Phan The, D; Péroval, C; Debeaufort, F; Despré, D; Courthaudon, J L; Voilley, A
2002-01-16
This work is a contribution to better knowledge of the influence of the structure of films on their functional properties obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil (HPKO), and emulsifiers. The sucroesters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. They improve the moisture barrier properties. Several sucroesters having different esterification degrees were tested. Both lipophilic (90% of di and tri-ester) and hydrophilic (70% of mono-ester) sucrose esters can ensure the stability of the emulsion used to form the film, especially during preparation and drying. These emulsifiers confer good moisture barrier properties to emulsified films.
Santalbic acid from quandong kernels and oil fed to rats affects kidney and liver P450.
Jones, G P; Watson, T G; Sinclair, A J; Birkett, A; Dunt, N; Nair, S S; Tonkin, S Y
1999-09-01
Kernels of the plant Santalum acuminatum (quandong) are eaten as Australian 'bush foods'. They are rich in oil and contain relatively large amounts of the acetylenic fatty acid, santalbic acid (trans-11-octadecen-9-ynoic acid), whose chemical structure is unlike that of normal dietary fatty acids. When rats were fed high fat diets in which oil from quandong kernels supplied 50% of dietary energy, the proportion of santalbic acid absorbed was more than 90%. Feeding quandong oil elevated not only total hepatic cytochrome P450 but also the cytochrome P450 4A subgroup of enzymes as shown by a specific immunoblotting technique. A purified methyl santalbate preparation isolated from quandong oil was fed to rats at 9% of dietary energy for 4 days and this also elevated cytochrome P450 4A in both kidney and liver microsomes in comparison with methyl esters from canola oil. Santalbic acid appears to be metabolized differently from the usual dietary fatty acids and the consumption of oil from quandong kernels may cause perturbations in normal fatty acid biochemistry.
Bueso, Francisco; Sosa, Italo; Chun, Roldan; Pineda, Renan
2016-01-01
Jatropha curcas L. (Jatropha) is believed to have originated from Mexico and Central America. So far, characterization efforts have focused on Asia, Africa and Mexico. Non-toxic, low phorbol ester (PE) varieties have been found only in Mexico. Differences in PE content in seeds and its structural components, crude oil and cake from Jatropha provenances cultivated in Central and South America were evaluated. Seeds were dehulled, and kernels were separated into tegmen, cotyledons and embryo for PE quantitation by RP-HPLC. Crude oil and cake PE content was also measured. No phenotypic departures in seed size and structure were observed among Jatropha cultivated in Central and South America compared to provenances from Mexico, Asia and Africa. Cotyledons comprised 96.2-97.5 %, tegmen 1.6-2.4 % and embryo represented 0.9-1.4 % of dehulled kernel. Total PE content of all nine provenances categorized them as toxic. Significant differences in kernel PE content were observed among provenances from Mexico, Central and South America (P < 0.01), being Mexican the highest (7.6 mg/g) and Cabo Verde the lowest (2.57 mg/g). All accessions had >95 % of PEs concentrated in cotyledons, 0.5-3 % in the tegmen and 0.5-1 % in the embryo. Over 60 % of total PE in dehulled kernels accumulated in the crude oil, while 35-40 % remained in the cake after extraction. Low phenotypic variability in seed physical, structural traits and PE content was observed among provenances from Latin America. Very high-PE provenances with potential as biopesticide were found in Central America. No PE-free, edible Jatropha was found among provenances currently cultivated in Central America and Brazil that could be used for human consumption and feedstock. Furthermore, dehulled kernel structural parts as well as its crude oil and cake contained toxic PE levels.
Esche, Rebecca; Barnsteiner, Andreas; Scholz, Birgit; Engel, Karl-Heinz
2012-05-30
An approach based on solid-phase extraction for the effective separation of free phytosterols/phytostanols and phytosteryl/phytostanyl fatty acid and phenolic acid esters from cereal lipids was developed. The ester conjugates were analyzed in their intact form by means of capillary gas chromatography. Besides free sterols and stanols, up to 33 different fatty acid and phenolic acid esters were identified in four different cereal grains via gas chromatography-mass spectrometry. The majority (52-57%) of the sterols and stanols were present as fatty acid esters. The highest levels of all three sterol and stanol classes based on dry matter of ground kernels were determined in corn, whereas the oil extract of rye was 1.7 and 1.6 times richer in fatty acid esters and free sterols/stanols than the corn oil. The results showed that there are considerable differences in the sterols/stanols and their ester profiles and contents obtained from corn compared to rye, wheat, and spelt. The proposed method is useful for the quantification of a wide range of free phytosterols/phytostanols and intact phytosteryl/phytostanyl esters to characterize different types of grain.
Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang
2015-01-01
Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.
Fard Masoumi, Hamid Reza; Basri, Mahiran; Sarah Samiun, Wan; Izadiyan, Zahra; Lim, Chaw Jiang
2015-01-01
Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%), lecithin (2–3 wt%), Tween 80 (0.5–1 wt%), glycerol (1.5–3 wt%), and water (87–93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%. PMID:26508853
Triacylglycerol and triterpene ester composition of shea nuts from seven African countries.
Akihisa, Toshihiro; Kojima, Nobuo; Katoh, Naoko; Kikuchi, Takashi; Fukatsu, Makoto; Shimizu, Naoto; Masters, Eliot T
2011-01-01
The compositions of the triacylglycerol (TAG) and triterpene ester (TE) fractions of the kernel fats (n-hexane extracts; shea butter) of the shea tree (Vitellaria paradoxa; Sapotaceae) were determined for 36 samples from seven sub-Saharan countries, i.e., Cote d' Ivoire, Ghana, Nigeria, Cameroun, Chad, Sudan, and Uganda. The principal TAGs are stearic-oleic-stearic (SOS; mean 31.2%), SOO (27.7%), and OOO (10.8%). The TE fractions contents are in the range of 0.5-6.5%, and contain α-amyrin cinnamate (1c; mean 29.3%) as the predominant TE followed by butyrospermol cinnamate (4c; 14.8%), α-amyrin acetate (1a; 14.1%), lupeol cinnamate (3c; 9.0%), β-amyrin cinnamate (2c; 7.6%), lupeol acetate (3a; 7.2%), butyrospermol acetate (4a; 5.8%), and β-amyrin acetate (2a; 4.9%). Shea kernel fats from West African provenances contained, in general, higher levels of high-melting TAGs such as SOS, and higher amount of TEs than those from East African provenances. No striking regional difference in the composition of the TE fractions was observed. Copyright © 2011 by Japan Oil Chemists' Society
Dulf, Francisc Vasile; Vodnar, Dan Cristian; Socaciu, Carmen
2016-10-15
Evolutions of phenolic contents and antioxidant activities during solid-state fermentation (SSF) of plum pomaces (from the juice industry) and brandy distillery wastes with Aspergillus niger and Rhizopus oligosporus were investigated. The effect of fermentation time on the oil content and major lipid classes in the plum kernels was also studied. Results showed that total phenolic (TP) amounts increased by over 30% for SSF with Rhizopus oligosporus and by >21% for SSF with A. niger. The total flavonoid contents presented similar tendencies to those of the TPs. The free radical scavenging activities of methanolic extracts were also significantly enhanced. The HPLC-MS analysis showed that quercetin-3-glucoside was the major phenolic compound in both fermented plum by-products. The results also demonstrated that SSF not only helped to achieve higher lipid recovery from plum kernels, but also resulted in oils with better quality attributes (high sterol ester and n-3 PUFA-rich polar lipid contents). Copyright © 2016 Elsevier Ltd. All rights reserved.
Activities of Jatropha curcas phorbol esters in various bioassays.
Devappa, Rakshit K; Rajesh, Sanjay K; Kumar, Vikas; Makkar, Harinder P S; Becker, Klaus
2012-04-01
Jatropha curcas seeds contain 30-35% oil, which can be converted to high quality biodiesel. However, Jatropha oil is toxic, ascribed to the presence of phorbol esters (PEs). In this study, isolated phorbol ester rich fraction (PEEF) was used to evaluate the activity of PEs using three aquatic species based bioassays (snail (Physa fontinalis), brine shrimp (Artemeia salina), daphnia (Daphnia magna)) and microorganisms. In all the bioassays tested, increase in concentration of PEs increased mortality with an EC(50) (48 h) of 0.33, 26.48 and 0.95 mg L(-1) PEs for snail, artemia and daphnia, respectively. The sensitivity of various microorganisms for PEs was also tested. Among the bacterial species tested, Streptococcus pyogenes and Proteus mirabilis were highly susceptible with a minimum inhibitory concentration (MIC) of 215 mg L(-1) PEs; and Pseudomonas putida were also sensitive with MIC of 251 mg L(-1) PEs. Similarly, Fusarium species of fungi exhibited EC(50) of 58 mg L(-1) PEs, while Aspergillus niger and Curvularia lunata had EC(50) of 70 mg L(-1). The snail bioassay was most sensitive with 100% snail mortality at 1 μg of PEs mL(-1). In conclusion, snail bioassay could be used to monitor PEs in Jatropha derived products such as oil, biodiesel, fatty acid distillate, kernel meal, cake, glycerol or for contamination in soil or other environmental matrices. In addition, PEs with molluscicidal/antimicrobial activities could be utilized for agricultural and pharmaceutical applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue
NASA Technical Reports Server (NTRS)
Chisnell, J. R.
1984-01-01
Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.
Corn kernel oil and corn fiber oil
USDA-ARS?s Scientific Manuscript database
Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...
NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
Singh, Bimala; Kale, R K; Rao, A R
2004-04-01
Cashew nut shell oil has been reported to possess tumour promoting property. Therefore an attempt has been made to study the modulatory effect of cashew nut (Anlacardium occidentale) kernel oil on antioxidant potential in liver of Swiss albino mice and also to see whether it has tumour promoting ability like the shell oil. The animals were treated orally with two doses (50 and 100 microl/animal/day) of kernel oil of cashew nut for 10 days. The kernel oil was found to enhance the specific activities of SOD, catalase, GST, methylglyoxalase I and levels of GSH. These results suggested that cashew nut kernel oil had an ability to increase the antioxidant status of animals. The decreased level of lipid peroxidation supported this possibility. The tumour promoting property of the kernel oil was also examined and found that cashew nut kernel oil did not exhibit any solitary carcinogenic activity.
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cocoa butter substitute from coconut oil, palm... HUMAN CONSUMPTION Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Chemical components of cold pressed kernel oils from different Torreya grandis cultivars.
He, Zhiyong; Zhu, Haidong; Li, Wangling; Zeng, Maomao; Wu, Shengfang; Chen, Shangwei; Qin, Fang; Chen, Jie
2016-10-15
The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haines, Troy D.; Adlaf, Kevin J.; Pierceall, Robert M.; Lee, Inmok; Venkitasubramanian, Padmesh
2010-01-01
Analysis of MCPD esters and glycidyl esters in vegetable oils using the indirect method proposed by the DGF gave inconsistent results when salting out conditions were varied. Subsequent investigation showed that the method was destroying and reforming MCPD during the analysis. An LC time of flight MS method was developed for direct analysis of both MCPD esters and glycidyl esters in vegetable oils. The results of the LC–TOFMS method were compared with the DGF method. The DGF method consistently gave results that were greater than the LC–TOFMS method. The levels of MCPD esters and glycidyl esters found in a variety of vegetable oils are reported. MCPD monoesters were not found in any oil samples. MCPD diesters were found only in samples containing palm oil, and were not present in all palm oil samples. Glycidyl esters were found in a wide variety of oils. Some processing conditions that influence the concentration of MCPD esters and glycidyl esters are discussed. PMID:21350591
Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi
2015-03-01
In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed Cydonia oblonga Miller. [42 FR 14640, Mar...
Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A
2017-12-01
The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improvement of efficiency of oil extraction from wild apricot kernels by using enzymes.
Bisht, Tejpal Singh; Sharma, Satish Kumar; Sati, Ramesh Chandra; Rao, Virendra Kumar; Yadav, Vijay Kumar; Dixit, Anil Kumar; Sharma, Ashok Kumar; Chopra, Chandra Shekhar
2015-03-01
An experiment was conducted to evaluate and standardize the protocol for enhancing recovery of oil and quality from cold pressed wild apricot kernels by using various enzymes. Wild apricot kernels were ground into powder in a grinder. Different lots of 3 kg powdered kernel were prepared and treated with different concentrations of enzyme solutions viz. Pectazyme (Pectinase), Mashzyme (Cellulase) and Pectazyme + Mashzyme. Kernel powder mixed with enzyme solutions were kept for 2 h at 50(±2) °C temperature for enzymatic treatment before its use for oil extraction through oil expeller. Results indicate that use of enzymes resulted in enhancement of oil recovery by 9.00-14.22 %. Maximum oil recovery was observed at 0.3-0.4 % enzyme concentration for both the enzymes individually, as well as in combination. All the three enzymatic treatments resulted in increasing oil yield. However, with 0.3 % (Pectazyme + Mashzyme) combination, maximum oil recovery of 47.33 % could be observed against were 33.11 % in control. The oil content left (wasted) in the cake and residue were reduced from 11.67 and 11.60 % to 7.31 and 2.72 % respectively, thus showing a high increase in efficiency of oil recovery from wild apricot kernels. Quality characteristics indicate that the oil quality was not adversely affected by enzymatic treatment. It was concluded treatment of powdered wild apricot kernels with 0.3 % (Pectazyme + Mashzyme) combination was highly effective in increasing oil recovery by 14.22 % without adversely affecting the quality and thus may be commercially used by the industry for reducing wastage of highly precious oil in the cake.
Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils.
Tiong, Soon Huat; Saparin, Norliza; Teh, Huey Fang; Ng, Theresa Lee Mei; Md Zain, Mohd Zairey Bin; Neoh, Bee Keat; Md Noor, Ahmadilfitri; Tan, Chin Ping; Lai, Oi Ming; Appleton, David Ross
2018-01-31
During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...
21 CFR 172.816 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...
21 CFR 178.3600 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...
Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain.
