Alex (Technical Monitor)
1999-01-01
Portals, an experimental feature of 4.4BSD, extend the file system name space by exporting certain open () requests to a user-space daemon. A portal daemon is mounted into the file name space as if it were a standard file system. When the kernel resolves a pathname and encounters a portal mount point, the remainder of the path is passed to the portal daemon. Depending on the portal "pathname" and the daemon's configuration, some type of open (2) is performed. The resulting file descriptor is passed back to the kernel which eventually returns it to the user, to whom it appears that a "normal" open has occurred. A proxy portalfs file system is responsible for kernel interaction with the daemon. The overall effect is that the portal daemon performs an open (2) on behalf of the kernel, possibly hiding substantial complexity from the calling process. One particularly useful application is implementing a connection service that allows simple scripts to open network sockets. This paper describes the implementation of portals for LINUX 2.0.
Improvement of Predictive Ability by Uniform Coverage of the Target Genetic Space
Bustos-Korts, Daniela; Malosetti, Marcos; Chapman, Scott; Biddulph, Ben; van Eeuwijk, Fred
2016-01-01
Genome-enabled prediction provides breeders with the means to increase the number of genotypes that can be evaluated for selection. One of the major challenges in genome-enabled prediction is how to construct a training set of genotypes from a calibration set that represents the target population of genotypes, where the calibration set is composed of a training and validation set. A random sampling protocol of genotypes from the calibration set will lead to low quality coverage of the total genetic space by the training set when the calibration set contains population structure. As a consequence, predictive ability will be affected negatively, because some parts of the genotypic diversity in the target population will be under-represented in the training set, whereas other parts will be over-represented. Therefore, we propose a training set construction method that uniformly samples the genetic space spanned by the target population of genotypes, thereby increasing predictive ability. To evaluate our method, we constructed training sets alongside with the identification of corresponding genomic prediction models for four genotype panels that differed in the amount of population structure they contained (maize Flint, maize Dent, wheat, and rice). Training sets were constructed using uniform sampling, stratified-uniform sampling, stratified sampling and random sampling. We compared these methods with a method that maximizes the generalized coefficient of determination (CD). Several training set sizes were considered. We investigated four genomic prediction models: multi-locus QTL models, GBLUP models, combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space (RKHS) models. For the maize and wheat panels, construction of the training set under uniform sampling led to a larger predictive ability than under stratified and random sampling. The results of our methods were similar to those of the CD method. For the rice panel, all training set construction methods led to similar predictive ability, a reflection of the very strong population structure in this panel. PMID:27672112
Density Estimation with Mercer Kernels
NASA Technical Reports Server (NTRS)
Macready, William G.
2003-01-01
We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, James; Grosklos, Guen
We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. Here, we show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a widemore » range of bandwidths.« less
Putting Priors in Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2004-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
The linear regulator problem for parabolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1983-01-01
An approximation framework is presented for computation (in finite imensional spaces) of Riccati operators that can be guaranteed to converge to the Riccati operator in feedback controls for abstract evolution systems in a Hilbert space. It is shown how these results may be used in the linear optimal regulator problem for a large class of parabolic systems.
An Ensemble Approach to Building Mercer Kernels with Prior Information
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2005-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
Statistical hydrodynamics and related problems in spaces of probability measures
NASA Astrophysics Data System (ADS)
Dostoglou, Stamatios
2017-11-01
A rigorous theory of statistical solutions of the Navier-Stokes equations, suitable for exploring Kolmogorov's ideas, has been developed by M.I. Vishik and A.V. Fursikov, culminating in their monograph "Mathematical problems of Statistical Hydromechanics." We review some progress made in recent years following this approach, with emphasis on problems concerning the correlation of velocities and corresponding questions in the space of probability measures on Hilbert spaces.
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
NASA Astrophysics Data System (ADS)
Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.
2018-03-01
We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2012-01-01
A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.
Misleading inferences from discretization of empty spacetime: Snyder-noncommutativity case study
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni; Astuti, Valerio
2015-06-01
Alternative approaches to the study of the quantum gravity problem are handling the role of spacetime very differently. Some are focusing on the analysis of one or another novel formulation of "empty spacetime", postponing to later stages the introduction of particles and fields, while other approaches assume that spacetime should only be an emergent entity. We here argue that recent progress in the covariant formulation of quantum mechanics, suggests that empty spacetime is not physically meaningful. We illustrate our general thesis in the specific context of the noncommutative Snyder spacetime, which is also of some intrinsic interest, since hundreds of studies were devoted to its analysis. We show that empty Snyder spacetime, described in terms of a suitable kinematical Hilbert space, is discrete, but this is only a formal artifact: the discreteness leaves no trace on the observable properties of particles on the physical Hilbert space.
Numerical optimization in Hilbert space using inexact function and gradient evaluations
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.
Coherence-generating power of quantum dephasing processes
NASA Astrophysics Data System (ADS)
Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
Excluding joint probabilities from quantum theory
NASA Astrophysics Data System (ADS)
Allahverdyan, Armen E.; Danageozian, Arshag
2018-03-01
Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.
Geometric descriptions of entangled states by auxiliary varieties
NASA Astrophysics Data System (ADS)
Holweck, Frédéric; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-01
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
A fast numerical method for ideal fluid flow in domains with multiple stirrers
NASA Astrophysics Data System (ADS)
Nasser, Mohamed M. S.; Green, Christopher C.
2018-03-01
A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Many Molecular Properties from One Kernel in Chemical Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less
Hyperspectral Image Classification via Kernel Sparse Representation
2013-01-01
classification algorithms. Moreover, the spatial coherency across neighboring pixels is also incorporated through a kernelized joint sparsity model , where...joint sparsity model , where all of the pixels within a small neighborhood are jointly represented in the feature space by selecting a few common training...hyperspectral imagery, joint spar- sity model , kernel methods, sparse representation. I. INTRODUCTION HYPERSPECTRAL imaging sensors capture images
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
Lévy processes on a generalized fractal comb
NASA Astrophysics Data System (ADS)
Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç
2016-09-01
Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.
Stationary transport processes with unbounded collision operators
NASA Astrophysics Data System (ADS)
Greenberg, William; van der Mee, C. V. M.
1984-01-01
An abstract Hilbert space equation is studied, which models many of the stationary, one-dimensional transport equations with partial-range boundary conditions. In particular, the collision term may be unbounded and nondissipative. A complete existence and uniqueness theory is presented.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Towards Formal Verification of a Separation Microkernel
NASA Astrophysics Data System (ADS)
Butterfield, Andrew; Sanan, David; Hinchey, Mike
2013-08-01
The best approach to verifying an IMA separation kernel is to use a (fixed) time-space partitioning kernel with a multiple independent levels of separation (MILS) architecture. We describe an activity that explores the cost and feasibility of doing a formal verification of such a kernel to the Common Criteria (CC) levels mandated by the Separation Kernel Protection Profile (SKPP). We are developing a Reference Specification of such a kernel, and are using higher-order logic (HOL) to construct formal models of this specification and key separation properties. We then plan to do a dry run of part of a formal proof of those properties using the Isabelle/HOL theorem prover.
What is Quantum Mechanics? A Minimal Formulation
NASA Astrophysics Data System (ADS)
Friedberg, R.; Hohenberg, P. C.
2018-03-01
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.
NASA Astrophysics Data System (ADS)
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Cosmological evolution as squeezing: a toy model for group field cosmology
NASA Astrophysics Data System (ADS)
Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang
2018-05-01
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens (2014) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically.
Introducing etch kernels for efficient pattern sampling and etch bias prediction
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2018-01-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.
Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benatti, Fabio, E-mail: benatti@ts.infn.it; Oskouei, Samad Khabbazi, E-mail: kh.oskuei@ut.ac.ir; Deh Abad, Ahmad Shafiei, E-mail: shafiei@khayam.ut.ac.ir
We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.
Gradient-based adaptation of general gaussian kernels.
Glasmachers, Tobias; Igel, Christian
2005-10-01
Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.
Noise kernels of stochastic gravity in conformally-flat spacetimes
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2015-03-01
The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.
A theoretical formulation of the electrophysiological inverse problem on the sphere
NASA Astrophysics Data System (ADS)
Riera, Jorge J.; Valdés, Pedro A.; Tanabe, Kunio; Kawashima, Ryuta
2006-04-01
The construction of three-dimensional images of the primary current density (PCD) produced by neuronal activity is a problem of great current interest in the neuroimaging community, though being initially formulated in the 1970s. There exist even now enthusiastic debates about the authenticity of most of the inverse solutions proposed in the literature, in which low resolution electrical tomography (LORETA) is a focus of attention. However, in our opinion, the capabilities and limitations of the electro and magneto encephalographic techniques to determine PCD configurations have not been extensively explored from a theoretical framework, even for simple volume conductor models of the head. In this paper, the electrophysiological inverse problem for the spherical head model is cast in terms of reproducing kernel Hilbert spaces (RKHS) formalism, which allows us to identify the null spaces of the implicated linear integral operators and also to define their representers. The PCD are described in terms of a continuous basis for the RKHS, which explicitly separates the harmonic and non-harmonic components. The RKHS concept permits us to bring LORETA into the scope of the general smoothing splines theory. A particular way of calculating the general smoothing splines is illustrated, avoiding a brute force discretization prematurely. The Bayes information criterion is used to handle dissimilarities in the signal/noise ratios and physical dimensions of the measurement modalities, which could affect the estimation of the amount of smoothness required for that class of inverse solution to be well specified. In order to validate the proposed method, we have estimated the 3D spherical smoothing splines from two data sets: electric potentials obtained from a skull phantom and magnetic fields recorded from subjects performing an experiment of human faces recognition.
1992-04-01
the voltage applied to the it" patch, K ’ is a parameter which depends on the geometry and piezoceramic...in the state space II L 2(fQ) x L2 (F0 ). Here L2(Q) is the quotient space of L2 over the constant functions. The use of the quotient space results...form of the problem, we also define the Hilbert space V = fti(Q) x H(F 0 ) where h!(Q) is the quotient space of Il’ over the constant functions
Convergence of quantum electrodynamics in a curved modification of Minkowski space.
Segal, I E; Zhou, Z
1994-01-01
The interaction and total hamiltonians for quantum electrodynamics, in the interaction representation, are entirely regular self-adjoint operators in Hilbert space, in the universal covering manifold M of the conformal compactification of Minkowski space Mo. (M is conformally equivalent to the Einstein universe E, in which Mo may be canonically imbedded.) In a fixed Lorentz frame this may be expressed as convergence in a spherical space with suitable periodic boundary conditions in time. The traditional relativistic theory is the formal limit of the present variant as the space curvature vanishes. PMID:11607455
Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density
NASA Astrophysics Data System (ADS)
Hohl, A.; Delmelle, E. M.; Tang, W.
2015-07-01
Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.
Uncertainty Relation on Generalized Skew Information with aMonotone Pair
NASA Astrophysics Data System (ADS)
Liu, Jun-Tong; Wang, Qing-Wen; Li, Lei
2017-08-01
In this paper, we first define a generalized ( f, g)-skew information |I_{ ρ }^{(f, g)} |(A) and two related quantity |J_{ ρ }^{(f, g)} |(A) and |U_{ ρ }^{(f, g)} |(A) for any non-Hermitian Hilbert-Schmidt operator A and a density operator ρ on a Hilbert space H and discuss some properties of them. And then, we obtain the following uncertainty relation in terms of |U_{ ρ }^{(f, g)} |(A): |U_{ ρ}^{(f, g)}|(A)|U_{ ρ}^{(f, g)}|(B)≥ β_{(f, g)}|Tr( f(ρ)g(ρ)[A, B]0)|2, which is a generalization of a known uncertainty relation in Ko and Yoo (J. Math. Anal. Appl. 383, 208-214, 11).
NASA Astrophysics Data System (ADS)
Mancinelli, N. J.; Fischer, K. M.
2018-03-01
We characterize the spatial sensitivity of Sp converted waves to improve constraints on lateral variations in uppermost-mantle velocity gradients, such as the lithosphere-asthenosphere boundary (LAB) and the mid-lithospheric discontinuities. We use SPECFEM2D to generate 2-D scattering kernels that relate perturbations from an elastic half-space to Sp waveforms. We then show that these kernels can be well approximated using ray theory, and develop an approach to calculating kernels for layered background models. As proof of concept, we show that lateral variations in uppermost-mantle discontinuity structure are retrieved by implementing these scattering kernels in the first iteration of a conjugate-directions inversion algorithm. We evaluate the performance of this technique on synthetic seismograms computed for 2-D models with undulations on the LAB of varying amplitude, wavelength and depth. The technique reliably images the position of discontinuities with dips <35° and horizontal wavelengths >100-200 km. In cases of mild topography on a shallow LAB, the relative brightness of the LAB and Moho converters approximately agrees with the ratio of velocity contrasts across the discontinuities. Amplitude retrieval degrades at deeper depths. For dominant periods of 4 s, the minimum station spacing required to produce unaliased results is 5 km, but the application of a Gaussian filter can improve discontinuity imaging where station spacing is greater.