Wang, Xing-Hong; Ou, Lingcheng; Fu, Liang-Liang; Zheng, Shui; Lou, Ji-Dong; Gomes-Laranjo, José; Li, Jiao; Zhang, Changhe
2013-09-15
A huge amount of kernel cake, which contains a variety of toxins including phorbol esters (tumor promoters), is projected to be generated yearly in the near future by the Jatropha biodiesel industry. We showed that the kernel cake strongly inhibited plant seed germination and root growth and was highly toxic to carp fingerlings, even though phorbol esters were undetectable by HPLC. Therefore it must be detoxified before disposal to the environment. A mathematic model was established to estimate the general toxicity of the kernel cake by determining the survival time of carp fingerling. A new strain (Streptomyces fimicarius YUCM 310038) capable of degrading the total toxicity by more than 97% in a 9-day solid state fermentation was screened out from 578 strains including 198 known strains and 380 strains isolated from air and soil. The kernel cake fermented by YUCM 310038 was nontoxic to plants and carp fingerlings and significantly promoted tobacco plant growth, indicating its potential to transform the toxic kernel cake to bio-safe animal feed or organic fertilizer to remove the environmental concern and to reduce the cost of the Jatropha biodiesel industry. Microbial strain profile essential for the kernel cake detoxification was discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Expression of Fungal diacylglycerol acyltransferase2 Genes to Increase Kernel Oil in Maize[OA
Oakes, Janette; Brackenridge, Doug; Colletti, Ron; Daley, Maureen; Hawkins, Deborah J.; Xiong, Hui; Mai, Jennifer; Screen, Steve E.; Val, Dale; Lardizabal, Kathryn; Gruys, Ken; Deikman, Jill
2011-01-01
Maize (Zea mays) oil has high value but is only about 4% of the grain by weight. To increase kernel oil content, fungal diacylglycerol acyltransferase2 (DGAT2) genes from Umbelopsis (formerly Mortierella) ramanniana and Neurospora crassa were introduced into maize using an embryo-enhanced promoter. The protein encoded by the N. crassa gene was longer than that of U. ramanniana. It included 353 amino acids that aligned to the U. ramanniana DGAT2A protein and a 243-amino acid sequence at the amino terminus that was unique to the N. crassa DGAT2 protein. Two forms of N. crassa DGAT2 were tested: the predicted full-length protein (L-NcDGAT2) and a shorter form (S-NcDGAT2) that encoded just the sequences that share homology with the U. ramanniana protein. Expression of all three transgenes in maize resulted in small but statistically significant increases in kernel oil. S-NcDGAT2 had the biggest impact on kernel oil, with a 26% (relative) increase in oil in kernels of the best events (inbred). Increases in kernel oil were also obtained in both conventional and high-oil hybrids, and grain yield was not affected by expression of these fungal DGAT2 transgenes. PMID:21245192
Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko
2015-04-01
Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. Copyright © 2014 Elsevier Inc. All rights reserved.
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2013 CFR
2013-04-01
... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2012 CFR
2012-04-01
... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
Methods of refining and producing dibasic esters and acids from natural oil feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.
Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.
Deng, Hu; Zhou, Xun; Shang, Li-ping; Zhang, Ze-lin; Wang, Shun-li
2014-12-01
By analyzing HyJet V phosphate ester hydraulic oil environmental impacts (oil, etc.) and confounding factors (pH, temperature, etc.), the feasibility was studied for the fluorescence detection of aircraft hydraulic oil leaks. By using the fluorescence spectrophotometer at various acidities and temperatures, the fluorescence properties of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant were gained. The experimental results are shown as following: The fluorescence peaks of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant are at 362, 405 and 456 nm, respectively. The impact of temperature on HyJet V phosphate ester hydraulic oil is less effective; Jet Oil II lubricant and 2197 lubricant fluorescence intensity decreases with increasing temperature. When acidity increases, the fluorescence peak of HyJet V phosphate ester hydraulic oil gradient shifts from 370 to 362 nm, and the fluorescence intensity decreases; the fluorescence peak of Jet Oil II lubricant is always 405 nm, while the fluorescence intensity decreases; the fluorescence peak of 2197 lubricant at 456 nm red shifts to 523 nm, and double fluorescence peaks appeare. The results are shown as following: under the influence of the environment and interference factors, the fluorescence characteristics of HyJet V phosphate ester hydraulic oil remain unchanged, and distinguish from Jet Oil II lubricant and 2197 lubricant. Therefore, the experiments indicate that the detection of HyJet V phosphate ester hydraulic oil leak is feasible by using fluorescence method.
Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard
2017-05-01
The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.
Defect Analysis Of Quality Palm Kernel Meal Using Statistical Quality Control In Kernels Factory
NASA Astrophysics Data System (ADS)
Sembiring, M. T.; Marbun, N. J.
2018-04-01
The production quality has an important impact retain the totality of characteristics of a product or service to pay attention to its capabilities to meet the needs that have been established. Quality criteria Palm Kernel Meal (PKM) set Factory kernel is as follows: oil content: max 8.50%, water content: max 12,00% and impurity content: max 4.00% While the average quality of the oil content of 8.94%, the water content of 5.51%, and 8.45% impurity content. To identify the defective product quality PKM produced, then used a method of analysis using Statistical Quality Control (SQC). PKM Plant Quality Kernel shows the oil content was 0.44% excess of a predetermined maximum value, and 4.50% impurity content. With excessive PKM content of oil and dirt cause disability content of production for oil, amounted to 854.6078 kg PKM and 8643.193 kg impurity content of PKM. Analysis of the results of cause and effect diagram and SQC, the factors that lead to poor quality of PKM is Ampere second press oil expeller and hours second press oil expeller.
Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model
NASA Astrophysics Data System (ADS)
Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha
2018-04-01
The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...
Effect of Acrocomia aculeata Kernel Oil on Adiposity in Type 2 Diabetic Rats.
Nunes, Ângela A; Buccini, Danieli F; Jaques, Jeandre A S; Portugal, Luciane C; Guimarães, Rita C A; Favaro, Simone P; Caldas, Ruy A; Carvalho, Cristiano M E
2018-03-01
The macauba palm (Acrocomia aculeata) is native of tropical America and is found mostly in the Cerrados and Pantanal biomes. The fruits provide an oily pulp, rich in long chain fatty acids, and a kernel that encompass more than 50% of lipids rich in medium chain fatty acids (MCFA). Based on biochemical and nutritional evidences MCFA is readily catabolized and can reduce body fat accumulation. In this study, an animal model was employed to evaluate the effect of Acrocomia aculeata kernel oil (AKO) on the blood glucose level and the fatty acid deposit in the epididymal adipose tissue. The A. aculeata kernel oil obtained by cold pressing presented suitable quality as edible oil. Its fatty acid profile indicates high concentration of MCFA, mainly lauric, capric and caprilic. Type 2 diabetic rats fed with that kernel oil showed reduction of blood glucose level in comparison with the diabetic control group. Acrocomia aculeata kernel oil showed hypoglycemic effect. A small fraction of total dietary medium chain fatty acid was accumulated in the epididymal adipose tissue of rats fed with AKO at both low and high doses and caprilic acid did not deposit at all.
Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.
Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni
2015-01-01
This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.
Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C
2008-05-12
A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.
Limiting solubilizing capacity of some nonionic surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, L.S.C.
1980-12-01
This report gives an account of the attempts to solubilize corn oil. A fixed quantity of corn oil or oily dispersion containing corn oil and a sorbitan ester was added to a series of 25 ml of polysorbate solutions of increasing concentration. This investigation showed that corn oil is not solubilized by either aqueous solutions of polyoxyethylene sorbitan esters or by a combination of these surfactants with sorbitan esters. The findings suggest that nonionic surfactants of the polyoxyethylene sorbitan ester type as well as the sorbitan esters have limiting capacities to solubilize extremely hydrophobic substances such as corn oil. 19more » references.« less
21 CFR 172.854 - Polyglycerol esters of fatty acids.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these substances...
21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.
Code of Federal Regulations, 2010 CFR
2010-04-01
... fatty acids (complying with § 172.860) derived from edible coconut oil, edible palm kernel oil, or both oils. (b) The ingredient meets the following specifications: Acid number: Not to exceed 0.5..., citric acid, succinic acid, and spices; and (2) In compound coatings, cocoa creams, cocoa-based sweets...
Li, Chang; Li, Linyan; Jia, Hanbing; Wang, Yuting; Shen, Mingyue; Nie, Shaoping; Xie, Mingyong
2016-05-15
In the present study, lab-scale physical refining processes were investigated for their effects on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters. The potential precursors, partial acylglycerols and chlorines were determined before each refining step. 3-MCPD esters were not detected in degummed and bleached oil when the crude oils were extracted by solvent. While in the hot squeezed crude oils, 3-MCPD esters were detected with low amounts. 3-MCPD esters were generated with maximum values in 1-1.5h at a certain deodorizing temperature (220-260°C). Chlorine seemed to be more effective precursor than partial acylglycerol. By washing bleached oil before deodorization with ethanol solution, the precursors were removed partially and the content of 3-MCPD esters decreased to some extent accordingly. Diacetin was found to reduce 3-MCPD esters effectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Y; Longmore, R B
1997-09-01
Sandalwood (Santalum spicatum) seed oil, which occurs to about 50% of the weight of the seed kernels, contains 30-35% of total fatty acids (FA) as ximenynic acid (XMYA). This study was designed to obtain basic information on changes in tissue FA composition and on the metabolic fate of XMYA in mice fed a sandalwood seed oil (SWSO)-enriched diet. Female mice were randomly divided into three groups, each receiving different semisynthetic diets containing 5.2% (w/w) fat (standard laboratory diet), 15% canola oil, or 15% SWSO for 8 wk. The effects of SWSO as a dietary fat on the FA composition of adipose tissue, brain, and liver lipids were determined by analyses of FA methyl ester derivatives of extracted total lipid. The FA compositions of the liver and adipose tissue were markedly altered by the dietary fats, and mice fed on a SWSO-enriched diet were found to contain XMYA but only in low concentration (0.3-3%) in these tissues; XMYA was not detected in brain. Oleic acid was suggested to be a principal XMYA biotransformation product. The results were interpreted to suggest that the metabolism of XMYA may involve both biohydrogenation and oxidation reactions.
USDA-ARS?s Scientific Manuscript database
The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...
Zulkurnain, Musfirah; Lai, Oi Ming; Latip, Razam Abdul; Nehdi, Imededdine Arbi; Ling, Tau Chuan; Tan, Chin Ping
2012-11-15
The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation. Copyright © 2012 Elsevier Ltd. All rights reserved.
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660...
21 CFR 573.660 - Methyl glucoside-coconut oil ester.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...
Šmidrkal, Jan; Tesařová, Markéta; Hrádková, Iveta; Berčíková, Markéta; Adamčíková, Aneta; Filip, Vladimír
2016-11-15
3-MCPD esters are contaminants that can form during refining of vegetable oils in the deodorization step. It was experimentally shown that their content in the vegetable oil depends on the acid value of the vegetable oil and the chloride content. 3-MCPD esters form approximately 2-5 times faster from diacylglycerols than from monoacylglycerols. It has been proved that the higher fatty acids content in the oil caused higher 3-MCPD esters content in the deodorization step. Neutralization of free fatty acids in the vegetable oil before the deodorization step by alkaline carbonates or hydrogen carbonates can completely suppress the formation of 3-MCPD esters. Potassium salts are more effective than sodium salts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi
2018-01-01
In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.
Nde, Divine Bup; Astete, Carlos; Boldor, Dorin
2015-12-01
Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration-EC, temperature-T, added water content-AWC, and reaction time-RT. Biodiesel yields were quantified by (1)H NMR spectroscopy and subsequently modeled by a second order polynomial equation with interactions. Lipozyme enzymes were more tolerant to high temperatures in neem and shea oils reaction media compared to that of mango oil. The optimum reaction conditions EC, T, AWC, and RT assuring near complete conversion were as follows: mango oil 7.25 %, 36.6 °C, 10.9 %, 36.4 h; neem oil EC = 7.19 %, T = 45.7 °C, AWC = 8.43 %, RT = 25.08 h; and shea oil EC = 4.43 %, T = 45.65 °C, AWC = 6.21 % and RT = 25.08 h. Validation experiments of these optimum conditions gave ME yields of 98.1 ± 1.0, 98.5 ± 1.6 and 99.3 ± 0.4 % for mango, neem and shea oils, respectively, which all met ASTM biodiesel standards.
Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.
Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin
2007-01-01
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.
Sim, Biow Ing; Muhamad, Halimah; Lai, Oi Ming; Abas, Faridah; Yeoh, Chee Beng; Nehdi, Imededdine Arbi; Khor, Yih Phing; Tan, Chin Ping
2018-04-01
This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.
21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a) The...
Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours.
El-Adawy, T A; Taha, K M
2001-03-01
The nutritional quality and functional properties of paprika seed flour and seed kernel flours of pumpkin and watermelon were studied, as were the characteristics and structure of their seed oils. Paprika seed and seed kernels of pumpkin and watermelon were rich in oil and protein. All flour samples contained considerable amounts of P, K, Mg, Mn, and Ca. Paprika seed flour was superior to watermelon and pumpkin seed kernel flours in content of lysine and total essential amino acids. Oil samples had high amounts of unsaturated fatty acids with linoleic and oleic acids as the major acids. All oil samples fractionated into seven classes including triglycerides as a major lipid class. Data obtained for the oils' characteristics compare well with those of other edible oils. Antinutritional compounds such as stachyose, raffinose, verbascose, trypsin inhibitor, phytic acid, and tannins were detected in all flours. Pumpkin seed kernel flour had higher values of chemical score, essential amino acid index, and in vitro protein digestibility than the other flours examined. The first limiting amino acid was lysine for both watermelon and pumpkin seed kernel flours, but it was leucine in paprika seed flour. Protein solubility index, water and fat absorption capacities, emulsification properties, and foam stability were excellent in watermelon and pumpkin seed kernel flours and fairly good in paprika seed flour. Flour samples could be potentially added to food systems such as bakery products and ground meat formulations not only as a nutrient supplement but also as a functional agent in these formulations.
Physical and mechanical testing of essential oil-embedded cellulose ester films
USDA-ARS?s Scientific Manuscript database
Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (C...
Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.
Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo
2016-01-01
Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Code of Federal Regulations, 2014 CFR
2014-04-01
... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...
Code of Federal Regulations, 2013 CFR
2013-04-01
... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...
Code of Federal Regulations, 2012 CFR
2012-04-01
... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...
Olutoye, M A; Hameed, B H
2011-02-01
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.
Biodiesel production from vegetable oil and waste animal fats in a pilot plant.
Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin
2014-11-01
In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miyazaki, Kinuko; Koyama, Kazuo
2017-10-01
The enzymatic indirect method for simultaneous determinations of 3-chloro-1, 2-propanediol fatty acid esters (3-MCPD-Es) and glycidyl fatty acid esters (Gly-Es) make use of lipase from Candida cylindracea (previously referred to as C. rugosa). Because of low substrate specificity of the lipase for esters of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), fish oils high in PUFAs are currently excluded from the range of application of the method. The objective of this study was to make the enzymatic indirect method applicable to fats and oils containing PUFAs. By using a Burkholderia cepacia lipase, and by removing sodium bromide from hydrolysis step and adding it after completion of the hydrolysis step, satisfactory recovery rates of 91-109% for 3-MCPD, and 91-110% for glycidol (Gly) were obtained from an EPA and DHA concentrated sardine oil, three DHA concentrated tuna oils, two fish oils, and five fish-oil based dietary supplements spiked with DHA-esters or oleic acid-esters of 3-MCPD and Gly at 20 mg/kg. Further, results from unspiked samples of seven fish oil based dietary supplements and five DHA concentrated tuna oils analyzed by the improved enzymatic indirect method were compared with the results analyzed by AOCS Cd 29a. For all 3-MCPD, 2-MCPD and Gly, the 95% confidence intervals determined by the weighted Deming regression for slopes and intercepts contained the value of 1 and 0, respectively. It was therefore concluded that the results from the two methods were not statistically different. These results suggest that fish oils high in PUFAs may be included in the range of application for the improved enzymatic indirect method for simultaneous determinations of 3-MCPD and Gly esters in fats and oils.
Cold flow properties of fatty acid methyl esters: Additives versus diluents
USDA-ARS?s Scientific Manuscript database
Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...
Koyama, Kazuo; Miyazaki, Kinuko; Abe, Kousuke; Egawa, Yoshitsugu; Kido, Hirotsugu; Kitta, Tadashi; Miyashita, Takashi; Nezu, Toru; Nohara, Hidenori; Sano, Takashi; Takahashi, Yukinari; Taniguchi, Hideji; Yada, Hiroshi; Yamazaki, Kumiko; Watanabe, Yomi
2016-07-01
A collaborative study was conducted to evaluate an indirect enzymatic method for the analysis of fatty acid esters of 3-monochloro-1,2-propanediol (3-MCPD), 2-monochloro-1,3-propanediol (2-MCPD), and glycidol (Gly) in edible oils and fats. The method is characterized by the use of Candida rugosa lipase, which hydrolyzes the esters at room temperature in 30 min. Hydrolysis and bromination steps convert esters of 3-MCPD, 2-MCPD, and glycidol to free 3-MCPD, 2-MCPD, and 3-monobromo-1,2-propanediol, respectively, which are then derivatized with phenylboronic acid, and analyzed by gas chromatography-mass spectrometry. In a collaborative study involving 13 laboratories, liquid palm, solid palm, rapeseed, and rice bran oils spiked with 0.5-4.4 mg/kg of esters of 3-MCPD, 2-MCPD, and Gly were analyzed in duplicate. The repeatability (RSDr) were < 5% for five liquid oil samples and 8% for a solid oil sample. The reproducibility (RSDR) ranged from 5% to 18% for all oil samples. These RSDR values were considered satisfactory because the Horwitz ratios were ≤ 1.3% for all three analytes in all oil samples. This method is applicable to the quantification of 3-MCPD, 2-MCPD, and Gly esters in edible oils.
Hori, Katsuhito; Matsubara, Atsuki; Uchikata, Takato; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi
2012-08-10
We have established a high-throughput and sensitive analytical method based on supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry (QqQ MS) for 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters in edible oils. All analytes were successfully separated within 9 min without sample purification. The system was precise and sensitive, with a limit of detection less than 0.063 mg/kg. The recovery rate of 3-MCPD fatty acid esters spiked into oil samples was in the range of 62.68-115.23%. Furthermore, several edible oils were tested for analyzing 3-MCPD fatty acid ester profiles. This is the first report on the analysis of 3-MCPD fatty acid esters by SFC/QqQ MS. The developed method will be a powerful tool for investigating 3-MCPD fatty acid esters in edible oils. Copyright © 2012 Elsevier B.V. All rights reserved.
Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy
NASA Astrophysics Data System (ADS)
Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi
2013-06-01
Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.
Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions.
Li, Chang; Jia, Hanbing; Shen, Mingyue; Wang, Yuting; Nie, Shaoping; Chen, Yi; Zhou, Yongqiang; Wang, Yuanxing; Xie, Mingyong
2015-11-11
The capacities of six antioxidants to inhibit the formation of 3-monochloropropane-1,2 diol (3-MCPD) esters were examined in this study. Inhibitory capacities of the antioxidants were investigated both in chemical models containing the precursors (tripalmitoyl glycerol, 1,2-dipalmitoyl-sn-glycerol, monopalmitoyl glycerol, and sodium chloride) of 3-MCPD esters and in oil models (rapeseed oil and sodium chloride). Six antioxidants, butylated hydroxytoluene (BHT), butylated hydroxy anisole (BHA), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), L-ascorbyl palmitate (AP), and α-tocopherol (VE), were found to exhibit inhibiting capacities on 3-MCPD ester formation both in chemical models and in oil models. TBHQ provided the highest inhibitory capacity both in chemical models and in oil models; 44% of 3-MCPD ester formation was inhibited in the presence of TBHQ (66 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min, followed by PG and AP. BHT, BHA, and VE appeared to have weaker inhibitory abilities in both models. VE exhibited the lowest inhibition rate; 22% of 3-MCPD esters were inhibited in the presence of VE (172 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min. In addition, the inhibition rates of PG and VE decreased dramatically with an increase in temperature or heating time. The results suggested that some antioxidants, such as TBHQ, PG, and AP, could be the potential inhibitors of 3-MCPD esters in practice.
Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States.
MacMahon, Shaun; Begley, Timothy H; Diachenko, Gregory W
2013-01-01
Fatty acid esters of 3-monochloropropanediol (3-MCPD) and glycidol are processing contaminants found in a wide range of edible oils. While both 3 MCPD and glycidol have toxicological properties that at present has concerns for food safety, the published occurrence data are limited. Occurrence information is presented for the concentrations of 3-MCPD and glycidyl esters in 116 retail and/or industrial edible oils and fats using LC-MS/MS analysis of intact esters. The concentrations for bound 3-MCPD ranged from below the limit of quantitation (
Sterols and squalene in apricot (Prunus armeniaca L.) kernel oils: the variety as a key factor.
Rudzińska, Magdalena; Górnaś, Paweł; Raczyk, Marianna; Soliven, Arianne
2017-01-01
The profile of sterols and squalene content in oils recovered from the kernels of 15 apricot (Prunus armeniaca L.) varieties were investigated. Nine sterols (campesterol, β-sitosterol, Δ5-avenasterol, 24-methylene-cycloartanol, cholesterol, gramisterol, Δ7-stigmasterol, Δ7-avenasterol and citrostadienol) were identified in apricot kernel oils. The β-sitosterol was the predominant sterol in each cultivar and consisted of 76-86% of the total detected sterols. The content of total sterols and squalene were significantly affected by the variety and ranged between 215.7-973.6 and 12.6-43.9 mg/100 g of oil, respectively.
Morató, Anna; Escabrós, Jordi; Manich, Albert; Reig, Natàlia; Castaño, Yolanda; Abián, Joaquín; Messeguer, Angel
2005-04-01
Toxic Oil Syndrome (TOS) was a massive food-born intoxication that occurred in Spain in 1981 and affected more than 20,000 people. TOS was attributed to the ingestion of rapeseed oil that had been adulterated with aniline, illegally refined, and delivered for human consumption. Two chemical species derived from aniline have been identified in oil batches: fatty acid anilides, qualified as biomarkers of the adulterated oil, and fatty acid esters of 3-(N-phenylamino)propane-1,2-diol (PAP), considered toxic oil biomarkers. These esters were generated by chemical processes during oil refining, specifically in the deodorization step, which involves treatment of the oil at high temperatures under vacuum to remove volatile contaminants. Since PAP derivatives are strongly associated with TOS, their formation and putative interconversion in a toxic oil model has been studied. The main results obtained are (i) only triglycerides and aniline are required to produce PAP esters, thus eliminating the possibility that unknown activators present in the deodorization tank were required for toxification of the oil; (ii) PAP and PAP mono- and diesters are chemically interrelated, as are anilides and PAP esters to an even higher degree. In addition to the reaction of aniline with triglycerides, anilides can be also formed via attack of PAP esters by aniline. However, the most important source of anilides during deodorization seems to be the thermal decomposition of PAP esters. Overall, these results suggest that the generation and outcome of PAP derivatives during deodorization is a complex scenario whereby PAP esters are not only generated from different reactions but decompose to produce anilides, among other compounds. In addition to providing a rapeseed oil model that reproduces the composition of case oils with respect to anilides and PAP derivatives, the results presented herein further support the hypothesis imputing PAP diesters or their metabolites for the intoxication episode.
Koyama, Kazuo; Miyazaki, Kinuko; Abe, Kousuke; Ikuta, Keiich; Egawa, Yoshitsugu; Kitta, Tadashi; Kido, Hirotsugu; Sano, Takashi; Takahashi, Yukinari; Nezu, Toru; Nohara, Hidenori; Miyashita, Takashi; Yada, Hiroshi; Yamazaki, Kumiko; Watanabe, Yomi
2015-01-01
We developed a novel, indirect enzymatic method for the analysis of fatty acid esters of 3-monochloro-1,2-propanediol (3-MCPD), 2-monochloro-1,3-propanediol (2-MCPD), and glycidol (Gly) in edible oils and fats. Using this method, the ester analytes were rapidly cleavaged by Candida rugosa lipase at room temperature for 0.5 h. As a result of the simultaneous hydrolysis and bromination steps, 3-MCPD esters, 2-MCPD esters, and glycidyl esters were converted to free 3-MCPD, 2-MCPD, and 3-monobromo-1,2-propanediol (3-MBPD), respectively. After the addition of internal standards, the mixtures were washed with hexane, derivatized with phenylboronic acid, and analyzed by gas chromatography-mass spectrometer (GC-MS). The analytical method was evaluated in preliminary and feasibility studies performed by 13 laboratories. The preliminary study from 4 laboratories showed the reproducibility (RSD R ) of < 10% and recoveries in the range of 102-111% for the spiked 3-MCPD and 2-MCPD in extra virgin olive (EVO) oil, semi-solid palm oil, and solid palm oil. However, the RSDR and recoveries of Gly in the palm oil samples were not satisfactory. The Gly content of refrigerated palm oil samples decreased whereas the samples at room temperature were stable for three months, and this may be due to the depletion of Gly during cold storage. The feasibility studies performed by all 13 laboratories were conducted based on modifications of the shaking conditions for ester cleavage, the conditions of Gly bromination, and the removal of gel formed by residual lipase. Satisfactory RSDR were obtained for EVO oil samples spiked with standard esters (4.4% for 3-MCPD, 11.2% for 2-MCPD, and 6.6% for Gly).
Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.
Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten
2008-01-01
Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
Fujiki, Hirota; Suttajit, Maitree; Rawangkan, Anchalee; Iida, Keisuke; Limtrakul, Pornngarm; Umsumarng, Sonthaya; Suganuma, Masami
2017-08-01
In 1988, we first reported the complete chemical structure of a new type of phorbol ester, abbreviated to DHPB, found in seed oil of Jatropha curcas L. (Saboodam in Thai) and its tumor-promoting activity on mouse skin. Although this seed oil contains toxic phorbol ester, it was planned to use it as a feasible renewable oil and the extracted seed cake as fertilizer. This utilization value opened a new science of Jatropha curcas. The main experimental results are cited from our publications, and the relevant literature screened from journals and PubMed. This paper begins with our original work on the structural elucidation of a new phorbol ester, 12-deoxy-16-hydroxyphorbol (DHPB): its tumor-promoting activity was compared with that of TPA. We think that it is timely to review the following research advances with Jatropha curcas, so numerous topics are classified as follows: (1) historical development of phorbol esters in seed oil; (2) toxicity of phorbol ester based on various bioassays; (3) degradation of phorbol ester; (4) a new pharmaceutical compound in seed; and (5) tumor promotion and progression with endogeneous tumor promoters in human carcinogenesis. The discovery of phorbol ester in seed oil raised awareness of the danger of public use of seed oil and seed cake in Thailand, and also indicated the necessity of discussing the concept of primary and tertiary cancer preventions. It is worthwhile to study the future benefits and cancer risks of globally distributed Jatropha curcas L.
Preparation of Jojoba Oil Ester Derivatives for Biodiesel Evaluation
USDA-ARS?s Scientific Manuscript database
As a result of the increase in commodity vegetable oil prices, it is imperative that non-food oils should be considered as alternative feedstocks for biodiesel production. Jojoba oil is unusual in that it is comprised of wax esters as opposed to the triglycerides found in typical vegetable oils. A...