Control Transfer in Operating System Kernels
1994-05-13
microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating
Semi-supervised learning for ordinal Kernel Discriminant Analysis.
Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C
2016-12-01
Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moradi, Majid; Annabestani, Mostafa
2017-12-01
By adding an extra Hilbert space to the Hadamard quantum walk on cycle (QWC), we present a new type of QWC, the Möbius quantum walk (MQW). The new space configuration enables the particle to rotate around the axis of movement. We define the factor α as the Möbius factor, which is the number of rotations per cycle. So, by α=0 we have a normal QWC, while α \
The Standard Model in noncommutative geometry: fundamental fermions as internal forms
NASA Astrophysics Data System (ADS)
Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej
2018-05-01
Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.
WebGeocalc and Cosmographia: Modern Tools to Access SPICE Archives
NASA Astrophysics Data System (ADS)
Semenov, B. V.; Acton, C. H.; Bachman, N. J.; Ferguson, E. W.; Rose, M. E.; Wright, E. D.
2017-06-01
The WebGeocalc (WGC) web client-server tool and the SPICE-enhanced Cosmographia visualization program are two new ways for accessing space mission geometry data provided in the PDS SPICE kernel archives and by mission operational SPICE kernel sets.
The effect of relatedness and pack size on territory overlap in African wild dogs.
Jackson, Craig R; Groom, Rosemary J; Jordan, Neil R; McNutt, J Weldon
2017-01-01
Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog ( Lycaon pictus ) packs varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and pack size, remain unclear. We used movement data from 21 wild dog packs to calculate the extent of territory overlap (20 dyads). On average, unrelated neighbouring packs had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit area within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related packs spent significantly more time in their 95% kernel overlap zones than did unrelated packs. Pack size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger packs tended to overlap more onto smaller packs' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. Evidence suggests that costly intraspecific aggression is greatly reduced between related packs. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-pack to inter-pack level. This natural spacing system can affect survival parameters and the carrying capacity of protected areas, having important management implications for intensively managed populations of this endangered species.
Deep neural mapping support vector machines.
Li, Yujian; Zhang, Ting
2017-09-01
The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the Hilbert-Huang Transform Theoretical Developments
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Blank, Karin; Flatley, Thomas; Huang, Norden E.; Patrick, David; Hestnes, Phyllis
2005-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as linearity, of being stationary, and of satisfying the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposition data, the HHT allows spectrum analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a near orthogonal adaptive basis, a basis that is derived from the data. The IMFs can be further analyzed for spectrum interpretation by the classical Hilbert Transform. A new engineering spectrum analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications post additional questions about the theoretical basis behind the HHT and EMD algorithms. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the IMFs near orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the developments of new HHT processing options, such as real-time and 2-D processing using Field Programmable Array (FPGA) computational resources, enhanced HHT synthesis, and broaden the scope of HHT applications for signal processing.
On Certain Theoretical Developments Underlying the Hilbert-Huang Transform
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Blank, Karin; Flatley, Thomas; Huang, Norden E.; Petrick, David; Hestness, Phyllis
2006-01-01
One of the main traditional tools used in scientific and engineering data spectral analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as being linear and stationary, and of satisfying the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectral analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposed data, the HHT allows spectral analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source real-value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a nearly orthogonal derived from the data (adaptive) basis. The IMFs can be further analyzed for spectrum content by using the classical Hilbert Transform. A new engineering spectral analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications pose additional questions about the theoretical basis behind the HHT and EMD algorithms. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the IMFs nearly orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the development of new HHT processing options, such as real-time and 2-D processing using Field Programmable Gate Array (FPGA) computational resources,
Regular Gleason Measures and Generalized Effect Algebras
NASA Astrophysics Data System (ADS)
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
Quantum control and the challenge of non-Hermitian model-building
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2015-06-01
In a way inspired by the brief 2002 note “The challenge of nonhermitian structures in physics” by Ramirez and Mielnik (with the text most easily available via arXiv:quant- ph/0211048) the situation in the theory is briefly summarized here as it looks twelve years later. Our text has three parts. In the first one we briefly mention the pre-history (dating back to the Freeman Dyson's proposal of the non-Hermitian-Hamiltonian method in 1956 and to its subsequent successful “interacting boson model” applications in nuclear physics) and, first of all, the amazing recent progress reached, in the stationary case, using, in essence, an inversion of the Dyson's approach. The impact on the latter idea upon abstract quantum physics is sampled, first of all, by the reference to papers by Bender et al. (who made the non-Hermitian model-building popular under the nickname of parity-times-time-reflection- symmetric alias PT-symmetric quantum mechanics) and by Mostafazadeh (who reinterpreted PT-symmetry as P-pseudo-Hermiticity). In the second part of our review the emphasis is shifted to the newest, non-stationary upgrade of the formalism which we proposed in the year 2009 and which is characterized by the simultaneous participation of a triplet of Hilbert spaces H in the representation of a single quantum system. In the third part of the review we finally emphasize that the majority of applications of our three-Hilbert-space (THS) recipe is still ahead of us because the enhancement of the flexibility is necessarily accompanied by an enhancement of the technical difficulties. An escape out of the technical trap is proposed to be sought in a restriction of attention to quantum models living in finite-dimensional Hilbert spaces H. As long as the use of such spaces is so typical for the quantum-control considerations, we conclude with conjecture that the THS formalism should start searching for implementations in the field of quantum control.
Quantum Entanglement in Random Physical States
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo
2012-07-01
Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate—among other things—the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many-body system are not physically accessible. We define physical ensembles of states acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1), the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
Jia, C. J.; Wang, Y.; Mendl, C. B.; ...
2017-12-02
Here, we describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the “checkerboard” decomposition of the Hamiltonian matrixmore » for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.« less
Topologies on quantum topoi induced by quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Kunji
2013-07-15
In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantummore » topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.« less
Entanglement entropy in (3 + 1)-d free U(1) gauge theory
NASA Astrophysics Data System (ADS)
Soni, Ronak M.; Trivedi, Sandip P.
2017-02-01
We consider the entanglement entropy for a free U(1) theory in 3+1 dimensions in the extended Hilbert space definition. By taking the continuum limit carefully we obtain a replica trick path integral which calculates this entanglement entropy. The path integral is gauge invariant, with a gauge fixing delta function accompanied by a Faddeev -Popov determinant. For a spherical region it follows that the result for the logarithmic term in the entanglement, which is universal, is given by the a anomaly coefficient. We also consider the extractable part of the entanglement, which corresponds to the number of Bell pairs which can be obtained from entanglement distillation or dilution. For a spherical region we show that the coefficient of the logarithmic term for the extractable part is different from the extended Hilbert space result. We argue that the two results will differ in general, and this difference is accounted for by a massless scalar living on the boundary of the region of interest.
Hardware-efficient Bell state preparation using Quantum Zeno Dynamics in superconducting circuits
NASA Astrophysics Data System (ADS)
Flurin, Emmanuel; Blok, Machiel; Hacohen-Gourgy, Shay; Martin, Leigh S.; Livingston, William P.; Dove, Allison; Siddiqi, Irfan
By preforming a continuous joint measurement on a two qubit system, we restrict the qubit evolution to a chosen subspace of the total Hilbert space. This extension of the quantum Zeno effect, called Quantum Zeno Dynamics, has already been explored in various physical systems such as superconducting cavities, single rydberg atoms, atomic ensembles and Bose Einstein condensates. In this experiment, two superconducting qubits are strongly dispersively coupled to a high-Q cavity (χ >> κ) allowing for the doubly excited state | 11 〉 to be selectively monitored. The Quantum Zeno Dynamics in the complementary subspace enables us to coherently prepare a Bell state. As opposed to dissipation engineering schemes, we emphasize that our protocol is deterministic, does not rely direct coupling between qubits and functions only using single qubit controls and cavity readout. Such Quantum Zeno Dynamics can be generalized to larger Hilbert space enabling deterministic generation of many-body entangled states, and thus realizes a decoherence-free subspace allowing alternative noise-protection schemes.
Geometric descriptions of entangled states by auxiliary varieties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-15
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete themore » approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.« less
Schwinger-Keldysh superspace in quantum mechanics
NASA Astrophysics Data System (ADS)
Geracie, Michael; Haehl, Felix M.; Loganayagam, R.; Narayan, Prithvi; Ramirez, David M.; Rangamani, Mukund
2018-05-01
We examine, in a quantum mechanical setting, the Hilbert space representation of the Becchi, Rouet, Stora, and Tyutin (BRST) symmetry associated with Schwinger-Keldysh path integrals. This structure had been postulated to encode important constraints on influence functionals in coarse-grained systems with dissipation, or in open quantum systems. Operationally, this entails uplifting the standard Schwinger-Keldysh two-copy formalism into superspace by appending BRST ghost degrees of freedom. These statements were previously argued at the level of the correlation functions. We provide herein a complementary perspective by working out the Hilbert space structure explicitly. Our analysis clarifies two crucial issues not evident in earlier works: first, certain background ghost insertions necessary to reproduce the correct Schwinger-Keldysh correlators arise naturally, and, second, the Schwinger-Keldysh difference operators are systematically dressed by the ghost bilinears, which turn out to be necessary to give rise to a consistent operator algebra. We also elaborate on the structure of the final state (which is BRST closed) and the future boundary condition of the ghost fields.
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, C. J.; Wang, Y.; Mendl, C. B.
Here, we describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the “checkerboard” decomposition of the Hamiltonian matrixmore » for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.« less
Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions
NASA Astrophysics Data System (ADS)
Christensen, Neil
2018-01-01
We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.
Exhaustive search system and method using space-filling curves
Spires, Shannon V.
2003-10-21
A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.
1984-04-01
5.15) where a is a positive constant and 11 IIH the Hilbert space norm associated with the chosen covariance function K. The constant a is arbitrary...Density Anomalies 14 5. Unknown Densities - Geophysical Inversion 16 6. Density Modelling Using Rectangular Prisms 24 6.1 Space Domain 24 6.2 Frequency...theory: to calculate the gravity potential and its derivatives in space due to 6 • given density distributions. When the prime interest is in "external
Divergence identities in curved space-time a resolution of the stress-energy problem
NASA Astrophysics Data System (ADS)
Yilmaz, Hüseyin
1989-03-01
It is noted that the joint use of two basic differential identities in curved space-time, namely, 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the "field stress-energy" problem of the gravitational theory. (A tribute to Eugene P. Wigner's 1957 presidential address to the APS)
NASA Technical Reports Server (NTRS)
Bykhovskiy, E. B.; Smirnov, N. V.
1983-01-01
The Hilbert space L2(omega) of vector functions is studied. A breakdown of L2(omega) into orthogonal subspaces is discussed and the properties of the operators for projection onto these subspaces are investigated from the standpoint of preserving the differential properties of the vectors being projected. Finally, the properties of the operators are examined.
Husimi coordinates of multipartite separable states
NASA Astrophysics Data System (ADS)
Parfionov, Georges; Zapatrin, Romàn R.
2010-12-01
A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.
An experimental validation of genomic selection in octoploid strawberry
Gezan, Salvador A; Osorio, Luis F; Verma, Sujeet; Whitaker, Vance M
2017-01-01
The primary goal of genomic selection is to increase genetic gains for complex traits by predicting performance of individuals for which phenotypic data are not available. The objective of this study was to experimentally evaluate the potential of genomic selection in strawberry breeding and to define a strategy for its implementation. Four clonally replicated field trials, two in each of 2 years comprised of a total of 1628 individuals, were established in 2013–2014 and 2014–2015. Five complex yield and fruit quality traits with moderate to low heritability were assessed in each trial. High-density genotyping was performed with the Affymetrix Axiom IStraw90 single-nucleotide polymorphism array, and 17 479 polymorphic markers were chosen for analysis. Several methods were compared, including Genomic BLUP, Bayes B, Bayes C, Bayesian LASSO Regression, Bayesian Ridge Regression and Reproducing Kernel Hilbert Spaces. Cross-validation within training populations resulted in higher values than for true validations across trials. For true validations, Bayes B gave the highest predictive abilities on average and also the highest selection efficiencies, particularly for yield traits that were the lowest heritability traits. Selection efficiencies using Bayes B for parent selection ranged from 74% for average fruit weight to 34% for early marketable yield. A breeding strategy is proposed in which advanced selection trials are utilized as training populations and in which genomic selection can reduce the breeding cycle from 3 to 2 years for a subset of untested parents based on their predicted genomic breeding values. PMID:28090334
Sun, Xiaochun; Ma, Ping; Mumm, Rita H
2012-01-01
Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.