Aniołowska, Magda A; Kita, Agnieszka M
2016-04-01
The objective of this research was to determine the effects of the water content of food incorporated into frying oil on oil degradation and the content of glycidyl esters. Potato chips, French fries and snacks were fried intermittently in palm oil, which was heated at 180 °C for 8 h per day over five consecutive days. Thermo-oxidative and physical alterations, changes in fatty acid composition, total polar components, polar fraction composition, and water content were analysed. The content of glycidyl esters was measured by liquid chromatography-tandem mass spectrometry. More polar compounds were formed in the oil used for frying chips (252 g kg(-1)) than for French fries (229 g kg(-1)) or snacks (196 g kg(-1)). Reductions in glycidyl esters were found in oils used for frying--greater for frying snacks and French fries (95% and 93%) than for potato chips (87%). The rate of decrease of glycidyl esters was correlated with frying parameters, most strongly with the concentrations of diacylglycerols (r = 0.98) and total polar components (r = -0.98). The raw material had a greater influence on polymerization conversion and glycidyl ester content than on hydrolytic and oxidative changes in the frying oil. © 2015 Society of Chemical Industry.
Determination of Acylglycerols in Diesel Oils by GC
Wawrzyniak, Rafał; Wasiak, Wiesław
2008-01-01
In many EU countries and outside the EU, besides the addition of pure methyl ester B-100 to diesel oil, mixtures of methyl esters are also added to fuel. To be used as fuel, methyl esters must meet certain requirements, one of which is a certain level of acylglycerols. The paper presents results of determination of acylglycerols in diesel oil dotted with fatty acid methyl esters. The compounds were determined by gas chromatography using a high-temperature capillary column DB-5HT, made by J&W, and 1,2,3-tricaproylglycerol as internal standard. The analytical method proposed permits not only determination of acylglycerols, but also differentiation if the FAME added originated from pure vegetation oil or used cooking oil. PMID:19696907
Turan, Semra; Topcu, Ali; Karabulut, Ihsan; Vural, Halil; Hayaloglu, Ali Adnan
2007-12-26
The fatty acid, sn-2 fatty acid, triacyglycerol (TAG), tocopherol, and phytosterol compositions of kernel oils obtained from nine apricot varieties grown in the Malatya region of Turkey were determined ( P<0.05). The names of the apricot varieties were Alyanak (ALY), Cataloglu (CAT), Cöloglu (COL), Hacihaliloglu (HAC), Hacikiz (HKI), Hasanbey (HSB), Kabaasi (KAB), Soganci (SOG), and Tokaloglu (TOK). The total oil contents of apricot kernels ranged from 40.23 to 53.19%. Oleic acid contributed 70.83% to the total fatty acids, followed by linoleic (21.96%), palmitic (4.92%), and stearic (1.21%) acids. The s n-2 position is mainly occupied with oleic acid (63.54%), linoleic acid (35.0%), and palmitic acid (0.96%). Eight TAG species were identified: LLL, OLL, PLL, OOL+POL, OOO+POO, and SOO (where P, palmitoyl; S, stearoyl; O, oleoyl; and L, linoleoyl), among which mainly OOO+POO contributed to 48.64% of the total, followed by OOL+POL at 32.63% and OLL at 14.33%. Four tocopherol and six phytosterol isomers were identified and quantified; among these, gamma-tocopherol (475.11 mg/kg of oil) and beta-sitosterol (273.67 mg/100 g of oil) were predominant. Principal component analysis (PCA) was applied to the data from lipid components of apricot kernel oil in order to explore the distribution of the apricot variety according to their kernel's lipid components. PCA separated some varieties including ALY, COL, KAB, CAT, SOG, and HSB in one group and varieties TOK, HAC, and HKI in another group based on their lipid components of apricot kernel oil. So, in the present study, PCA was found to be a powerful tool for classification of the samples.
Preparation and characterization of bio-diesels from various bio-oils.
Lang, X; Dalai, A K; Bakhshi, N N; Reaney, M J; Hertz, P B
2001-10-01
Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.
Ni, Liang; Shi, Wei-Yong
2014-01-01
In this study, we measured the composition and free radical scavenging activity of several species of nuts, namely, Torreya grandis, Carya cathayensis, and Myrica rubra. The nut kernels of the aforementioned species are rich in fatty acids, particularly in unsaturated fatty acids, and have 51% oil content. T. grandis and C. cathayensis are mostly produced in ZheJiang province. The trace elements in the kernels of T. grandis and C. cathayensis were generally higher than those in M. rubra, except for Fe with a value of 64.41 mg/Kg. T. grandis is rich in selenium (52.91−68.71 mg/Kg). All three kernel oils have a certain free radical scavenging capacity, with the highest value in M. rubra. In the DPPH assay, the IC50 of M. rubra kernel oil was 60 μg/mL, and OH was 100 μg/mL. The results of this study provide basic data for the future development of the edible nut resources in ZheJiang province. PMID:24734074
Mahdi, Elrashid Saleh; Noor, Azmin Mohd; Sakeena, Mohamed Hameem; Abdullah, Ghassan Z; Abdulkarim, Muthanna F; Sattar, Munavvar Abdul
2011-01-01
Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging. Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively. The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging.
Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.
Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina
2013-11-20
The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.
NASA Astrophysics Data System (ADS)
Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.
2012-05-01
Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non-regulated exhaust gas components, some deviations from this linear trend were detected.
Identification of 3-MCPD esters to verify the adulteration of extra virgin olive oil.
Hung, Wei-Ching; Peng, Guan-Jhih; Tsai, Wen-Ju; Chang, Mei-Hua; Liao, Chia-Ding; Tseng, Su-Hsiang; Kao, Ya-Min; Wang, Der-Yuan; Cheng, Hwei-Fang
2017-09-01
The adulteration of olive oil is an important issue around the world. This paper reports an indirect method by which to identify 3-monochloropropane-1,2-diol (3-MCPD) esters in olive oils. Following sample preparation, the samples were spiked with 1,2-bis-palmitoyl-3-chloropropanediol standard for analysis using gas chromatograph-tandem mass spectrometry. The total recovery ranged from 102.8% to 105.5%, the coefficient of variation ranged from 1.1% to 10.1%, and the limit of quantification was 0.125 mg/kg. The content of 3-MCPD esters in samples of refined olive oil (0.97-20.53 mg/kg) exceeded those of extra virgin olive oil (non-detected to 0.24 mg/kg). These results indicate that the oil refining process increased the content of 3-MCPD esters, which means that they could be used as a target compound for the differentiation of extra virgin olive oil from refined olive oil in order to prevent adulteration.
Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander
2006-01-01
Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms. PMID:16461689
Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander
2006-02-01
Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.
Methods of refining and producing dibasic esters and acids from natural oil feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Thomas E; Cohen, Steven A; Gildon, Demond L
2015-04-07
Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.
Methods of refining and producing dibasic esters and acids from natural oil feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.
2016-03-15
Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.
Preparation of polyol esters based on vegetable and animal fats.
Gryglewicz, S; Piechocki, W; Gryglewicz, G
2003-03-01
The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).
Exposure assessment of 3-monochloropropane-1, 2-diol esters from edible oils and fats in China.
Li, Chang; Nie, Shao-Ping; Zhou, Yong-Qiang; Xie, Ming-Yong
2015-01-01
3-monochoropropane-1, 2-diol (3-MCPD) esters from edible oils are considered to be a possible risk factor for adverse effects in human. In the present study, the exposure assessment of 3-MCPD esters to Chinese population was performed. A total of 143 edible oil and fat samples collected from Chinese markets were determined for the concentrations of 3-MCPD esters. The concentration data together with the data of fats consumed were analyzed by the point evaluation and probabilistic assessment for the exposure assessment. The point evaluation showed that the mean daily intake (DI) of 3-MCPD esters were lower than the value of provisional maximum tolerable daily intake (PMTDI) of 3-MCPD (2 µg/kg BW/d). The mean DI values in different age groups obtained from probabilistic assessment were similar to the results of the point evaluation. However, in high percentiles (95th, 97.5th, 99th), the DI values in all age groups were undesirably higher than the value of PMTDI. Overall, the children and adolescents exposed more to 3-MCPD esters than the adults. Uncertainty was also analyzed for the exposure assessment. Decreasing the level of 3-MCPD esters in edible oils and consuming less oil were top priority to minimize the risk of 3-MCPD esters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Digestibility of solvent-treated Jatropha curcas kernel by broiler chickens in Senegal.
Nesseim, Thierry Daniel Tamsir; Dieng, Abdoulaye; Mergeai, Guy; Ndiaye, Saliou; Hornick, Jean-Luc
2015-12-01
Jatropha curcas is a drought-resistant shrub belonging to the Euphorbiaceae family. The kernel contains approximately 60 % lipid in dry matter, and the meal obtained after oil extraction could be an exceptional source of protein for family poultry farming, in the absence of curcin and, especially, some diterpene derivatives phorbol esters that are partially lipophilic. The nutrient digestibility of J. curcas kernel meal (JKM), obtained after partial physicochemical deoiling was thus evaluated in broiler chickens. Twenty broiler chickens, 6 weeks old, were maintained in individual metabolic cages and divided into four groups of five animals, according to a 4 × 4 Latin square design where deoiled JKM was incorporated into grinded corn at 0, 4, 8, and 12 % levels (diets 0, 4, 8, and 12 J), allowing measurement of nutrient digestibility by the differential method. The dry matter (DM) and organic matter (OM) digestibility of diets was affected to a low extent by JKM (85 and 86 % in 0 J and 81 % in 12 J, respectively) in such a way that DM and OM digestibility of JKM was estimated to be close to 50 %. The ether extract (EE) digestibility of JKM remained high, at about 90 %, while crude protein (CP) and crude fiber (CF) digestibility were largely impacted by JKM, with values closed to 40 % at the highest levels of incorporation. J. curcas kernel presents various nutrient digestibilities but has adverse effects on CP and CF digestibility of the diet. The effects of an additional heat or biological treatment on JKM remain to be assessed.
Hrádková, Iveta; Merkl, Roman; Šmidrkal, Jan; Kyselka, Jan; Filip, Vladimír
2013-01-01
Antioxidant properties of mono- and dihydroxyphenolic acids and their alkyl esters were examined, with emphasis on the relationship between their molecular structure and antioxidant activity. Test media with different tocopherol level were used for determining the oxidative stability: original refined sunflower oil (total tocopherols 149.0 mg/kg), partially tocopherol-stripped sunflower oil (total tocopherols 8.7 mg/kg) and distilled fatty acid methyl esters (FAME) as a tocopherol-free medium. The chemical reaction of tocopherols with diazomethane tested for the purpose to eliminate their antioxidant activity failed due to the negligible degree of methylation of hydroxyl group in the tocopherol molecule. Caffeic acid and protocatechuic acid (3,4-dihydroxyphenolic acids) and their alkyl esters were found to be more active antioxidants than monohydroxyphenolic acid (p-hydroxybenzoic acid), 2,5-dihydroxyphenolic acid (gentisic acid), 3-methoxy-4-hydroxyphenolic acids (vanillic and ferulic acids) and their corresponding alkyl esters. Naturally present tocopherols in refined sunflower oil proved to have a synergistic effect on gentisic acid but not on its alkyl esters. In contrast, tocopherols showed an antagonistic effect on alkyl esters of caffeic acid, because their protection factors decreased with increasing level of tocopherols in the test medium. Moreover, the antioxidant activity of these alkyl esters decreased with increasing length of their alkyl chain in conformity with the polar paradox hypothesis. Practical applications: Tocopherols as naturally present antioxidants influence considerably the antioxidant activity of other antioxidants added to plant oils used as a test medium. Distilled fatty acid methyl esters prepared from refined sunflower oil may serve as an optimal tocopherol-free test medium. Some alkyl esters of phenolic acids were evaluated to be applicable as natural more lipophilic antioxidants in comparison with phenolic acids. PMID:23997655
Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil
NASA Astrophysics Data System (ADS)
Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.
2017-03-01
Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.
Olutoye, M A; Hameed, B H
2011-06-01
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oil, are mainly formed during the deodorization step in the oil refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they hydrolyze into t...
Abdul Habib, Nor Saiful Hafiz; Yunus, Robiah; Rashid, Umer; Taufiq-Yap, Yun H; Abidin, Zurina Zainal; Syam, Azhari Muhammad; Irawan, Sonny
2014-01-01
The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.
Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao
2016-01-01
One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427
Graziani, Giulia; Gaspari, Anna; Chianese, Donato; Conte, Lanfranco; Ritieni, Alberto
2017-11-01
A series of refined edible oils derived from mixed seeds, peanuts, corn, sunflower and palm obtained from the local supermarket were analyzed for their content of 3-MCPD esters. A direct analytical method for the determination of 3-monochloropropane-1,2-diol esters (3-MCPD esters) was applied to investigate the major MCPD esters found in common edible oils; in particular seven types of monoesters and eleven types of diesters were detected. The limits of detection (LODs) for monoesters and diesters of 3-MCPD were in the range of 0.079-12.678 µg kg -1 and 0.033-18.610 µg kg -1 in edible oils, and the ranges of limits of quantitation (LOQs) were 0.979-38.035 µg kg -1 and 0.100-55 µg kg -1 , respectively. The recoveries of 3-MCPD esters from oil samples were in the range of 80-100%, with RSD ranging between 1.9 and 11.8%. The concentration levels of total 3-MCPD diesters in vegetable oil samples were in the range from 0.106 up to 3.444 μg g -1 whereas total monoesters ranged from 0.005 up to 1.606 μg g -1 .