Sun, Xiaochun; Ma, Ping; Mumm, Rita H.
2012-01-01
Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression. PMID:23226325
Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.
2014-01-01
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289
Mathematics of Quantization and Quantum Fields
NASA Astrophysics Data System (ADS)
Dereziński, Jan; Gérard, Christian
2013-03-01
Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.
Coherent state quantization of quaternions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com; Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com
Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.
Partial stabilisation of non-homogeneous bilinear systems
NASA Astrophysics Data System (ADS)
Hamidi, Z.; Ouzahra, M.
2018-06-01
In this work, we study in a Hilbert state space, the partial stabilisation of non-homogeneous bilinear systems using a bounded control. Necessary and sufficient conditions for weak and strong stabilisation are formulated in term of approximate observability like assumptions. Applications to parabolic and hyperbolic equations are presented.
Kernel Wiener filter and its application to pattern recognition.
Yoshino, Hirokazu; Dong, Chen; Washizawa, Yoshikazu; Yamashita, Yukihiko
2010-11-01
The Wiener filter (WF) is widely used for inverse problems. From an observed signal, it provides the best estimated signal with respect to the squared error averaged over the original and the observed signals among linear operators. The kernel WF (KWF), extended directly from WF, has a problem that an additive noise has to be handled by samples. Since the computational complexity of kernel methods depends on the number of samples, a huge computational cost is necessary for the case. By using the first-order approximation of kernel functions, we realize KWF that can handle such a noise not by samples but as a random variable. We also propose the error estimation method for kernel filters by using the approximations. In order to show the advantages of the proposed methods, we conducted the experiments to denoise images and estimate errors. We also apply KWF to classification since KWF can provide an approximated result of the maximum a posteriori classifier that provides the best recognition accuracy. The noise term in the criterion can be used for the classification in the presence of noise or a new regularization to suppress changes in the input space, whereas the ordinary regularization for the kernel method suppresses changes in the feature space. In order to show the advantages of the proposed methods, we conducted experiments of binary and multiclass classifications and classification in the presence of noise.
On infinite-dimensional state spaces
NASA Astrophysics Data System (ADS)
Fritz, Tobias
2013-05-01
It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.
Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions
NASA Astrophysics Data System (ADS)
Izaac, J. A.; Wang, J. B.
2017-09-01
To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .
Probing the Locality of Excited States with Linear Algebra.
Etienne, Thibaud
2015-04-14
This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization.
Zhong, Hualiang; Chetty, Indrin J
2012-05-01
Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.
Power Spectral Density and Hilbert Transform
2016-12-01
Fourier transform, Hilbert transform, digital filter , SDR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER...terms. A very good approximation to the ideal Hilbert transform is a low-pass finite impulse response (FIR) filter . In Fig. 7, we show a real signal...220), converted to an analytic signal using a 255-tap Hilbert transform low-pass filter . For an ideal Hilbert
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
Off-resonance artifacts correction with convolution in k-space (ORACLE).
Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne
2012-06-01
Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.
Knowledge Driven Image Mining with Mixture Density Mercer Kernals
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj
2004-01-01
This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper we present the theory of Mercer Kernels; describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.
Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.
Zhang, Hou-Dao; Yan, YiJing
2016-05-19
Kinetic rate kernels in general multisite systems are formulated on the basis of a nonperturbative quantum dissipation theory, the hierarchical equations of motion (HEOM) formalism, together with the Nakajima-Zwanzig projection operator technique. The present approach exploits the HEOM-space linear algebra. The quantum non-Markovian site-to-site transfer rate can be faithfully evaluated via projected HEOM dynamics. The developed method is exact, as evident by the comparison to the direct HEOM evaluation results on the population evolution.
Coherence Properties of Strongly Interacting Atomic Vapors in Waveguides
2011-12-31
lattice in the mean-field regime [22]. There the goal was to repeat, for our system, the Chirikiov-lzrailev program for Fermi- Pasta -Ulam chain and...define a typical deviation from ergodicity), we introduce a geometric structure— based on the Frobenius or Hilbert-Schmidt inner product—to the space of
Quantum Imaging: New Methods and Applications
2012-01-23
entanglement, both in the sense of two-photon entanglement in a large Hilbert space of pixels and in the sense of entanglement of more than two... Greenberger -Horne-Zeilinger and W-states entangled in time (or energy) and space”, Phys. Rev. A 79, 025802-1- 025802-4 (2009). 34. R. Meyers, K.S
On Nth roots of positive operators
NASA Technical Reports Server (NTRS)
Brown, D. R.; Omalley, M. J.
1978-01-01
A bounded operator A on a Hilbert space H was positive. These operators were symmetric, and as such constitute a natural generalization of nonnegative real diagonal matrices. The following result is thus both well known and not surprising: A positive operator has a unique positive square root (under operator composition).
Average fidelity between random quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zyczkowski, Karol; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Aleja Lotnikow 32/44, 02-668 Warsaw; Perimeter Institute, Waterloo, Ontario, N2L 2Y5
2005-03-01
We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: the Hilbert-Schmidt measure, the Bures (statistical) measure, the measure induced by the partial trace, and the natural measure on the space of pure states. In certain cases explicit probability distributions for the fidelity are derived. The results obtained may be used to gauge the quality of quantum-information-processing schemes.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.
2006-07-01
We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient.
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
1984-05-01
structure. (See, in particular, the extensive work [A] of de Branges in this connection.) The most familiar of these spaces is the so-called "Paley-Wiener...more to say about this in Section 3. Just as in the case of the Paley-Wiener space and the other, related, spa- ces described by de Branges , the spaces...3] De Branges , L.: "Hilbert Spaces of Entire Functions", Prentice Hall Publ. Co. , Englewood Cliffs, N.J., 1968. [4] Duffin, R. J., and A. C
The Polyanalytic Ginibre Ensembles
NASA Astrophysics Data System (ADS)
Haimi, Antti; Hedenmalm, Haakan
2013-10-01
For integers n, q=1,2,3,… , let Pol n, q denote the -linear space of polynomials in z and , of degree ≤ n-1 in z and of degree ≤ q-1 in . We supply Pol n, q with the inner product structure of the resulting Hilbert space is denoted by Pol m, n, q . Here, it is assumed that m is a positive real. We let K m, n, q denote the reproducing kernel of Pol m, n, q , and study the associated determinantal process, in the limit as m, n→+∞ while n= m+O(1); the number q, the degree of polyanalyticity, is kept fixed. We call these processes polyanalytic Ginibre ensembles, because they generalize the Ginibre ensemble—the eigenvalue process of random (normal) matrices with Gaussian weight. There is a physical interpretation in terms of a system of free fermions in a uniform magnetic field so that a fixed number of the first Landau levels have been filled. We consider local blow-ups of the polyanalytic Ginibre ensembles around points in the spectral droplet, which is here the closed unit disk . We obtain asymptotics for the blow-up process, using a blow-up to characteristic distance m -1/2; the typical distance is the same both for interior and for boundary points of . This amounts to obtaining the asymptotical behavior of the generating kernel K m, n, q . Following (Ameur et al. in Commun. Pure Appl. Math. 63(12):1533-1584, 2010), the asymptotics of the K m, n, q are rather conveniently expressed in terms of the Berezin measure (and density) [Equation not available: see fulltext.] For interior points | z|<1, we obtain that in the weak-star sense, where δ z denotes the unit point mass at z. Moreover, if we blow up to the scale of m -1/2 around z, we get convergence to a measure which is Gaussian for q=1, but exhibits more complicated Fresnel zone behavior for q>1. In contrast, for exterior points | z|>1, we have instead that , where is the harmonic measure at z with respect to the exterior disk . For boundary points, | z|=1, the Berezin measure converges to the unit point mass at z, as with interior points, but the blow-up to the scale m -1/2 exhibits quite different behavior at boundary points compared with interior points. We also obtain the asymptotic boundary behavior of the 1-point function at the coarser local scale q 1/2 m -1/2.
Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics
NASA Astrophysics Data System (ADS)
Engliš, Miroslav; Ali, S. Twareque
2015-07-01
Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.
Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno Dynamics
NASA Astrophysics Data System (ADS)
Raimond, J. M.; Sayrin, C.; Gleyzes, S.; Dotsenko, I.; Brune, M.; Haroche, S.; Facchi, P.; Pascazio, S.
2010-11-01
We discuss an implementation of quantum Zeno dynamics in a cavity quantum electrodynamics experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict the field evolution in chosen subspaces of the total Hilbert space. This procedure leads to promising methods for tailoring nonclassical states. We propose to realize “tweezers” picking a coherent field at a point in phase space and moving it towards an arbitrary final position without affecting other nonoverlapping coherent components. These effects could be observed with a state-of-the-art apparatus.
New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.
Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-06-21
We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.
Improving KPCA Online Extraction by Orthonormalization in the Feature Space.
Souza Filho, Joao B O; Diniz, Paulo S R
2018-04-01
Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extraction algorithms, exploiting orthogonalized versions of the GHA rule. In both the cases, the orthogonalization of kernel components is achieved by the inclusion of some low complexity additional steps to the kernel Hebbian algorithm, thus not substantially affecting the computational cost of the algorithm. Results show improved convergence speed and accuracy of components extracted by the proposed methods, as compared with the state-of-the-art online KPCA extraction algorithms.
Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
NASA Astrophysics Data System (ADS)
Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.
2018-06-01
Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.
Computing Instantaneous Frequency by normalizing Hilbert Transform
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2005-01-01
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
Computing Instantaneous Frequency by normalizing Hilbert Transform
Huang, Norden E.
2005-05-31
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livine, Etera R.
We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)).more » We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in a similar fashion trading the unitary group for the orthogonal group. We conclude with a discussion of the possible (deformation) dynamics that one can define on the space of polygons or polyhedra. This work is a priori useful in the context of discrete geometry but it should hopefully also be relevant to (loop) quantum gravity in 2+1 and 3+1 dimensions when the quantum geometry is defined in terms of gluing of (quantized) polygons and polyhedra.« less
Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K
2010-06-01
In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.
An orthogonal oriented quadrature hexagonal image pyramid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1987-01-01
An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.
Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum
NASA Astrophysics Data System (ADS)
Guan, Shan; Song, Weijie; Pang, Hongyang
2017-09-01
In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.
Loop quantum cosmology with self-dual variables
NASA Astrophysics Data System (ADS)
Wilson-Ewing, Edward
2015-12-01
Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.
A Hilbert Space Geometric Representation of Shared Awareness and Joint Decision Making
ERIC Educational Resources Information Center
Canan, Mustafa
2017-01-01
Two people in the same situation may ascribe very different meanings to their experiences. They will form different awareness, reacting differently to shared information. Various factors can give rise to this behavior. These factors include, but are not limited to, prior knowledge, training, biases, cultural factors, social factors, team vs.…
NASA Technical Reports Server (NTRS)
Klauder, John R.
1993-01-01
For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.
Ko, Mi-Hwa
2018-01-01
In this paper, we obtain the Hájek-Rényi inequality and, as an application, we study the strong law of large numbers for H -valued m -asymptotically almost negatively associated random vectors with mixing coefficients [Formula: see text] such that [Formula: see text].
NASA Astrophysics Data System (ADS)
Barbagallo, Annamaria; Di Meglio, Guglielmo; Mauro, Paolo
2017-07-01
The aim of the paper is to study, in a Hilbert space setting, a general random oligopolistic market equilibrium problem in presence of both production and demand excesses and to characterize the random Cournot-Nash equilibrium principle by means of a stochastic variational inequality. Some existence results are presented.
NASA Astrophysics Data System (ADS)
Coecke, Bob; Kissinger, Aleks
2017-03-01
Preface; 1. Introduction; 2. Guide to reading this textbook; 3. Processes as diagrams; 4. String diagrams; 5. Hilbert space from diagrams; 6. Quantum processes; 7. Quantum measurement; 8. Picturing classical-quantum processes; 9. Picturing phases and complementarity; 10. Quantum theory: the full picture; 11. Quantum foundations; 12. Quantum computation; 13. Quantum resources; 14. Quantomatic; Appendix A. Some notations; References; Index.
Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem.
Zhao, Ying; Shi, Luoyi
2017-01-01
This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.
Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings
NASA Astrophysics Data System (ADS)
Hussein Maibed, Zena
2018-05-01
The aim of this paper, we introduce a concept of general extended mapping which is independent of nonexpansive mapping and give an iteration process of families of quasi nonexpansive and of general extended mappings. Also, the existence of common fixed point are studied for these process in the Hilbert spaces.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
ADHM and the 4d quantum Hall effect
NASA Astrophysics Data System (ADS)
Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl
2018-04-01
Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.
Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems
NASA Astrophysics Data System (ADS)
Meyer, Gregory; Machado, Francisco; Yao, Norman
2017-04-01
Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.
Eternal non-Markovianity: from random unitary to Markov chain realisations.
Megier, Nina; Chruściński, Dariusz; Piilo, Jyrki; Strunz, Walter T
2017-07-25
The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrödinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.
Device-independent characterizations of a shared quantum state independent of any Bell inequalities
NASA Astrophysics Data System (ADS)
Wei, Zhaohui; Sikora, Jamie
2017-03-01
In a Bell experiment two parties share a quantum state and perform local measurements on their subsystems separately, and the statistics of the measurement outcomes are recorded as a Bell correlation. For any Bell correlation, it turns out that a quantum state with minimal size that is able to produce this correlation can always be pure. In this work, we first exhibit two device-independent characterizations for the pure state that Alice and Bob share using only the correlation data. Specifically, we give two conditions that the Schmidt coefficients must satisfy, which can be tight, and have various applications in quantum tasks. First, one of the characterizations allows us to bound the entanglement between Alice and Bob using Renyi entropies and also to bound the underlying Hilbert space dimension. Second, when the Hilbert space dimension bound is tight, the shared pure quantum state has to be maximally entangled. Third, the second characterization gives a sufficient condition that a Bell correlation cannot be generated by particular quantum states. We also show that our results can be generalized to the case of shared mixed states.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Canonical field anticommutators in the extended gauged Rarita-Schwinger theory
NASA Astrophysics Data System (ADS)
Adler, Stephen L.; Henneaux, Marc; Pais, Pablo
2017-10-01
We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.
Computation and visualization of geometric partial differential equations
NASA Astrophysics Data System (ADS)
Tiee, Christopher L.
The chief goal of this work is to explore a modern framework for the study and approximation of partial differential equations, recast common partial differential equations into this framework, and prove theorems about such equations and their approximations. A central motivation is to recognize and respect the essential geometric nature of such problems, and take it into consideration when approximating. The hope is that this process will lead to the discovery of more refined algorithms and processes and apply them to new problems. In the first part, we introduce our quantities of interest and reformulate traditional boundary value problems in the modern framework. We see how Hilbert complexes capture and abstract the most important properties of such boundary value problems, leading to generalizations of important classical results such as the Hodge decomposition theorem. They also provide the proper setting for numerical approximations. We also provide an abstract framework for evolution problems in these spaces: Bochner spaces. We next turn to approximation. We build layers of abstraction, progressing from functions, to differential forms, and finally, to Hilbert complexes. We explore finite element exterior calculus (FEEC), which allows us to approximate solutions involving differential forms, and analyze the approximation error. In the second part, we prove our central results. We first prove an extension of current error estimates for the elliptic problem in Hilbert complexes. This extension handles solutions with nonzero harmonic part. Next, we consider evolution problems in Hilbert complexes and prove abstract error estimates. We apply these estimates to the problem for Riemannian hypersurfaces in R. {n+1},generalizing current results for open subsets of R. {n}. Finally, we applysome of the concepts to a nonlinear problem, the Ricci flow on surfaces, and use tools from nonlinear analysis to help develop and analyze the equations. In the appendices, we detail some additional motivation and a source for further examples: canonical geometries that are realized as steady-state solutions to parabolic equations similar to that of Ricci flow. An eventual goal is to compute such solutions using the methods of the previous chapters.
On infinite-dimensional state spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Tobias
It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less
NASA Astrophysics Data System (ADS)
Destefano, Anthony; Heerikhuisen, Jacob
2015-04-01
Fully 3D particle simulations can be a computationally and memory expensive task, especially when high resolution grid cells are required. The problem becomes further complicated when parallelization is needed. In this work we focus on computational methods to solve these difficulties. Hilbert curves are used to map the 3D particle space to the 1D contiguous memory space. This method of organization allows for minimized cache misses on the GPU as well as a sorted structure that is equivalent to an octal tree data structure. This type of sorted structure is attractive for uses in adaptive mesh implementations due to the logarithm search time. Implementations using the Message Passing Interface (MPI) library and NVIDIA's parallel computing platform CUDA will be compared, as MPI is commonly used on server nodes with many CPU's. We will also compare static grid structures with those of adaptive mesh structures. The physical test bed will be simulating heavy interstellar atoms interacting with a background plasma, the heliosphere, simulated from fully consistent coupled MHD/kinetic particle code. It is known that charge exchange is an important factor in space plasmas, specifically it modifies the structure of the heliosphere itself. We would like to thank the Alabama Supercomputer Authority for the use of their computational resources.
Vokoun, Jason C.; Rabeni, Charles F.
2005-01-01
Flathead catfish Pylodictis olivaris were radio-tracked in the Grand River and Cuivre River, Missouri, from late July until they moved to overwintering habitats in late October. Fish moved within a definable area, and although occasional long-distance movements occurred, the fish typically returned to the previously occupied area. Seasonal home range was calculated with the use of kernel density estimation, which can be interpreted as a probabilistic utilization distribution that documents the internal structure of the estimate by delineating portions of the range that was used a specified percentage of the time. A traditional linear range also was reported. Most flathead catfish (89%) had one 50% kernel-estimated core area, whereas 11% of the fish split their time between two core areas. Core areas were typically in the middle of the 90% kernel-estimated home range (58%), although several had core areas in upstream (26%) and downstream (16%) portions of the home range. Home-range size did not differ based on river, sex, or size and was highly variable among individuals. The median 95% kernel estimate was 1,085 m (range, 70– 69,090 m) for all fish. The median 50% kernel-estimated core area was 135 m (10–2,260 m). The median linear range was 3,510 m (150–50,400 m). Fish pairs with core areas in the same and neighboring pools had static joint space use values of up to 49% (area of intersection index), indicating substantial overlap and use of the same area. However, all fish pairs had low dynamic joint space use values (<0.07; coefficient of association), indicating that fish pairs were temporally segregated, rarely occurring in the same location at the same time.
Toews, Michael D; Pearson, Tom C; Campbell, James F
2006-04-01
Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.
Measurement and control of a Coulomb-blockaded parafermion box
NASA Astrophysics Data System (ADS)
Snizhko, Kyrylo; Egger, Reinhold; Gefen, Yuval
2018-02-01
Parafermionic zero modes are fractional topologically protected quasiparticles expected to arise in various platforms. We show that Coulomb charging effects define a parafermion box with unique access options via fractional edge states and/or quantum antidots. Basic protocols for the detection, manipulation, and control of parafermionic quantum states are formulated. With those tools, one may directly observe the dimension of the zero-mode Hilbert space, prove the degeneracy of this space, and perform on-demand digital operations satisfying a parafermionic algebra.
Cognition versus Constitution of Objects: From Kant to Modern Physics
NASA Astrophysics Data System (ADS)
Mittelstaedt, Peter
2009-07-01
Classical mechanics in phase space as well as quantum mechanics in Hilbert space lead to states and observables but not to objects that may be considered as carriers of observable quantities. However, in both cases objects can be constituted as new entities by means of invariance properties of the theories in question. We show, that this way of reasoning has a long history in physics and philosophy and that it can be traced back to the transcendental arguments in Kant’s critique of pure reason.
Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory
NASA Astrophysics Data System (ADS)
Anishetty, Ramesh; Sreeraj, T. P.
2018-04-01
We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.
NASA Astrophysics Data System (ADS)
Jakubczyk, Dorota; Jakubczyk, Paweł
2018-02-01
We propose combinatorial approach to the representation of Schur-Weyl duality in physical systems on the example of one-dimensional spin chains. Exploiting the Robinson-Schensted-Knuth algorithm, we perform decomposition of the dual group representations into irreducible representations in a fully combinatorial way. As representation space, we choose the Hilbert space of the spin chains, but this approach can be easily generalized to an arbitrary physical system where the Schur-Weyl duality works.
NASA Astrophysics Data System (ADS)
Wu, Qi
2010-03-01
Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.
Tarjan, Lily M; Tinker, M. Tim
2016-01-01
Parametric and nonparametric kernel methods dominate studies of animal home ranges and space use. Most existing methods are unable to incorporate information about the underlying physical environment, leading to poor performance in excluding areas that are not used. Using radio-telemetry data from sea otters, we developed and evaluated a new algorithm for estimating home ranges (hereafter Permissible Home Range Estimation, or “PHRE”) that reflects habitat suitability. We began by transforming sighting locations into relevant landscape features (for sea otters, coastal position and distance from shore). Then, we generated a bivariate kernel probability density function in landscape space and back-transformed this to geographic space in order to define a permissible home range. Compared to two commonly used home range estimation methods, kernel densities and local convex hulls, PHRE better excluded unused areas and required a smaller sample size. Our PHRE method is applicable to species whose ranges are restricted by complex physical boundaries or environmental gradients and will improve understanding of habitat-use requirements and, ultimately, aid in conservation efforts.
On supervised graph Laplacian embedding CA model & kernel construction and its application
NASA Astrophysics Data System (ADS)
Zeng, Junwei; Qian, Yongsheng; Wang, Min; Yang, Yongzhong
2017-01-01
There are many methods to construct kernel with given data attribute information. Gaussian radial basis function (RBF) kernel is one of the most popular ways to construct a kernel. The key observation is that in real-world data, besides the data attribute information, data label information also exists, which indicates the data class. In order to make use of both data attribute information and data label information, in this work, we propose a supervised kernel construction method. Supervised information from training data is integrated into standard kernel construction process to improve the discriminative property of resulting kernel. A supervised Laplacian embedding cellular automaton model is another key application developed for two-lane heterogeneous traffic flow with the safe distance and large-scale truck. Based on the properties of traffic flow in China, we re-calibrate the cell length, velocity, random slowing mechanism and lane-change conditions and use simulation tests to study the relationships among the speed, density and flux. The numerical results show that the large-scale trucks will have great effects on the traffic flow, which are relevant to the proportion of the large-scale trucks, random slowing rate and the times of the lane space change.
Quantum mechanics: why complex Hilbert space?
NASA Astrophysics Data System (ADS)
Cassinelli, G.; Lahti, P.
2017-10-01
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field. This article is part of the themed issue `Second quantum revolution: foundational questions'.
NASA Astrophysics Data System (ADS)
Kawamura, Katsunori
2009-03-01
We completely classify type III factor representations of Cuntz-Krieger algebras associated with quasi-free states up to unitary equivalence. Furthermore, we realize these representations on concrete Hilbert spaces without using GNS construction. Free groups and their type II1 factor representations are used in these realizations.
Redundant Information and the Quantum-Classical Transition
ERIC Educational Resources Information Center
Riedel, Charles Jess
2012-01-01
A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality--the fact that multiple observers can each…
On total noncommutativity in quantum mechanics
NASA Astrophysics Data System (ADS)
Lahti, Pekka J.; Ylinen, Kari
1987-11-01
It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.
Universe creation from the third-quantized vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuigan, M.
1989-04-15
Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.
Universe creation from the third-quantized vacuum
NASA Astrophysics Data System (ADS)
McGuigan, Michael
1989-04-01
Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.
High Resolution Astrophysical Observations Using Speckle Imaging
1986-04-11
2. J.L.C. Sanz and T.S. ’uang, "Unified HIlbert space approach to iterative least-squares signal restoration," JOSA 73, p. 1455 (83). 3. V.T. Tom...Tinbergen, J., Greenberg , J.M., and de Jager, C. 1981, Astr. Ap., 95, 215. Tsuji, T. 1978, Pub. Astr. Soc. Japan, 30, 435. Van der Hucht, K.A
A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain
NASA Astrophysics Data System (ADS)
Jones, Vaughan F. R.
2018-01-01
We show that the Hilbert space formed from a block spin renormalization construction of a cyclic quantum spin chain (based on the Temperley-Lieb algebra) does not support a chiral conformal field theory whose Hamiltonian generates translation on the circle as a continuous limit of the rotations on the lattice.
Dynamics in the Decompositions Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harding, John
2017-12-01
In Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996) it was shown that the direct product decompositions of any non-empty set, group, vector space, and topological space X form an orthomodular poset Fact X. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. Here we develop dynamics and an abstract version of a time independent Schrödinger's equation in the setting of decompositions by considering representations of the group of real numbers in the automorphism group of the orthomodular poset Fact X of decompositions.
Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar
Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.
Estimating average growth trajectories in shape-space using kernel smoothing.
Hutton, Tim J; Buxton, Bernard F; Hammond, Peter; Potts, Henry W W
2003-06-01
In this paper, we show how a dense surface point distribution model of the human face can be computed and demonstrate the usefulness of the high-dimensional shape-space for expressing the shape changes associated with growth and aging. We show how average growth trajectories for the human face can be computed in the absence of longitudinal data by using kernel smoothing across a population. A training set of three-dimensional surface scans of 199 male and 201 female subjects of between 0 and 50 years of age is used to build the model.
NASA Astrophysics Data System (ADS)
Hu, Yan-Yan; Li, Dong-Sheng
2016-01-01
The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.
NASA Astrophysics Data System (ADS)
Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang
2017-01-01
Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.
Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya
2013-01-01
Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458
Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang
2017-01-01
Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883
Meinicke, Peter; Tech, Maike; Morgenstern, Burkhard; Merkl, Rainer
2004-01-01
Background Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the learnt representations in terms of positional and compositional variability of the underlying biological signals. Results We propose a kernel-based approach to datamining on biological sequences. With our method it is possible to model and analyze positional variability of oligomers of any length in a natural way. On one hand this is achieved by mapping the sequences to an intuitive but high-dimensional feature space, well-suited for interpretation of the learnt models. On the other hand, by means of the kernel trick we can provide a general learning algorithm for that high-dimensional representation because all required statistics can be computed without performing an explicit feature space mapping of the sequences. By introducing a kernel parameter that controls the degree of position-dependency, our feature space representation can be tailored to the characteristics of the biological problem at hand. A regularized learning scheme enables application even to biological problems for which only small sets of example sequences are available. Our approach includes a visualization method for transparent representation of characteristic sequence features. Thereby importance of features can be measured in terms of discriminative strength with respect to classification of the underlying sequences. To demonstrate and validate our concept on a biochemically well-defined case, we analyze E. coli translation initiation sites in order to show that we can find biologically relevant signals. For that case, our results clearly show that the Shine-Dalgarno sequence is the most important signal upstream a start codon. The variability in position and composition we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems. PMID:15511290
General n-dimensional quadrature transform and its application to interferogram demodulation.
Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis
2003-05-01
Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.
Can a quantum state over time resemble a quantum state at a single time?
NASA Astrophysics Data System (ADS)
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F.; Barrett, Jonathan; Spekkens, Robert W.
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
De Sitter Space Without Dynamical Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2016-06-01
We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.
Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.
Ashrafi, Reza; Azaña, José
2012-07-01
A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Chad
2006-01-01
This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Marty; Prazenica, Chad
2005-01-01
This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.
The spatial sensitivity of Sp converted waves-kernels and their applications
NASA Astrophysics Data System (ADS)
Mancinelli, N. J.; Fischer, K. M.
2017-12-01
We have developed a framework for improved imaging of strong lateral variations in crust and upper mantle seismic discontinuity structure using teleseismic S-to-P (Sp) scattered waves. In our framework, we rapidly compute scattered wave sensitivities to velocity perturbations in a one-dimensional background model using ray-theoretical methods to account for timing, scattering, and geometrical spreading effects. The kernels accurately describe the amplitude and phase information of a scattered waveform, which we confirm by benchmarking against kernels derived from numerical solutions of the wave equation. The kernels demonstrate that the amplitude of an Sp converted wave at a given time is sensitive to structure along a quasi-hyperbolic curve, such that structure far from the direct ray path can influence the measurements. We use synthetic datasets to explore two potential applications of the scattered wave sensitivity kernels. First, we back-project scattered energy back to its origin using the kernel adjoint operator. This approach successfully images mantle interfaces at depths of 120-180 km with up to 20 km of vertical relief over lateral distances of 100 km (i.e., undulations with a maximal 20% grade) when station spacing is 10 km. Adjacent measurements sum coherently at nodes where gradients in seismic properties occur, and destructively interfere at nodes lacking gradients. In cases where the station spacing is greater than 10 km, the destructive interference can be incomplete, and smearing along the isochrons can occur. We demonstrate, however, that model smoothing can dampen these artifacts. This method is relatively fast, and accurately retrieves the positions of the interfaces, but it generally does not retrieve the strength of the velocity perturbations. Therefore, in our second approach, we attempt to invert directly for velocity perturbations from our reference model using an iterative conjugate-directions scheme.
Hilbert's sixth problem and the failure of the Boltzmann to Euler limit
NASA Astrophysics Data System (ADS)
Slemrod, Marshall
2018-04-01
This paper addresses the main issue of Hilbert's sixth problem, namely the rigorous passage of solutions to the mesoscopic Boltzmann equation to macroscopic solutions of the Euler equations of compressible gas dynamics. The results of the paper are that (i) in general Hilbert's program will fail because of the appearance of van der Waals-Korteweg capillarity terms in a macroscopic description of motion of a gas, and (ii) the van der Waals-Korteweg theory itself might satisfy Hilbert's quest for a map from the `atomistic view' to the laws of motion of continua. This article is part of the theme issue `Hilbert's sixth problem'.
Solution of two-body relativistic bound state equations with confining plus Coulomb interactions
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Kahana, David E.; Norbury, John W.
1992-01-01
Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.
Some equalities and inequalities for fusion frames.
Guo, Qianping; Leng, Jinsong; Li, Houbiao
2016-01-01
Fusion frames have some properties similar to those of frames in Hilbert spaces, but not all of their properties are similar. Some authors have established some equalities and inequalities for conventional frames. In this paper, we give some equalities and inequalities for fusion frames. Our results generalize and improve the remarkable results which have been obtained by Balan, Casazza and Gǎvruta etc.
NASA Astrophysics Data System (ADS)
Jung, Il Bong; Lim, Pil Sang; Park, Sang Soo
2005-04-01
We construct examples which distinguish clearly the classes of p-hyponormal operators for 0
Self-entanglement and the dissociation of homonuclear diatomic molecules
Gonis, A.; Zhang, X. -G.; Nicholson, D. M.; ...
2014-01-14
The concept of self-entanglement is introduced to describe a mixed state or ensemble density as a pure state in an augmented Hilbert space formed by the products of the individual states forming a mixed state (or ensemble). We use this representation of mixed states to show that upon dissociation a neutral homonuclear diatomic molecule will separate into two neutral atoms.
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R.
1985-01-01
The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.
Quantum number theoretic transforms on multipartite finite systems.
Vourdas, A; Zhang, S
2009-06-01
A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.
A Thin Codimension-One Decomposition of the Hilbert Cube
ERIC Educational Resources Information Center
Phon-On, Aniruth
2010-01-01
For cell-like upper semicontinuous (usc) decompositions "G" of finite dimensional manifolds "M", the decomposition space "M/G" turns out to be an ANR provided "M/G" is finite dimensional ([Dav07], page 129). Furthermore, if "M/G" is finite dimensional and has the Disjoint Disks Property (DDP), then "M/G" is homeomorphic to "M" ([Dav07], page 181).…
Asymptotics with a positive cosmological constant: I. Basic framework
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna
2015-01-01
The asymptotic structure of the gravitational field of isolated systems has been analyzed in great detail in the case when the cosmological constant Λ is zero. The resulting framework lies at the foundation of research in diverse areas in gravitational science. Examples include: (i) positive energy theorems in geometric analysis; (ii) the coordinate invariant characterization of gravitational waves in full, nonlinear general relativity; (iii) computations of the energy-momentum emission in gravitational collapse and binary mergers in numerical relativity and relativistic astrophysics; and (iv) constructions of asymptotic Hilbert spaces to calculate S-matrices and analyze the issue of information loss in the quantum evaporation of black holes. However, by now observations have led to a strong consensus that Λ is positive in our universe. In this paper we show that, unfortunately, the standard framework does not extend from the Λ =0 case to the Λ \\gt 0 case in a physically useful manner. In particular, we do not have positive energy theorems, nor an invariant notion of gravitational waves in the nonlinear regime, nor asymptotic Hilbert spaces in dynamical situations of semi-classical gravity. A suitable framework to address these conceptual issues of direct physical importance is developed in subsequent papers.
Nonequilibrium statistical mechanics Brussels-Austin style
NASA Astrophysics Data System (ADS)
Bishop, Robert C.
The fundamental problem on which Ilya Prigogine and the Brussels-Austin Group have focused can be stated briefly as follows. Our observations indicate that there is an arrow of time in our experience of the world (e.g., decay of unstable radioactive atoms like uranium, or the mixing of cream in coffee). Most of the fundamental equations of physics are time reversible, however, presenting an apparent conflict between our theoretical descriptions and experimental observations. Many have thought that the observed arrow of time was either an artifact of our observations or due to very special initial conditions. An alternative approach, followed by the Brussels-Austin Group, is to consider the observed direction of time to be a basic physical phenomenon due to the dynamics of physical systems. This essay focuses mainly on recent developments in the Brussels-Austin Group after the mid-1980s. The fundamental concerns are the same as in their earlier approaches (subdynamics, similarity transformations), but the contemporary approach utilizes rigged Hilbert space (whereas the older approaches used Hilbert space). While the emphasis on nonequilibrium statistical mechanics remains the same, their more recent approach addresses the physical features of large Poincaré systems, nonlinear dynamics and the mathematical tools necessary to analyze them.
Simulating the Generalized Gibbs Ensemble (GGE): A Hilbert space Monte Carlo approach
NASA Astrophysics Data System (ADS)
Alba, Vincenzo
By combining classical Monte Carlo and Bethe ansatz techniques we devise a numerical method to construct the Truncated Generalized Gibbs Ensemble (TGGE) for the spin-1/2 isotropic Heisenberg (XXX) chain. The key idea is to sample the Hilbert space of the model with the appropriate GGE probability measure. The method can be extended to other integrable systems, such as the Lieb-Liniger model. We benchmark the approach focusing on GGE expectation values of several local observables. As finite-size effects decay exponentially with system size, moderately large chains are sufficient to extract thermodynamic quantities. The Monte Carlo results are in agreement with both the Thermodynamic Bethe Ansatz (TBA) and the Quantum Transfer Matrix approach (QTM). Remarkably, it is possible to extract in a simple way the steady-state Bethe-Gaudin-Takahashi (BGT) roots distributions, which encode complete information about the GGE expectation values in the thermodynamic limit. Finally, it is straightforward to simulate extensions of the GGE, in which, besides the local integral of motion (local charges), one includes arbitrary functions of the BGT roots. As an example, we include in the GGE the first non-trivial quasi-local integral of motion.
Dimensional discontinuity in quantum communication complexity at dimension seven
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed
2017-02-01
Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.
NASA Astrophysics Data System (ADS)
Gerd, Niestegge
2010-12-01
In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lüders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.
Uncertainty relations as Hilbert space geometry
NASA Technical Reports Server (NTRS)
Braunstein, Samuel L.
1994-01-01
Precision measurements involve the accurate determination of parameters through repeated measurements of identically prepared experimental setups. For many parameters there is a 'natural' choice for the quantum observable which is expected to give optimal information; and from this observable one can construct an Heinsenberg uncertainty principle (HUP) bound on the precision attainable for the parameter. However, the classical statistics of multiple sampling directly gives us tools to construct bounds for the precision available for the parameters of interest (even when no obvious natural quantum observable exists, such as for phase, or time); it is found that these direct bounds are more restrictive than those of the HUP. The implication is that the natural quantum observables typically do not encode the optimal information (even for observables such as position, and momentum); we show how this can be understood simply in terms of the Hilbert space geometry. Another striking feature of these bounds to parameter uncertainty is that for a large enough number of repetitions of the measurements all V quantum states are 'minimum uncertainty' states - not just Gaussian wave-packets. Thus, these bounds tell us what precision is achievable as well as merely what is allowed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Karoly F.; Vertesi, Tamas
2010-08-15
The I{sub 3322} inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In the case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems; however, there is no such evidence for the I{sub 3322} inequality. In this paper a family of measurement operators and states is given which enables us to attain the maximum quantum value in an infinite-dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite-dimensional quantum systems is not enoughmore » to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role in obtaining our results for the I{sub 3322} inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.« less
Metabolite identification through multiple kernel learning on fragmentation trees.
Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho
2014-06-15
Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.
Should I Stay or Should I Go? A Habitat-Dependent Dispersal Kernel Improves Prediction of Movement
Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe
2011-01-01
The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes. PMID:21765890
Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.
Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe
2011-01-01
The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.
Stego on FPGA: An IWT Approach
Ramalingam, Balakrishnan
2014-01-01
A reconfigurable hardware architecture for the implementation of integer wavelet transform (IWT) based adaptive random image steganography algorithm is proposed. The Haar-IWT was used to separate the subbands namely, LL, LH, HL, and HH, from 8 × 8 pixel blocks and the encrypted secret data is hidden in the LH, HL, and HH blocks using Moore and Hilbert space filling curve (SFC) scan patterns. Either Moore or Hilbert SFC was chosen for hiding the encrypted data in LH, HL, and HH coefficients, whichever produces the lowest mean square error (MSE) and the highest peak signal-to-noise ratio (PSNR). The fixated random walk's verdict of all blocks is registered which is nothing but the furtive key. Our system took 1.6 µs for embedding the data in coefficient blocks and consumed 34% of the logic elements, 22% of the dedicated logic register, and 2% of the embedded multiplier on Cyclone II field programmable gate array (FPGA). PMID:24723794
NASA Astrophysics Data System (ADS)
Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng
2008-01-01
This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.