Al Juhaimi, Fahad; Musa Özcan, Mehmet; Ghafoor, Kashif; Babiker, Elfadıl E
2018-03-15
In this study, the effect of microwave (360W, 540W and 720W) oven roasting on oil yields, phenolic compounds, antioxidant activity, and fatty acid composition of some apricot kernel and oils was investigated. While total phenol contents of control group of apricot kernels change between 54.41mgGAE/100g (Soğancıoğlu) and 59.61mgGAE/100g (Hasanbey), total phenol contents of kernel samples roasted in 720W were determined between 27.41mgGAE/100g (Çataloğlu) and 34.52mgGAE/100g (Soğancıoğlu). Roasting process in microwave at 720W caused the reduction of some phenolic compounds of apricot kernels. The gallic acid contents of control apricot kernels ranged between 7.23mg/100g (Kabaaşı) and 11.23mg/100g (Çataloğlu) whereas the gallic acid contents of kernels roasted in 540W changed between 15.35mg/100g (Soğancıoğlu) and 21.17mg/100g (Çataloğlu). In addition, oleic acid contents of control group oils vary between 65.98% (Soğancıoğlu) and 71.86% (Hasanbey), the same fatty acid ranged from 63.48% (Soğancıoğlu) to 70.36% (Hasanbey). Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
Kamalakar, Kotte; Sai Manoj, Gorantla N V T; Prasad, Rachapudi B N; Karuna, Mallampalli S L
2014-12-10
Sal fat, a nontraditional seed oil, was chemically modified to obtain base stocks with a wide range of specifications that can replace mineral oil base stocks. Sal fatty acids were enriched to 72.6% unsaturation using urea adduct method and reacted with branched mono alcohol, 2-ethylhexanol (2-EtH), and polyols namely neopentyl glycol (NPG) and trimethylolpropane (TMP) to obtain corresponding esters. The esters were hydroxylated and then acylated using propionic, butyric, and hexanoic anhydrides to obtain corresponding acylated derivatives. The acylated TMP esters exhibited very high viscosities (427.35-471.93 cSt at 40 °C) similar to those of BS 150 mineral oil base stock range, ISO VG 460, while the acylated NPG esters (268.81-318.84 cSt at 40 °C) and 2-EtH esters viscosities (20.94-24.44 cSt at 40 °C) exhibited viscosities in the range of ISO VG 320 and 22 respectively with good viscosity indices. Acylated NPG esters were found suitable for high temperature and acylated 2-ethylhexyl esters for low viscosity grade industrial applications. It was observed that the thermo-oxidative stabilities of all acylated products were found better compared to other vegetable oil based base stocks. Overall, all the sal fat based lubricant base stocks are promising candidates with a wide range of properties, which can replace most of the mineral oil base stocks with appropriate formulations.
Synthesis of palm oil fatty acid and trimethylolpropane based ester for biolubricant base stocks
NASA Astrophysics Data System (ADS)
Nor, Nurazira Mohd; Derawi, Darfizzi; Salimon, Jumat
2018-04-01
RBD palm oil become one of the interesting renewable resources in biolubricant application. However, palm oil cannot be used directly as lubricant due to some performance limitations such as thermal and oxidative stability. This drawback can be overcome by chemical modification through esterification with polyhydric alcohol such as trimethylolpropane (TMP). The synthesis of ester was carried out via esterification of palm oil fatty acid (POFA) with TMP in the presence of 2% sulphuric acid as catalyst at 150 °C for 5 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the percentage composition of POTMP ester. The structure confirmation of POTMP ester was proven by Fourier Transformation Infra-Red (FTIR), proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy analysis. The result showed that POTMP ester has successfully synthesized with 97.7% composition of triesters (TE), proved by GC chromatogram. Presence of ester group also evidenced by 1H NMR at 2.27-2.30 ppm and 13C NMR at 173.52-173.54 ppm. The percentage yield of POTMP ester produced was 82% and exist in liquid form at room temperature.
Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa
2018-04-01
In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.
Ontiveros, Jesús F; Pierlot, Christel; Catté, Marianne; Molinier, Valérie; Pizzino, Aldo; Salager, Jean-Louis; Aubry, Jean-Marie
2013-08-01
The phase behavior of well-defined C10E4/ester oil/water systems versus temperature was investigated. Fifteen ester oils were studied and their Equivalent Alkane Carbon Numbers (EACNs) were determined from the so-called fish-tail temperature T* of the fish diagrams obtained with an equal weight amount of oil and water (f(w)=0.5). The influence of the chemical structure of linear monoester on EACN was quantitatively rationalized in terms of ester bonds position and total carbon number, and explained by the influence of these polar oils on the "effective" packing parameter of the interfacial surfactant, which takes into account its entire physicochemical environment. In order to compare the behaviors of typical mono-, di-, and triester oils, three fish diagrams were entirely plotted with isopropyl myristate, bis (2-ethylhexyl) adipate, and glycerol trioctanoate. When the number of ester bonds increases, a more pronounced asymmetry of the three-phase body of the fish diagram with respect to T* is observed. In this case, T* is much closer to the upper limit temperature Tu than to the lower limit temperature Tl of the three-phase zone. This asymmetry is suggested to be linked to an increased solubility of the surfactant in the oil phase, which decreases the surfactant availability for the interfacial pseudo-phase. As a consequence, the asymmetry depends on the water-oil ratio, and a method is proposed to determine the fw value at which T* is located at the mean value of Tu and Tl. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Banno, Taisuke; Kuroha, Rie; Toyota, Taro
2012-01-17
Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society
USDA-ARS?s Scientific Manuscript database
Tyrosol and hydroxytyrosol are the antioxidant molecules abundantly found in olive oil. Transesterification of tyrosol and hydroxytyrosol with cuphea oil results in medium chain alkyl esters with antioxidant properties. Membrane partitioning, antioxidant capacity, and membrane location of these nove...
Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping
2013-04-03
The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.
Chemical composition of the leaf and stem essential oil of Adenophorae Radix
NASA Astrophysics Data System (ADS)
Lan, Weijie; Lin, Shang; Li, Xindan; Zhang, Qing; Qin, Wen
2017-03-01
The chemical composition of the essential oil extracted from leaves and stems of Adenophorae Radix was determined for the first time in this study. Twenty-six compounds were identified by gas chromatography coupled to mass spectrometry (GC-MS). n-Hexadecanoic acid (29.14%), 9,12-octadecadienoic acid (Z,Z)- (17.22%), hexadecanoic acid, methyl ester(8.98%), 9-octadecenoic acid, methyl ester, (E)- (7.03%), 9,12-octadecadienoic acid (Z,Z)-, methyl ester (5.93%), phytol (5.50%), and estradiol (4.43%) were measured as the major compounds in stem oil. The leaf essential oil was dominated by n-hexadecanoic acid (50.78%), 9-octadecenoic acid, methyl ester, (E)- (9.04%), phytol (8.47%), d-mannitol (5.81%), 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (4.31%), hexadecanoic acid, methyl ester (2.19%) and 9,12-octadecadienoic acid (Z,Z)-(1.7%). The leaves yield was 0.12% (v/w) and the stems yield showed only 0.073% (v/w). The results might provide reference basis for further exploration of its application value.
Isolation and identification of an ester from a crude oil
Phillips, H.F.; Breger, I.A.
1958-01-01
A dioctylphthalate has been isolated from a crude oil by means of adsorption column chromatography. The ester was identified by means of elemental analysis, refractive index, and its infra-red absorption spectrum. Saponification of the isolate and examination of the resultant alcohol by means of infrared absorption spectra led to the conclusion that the ester is a branched chain dioctylphthalate. This is the first reported occurrence of an ester in crude petroleum. ?? 1958.
Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.
2016-07-05
Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.
NASA Astrophysics Data System (ADS)
Suwari, Kotta, Herry Z.; Buang, Yohanes
2017-12-01
Optimizing the soxhlet extraction of oil from seed kernel of Feun Kase (Thevetia peruviana) for biodiesel production was carried out in this study. The solvent used was petroleum ether and methanol, as well as their combinations. The effect of three factors namely different solvent combinations (polarity), extraction time and extraction temperature were investigated for achieving maximum oil yield. Each experiment was conducted in 250 mL soxhlet apparatus. The physicochemical properties of the oil yield (density, kinematic viscosity, acid value, iodine value, saponification value, and water content) were also analyzed. The optimum conditions were found after 4.5 h with extraction time, extraction temperature at 65 oC and petroleum ether to methanol ratio of 90 : 10 (polarity index 0.6). The oil extract was found to be 51.88 ± 3.18%. These results revealed that the crop oil from seed kernel of Feun Kase (Thevetia peruviana) is a potential feedstock for biodiesel production.
USDA-ARS?s Scientific Manuscript database
The phenols hydroxytyrosol and tyrosol made abundantly available through olive oil processing were enzymatically transesterified into effective lipophilic antioxidants with cuphea oil. The hydroxytyrosyl and tyrosyl esters made from cuphea oil were assessed for their ability to partition into, locat...
Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification
Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan
2016-01-01
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield. PMID:27110772
Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification.
Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan
2016-04-22
In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.
USDA-ARS?s Scientific Manuscript database
Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...
Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa-Dekker, Aneli M; Dekker, Robert F H
2017-12-18
The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)-purified 25.41-fold, recovery of 47.1%-and lipase B (32,000 Da)-purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca 2+ , exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5-10.0 and 20-80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.
Utilization of wild apricot kernel press cake for extraction of protein isolate.
Sharma, P C; Tilakratne, B M K S; Gupta, Anil
2010-12-01
The kernels of apricot (Prunus armeniaca) stones are utilized for extraction of oil. The press cake left after extraction of oil was evaluated for preparation of protein isolate for its use in food supplementation. The apricot kernels contained 45-50% oil, 23.6-26.2% protein, 4.2% ash, 5.42% crude fibre, 8.2% carbohydrates and 90 mg HCN/100 g kernels, while press cake obtained after oil extraction contained 34.5% crude protein, which can be utilized for preparation of protein isolates. The method standardized for extraction of protein isolate broadly consisted of boiling the press cake with water in 1:20 (w/v) ratio for 1 h, raising pH to 8 and stirring for a few min followed by filtration, coagulation at pH 4 prior to sieving and pressing of coagulant for overnight and drying followed by grinding which resulted in extraction of about 71.3% of the protein contained in the press cake. The protein isolate contained 68.8% protein, 6.4% crude fat, 0.8% ash, 2.2% crude fibre and 12.7% carbohydrates. Thus the apricot kernel press cake can be utilized for preparation of protein isolate to improve the nutritional status of many food formulations.
Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Yuon, Lau Cheng
2012-01-01
The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.
Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations
NASA Astrophysics Data System (ADS)
Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik
2009-04-01
Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.
Mastelić, Josip; Politeo, Olivera; Jerković, Igor
2008-04-07
The essential oil of Helichrysum italicum (Roth) G. Don (everlasting or Immortelle essential oil) was isolated by hydrodistillation and analysed by GC and GCMS. Forty four compounds were identified. The main components were alpha-pinene(12.8%), 2-methyl-cyclohexyl pentanoate (11.1 %), neryl acetate (10.4%), 1,7-di-epi-alpha-cedrene (6.8%) and other compounds. The oil was fractionated and ester-containing fraction was hydrolysed with KOH/H(2)SO(4). The liberated volatiles were analysed by GC and GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C(2)-C(5)), 15% C(10)-C(12) acids and 15% other acids]. The main acids were acetic acid (24.3%) propanoic acid (17.2%), 2-methylpropanoic acid (11.4%),dodecanoic acid (8.7%), 2-methylbutanoic acid (8.3%), (Z)-2-methylbutenoic acid(5.1%) and decanoic acid (4.6%). With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity was probably larger due to different possible combinations of alcohols with acids to form esters. On the other hand, only six main esters were identified in the oil before fractionation and hydrolysis.
USDA-ARS?s Scientific Manuscript database
The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...
Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar
2005-09-01
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...
Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties
USDA-ARS?s Scientific Manuscript database
Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...
Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohl, G.H.
1995-12-31
The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuelmore » supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.« less
Crews, C; Chiodini, A; Granvogl, M; Hamlet, C; Hrnčiřík, K; Kuhlmann, J; Lampen, A; Scholz, G; Weisshaar, R; Wenzl, T; Jasti, P R; Seefelder, W
2013-01-01
Esters of 2 - and 3-monochloropropane-1,2-diol (MCPD) and glycidol esters are important contaminants of processed edible oils used as foods or food ingredients. This review describes the occurrence and analysis of MCPD esters and glycidol esters in vegetable oils and some other foods. The focus is on the analytical methods based on both direct and indirect methods. Methods of analysis applied to oils and lipid extracts of foods have been based on transesterification to free MCPD and determination by gas chromatography-mass spectrometry (indirect methods) and by high-performance liquid chromatography-mass spectrometry (direct methods). The evolution and performance of the different methods is described and their advantages and disadvantages are discussed. The application of direct and indirect methods to the analysis of foods and to research studies is described. The metabolism and fate of MCPD esters and glycidol esters in biological systems and the methods used to study these in body tissues studies are described. A clear understanding of the chemistry of the methods is important when choosing those suitable for the desired application, and will contribute to the mitigation of these contaminants.
Ohiri, Reginald Chibueze; Bassey, Essien Eka
2016-01-01
Gas chromatography-mass spectrometry analysis of constituent oil from dried Ganoderma lucidum was carried out. Fresh G. lucidum obtained from its natural environment was thoroughly washed with distilled water and air-dried for 2 weeks and the component oils were extracted and analyzed. Four predominant components identified were pentadecanoic acid, 14-methyl-ester (retention time [RT] = 19.752 minutes; percentage total = 25.489), 9,12-octadecadienoic acid (Z,Z)- (RT = 21.629 minutes and 21.663 minutes; percentage total = 25.054), n-hexadecanoic acid (RT = 20.153 minutes; percentage total = 24.275), and 9-octadecenoic acid (Z)-, methyl ester (RT = 21.297 minutes; percentage total = 13.027). The two minor oils identified were 9,12-octadecadienoic acid, methyl ester, (E,E)- and octadecanoic acid, methyl ester (RT = 21.246 minutes and 21.503 minutes; percentage total = 7.057 and 5.097, respectively).
Fouling mechanism in ultrafiltration of vegetable oil
NASA Astrophysics Data System (ADS)
Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.
2018-03-01
Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.
Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo
2018-01-01
Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.