Semigroup theory and numerical approximation for equations in linear viscoelasticity
NASA Technical Reports Server (NTRS)
Fabiano, R. H.; Ito, K.
1990-01-01
A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.
Entanglement between total intensity and polarization for pairs of coherent states
NASA Astrophysics Data System (ADS)
Sanchidrián-Vaca, Carlos; Luis, Alfredo
2018-04-01
We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.
Geometric phase of mixed states for three-level open systems
NASA Astrophysics Data System (ADS)
Jiang, Yanyan; Ji, Y. H.; Xu, Hualan; Hu, Li-Yun; Wang, Z. S.; Chen, Z. Q.; Guo, L. P.
2010-12-01
Geometric phase of mixed state for three-level open system is defined by establishing in connecting density matrix with nonunit vector ray in a three-dimensional complex Hilbert space. Because the geometric phase depends only on the smooth curve on this space, it is formulated entirely in terms of geometric structures. Under the limiting of pure state, our approach is in agreement with the Berry phase, Pantcharatnam phase, and Aharonov and Anandan phase. We find that, furthermore, the Berry phase of mixed state correlated to population inversions of three-level open system.
Path integrals and the WKB approximation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam
2010-12-01
We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.
A Note on the Asymptotic Behavior of Nonlinear Semigroups and the Range of Accretive Operators.
1981-04-01
Crandall (see [2, p. 166]) and Pazy [10) in Hilbert space. For recent developments in Ranach spaces see the papers by Kohlberg and Neyman [8, 9] and...essentially due to Kohlberg and Neyman [91 who use a different argument. They also show that if E is not reflexive and strictly convex (or if E* is...ACKNOWLEDGMENTS. I am grateful to Professor A. Pazy for several helpful conversations. I also wish to thank 5. Kohlberg , A. Neyman and A. T. Plant for
The energy-momentum tensor(s) in classical gauge theories
Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...
2016-07-12
We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.
Modeling utilization distributions in space and time
Keating, K.A.; Cherry, S.
2009-01-01
W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.
Quantum probability and Hilbert's sixth problem
NASA Astrophysics Data System (ADS)
Accardi, Luigi
2018-04-01
With the birth of quantum mechanics, the two disciplines that Hilbert proposed to axiomatize, probability and mechanics, became entangled and a new probabilistic model arose in addition to the classical one. Thus, to meet Hilbert's challenge, an axiomatization should account deductively for the basic features of all three disciplines. This goal was achieved within the framework of quantum probability. The present paper surveys the quantum probabilistic axiomatization. This article is part of the themed issue `Hilbert's sixth problem'.
Generic isolated horizons in loop quantum gravity
NASA Astrophysics Data System (ADS)
Beetle, Christopher; Engle, Jonathan
2010-12-01
Isolated horizons model equilibrium states of classical black holes. A detailed quantization, starting from a classical phase space restricted to spherically symmetric horizons, exists in the literature and has since been extended to axisymmetry. This paper extends the quantum theory to horizons of arbitrary shape. Surprisingly, the Hilbert space obtained by quantizing the full phase space of all generic horizons with a fixed area is identical to that originally found in spherical symmetry. The entropy of a large horizon remains one-quarter its area, with the Barbero-Immirzi parameter retaining its value from symmetric analyses. These results suggest a reinterpretation of the intrinsic quantum geometry of the horizon surface.
NASA Technical Reports Server (NTRS)
Miamee, A. G.
1988-01-01
Let B be a Banach space and H and K two Hilbert spaces. The spectral dilation of L(B,H)-valued measures is studied and it is shown that the recent results of Makagon and Salehi (1986) and Rosenberg (1982) on the dilation of L(K,H)-valued measures can be extended to hold for the general Banach space setting of L(B,H)-valued measures. These L(B,H)-valued measures are closely connected to the Banach space valued processes. This connection is recalled and as application of spectral dilation of L(B,H)-valued measures the well known stationary dilation results for scalar valued processes is extended to the case of Banach space valued processes.
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
Loosli, Gaelle; Canu, Stephane; Ong, Cheng Soon
2016-06-01
This paper presents a theoretical foundation for an SVM solver in Kreĭn spaces. Up to now, all methods are based either on the matrix correction, or on non-convex minimization, or on feature-space embedding. Here we justify and evaluate a solution that uses the original (indefinite) similarity measure, in the original Kreĭn space. This solution is the result of a stabilization procedure. We establish the correspondence between the stabilization problem (which has to be solved) and a classical SVM based on minimization (which is easy to solve). We provide simple equations to go from one to the other (in both directions). This link between stabilization and minimization problems is the key to obtain a solution in the original Kreĭn space. Using KSVM, one can solve SVM with usually troublesome kernels (large negative eigenvalues or large numbers of negative eigenvalues). We show experiments showing that our algorithm KSVM outperforms all previously proposed approaches to deal with indefinite matrices in SVM-like kernel methods.
Constraint-Free Theories of Gravitation
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.; Robinson, R. Steve; Wahlquist, Hugo D.
1998-01-01
Lovelock actions (more precisely, extended Gauss-Bonnet forms) when varied as Cartan forms on subspaces of higher dimensional flat Riemannian manifolds, generate well set, causal exterior differential systems. In particular, the Einstein- Hilbert action 4-form, varied on a 4 dimensional subspace of E(sub 10) yields a well set generalized theory of gravity having no constraints. Rcci-flat solutions are selected by initial conditions on a bounding 3-space.
Research in Stochastic Processes and their Applications
1993-01-01
goal is to learn how Gaussian and linear signal processing methodologies should be adapted to deal with non-Gaussian regimes. Part III continues the... smoothi fmictions in /I, ami we have a chain C ... C tir C ... C /I’) C 11_ C ... C 1t_, C_ ... C ¢’, 10 4o = fH,; H =H;, H, (Hilbert space). 4ý is a Fr
A Discrete Approximation Framework for Hereditary Systems.
1980-05-01
schemes which are included in the general framework and which may be implemented directly on high-speed computing machines are developed. A numerical...an appropriately chosen Hilbert space. We then proceed to develop general approximation schemes for the solutions to the homogeneous AEE which in turn...rich classes of these schemes . In addition, two particular families of approximation schemes included in the general framework are developed and
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
1981-11-01
incorporated into doctoral theses. We are indebted to Horace Hoffman of the Office of Naval Research and to James Greenberg of the National Science...4.8b). The adjoint to (4.8a) is (4.20) But -WTis orthogonal to the first member of (4.19b), with respect to the usual scalar product in Hilbert space
2012-09-01
2005) Fibrinogen and fibrin. Adv Protein Chem 70, 247-299 2. Ariens, R. A., Lai, T. S., Weisel, J. W., Greenberg , C. S., and Grant, P. J. (2002) Role...matrix for the z-component of angular momentum # general case of spin j, Hilbert space has 2j+1 dimensions Iz j=5/2; Iz=diag([j:-1:-j
NASA Astrophysics Data System (ADS)
Melas, Evangelos
2017-07-01
The original Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian radiating 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here we introduce the analogue B(2, 1) of the BMS group B in 3 space-time dimensions. B(2, 1) itself admits thirty-four analogues both real in all signatures and in complex space-times. In order to find the IRS of both B(2, 1) and its analogues, we need to extend Wigner-Mackey's theory of induced representations. The necessary extension is described and is reduced to the solution of three problems. These problems are solved in the case where B(2, 1) and its analogues are equipped with the Hilbert topology. The extended theory is necessary in order to construct the IRS of both B and its analogues in any number d of space-time dimensions, d ≥3 , and also in order to construct the IRS of their supersymmetric counterparts. We use the extended theory to obtain the necessary data in order to construct the IRS of B(2, 1). The main results of the representation theory are as follows: The IRS are induced from "little groups" which are compact. The finite "little groups" are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
NASA Astrophysics Data System (ADS)
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Interconnect patterns for printed organic thermoelectric devices with large fill factors
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.
2017-09-01
Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.
NASA Astrophysics Data System (ADS)
Lee, Chung-Shuo; Chen, Yan-Yu; Yu, Chi-Hua; Hsu, Yu-Chuan; Chen, Chuin-Shan
2017-07-01
We present a semi-analytical solution of a time-history kernel for the generalized absorbing boundary condition in molecular dynamics (MD) simulations. To facilitate the kernel derivation, the concept of virtual atoms in real space that can conform with an arbitrary boundary in an arbitrary lattice is adopted. The generalized Langevin equation is regularized using eigenvalue decomposition and, consequently, an analytical expression of an inverse Laplace transform is obtained. With construction of dynamical matrices in the virtual domain, a semi-analytical form of the time-history kernel functions for an arbitrary boundary in an arbitrary lattice can be found. The time-history kernel functions for different crystal lattices are derived to show the generality of the proposed method. Non-equilibrium MD simulations in a triangular lattice with and without the absorbing boundary condition are conducted to demonstrate the validity of the solution.
A nonlinear quality-related fault detection approach based on modified kernel partial least squares.
Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen
2017-01-01
In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Sensitivity Kernels for the Cross-Convolution Measure: Eliminate the Source in Waveform Tomography
NASA Astrophysics Data System (ADS)
Menke, W. H.
2017-12-01
We use the adjoint method to derive sensitivity kernels for the cross-convolution measure, a goodness-of-fit criterion that is applicable to seismic data containing closely-spaced multiple arrivals, such as reverberating compressional waves and split shear waves. In addition to a general formulation, specific expressions for sensitivity with respect to density, Lamé parameter and shear modulus are derived for a isotropic elastic solid. As is typical of adjoint methods, the kernels depend upon an adjoint field, the source of which, in this case, is the reference displacement field, pre-multiplied by a matrix of cross-correlations of components of the observed field. We use a numerical simulation to evaluate the resolving power of a topographic inversion that employs the cross-convolution measure. The estimated resolving kernel shows is point-like, indicating that the cross-convolution measure will perform well in waveform tomography settings.
Guo, Qi; Shen, Shu-Ting
2016-04-29
There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro-Palacio, Juan Carlos; Nagy, Tibor; Meuwly, Markus, E-mail: m.meuwly@unibas.ch
2014-10-28
Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O({sup 3}P) and NO({sup 2}Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO{sub 2} molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO{sub 2} in the ground statemore » is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO{sub 2} geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20 000 K), the rate coefficient for the “O1O2+N” channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.« less
Castro-Palacio, Juan Carlos; Nagy, Tibor; Bemish, Raymond J; Meuwly, Markus
2014-10-28
Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O((3)P) and NO((2)Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO2 in the ground state is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO2 geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20,000 K), the rate coefficient for the "O1O2+N" channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calixto, M., E-mail: calixto@ugr.es; Pérez-Romero, E.
We revise the unireps. of U(2, 2) describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (boson/fermion) depends on the helicity h of the massless components (integer/half-integer). Coherent states (CS) of particle-hole pairs (“excitons”) are also explicitly constructed as the exponential action of exciton (non-canonical) creation operators on the ground state of unpaired particles. These CS are labeled by points Z (2×2 complex matrices) on the Cartan-Bergman domain D₄=U(2,2)/U(2)², and constitute a generalized (matrix) version of Perelomov U(1, 1) coherent statesmore » labeled by points z on the unit disk D₁=U(1,1)/U(1)². First, we follow a geometric approach to the construction of CS, orthonormal basis, U(2, 2) generators and their matrix elements and symbols in the reproducing kernel Hilbert space H{sub λ}(D₄) of analytic square-integrable holomorphic functions on D₄, which carries a unitary irreducible representation of U(2, 2) with index λϵN (the conformal or scale dimension). Then we introduce a many-body representation of the previous construction through an oscillator realization of the U(2, 2) Lie algebra generators in terms of eight boson operators with constraints. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the many-body jargon. In particular, the index λ is related to the number 2(λ – 2) of unpaired quanta and to the helicity h = (λ – 2)/2 of each massless particle forming the massive compound.« less
Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E
2017-07-01
The leaf spotting diseases in wheat that include Septoria tritici blotch (STB) caused by , Stagonospora nodorum blotch (SNB) caused by , and tan spot (TS) caused by pose challenges to breeding programs in selecting for resistance. A promising approach that could enable selection prior to phenotyping is genomic selection that uses genome-wide markers to estimate breeding values (BVs) for quantitative traits. To evaluate this approach for seedling and/or adult plant resistance (APR) to STB, SNB, and TS, we compared the predictive ability of least-squares (LS) approach with genomic-enabled prediction models including genomic best linear unbiased predictor (GBLUP), Bayesian ridge regression (BRR), Bayes A (BA), Bayes B (BB), Bayes Cπ (BC), Bayesian least absolute shrinkage and selection operator (BL), and reproducing kernel Hilbert spaces markers (RKHS-M), a pedigree-based model (RKHS-P) and RKHS markers and pedigree (RKHS-MP). We observed that LS gave the lowest prediction accuracies and RKHS-MP, the highest. The genomic-enabled prediction models and RKHS-P gave similar accuracies. The increase in accuracy using genomic prediction models over LS was 48%. The mean genomic prediction accuracies were 0.45 for STB (APR), 0.55 for SNB (seedling), 0.66 for TS (seedling) and 0.48 for TS (APR). We also compared markers from two whole-genome profiling approaches: genotyping by sequencing (GBS) and diversity arrays technology sequencing (DArTseq) for prediction. While, GBS markers performed slightly better than DArTseq, combining markers from the two approaches did not improve accuracies. We conclude that implementing GS in breeding for these diseases would help to achieve higher accuracies and rapid gains from selection. Copyright © 2017 Crop Science Society of America.