Juhaimi, Fahad Al; Özcan, Mehmet Musa; Uslu, Nurhan; Doğu, Süleyman
2017-12-01
In this study, the effects of conventional and microwave roasting on phenolic compounds, free acidity, peroxide value, fatty acid composition and tocopherol content of pecan walnut kernel and oil was investigated. The oil content of pecan kernels was 73.78% for microwave oven roasted at 720 W and 73.56% for conventional oven roasted at 110 °C. The highest free fatty acid content (0.50%) and the lowest peroxide value (2.48 meq O 2 /kg) were observed during microwave roasting at 720 W. The fatty acid profiles and tocopherol contents of pecan kernel oils did not show significant differences compared to raw samples. Roasting process in microwave oven at 720 W caused the reduction of some phenolic compounds, while the content of gallic acid exhibited a significant increase.
Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Morales, W.
1983-01-01
Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.
Mahdi, Elrashid Saleh; Noor, Azmin Mohd; Sakeena, Mohamed Hameem; Abdullah, Ghassan Z; Abdulkarim, Muthanna F; Sattar, Munavvar Abdul
2011-01-01
Background Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging. Methods Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. Results Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween® 80/Span® 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween® 80/Span® 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively. Conclusion The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging. PMID:22072884
Pradhan, Subhalaxmi; Naik, S N; Khan, M Ashhar I; Sahoo, P K
2012-02-01
Jatropha curcas seed is a rich source of oil; however, it can not be utilised for nutritional purposes due to presence of toxic and anti-nutritive compounds. The main objective of the present study was to quantify the toxic phytochemicals present in Indian J. curcas (oil, cake, bio-diesel and glycerol). The amount of phorbol esters is greater in solvent extracted oil (2.8 g kg⁻¹) than in expeller oil (2.1 g kg⁻¹). Liquid chromatography-mass spectroscopy analysis of the purified compound from an active extract of oil confirmed the presence of phorbol esters. Similarly, the phorbol esters content is greater in solvent extracted cake (1.1 g kg⁻¹) than in cake after being expelled (0.8 g kg⁻¹). The phytate and trypsin inhibitory activity of the cake was found to be 98 g kg⁻¹ and 8347 TIU g⁻¹ of cake, respectively. Identification of curcin was achieved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the concentration of curcin was 0.95 g L⁻¹ of crude concentrate obtained from cake. Higher amounts of phorbol esters are present in oil than cake but bio-diesel and glycerol are free of phorbol esters. The other anti-nutritional components such as trypsin inhibitors, phytates and curcin are present in cake, so the cake should be detoxified before being used for animal feed. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Rama Krishna Reddy, E.; Dhana Raju, V.
2018-03-01
This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.
NASA Astrophysics Data System (ADS)
Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud
2015-12-01
A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.
Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Cheng Yuon, Lau
2012-01-01
The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil. PMID:22685623
Life Cycle Assessment for the Production of Oil Palm Seeds
Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen
2014-01-01
The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598
Life Cycle Assessment for the Production of Oil Palm Seeds.
Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen
2014-12-01
The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.
The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030
NASA Astrophysics Data System (ADS)
Hambali, E.; Rivai, M.
2017-05-01
During replanting activity in oil palm plantation, biomass including palm frond and trunk are produced. In palm oil mills, during the conversion process of fresh fruit bunches (FFB) into crude palm oil (CPO), several kinds of waste including empty fruit bunch (EFB), mesocarp fiber (MF), palm kernel shell (PKS), palm kernel meal (PKM), and palm oil mills effluent (POME) are produced. The production of these wastes is abundant as oil palm plantation area, FFB production, and palm oil mills spread all over 22 provinces in Indonesia. These wastes are still economical as they can be utilized as sources of alternative fuel, fertilizer, chemical compounds, and biomaterials. Therefore, breakthrough studies need to be done in order to improve the added value of oil palm, minimize the waste, and make oil palm industry more sustainable.
Tavakoli, Javad; Emadi, Teymour; Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Munekata, Paulo Eduardo Sichetti; Lorenzo, Jose Manuel; Brnčić, Mladen; Barba, Francisco J
2018-05-01
The oxidative stability, as well as the chemical composition of Amygdalus reuteri kernel oil (ARKO), were evaluated and compared to those of Amygdalus scoparia kernel oil (ASKO) and extra virgin olive oil (EVOO) during and after holding in the oven (170 °C for 8 h). The oxidative stability analysis was carried out by measuring the changes in conjugated dienes, carbonyl and acid values as well as oil/oxidative stability index and their correlation with the antioxidant compounds (tocopherol, polyphenols, and sterol compounds). The oleic acid was determined as the predominant fatty acid of ARKO (65.5%). Calculated oxidizability value and an iodine value of ARKO, ASKO and EVOO were reported as 3.29 and 3.24, 2.00 and 100.0, 101.4 and 81.9, respectively. Due to the high wax content (4.5% and 3.3%, respectively), the saponification number of ARKO and ASKO (96.4 and 99.8, respectively) was lower than that of EVOO (169.7). ARKO had the highest oxidative stability, followed by ASKO and EVOO. Therefore, ARKO can be introduced as a new source of edible oil with high oxidative stability. Copyright © 2018. Published by Elsevier Ltd.
Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia
2014-01-01
Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10...
Weng Larsen, S; Engelbrecht Thomsen, A E; Rinvar, E; Friis, G J; Larsen, C
2001-03-23
The rate constants for transfer of a homologous series of nicotinic acid esters from oil vehicles to aqueous buffer phases were determined using a rotating dialysis cell. The chemical stability of butyl nicotinate has been investigated at 60 degrees C over pH range 0.5--10. Maximum stability occurs at pH 4--5 and an inflection point was seen around the pK(a). For the nicotinic acid esters, a linear correlation was established between the first-order rate constant related to attainment of equilibrium, k(obs) and the apparent partition coefficient, P(app): log k(obs)=-0.83log P(app)+0.26 (k(obs) in h(-1), n=9). For hexyl nicotinate with a true partition coefficient of 4 it was possible to determine k(obs) by decreasing pH in the aqueous release medium to 2.05. Thus, under the latter experimental conditions estimation of the relative release rates for the esters were performed. The ratio between the specific rate constant k(ow), related to the transport from oil vehicle to aqueous phase, for ethyl and hexyl nicotinate was 139. The hydrophobic substituent constant for a methylene group, pi(CH(2)), was determined for nicotinic acid esters in different oil/buffer partitioning systems to 0.54--0.58. Addition of hydroxypropyl-beta-cyclodextrin to the aqueous release medium did not enhance the transport rate of the esters from the oil phase.
Ermacora, Alessia; Hrncirik, Karel
2014-10-15
The toxicological relevance and widespread occurrence of fatty acid esters of 2-chloropropane-1,3-diol (2-MCPD) and 3-chloropropane-1,2-diol (3-MCPD) in refined oils and fats have recently triggered an interest in the mechanism of formation and decomposition of these contaminants during oil processing. In this work, the effect of the main precursors, namely acylglycerols and chlorinated compounds, on the formation yield of MCPD esters was investigated in model systems simulating oil deodorization. The composition of the oils was modified by enzymatic hydrolysis, silica gel purification and application of various refining steps prior to deodorization (namely degumming, neutralization, bleaching). Partial acylglycerols showed greater ability, than did triacylglycerols, to form MCPD esters. However, no direct correlation was found between these two parameters, since the availability of chloride ions was the main limiting factor in the formation reaction. Polar chlorinated compounds were found to be the main chloride donors, although the presence of reactive non-polar chloride-donating species was also observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coimbra, Michelle C; Jorge, Neuza
2012-02-01
Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata), aiming at possible uses in several industries. Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macaúba pulp contained 526 g kg⁻¹ of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg⁻¹. The jerivá pulp contained carotenoids and tocopherols on average of 1219 µg g⁻¹ and 323.50 mg kg⁻¹, respectively. The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica
2015-09-01
The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.
Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.
Goodrum, John W; Geller, Daniel P
2005-05-01
Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.
Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N
2015-11-07
Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.
Dielectric Properties and Electrodynamic Process of Natural Ester-Based Insulating Nanofluid
NASA Astrophysics Data System (ADS)
Zou, Ping; Li, Jian; Sun, Cai-Xin; Zhang, Zhao-Tao; Liao, Rui-Jin
Natural ester is currently used as an insulating oil and coolant for medium-power transformers. The biodegradability of insulating natural ester makes it a preferable insulation liquid to mineral oils. In this work, Fe3O4 nanoparticles were used along with oleic acid to improve the performance of insulating natural ester. The micro-morphology of Fe3O4 nanoparticles before and after surface modification was observed through transmission electron microscopy. Attenuated total reflection-Fourier transform infrared spectroscopy, thermal gravimetric analysis, and differential thermal analysis were employed to investigate functional groups and their thermal stability on the surface-modified Fe3O4 nanoparticles. Basic dielectric properties of natural ester-based insulating nanofluid were measured. The electrodynamic process in the natural ester-based insulating nanofluid is also presented.
Production of higher quality bio-oils by in-line esterification of pyrolysis vapor
Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P
2014-12-02
The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.
40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 15.00 Cotton, undelinted seed 0.5..., oil 4.0 Corn, field, grain 0.05 Corn, pop, grain 0.05 Corn, sweet, kernel plus cob with husks removed... Cilantro, leaves 10 Citrus, dried pulp 1.8 Citrus, oil 4.0 Corn, field, forage 0.20 Corn, field, grain 0.05...
40 CFR 180.418 - Cypermethrin and an isomer zeta-cypermethrin; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 15.00 Cotton, undelinted seed 0.5..., oil 4.0 Corn, field, grain 0.05 Corn, pop, grain 0.05 Corn, sweet, kernel plus cob with husks removed... Cilantro, leaves 10 Citrus, dried pulp 1.8 Citrus, oil 4.0 Corn, field, forage 0.20 Corn, field, grain 0.05...
Three approaches to fuels from fatty compounds
USDA-ARS?s Scientific Manuscript database
Biodiesel, the alkyl esters, usually methyl esters, of vegetable oils, animal fats, or other triacylglycerol-containing materials, are the most common approach to producing a fuel from the mentioned materials. This fuel is obtained by transesterifying the oil or fat with an alcohol, usually methanol...
Code of Federal Regulations, 2010 CFR
2010-04-01
... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty... edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized as safe...
Code of Federal Regulations, 2011 CFR
2011-04-01
... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty... edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized as safe...
Coral, Natasha; Rodrigues, Elizabeth; Rumjanek, Victor; Zamian, José Roberto; da Rocha Filho, Geraldo Narciso; da Costa, Carlos Emmerson Ferreira
2013-02-01
Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. (1)H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite-type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected. Copyright © 2012 John Wiley & Sons, Ltd.
Consideration of Sludge Formation in HFC-134a / Polyol Ester oil Refrigeration System
NASA Astrophysics Data System (ADS)
Yamamoto, Tsutomu; Yamamoto, Tethuya; Simizu, Yasuhiko; Nakayama, Yoshinori; Takizawa, Kikuo
A refrigeration test employing HFC-134a and polyol ester oil was carried out in order to make clear the causes of the sludge formation in the capillary tube. Compressors used were two types: a hermetic reciprocating compressor and a rotary compressor. Installed dryer contained desiccant of the compound zeolite type. The results showed that the amount of capillary sludge increased as the compressor temperature rose. The capillary sludge was determined to consist of desiccant and metal dust for the reciprocating compressor, and of tar-like substance for the rotary compressor. Thermal stability test which was used to check the degree of deterioration of the ester oil, suggested that the presence of desiccant and high compressor temperature might produce tar-like substance by the break down and polymerization of the ester oil. In addition, it was confirmed that factors affecting the sludge formation were the dirtiness of the refrigeration circuit for the reciprocating compressor, and the presence of desiccant, for the rotary compressor.
Crystallization kinetics of cocoa butter in the presence of sorbitan esters.
Sonwai, Sopark; Podchong, Pawitchaya; Rousseau, Dérick
2017-01-01
Cocoa butter crystallization in the presence of sorbitan mono- and triesters or canola oil was investigated. Solid-state surfactant esters accelerated early-stage cocoa butter solidification while suppressing later growth. Sorbitan tristearate showed the strongest effect, followed by sorbitan monostearate and sorbitan monopalmitate. Liquid-state surfactants suppressed cocoa butter crystallization at all time points, with sorbitan trioleate showing a stronger effect than sorbitan monooleate, which behaved in a similar fashion to canola oil. Via DSC, the palmitic and stearic-based surfactants only associated with cocoa butter's high-melting fraction, with the oleic acid-based surfactants and canola oil showing little influence. All sorbitan esters had little effect on polymorphism, whereas canola oil accelerated the form II-to-III-to-IV transition. The palmitic and stearic-based surfactants greatly reduced cocoa butter crystal size whereas the oleic acid-based surfactants and canola showed no notable effect. Overall, sorbitan esters impacted cocoa butter crystallization kinetics, though this depended on surfactant structure and concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minaiyan, M.; Ghannadi, A.; Asadi, M.; Etemad, M.; Mahzouni, P.
2014-01-01
Prunus armeniaca L. (Apricot) is a tree cultivated in different parts of the world. Apricot kernel as a good dietary supplement has shown antioxidant, anti-inflammatory and other pharmacologic properties which suggest that it may be functional as an anticolitis agent. In this study we evaluated the effects of apricot kernel extract and oil on ulcerative colitis in rats. Rats were fasted for 36 h before the experiment. Colitis was induced by intra-rectal instillation of 50 mg/kg trinitrobenzene sulfonic acid in male Wistar rats. Treatments were started 6 h after colitis induction and continued every 24 h for 5 days. Apricot kernel extract (100, 200, 400 mg/kg p.o. and 100, 400 mg/kg i.p.) and apricot kernel extract/oil (100, 200, 400 mg/kg p.o.) were used as experimental treatments and prednisolone (4 mg/kg p.o. or i.p.) was used as reference drug. On the day 6, colon tissue was removed and macroscopic and pathologic parameters were evaluated. Ulcer index and total colitis index as representative of macroscopic and histologic parameters respectively showed ameliorating effects in experimental groups especially those treated by intraperitoneal administration route. Results also demonstrated that oil fraction was not able to potentiate the effects of extract. These data suggest that apricot kernel extracts (with or without oil) can be introduced for further mechanistic and clinical studies as a complementary medicine for inflammatory bowel disorders. PMID:25657793
Mechanical behaviour of selected bulk oilseeds under compression loading
NASA Astrophysics Data System (ADS)
Mizera, Č.; Herák, D.; Hrabě, P.; Aleš, Z.; Pavlů, J.
2017-09-01
Pressing of vegetable oils plays an important role in modern agriculture. This study was focused on the linear pressing of soybean seeds (Glycine max L.), Jatropha seeds (Jatropha curcas L.) and palm kernel (Elaeisguineensis). For pressing test the compressive device (ZDM, model 50, Germany) was used. The maximum pressing force of 100 kN with a compression speed of 1 mm s-1 was used to record the force-deformation characteristics. The pressing vessel with diameter 60 mm and initial height of seeds 80 mm were used. The specific energy per gram of oil of soybean, palm kernel and Jatropha was 158.92 ± 7.21, 128.78 ± 8.36 and 68.26 ± 5.94 J.goil-1, respectively. The oil content of soybean, palm kernel and Jatropha was 20.4 ± 1.23, 44.7 ± 2.27 and 34.2 ± 1.75 %, respectively. Water concentration, dynamic and kinematic viscosity of obtained oils was also determined.
Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.
Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin
2016-03-01
Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.
Film-forming properties of castor oil polyol ester blends in elastohydrodynamic conditions
USDA-ARS?s Scientific Manuscript database
The viscosities and elastohydrodynamic (EHD) film thickness properties of binary blends of castor oil with polyol esters were determined experimentally. Predicted blend viscosity was calculated from the viscosity of the pure blend components. Measured viscosity values were closer to the values pre...
Methyl esters (biodiesel) from Pachyrhizus erosus seed oil
USDA-ARS?s Scientific Manuscript database
The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...
Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry
2013-01-01
Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester. PMID:23829499
Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1
Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.
1989-01-01
Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049
NASA Astrophysics Data System (ADS)
Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.
2017-02-01
Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.
Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.
da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando
2016-06-09
The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.
Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar
2015-01-01
Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519
Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk
2010-05-01
Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements. Copyright 2009 Elsevier Ltd. All rights reserved.
Li, Cheng; Sun, Jingcan; Fu, Caili; Yu, Bin; Liu, Shao Quan; Li, Tianhu; Huang, Dejian
2014-02-15
Methionol-derived fatty acid esters were synthesised by both chemical and lipase catalysed esterification between fatty acids and methionol. Beneficial effects of both methods were compared qualitatively and quantitatively by GC-MS/GC-FID results. And the high acid and heat stability of our designed methionyl esters meet the requirement of the food industry. Most importantly, the sensory test showed that fatty acid carbon-chain length had an important effect on the flavour attributes of methionyl esters. Moreover, through Lipozyme TL IM-mediated transesterification, valuable methionol-derived esters were synthesised from the readily available natural material butter oil as the fatty acid source. The conversion of methionol and yield of each methionyl ester were also elucidated by GC-MS-FID. Copyright © 2013 Elsevier Ltd. All rights reserved.
... at room temperature. Foods like butter, palm and coconut oils, cheese, and red meat have high amounts ... pudding, cheese, whole milk) Solid fats such as coconut oil, palm, and palm kernel oils (found in ...
Efficacy of Myricetin as an Antioxidant in Methyl Esters of Soybean Oil
USDA-ARS?s Scientific Manuscript database
The antioxidant activity of myricetin, a natural flavonol found in fruits and vegetables, was determined in soybean oil methyl esters (SME) and compared with alpha-tocopherol and tert-butylhydroquinone (TBHQ) over a 90 day period employing EN 14112, acid value, and kinematic viscosity methods. Myri...
Chemical modification of nanocellulose with canola oil fatty acid methyl ester
Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark
2017-01-01
Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...
Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil
USDA-ARS?s Scientific Manuscript database
Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...
Toews, Michael D; Pearson, Tom C; Campbell, James F
2006-04-01
Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.
Makkar, H P; Becker, K; Schmook, B
1998-01-01
Seven seed samples of J. curcas, both in raw and roasted state, sold in some villages in Quintana Roo state, Mexico for human consumption were analyzed for physical characteristics, nutrients and antinutrients. The average seed weight varied from 0.53 to 0.74 g and kernel weight as proportion of raw seed weight was from 61 to 66%. The contents of crude protein, lipid and ash of kernels from raw seeds were 27-30%, 55-62% and 3.7-5.2% respectively. The levels of antinutrients in meal from the raw seeds were: trypsin inhibitor activity (14.6-28.7 mg trypsin inhibited/g), lectin (25.6-52.2 unit; one unit is the reverse of minimum amount of mg meal/ml assay which produced haemagglutination), saponins (1.9-2.3% as diosgenin equivalent) and phytate (8.4-10%). Phorbol esters in kernels from raw seeds were not detected in four samples and in other three samples it ranged from 0.01 to 0.02 mg/g as phorbol-12-myristate 13-acetate equivalent. Roasting of seeds inactivated almost 100% of trypsin inhibitor activity. Although lectin activity reduced on roasting, it was still present in high amounts. Saponins, phytate and phorbol esters were not affected by roasting.
NASA Astrophysics Data System (ADS)
Ngono Mbarga, M. C.; Bup Nde, D.; Mohagir, A.; Kapseu, C.; Elambo Nkeng, G.
2017-01-01
A neem tree growing abundantly in India as well as in some regions of Asia and Africa gives fruits whose kernels have about 40-50% oil. This oil has high therapeutic and cosmetic qualities and is recently projected to be an important raw material for the production of biodiesel. Its seed is harvested at high moisture contents, which leads tohigh post-harvest losses. In the paper, the sorption isotherms are determined by the static gravimetric method at 40, 50, and 60°C to establish a database useful in defining drying and storage conditions of neem kernels. Five different equations are validated for modeling the sorption isotherms of neem kernels. The properties of sorbed water, such as the monolayer moisture content, surface area of adsorbent, number of adsorbed monolayers, and the percent of bound water are also defined. The critical moisture content necessary for the safe storage of dried neem kernels is shown to range from 5 to 10% dry basis, which can be obtained at a relative humidity less than 65%. The isosteric heats of sorption at 5% moisture content are 7.40 and 22.5 kJ/kg for the adsorption and desorption processes, respectively. This work is the first, to the best of our knowledge, to give the important parameters necessary for drying and storage of neem kernels, a potential raw material for the production of oil to be used in pharmaceutics, cosmetics, and biodiesel manufacturing.
2012-09-01
Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ... Ester ( FAME ) fuel creates both cold weather and water- based operational issues. The Fischer-Tropsch (FT) process produces liquid fuels from “syngas,” a
Methods of refining natural oils, and methods of producing fuel compositions
Firth, Bruce E.; Kirk, Sharon E.
2015-10-27
A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.
40 CFR 112.13-112.15 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
....13-112.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Requirements for Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and for Vegetable Oils, including Oils from Seeds, Nuts, Fruits, and Kernels. §§ 112.13-112.15 [Reserved] ...
40 CFR 112.13-112.15 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
....13-112.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Requirements for Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and for Vegetable Oils, including Oils from Seeds, Nuts, Fruits, and Kernels. §§ 112.13-112.15 [Reserved] ...
40 CFR 180.535 - Fluroxypyr 1-methylheptyl ester; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cattle, meat 0.1 Cattle, meat byproducts 0.1 Corn, field, forage 1.0 Corn, field, grain 0.02 Corn, field, stover 0.5 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet...
Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmud, Hamizah Ammarah; Salimon, Jumat
Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showedmore » oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)« less
Zhang, Ji-Wen; Li, Sheng-Kun; Wu, Wen-Jun
2009-01-08
The essential oils of the aerial parts of Ocimum basilicum Linn.var. pilosum (Willd.) Benth., an endemic medicinal plant growing in China, was obtained by hydrodistillation and analysed by GC-MS. Fifteen compounds, representing 74.19% of the total oil were identified. The main components were as follows: linalool (29.68%), (Z)-cinnamic acid methyl ester (21.49%), cyclohexene (4.41%), alpha- cadinol (3.99%), 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane (2.27%), 3,5-pyridine-dicarboxylic acid, 2,6-dimethyl-diethyl ester (2.01%), beta-cubebene (1.97%), guaia-1(10),11-diene (1.58%), cadinene (1.41%) (E)-cinnamic acid methyl ester (1.36%) and beta-guaiene (1.30%). The essential oils showed significant antifungal activity against some plant pathogenic fungi.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
...EPA issued a final rule in the Federal Register of July 8, 2009, concerning polyglyceryl phthalate ester of coconut oil fatty acids; exemption from the requirement of a tolerance. This document is being issued to correct the inert ingredient name and CAS numbers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty acid...
Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy.
Harry-O'kuru, Rogers E; Biresaw, Girma; Tisserat, Brent; Evangelista, Roque
2016-01-01
In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied.
Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy
Harry-O'kuru, Rogers E.; Biresaw, Girma; Tisserat, Brent; Evangelista, Roque
2016-01-01
In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied. PMID:26955488
Norlida, H M; Md Ali, A R; Muhadhir, I
1996-01-01
Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of < or = 16%, while POs2 at level of < or = 20%. At 10 degrees C, eutectic interaction occur between PO and PKO which reach their maximum at about 60:40 blending ratio. Within the eutectic region, to maintain the SFC at 10 degrees C to be < or = 50%, POs1 may be added at level of < or = 7%, while POs2 at level of < or = 12%. The addition of palm stearin increased the blends solidification Tmin and Tmax values, while PKO reduced them. Blends which contained high amount of palm stearin showed melting point and cooling curves quite similar to that of pastry margarine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10... Countermeasure Plan requirements for onshore oil drilling and workover facilities. 112.10 Section 112.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10... Countermeasure Plan requirements for onshore oil drilling and workover facilities. 112.10 Section 112.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION...
Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.
Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar
2012-02-10
Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.
Cook, Chad M; Larsen, Terje S; Derrig, Linda D; Kelly, Kathleen M; Tande, Kurt S
2016-10-01
Oil from the marine copepod, Calanus finmarchicus, which contains >86 % of fatty acids present as wax esters, is a novel source of n-3 fatty acids for human consumption. In a randomized, two-period crossover study, 18 healthy adults consumed 8 capsules providing 4 g of Calanus(®) Oil supplying a total of 260 mg EPA and 156 mg DHA primarily as wax esters, or 1 capsule of Lovaza(®) providing 465 mg EPA and 375 mg DHA as ethyl esters, each with an EPA- and DHA-free breakfast. Plasma EPA and DHA were measured over a 72 h period (t = 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h). The positive incremental area under the curve over the 72 h test period (iAUC0-72 h) for both EPA and DHA was significantly different from zero (p < 0.0001) in both test conditions, with similar findings for the iAUC0-24 h and iAUC0-48 h, indicating the fatty acids were absorbed. There was no difference in the plasma iAUC0-72 h for EPA + DHA, or DHA individually, in response to Calanus Oil vs the ethyl ester condition; however, the iAUC0-48 h and iAUC0-72 h for plasma EPA in response to Calanus Oil were both significantly increased relative to the ethyl ester condition (iAUC0-48 h: 381 ± 31 vs 259 ± 39 μg*h/mL, p = 0.026; iAUC0-72 h: 514 ± 47 vs 313 ± 49 μg*h/mL, p = 0.009). These data demonstrate a novel wax ester rich marine oil is a suitable alternative source of EPA and DHA for human consumption.
Glycidyl fatty acid esters in food by LC-MS/MS: method development.
Becalski, A; Feng, S Y; Lau, B P-Y; Zhao, T
2012-07-01
An improved method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the analysis of glycidyl fatty acid esters in oils was developed. The method incorporates stable isotope dilution analysis (SIDA) for quantifying the five target analytes: glycidyl esters of palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) and linolenic acid (C18:3). For the analysis, 10 mg sample of edible oil or fat is dissolved in acetone, spiked with deuterium labelled analogs of glycidyl esters and purified by a two-step chromatography on C18 and normal silica solid phase extraction (SPE) cartridges using methanol and 5% ethyl acetate in hexane, respectively. If the concentration of analytes is expected to be below 0.5 mg/kg, 0.5 g sample of oil is pre-concentrated first using a silica column. The dried final extract is re-dissolved in 250 μL of a mixture of methanol/isopropanol (1:1, v/v), 15 μL is injected on the analytical C18 LC column and analytes are eluted with 100% methanol. Detection of target glycidyl fatty acid esters is accomplished by LC-MS/MS using positive ion atmospheric pressure chemical ionization operating in Multiple Reaction Monitoring mode monitoring 2 ion transitions for each analyte. The method was tested on replicates of a virgin olive oil which was free of glycidyl esters. The method detection limit was calculated to be in the range of 70-150 μg/kg for each analyte using 10 mg sample and 1-3 μg/kg using 0.5 g sample of oil. Average recoveries of 5 glycidyl esters spiked at 10, 1 and 0.1 mg/kg were in the range 84% to 108%. The major advantage of our method is use of SIDA for all analytes using commercially available internal standards and detection limits that are lower by a factor of 5-10 from published methods when 0.5 g sample of oil is used. Additionally, MS/MS mass chromatograms offer greater specificity than liquid chromatography-mass spectrometry operated in selected ion monitoring mode. The method will be applied to the survey of glycidyl fatty acid esters in food products on the Canadian market.
Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David
2018-04-11
Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.