Gutman, Boris; Leonardo, Cassandra; Jahanshad, Neda; Hibar, Derrek; Eschen-burg, Kristian; Nir, Talia; Villalon, Julio; Thompson, Paul
2014-01-01
We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups. PMID:25320795
Alternative probability theories for cognitive psychology.
Narens, Louis
2014-01-01
Various proposals for generalizing event spaces for probability functions have been put forth in the mathematical, scientific, and philosophic literatures. In cognitive psychology such generalizations are used for explaining puzzling results in decision theory and for modeling the influence of context effects. This commentary discusses proposals for generalizing probability theory to event spaces that are not necessarily boolean algebras. Two prominent examples are quantum probability theory, which is based on the set of closed subspaces of a Hilbert space, and topological probability theory, which is based on the set of open sets of a topology. Both have been applied to a variety of cognitive situations. This commentary focuses on how event space properties can influence probability concepts and impact cognitive modeling. Copyright © 2013 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Lamberti, Luciano
2018-05-01
For 1D signals, it is necessary to resort to a 2D abstract space because the concept of phase utilized in the retrieval of fringe pattern analysis information relies on the use of a vectorial function. Fourier and Hilbert transforms provide in-quadrature signals that lead to the very important basic concept of local phase. A 3D abstract space must hence be generated in order to analyze 2D signals. A 3D vector space in a Cartesian complex space is graphically represented by a Poincare sphere. In this study, the extension of the associated spaces is extended to 3D. A 4D hypersphere is defined for that purpose. The proposed approach is illustrated by determining the deformations of the heart left ventricle.
Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
Liu, Bo; Chen, Sanfeng; Li, Shuai; Liang, Yongsheng
2012-01-01
In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces. PMID:22736969
Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P
2017-01-01
Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongbin; White, R. D.
In the calculation of the linearized Boltzmann collision operator for an inverse-square force law interaction (Coulomb interaction) F(r)=κ/r{sup 2}, we found the widely used scattering angle cutoff θ≥θ{sub min} is a wrong practise since the divergence still exists after the cutoff has been made. When the correct velocity change cutoff |v′−v|≥δ{sub min} is employed, the scattering angle can be integrated. A unified linearized Boltzmann collision operator for both inverse-square force law and rigid-sphere interactions is obtained. Like many other unified quantities such as transition moments, Fokker-Planck expansion coefficients and energy exchange rates obtained recently [Y. B. Chang and L. A.more » Viehland, AIP Adv. 1, 032128 (2011)], the difference between the two kinds of interactions is characterized by a parameter, γ, which is 1 for rigid-sphere interactions and −3 for inverse-square force law interactions. When the cutoff is removed by setting δ{sub min}=0, Hilbert's well known kernel for rigid-sphere interactions is recovered for γ = 1.« less
Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wenjing; Krishnamoorthy, Sriram; Agrawal, Gagan
2012-05-15
Auto-tuning has emerged as an important practical method for creating highly optimized implementations of key computational kernels and applications. However, the growing complexity of architectures and applications is creating new challenges for auto-tuning. Complex applications can involve a prohibitively large search space that precludes empirical auto-tuning. Similarly, architectures are becoming increasingly complicated, making it hard to model performance. In this paper, we focus on the challenge to auto-tuning presented by applications with a large number of kernels and kernel instantiations. While these kernels may share a somewhat similar pattern, they differ considerably in problem sizes and the exact computation performed.more » We propose and evaluate a new approach to auto-tuning which we refer to as parameterized micro-benchmarking. It is an alternative to the two existing classes of approaches to auto-tuning: analytical model-based and empirical search-based. Particularly, we argue that the former may not be able to capture all the architectural features that impact performance, whereas the latter might be too expensive for an application that has several different kernels. In our approach, different expressions in the application, different possible implementations of each expression, and the key architectural features, are used to derive a simple micro-benchmark and a small parameter space. This allows us to learn the most significant features of the architecture that can impact the choice of implementation for each kernel. We have evaluated our approach in the context of GPU implementations of tensor contraction expressions encountered in excited state calculations in quantum chemistry. We have focused on two aspects of GPUs that affect tensor contraction execution: memory access patterns and kernel consolidation. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations, but no auto-tuning. We demonstrate that observations made from microbenchmarks match the behavior seen from real expressions. In the process, we make important observations about the memory hierarchy of two of the most recent NVIDIA GPUs, which can be used in other optimization frameworks as well.« less
Travel-time sensitivity kernels in long-range propagation.
Skarsoulis, E K; Cornuelle, B D; Dzieciuch, M A
2009-11-01
Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.
Pattern sampling for etch model calibration
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2017-06-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.
Performance analysis and kernel size study of the Lynx real-time operating system
NASA Technical Reports Server (NTRS)
Liu, Yuan-Kwei; Gibson, James S.; Fernquist, Alan R.
1993-01-01
This paper analyzes the Lynx real-time operating system (LynxOS), which has been selected as the operating system for the Space Station Freedom Data Management System (DMS). The features of LynxOS are compared to other Unix-based operating system (OS). The tools for measuring the performance of LynxOS, which include a high-speed digital timer/counter board, a device driver program, and an application program, are analyzed. The timings for interrupt response, process creation and deletion, threads, semaphores, shared memory, and signals are measured. The memory size of the DMS Embedded Data Processor (EDP) is limited. Besides, virtual memory is not suitable for real-time applications because page swap timing may not be deterministic. Therefore, the DMS software, including LynxOS, has to fit in the main memory of an EDP. To reduce the LynxOS kernel size, the following steps are taken: analyzing the factors that influence the kernel size; identifying the modules of LynxOS that may not be needed in an EDP; adjusting the system parameters of LynxOS; reconfiguring the device drivers used in the LynxOS; and analyzing the symbol table. The reductions in kernel disk size, kernel memory size and total kernel size reduction from each step mentioned above are listed and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Christopher E., E-mail: chripa@fysik.dtu.dk; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
2015-09-14
We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a testmore » set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.« less
Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback
NASA Astrophysics Data System (ADS)
Do, K. D.
2018-05-01
Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
NASA Astrophysics Data System (ADS)
Ibort, A.; Pérez-Pardo, J. M.
2015-04-01
This is a series of five lectures around the common subject of the construction of self-adjoint extensions of symmetric operators and its applications to Quantum Physics. We will try to offer a brief account of some recent ideas in the theory of self-adjoint extensions of symmetric operators on Hilbert spaces and their applications to a few specific problems in Quantum Mechanics.
High-Speed Quantum Key Distribution Using Photonic Integrated Circuits
2013-01-01
protocol [14] that uses energy-time entanglement of pairs of photons. We are employing the QPIC architecture to implement a novel high-dimensional disper...continuous Hilbert spaces using measures of the covariance matrix. Although we focus the discussion on a scheme employing entangled photon pairs...is the probability that parameter estimation fails [20]. The parameter ε̄ accounts for the accuracy of estimating the smooth min- entropy , which
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
BV-BFV approach to general relativity: Einstein-Hilbert action
NASA Astrophysics Data System (ADS)
Cattaneo, Alberto S.; Schiavina, Michele
2016-02-01
The present paper shows that general relativity in the Arnowitt-Deser-Misner formalism admits a BV-BFV formulation. More precisely, for any d + 1 ≠ 2 (pseudo-) Riemannian manifold M with space-like or time-like boundary components, the BV data on the bulk induces compatible BFV data on the boundary. As a byproduct, the usual canonical formulation of general relativity is recovered in a straightforward way.
Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups
NASA Astrophysics Data System (ADS)
Brannan, Michael; Collins, Benoît
2018-03-01
In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.
Progress towards quantum simulating the classical O(2) Model
2014-12-01
approach by building up on simple models sharing some of the basic features of lattice QCD . In the context of condensed matter, a proof of principle that...independently. Explicit Hilbert space repre- sentations of the physical states and of their matrix elements are mostly absent from today’s lattice QCD ...to lattice QCD , seems possible and interesting. ACKNOWLEDGMENTS We thank Masanori Hanada, Peter Orland, Lode Pollet, Boris Svistunov, the participants
Chandrasekhar equations for infinite dimensional systems. Part 2: Unbounded input and output case
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Powers, Robert K.
1987-01-01
A set of equations known as Chandrasekhar equations arising in the linear quadratic optimal control problem is considered. In this paper, we consider the linear time-invariant system defined in Hilbert spaces involving unbounded input and output operators. For a general class of such systems, the Chandrasekhar equations are derived and the existence, uniqueness, and regularity of the results of their solutions established.
Chain of point-like potentials in Script R3 and infiniteness of the number of bound states
NASA Astrophysics Data System (ADS)
Boitsev, A. A.; Popov, I. Yu; Sokolov, O. V.
2014-10-01
Infinite chain of point-like potentials having the Hamiltonian with infinite number of eigenvalues below the continuous spectrum is constructed. The background of the model is the theory of self-adjoint extensions of symmetric operators in the Hilbert space. The analogous example of the Hamiltonian is obtained for the system of three-dimensional waveguides coupled through point-like windows.
1994-06-01
algorithms for large, irreducibly coupled systems iteratively solve concurrent problems within different subspaces of a Hilbert space, or within different...effective on problems amenable to SIMD solution. Together with researchers at AT&T Bell Labs (Boris Lubachevsky, Albert Greenberg ) we have developed...reasonable measurement. In the study of different speedups, various causes of superlinear speedup are also presented. Greenberg , Albert G., Boris D
Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen
2018-05-01
Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.
An abstract model for radiative transfer in an atmosphere with reflection by the planetary surface
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
1985-07-01
A Hilbert-space model is developed that applies to radiative transfer in a homogeneous, plane-parallel planetary atmosphere. Reflection and absorption by the planetary surface are taken into account by imposing a reflective boundary condition. The existence and uniqueness of the solution of this boundary value problem are established by proving the invertibility of a scattering operator using the Fredholm alternative.
A nonlinear ordinary differential equation associated with the quantum sojourn time
NASA Astrophysics Data System (ADS)
Benguria, Rafael D.; Duclos, Pierre; Fernández, Claudio; Sing-Long, Carlos
2010-11-01
We study a nonlinear ordinary differential equation on the half-line, with the Dirichlet boundary condition at the origin. This equation arises when studying the local maxima of the sojourn time for a free quantum particle whose states belong to an adequate subspace of the unit sphere of the corresponding Hilbert space. We establish several results concerning the existence and asymptotic behavior of the solutions.
Reduction theorems for optimal unambiguous state discrimination of density matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Philippe; Luetkenhaus, Norbert; Enk, Steven J. van
2003-08-01
We present reduction theorems for the problem of optimal unambiguous state discrimination of two general density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank n and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems to discriminate unambiguously between N mixed states (N{>=}2)
From Quantum Fields to Local Von Neumann Algebras
NASA Astrophysics Data System (ADS)
Borchers, H. J.; Yngvason, Jakob
The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.
Fisher metric, geometric entanglement, and spin networks
NASA Astrophysics Data System (ADS)
Chirco, Goffredo; Mele, Fabio M.; Oriti, Daniele; Vitale, Patrizia
2018-02-01
Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of nonlocal correlations between two nonadjacent regions of a generic spin network graph characterized by the bipartite unfolding of an intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and nonlocal level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia , Naples; Grup d'Informacio Quantica, Universitat Autonoma de Barcelona, E-08193 Bellaterra
2007-08-15
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantummore » correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.« less
Links between quantum physics and thought.
Robson, Barry
2009-01-01
Quantum mechanics (QM) provides a variety of ideas that can assist in developing Artificial Intelligence for healthcare, and opens the possibility of developing a unified system of Best Practice for inference that will embrace both QM and classical inference. Of particular interest is inference in the hyperbolic-complex plane, the counterpart of the normal i-complex plane of basic QM. There are two reasons. First, QM appears to rotate from i-complex Hilbert space to hyperbolic-complex descriptions when observations are made on wave functions as particles, yielding classical results, and classical laws of probability manipulation (e.g. the law of composition of probabilities) then hold, whereas in the i-complex plane they do not. Second, i-complex Hilbert space is not the whole story in physics. Hyperbolic complex planes arise in extension from the Dirac-Clifford calculus to particle physics, in relativistic correction thereby, and in regard to spinors and twisters. Generalization of these forms resemble grammatical constructions and promote the idea that probability-weighted algebraic elements can be used to hold dimensions of syntactic and semantic meaning. It is also starting to look as though when a solution is reached by an inference system in the hyperbolic-complex, the hyperbolic-imaginary values disappear, while conversely hyperbolic-imaginary values are associated with the un-queried state of a system and goal seeking behavior.
Time Asymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr
2011-09-01
The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Progress towards an effective model for FeSe from high-accuracy first-principles quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Busemeyer, Brian; Wagner, Lucas K.
While the origin of superconductivity in the iron-based materials is still controversial, the proximity of the superconductivity to magnetic order is suggestive that magnetism may be important. Our previous work has suggested that first-principles Diffusion Monte Carlo (FN-DMC) can capture magnetic properties of iron-based superconductors that density functional theory (DFT) misses, but which are consistent with experiment. We report on the progress of efforts to find simple effective models consistent with the FN-DMC description of the low-lying Hilbert space of the iron-based superconductor, FeSe. We utilize a procedure outlined by Changlani et al.[1], which both produces parameter values and indications of whether the model is a good description of the first-principles Hamiltonian. Using this procedure, we evaluate several models of the magnetic part of the Hilbert space found in the literature, as well as the Hubbard model, and a spin-fermion model. We discuss which interaction parameters are important for this material, and how the material-specific properties give rise to these interactions. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award No. FG02-12ER46875, as well as the NSF Graduate Research Fellowship Program.
Extremal values of the sojourn time
NASA Astrophysics Data System (ADS)
Astaburuaga, M. A.; Cortés, V. H.; Duclos, P.
2010-11-01
Consider a self-adjoint operator H on a separable Hilbert space \\ {H} with non-trivial absolutely continuous component. We study the general properties of the real-valued functional, \\tau _{H}(\\psi )=\\int _{{\\ R}}|(e^{-itH}\\psi,\\psi )|^2\\,dt, which in quantum mechanics represents the sojourn time (or life time) of an initial state \\psi \\in \\ {H}. We characterize the critical points of the sojourn time, τX, of the operator multiplication by x in L^2({\\ R}), and prove that it attains a global maximum in the unit sphere of the Sobolev space \\ {W}^{1,2}({\\ R}).
Mutually unbiased bases and semi-definite programming
NASA Astrophysics Data System (ADS)
Brierley, Stephen; Weigert, Stefan
2010-11-01
A complex Hilbert space of dimension six supports at least three but not more than seven mutually unbiased bases. Two computer-aided analytical methods to tighten these bounds are reviewed, based on a discretization of parameter space and on Gröbner bases. A third algorithmic approach is presented: the non-existence of more than three mutually unbiased bases in composite dimensions can be decided by a global optimization method known as semidefinite programming. The method is used to confirm that the spectral matrix cannot be part of a complete set of seven mutually unbiased bases in dimension six.
Squeezed states: A geometric framework
NASA Technical Reports Server (NTRS)
Ali, S. T.; Brooke, J. A.; Gazeau, J.-P.
1992-01-01
A general definition of squeezed states is proposed and its main features are illustrated through a discussion of the standard optical coherent states represented by 'Gaussian pure states'. The set-up involves representations of groups on Hilbert spaces over homogeneous spaces of the group, and relies on the construction of a square integrable (coherent state) group representation modulo a subgroup. This construction depends upon a choice of a Borel section which has a certain permissible arbitrariness in its selection; this freedom is attributable to a squeezing of the defining coherent states of the representation, and corresponds in this way to a sort of gauging.
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859
Face recognition by applying wavelet subband representation and kernel associative memory.
Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam
2004-01-01
In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.
Leimar, Olof; Doebeli, Michael; Dieckmann, Ulf
2008-04-01
We have analyzed the evolution of a quantitative trait in populations that are spatially extended along an environmental gradient, with gene flow between nearby locations. In the absence of competition, there is stabilizing selection toward a locally best-adapted trait that changes gradually along the gradient. According to traditional ideas, gradual spatial variation in environmental conditions is expected to lead to gradual variation in the evolved trait. A contrasting possibility is that the trait distribution instead breaks up into discrete clusters. Doebeli and Dieckmann (2003) argued that competition acting locally in trait space and geographical space can promote such clustering. We have investigated this possibility using deterministic population dynamics for asexual populations, analyzing our model numerically and through an analytical approximation. We examined how the evolution of clusters is affected by the shape of competition kernels, by the presence of Allee effects, and by the strength of gene flow along the gradient. For certain parameter ranges clustering was a robust outcome, and for other ranges there was no clustering. Our analysis shows that the shape of competition kernels is important for clustering: the sign structure of the Fourier transform of a competition kernel determines whether the kernel promotes clustering. Also, we found that Allee effects promote clustering, whereas gene flow can have a counteracting influence. In line with earlier findings, we could demonstrate that phenotypic clustering was favored by gradients of intermediate slope.
Hilbert's 'Foundations of Physics': Gravitation and electromagnetism within the axiomatic method
NASA Astrophysics Data System (ADS)
Brading, K. A.; Ryckman, T. A.
2008-01-01
In November and December 1915, Hilbert presented two communications to the Göttingen Academy of Sciences under the common title 'The Foundations of Physics'. Versions of each eventually appeared in the Nachrichten of the Academy. Hilbert's first communication has received significant reconsideration in recent years, following the discovery of printer's proofs of this paper, dated 6 December 1915. The focus has been primarily on the 'priority dispute' over the Einstein field equations. Our contention, in contrast, is that the discovery of the December proofs makes it possible to see the thematic linkage between the material that Hilbert cut from the published version of the first communication and the content of the second, as published in 1917. The latter has been largely either disregarded or misinterpreted, and our aim is to show that (a) Hilbert's two communications should be regarded as part of a wider research program within the overarching framework of 'the axiomatic method' (as Hilbert expressly stated was the case), and (b) the second communication is a fine and coherent piece of work within this framework, whose principal aim is to address an apparent tension between general invariance and causality (in the precise sense of Cauchy determination), pinpointed in Theorem I of the first communication. This is not the same problem as that found in Einstein's 'hole argument'-something that, we argue, never confused Hilbert.
Ye, Huihui; Cauley, Stephen F; Gagoski, Borjan; Bilgic, Berkin; Ma, Dan; Jiang, Yun; Du, Yiping P; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin
2017-05-01
To develop a reconstruction method to improve SMS-MRF, in which slice acceleration is used in conjunction with highly undersampled in-plane acceleration to speed up MRF acquisition. In this work two methods are employed to efficiently perform the simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) data acquisition and the direct-spiral slice-GRAPPA (ds-SG) reconstruction. First, the lengthy training data acquisition is shortened by employing the through-time/through-k-space approach, in which similar k-space locations within and across spiral interleaves are grouped and are associated with a single set of kernel. Second, inversion recovery preparation (IR prepped), variable flip angle (FA), and repetition time (TR) are used for the acquisition of the training data, to increase signal variation and to improve the conditioning of the kernel fitting. The grouping of k-space locations enables a large reduction in the number of kernels required, and the IR-prepped training data with variable FA and TR provide improved ds-SG kernels and reconstruction performance. With direct-spiral slice-GRAPPA, tissue parameter maps comparable to that of conventional MRF were obtained at multiband (MB) = 3 acceleration using t-blipped SMS-MRF acquisition with 32-channel head coil at 3 Tesla (T). The proposed reconstruction scheme allows MB = 3 accelerated SMS-MRF imaging with high-quality T 1 , T 2 , and off-resonance maps, and can be used to significantly shorten MRF acquisition and aid in its adoption in neuro-scientific and clinical settings. Magn Reson Med 77:1966-1974, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Acton, Charles H., Jr.; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.
2010-01-01
The Navigation Ancillary Infor ma tion Facility (NAIF) at JPL, acting under the direction of NASA s Office of Space Science, has built a data system named SPICE (Spacecraft Planet Instrument Cmatrix Events) to assist scientists in planning and interpreting scientific observations (see figure). SPICE provides geometric and some other ancillary information needed to recover the full value of science instrument data, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. This data system is used to produce space mission observation geometry data sets known as SPICE kernels. It is also used to read SPICE kernels and to compute derived quantities such as positions, orientations, lighting angles, etc. The SPICE toolkit consists of a subroutine/ function library, executable programs (both large applications and simple utilities that focus on kernel management), and simple examples of using SPICE toolkit subroutines. This software is very accurate, thoroughly tested, and portable to all computers. It is extremely stable and reusable on all missions. Since the previous version, three significant capabilities have been added: Interactive Data Language (IDL) interface, MATLAB interface, and a geometric event finder subsystem.
Protecting Location Privacy for Outsourced Spatial Data in Cloud Storage
Gui, Xiaolin; An, Jian; Zhao, Jianqiang; Zhang, Xuejun
2014-01-01
As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC∗) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC∗ and DSC are more secure than SHC, and DSC achieves the best index generation performance. PMID:25097865
Protecting location privacy for outsourced spatial data in cloud storage.
Tian, Feng; Gui, Xiaolin; An, Jian; Yang, Pan; Zhao, Jianqiang; Zhang, Xuejun
2014-01-01
As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC(∗)) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC(∗) and DSC are more secure than SHC, and DSC achieves the best index generation performance.
Vertex Operators, Grassmannians, and Hilbert Schemes
NASA Astrophysics Data System (ADS)
Carlsson, Erik
2010-12-01
We approximate the infinite Grassmannian by finite-dimensional cutoffs, and define a family of fermionic vertex operators as the limit of geometric correspondences on the equivariant cohomology groups, with respect to a one-dimensional torus action. We prove that in the localization basis, these are the well-known fermionic vertex operators on the infinite wedge representation. Furthermore, the boson-fermion correspondence, locality, and intertwining properties with the Virasoro algebra are the limits of relations on the finite-dimensional cutoff spaces, which are true for geometric reasons. We then show that these operators are also, almost by definition, the vertex operators defined by Okounkov and the author in Carlsson and Okounkov (
Model selection for anomaly detection
NASA Astrophysics Data System (ADS)
Burnaev, E.; Erofeev, P.; Smolyakov, D.
2015-12-01
Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.
A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.
2016-12-01
It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.
Time and Space Partitioning the EagleEye Reference Misson
NASA Astrophysics Data System (ADS)
Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan
2013-08-01
We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birmingham, D.; Kantowski, R.; Milton, K.A.
We use two methods of computing the unique logarithmically divergent part of the Casimir energy for massive scalar and spinor fields defined on even-dimensional Kaluza-Klein spaces of the form M/sup 4/ x S/sup N//sup 1/ x S/sup N//sup 2/ x xxx. Both methods (heat kernel and direct) give identical results. The first evaluates the required internal zeta function by identifying it in the asymptotic expansion of the trace of the heat kernel, and the second evaluates the zeta function directly using the Euler-Maclaurin sum formula. In Appendix C we tabulate these energies for all spaces of total internal dimension lessmore » than or equal to6. These methods are easily applied to vector and tensor fields needed in computing one-loop vacuum gravitational energies on these spaces. Stable solutions are given for internal structure S/sup 2/ x S/sup 2/.« less
Time and Space Partition Platform for Safe and Secure Flight Software
NASA Astrophysics Data System (ADS)
Esquinas, Angel; Zamorano, Juan; de la Puente, Juan A.; Masmano, Miguel; Crespo, Alfons
2012-08-01
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable realtime kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
Utilizing the Structure and Content Information for XML Document Clustering
NASA Astrophysics Data System (ADS)
Tran, Tien; Kutty, Sangeetha; Nayak, Richi
This paper reports on the experiments and results of a clustering approach used in the INEX 2008 document mining challenge. The clustering approach utilizes both the structure and content information of the Wikipedia XML document collection. A latent semantic kernel (LSK) is used to measure the semantic similarity between XML documents based on their content features. The construction of a latent semantic kernel involves the computing of singular vector decomposition (SVD). On a large feature space matrix, the computation of SVD is very expensive in terms of time and memory requirements. Thus in this clustering approach, the dimension of the document space of a term-document matrix is reduced before performing SVD. The document space reduction is based on the common structural information of the Wikipedia XML document collection. The proposed clustering approach has shown to be effective on the Wikipedia collection in the INEX 2008 document mining challenge.