Leigh, Jessica K; MacMahon, Shaun
2016-12-14
A method was developed for the extraction of fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD) and glycidol from infant formula, followed by quantitative analysis of the extracts using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These process-induced chemical contaminants are found in refined vegetable oils, and studies have shown that they are potentially carcinogenic and/or genotoxic, making their presence in edible oils (and processed foods containing these oils) a potential health risk. The extraction procedure involves a liquid-liquid extraction, where powdered infant formula is dissolved in water and extracted with ethyl acetate. Following shaking, centrifugation, and drying of the organic phase, the resulting fat extract is cleaned-up using solid-phase extraction and analyzed by LC-MS/MS. Method performance was confirmed by verifying the percent recovery of each 3-MCPD and glycidyl ester in a homemade powdered infant formula reference material. Average ester recoveries in the reference material ranged from 84.9 to 109.0% (0.6-9.5% RSD). The method was also validated by fortifying three varieties of commercial infant formulas with a 3-MCPD and glycidyl ester solution. Average recoveries of the esters across all concentrations and varieties of infant formula ranged from 88.7 to 107.5% (1.0-9.5% RSD). Based on the validation results, this method is suitable for producing 3-MCPD and glycidyl ester occurrence data in all commercially available varieties of infant formula.
USDA-ARS?s Scientific Manuscript database
The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...
Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.
2016-01-01
Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792
Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B
2016-02-26
Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.
Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.
Jaya, N; Selvan, B Karpanai; Vennison, S John
2015-11-01
Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.
Arnosti, André; Brienza, Paula Desjardins; Furquim, Karim Christina Scopinho; Chierice, Gilberto Orivaldo; Bechara, Gervásio Henrique; Calligaris, Izabela Braggião; Camargo-Mathias, Maria Izabel
2011-02-01
This study examines the effects of ricinoleic acid esters from Ricinus communis castor oil on the vitellogenesis of Rhipicephalus sanguineus ticks attached to hosts that were fed with commercial rabbit food containing these esters. The oocytes of ticks from the treatment group (TG) showed cytoplasmic changes that inhibited the development of oocytes I and II to the advanced stages (IV and V) in addition to preventing the maturation of oocytes V, resulting in small ones. In addition, sperm was not observed in ampoules. Our findings confirm the acaricide potential of ricinoleic acid esters. Copyright © 2010 Elsevier Inc. All rights reserved.
MacMahon, Shaun; Ridge, Clark D; Begley, Timothy H
2014-12-03
A new analytical method has been developed and validated for the detection and quantification of 2-monochloropropanediol (2-MCPD) esters in edible oils. The target compounds are potentially carcinogenic contaminants formed during the processing of edible oils. As the 2-MCPD esters that occur most frequently in refined edible oils were not commercially available, standards were synthesized with identity and purity (95+%) confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and (1)H NMR. Target analytes are separated from edible oil matrices using a two-step solid-phase extraction (SPE) procedure. The extracts are then analyzed using LC-MS/MS with electrospray ionization (ESI). The method has been validated for 11 2-MCPD diesters and 3 2-MCPD monoesters in soybean oil, olive oil, and palm oil using an external calibration curve. The ranges of average recoveries and relative standard deviations (RSD) across the three oil matrices at three spiking concentrations are 79-106% (3-13% RSD) for the 2-MCPD diesters and 72-108% (4-17% RSD) for the 2-MCPD monoesters, with limits of quantitation at or below 30 ng/g for the diesters and 90 ng/g for the monoesters.
NASA Astrophysics Data System (ADS)
Chang, Jessie S. L.; Chan, Y. S.; Law, M. C.; Leo, C. P.
2017-07-01
The implementation of microwave technology in palm oil processing offers numerous advantages; besides elimination of polluted palm oil mill effluent, it also reduces energy consumption, processing time and space. However, microwave exposure could damage a material’s microstructure which affected the quality of fruit that can be related to its physical structure including the texture and appearance. In this work, empty fruit bunches, mesocarp and kernel was microwave dried and their respective microstructures were examined. The microwave pretreatments were conducted at 100W and 200W and the microstructure investigation of both treated and untreated samples were evaluated using scanning electron microscope. The micrographs demonstrated that microwave does not significantly influence kernel and mesocarp but noticeable change was found on the empty fruit bunches where the sizes of the granular starch were reduced and a small portion of the silica bodies were disrupted. From the experimental data, the microwave irradiation was shown to be efficiently applied on empty fruit bunches followed by mesocarp and kernel as significant weight loss and size reduction was observed after the microwave treatments. The current work showed that microwave treatment did not change the physical surfaces of samples but sample shrinkage is observed.
USDA-ARS?s Scientific Manuscript database
In this work, for the first time, a castor oil derived diglycidyl ester plasticizer (C26-DGE) was prepared and incorporated into poly(vinyl chloride) (PVC). The chemical structure of the product was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (...
USDA-ARS?s Scientific Manuscript database
A novel unsaturated co-ester (co-UE) macromonomer containing both maleates and acrylates was synthesized from tung oil (TO) and its chemical structure was characterized by FT-IR, 1H-NMR, 13C-NMR, and gel permeation chromatography (GPC). The monomer was synthesized via a new synergetic modification o...
USDA-ARS?s Scientific Manuscript database
Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...
NASA Astrophysics Data System (ADS)
Istiningrum, Reni Banowati; Saepuloh, Azis; Jannah, Wirdatul; Aji, Didit Waskito
2017-03-01
Yogyakarta is one of patchouli oil distillation center in Indonesia. The quality of patchouli oil greatly affect its market price. Therefore, testing quality of patchouli oil parameters is an important concern, one through determination of the measurement uncertainty. This study will determine the measurement uncertainty of ester number, acid number and content of patchouli alcohol through a bottom up approach. Source contributor to measurement uncertainty of ester number is a mass of the sample, a blank and sample titration volume, the molar mass of KOH, HCl normality, and replication. While the source contributor of the measurement uncertainty of acid number is the mass of the sample, the sample titration volume, the relative mass and normality of KOH, and repetition. Determination of patchouli alcohol by Gas Chromatography considers the sources of measurement uncertainty only from repeatability because reference materials are not available.
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
19 CFR 10.56 - Vegetable oils, denaturing; release.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...
Commercial Approval Plan for Synthetic Jet Fuel from Hydrotreated Fats and Oils
2009-02-18
driven by their experience, some of it very negative, with the other more well known organic oil derived fuel, BioDiesel. BioDiesel is methyl ester of...the fatty acid ( FAME ) that comes from the triglycerides that compose the organic oil. The HRJ SPKs are deoxygenated materials that are processed in...SwRI Cu PE506 * Semi-Quant Survey ICP/MS * Organic Elements C:H D5291 * N D4629 * S D5453 * Acid Number D3242 * Carbonyls, alcohols, esters , phenols
Code of Federal Regulations, 2011 CFR
2011-07-01
... Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8... you make material repairs. You must determine, in accordance with industry standards, the appropriate...
ERIC Educational Resources Information Center
Da Silva, Helena Sofia Pereira
2009-01-01
Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…
Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients.
Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2011-05-01
Cocos nucifera (coconut) oil, oil from the dried coconut fruit, is composed of 90% saturated triglycerides. It may function as a fragrance ingredient, hair conditioning agent, or skin-conditioning agent and is reported in 626 cosmetics at concentrations from 0.0001% to 70%. The related ingredients covered in this assessment are fatty acids, and their hydrogenated forms, corresponding fatty alcohols, simple esters, and inorganic and sulfated salts of coconut oil. The salts and esters are expected to have similar toxicological profiles as the oil, its hydrogenated forms, and its constituent fatty acids. Coconut oil and related ingredients are safe as cosmetic ingredients in the practices of use and concentration described in this safety assessment.
Studies on piston bowl geometries using single blend ratio of various non-edible oils.
Viswanathan, Karthickeyan; Pasupathy, Balamurugan
2017-07-01
The depletion of fossil fuels and hike in crude oil prices were some of the main reasons to explore new alternatives from renewable source of energy. This work presents the impact of various bowl geometries on diesel engine with diesel and biodiesel samples. Three non-edible oils were selected, namely pumpkin seed oil, orange oil and neem oil. These oils were converted into respective biodiesel using transesterification process in the presence of catalyst and alcohol. After transesterification process, the oils were termed as pumpkin seed oil methyl ester (PSOME), orange oil methyl ester (OME) and neem oil methyl ester (NOME), respectively. The engine used for experimentation was a single-cylinder four-stroke water-cooled direct-injection diesel engine and loads were applied to the engine using eddy current dynamometer. Two bowl geometries were developed, namely toroidal combustion chamber (TCC) and trapezoidal combustion chamber (TRCC). Also, the engine was inbuilt with hemispherical combustion chamber (HCC). The base line readings were recorded using neat diesel fuel with HCC for various loads. Followed by 20% of biodiesel mixed with 80% neat diesel for all prepared methyl esters and termed as B1 (20% PSOME with 80% diesel), B2 (20% OME with 80% diesel) and B3 (20% NOME with 80% diesel). All fuel samples were tested in HCC, TCC and TRCC bowl geometries under standard injection timing and with compression ratio of 18. Increased brake thermal efficiency and reduced brake specific fuel consumption were observed with diesel in TCC geometry. Also, higher heat release and cylinder pressures with lower ignition delay were recorded with TCC bowl geometry. TCC bowl geometry showed lower CO, HC and smoke emissions with B2 fuel sample than diesel and other biodiesel samples. But, higher NOx emission was observed in HCC and TCC than that in TRCC bowl geometry. Graphical abstract ᅟ.
Medicinal and cosmetics soap production from Jatropha oil.
Shahinuzzaman, M; Yaakob, Zahira; Moniruzzaman, M
2016-06-01
Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.
2017-05-01
Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.
Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.
Park, Jung Min; Kim, Young Han; Kim, Sung Bin
2013-01-01
In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.
Khayoon, M S; Olutoye, M A; Hameed, B H
2012-05-01
Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sung, Kristine K; Goff, H Douglas
2010-04-01
The development of a structural fat network in ice cream as influenced by the solid:liquid fat ratio at the time of freezing/whipping was investigated. The solid fat content was varied with blends of a hard fraction of palm kernel oil (PKO) and high-oleic sunflower oil ranging from 40% to 100% PKO. Fat globule size and adsorbed protein levels in mix and overrun, fat destabilization, meltdown resistance, and air bubble size in ice cream were measured. It was found that blends comprising 60% to 80% solid fat produced the highest rates of fat destabilization that could be described as partial coalescence (as opposed to coalescence), lowest rates of meltdown, and smallest air bubble sizes. Lower levels of solid fat produced fat destabilization that was better characterized as coalescence, leading to loss of structural integrity, whereas higher levels of solid fat led to lower levels of fat network formation and thus also to reduced structural integrity. Blends of highly saturated palm kernel oil and monounsaturated high-oleic sunflower oil were used to modify the solid:liquid ratio of fat blends used for ice cream manufacture. Blends that contained 60% to 80% solid fat at freezing/whipping temperatures produced optimal structures leading to low rates of meltdown. This provides a useful reference for manufacturers to help in the selection of appropriate fat blends for nondairy-fat ice cream.
Saliu, Francesco; Longhin, Eleonora; Salanti, Anika; Degano, Ilaria; Della Pergola, Roberto
2016-06-15
A mixture of sphingoid esters was isolated (1.4% w/w) from the molecular distillation of crude squid visceral oil. A preliminary investigation on the bioactivity profile and toxic potential of this residue was carried out by in vitro experiments. No cytotoxicity and a moderate lipase inhibition activity were highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Uslu, Faruk Sukru
2017-07-01
Oil spills on the ocean surface cause serious environmental, political, and economic problems. Therefore, these catastrophic threats to marine ecosystems require detection and monitoring. Hyperspectral sensors are powerful optical sensors used for oil spill detection with the help of detailed spectral information of materials. However, huge amounts of data in hyperspectral imaging (HSI) require fast and accurate computation methods for detection problems. Support vector data description (SVDD) is one of the most suitable methods for detection, especially for large data sets. Nevertheless, the selection of kernel parameters is one of the main problems in SVDD. This paper presents a method, inspired by ensemble learning, for improving performance of SVDD without tuning its kernel parameters. Additionally, a classifier selection technique is proposed to get more gain. The proposed approach also aims to solve the small sample size problem, which is very important for processing high-dimensional data in HSI. The algorithm is applied to two HSI data sets for detection problems. In the first HSI data set, various targets are detected; in the second HSI data set, oil spill detection in situ is realized. The experimental results demonstrate the feasibility and performance improvement of the proposed algorithm for oil spill detection problems.
Oil industry waste: a potential feedstock for biodiesel production.
Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan
2016-08-01
The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.
Technology advances & new applications for biodiesel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmberg, B.
1994-12-31
Biodiesel, as the term is used in the United States, is a blend of methyl and/or ethyl esters with petrodiesel. The esters are biodegradable, non-toxic and essentially free of sulfur or aromatic compounds. The blend level is a function of economics, the desired emissions profile, material compatibility, and combustion characteristics. The focus at the moment is on a 20 vol% blend of a methyl ester (methyl soyate) in petrodiesel (known as B20). The name {open_quotes}biodiesel{close_quotes} was introduced by the National SoyDiesel Development Board (now the National Biodiesel Board), which has pioneered the commercialization of biodiesel in the United States. Themore » American Biofuels Association (ABA) and Information Resources Inc. (IRI) have, in the past, been part of their support team. Methyl or ethyl esters are made from vegetable and tree oils, animal fats, and used oils and fats. These oils are blended with an alcohol (usually methanol, although ethanol can be used as well) and a catalyst such as sodium hydroxide. The resulting chemical reaction (which occurs at moderate temperatures and pressures) produces a methyl or ethyl ester and glycerine, a valuable material used extensively in the manufacture of soaps and other consumer products.« less
Yamazaki, K; Ogiso, M; Isagawa, S; Urushiyama, T; Ukena, T; Kibune, N
2013-01-01
A new, direct analytical method for the determination of 3-chloro-1,2-propanediol fatty acid esters (3-MCPD esters) was developed. The targeted 3-MCPD esters included five types of monoester and 25 [corrected] types of diester. Samples (oils and fats) were dissolved in a mixture of tert-butyl methyl ether and ethyl acetate (4:1), purified using two solid-phase extraction (SPE) cartridges (C(18) and silica), then analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Five monoesters and five diesters with the same fatty acid group could be separated and quantified. Pairs of 3-MCPD diesters carrying the same two different fatty acid groups, but at reversed positions (sn-1 and sn-2), could not be separated and so were expressed as a sum of both compounds. The limits of quantification (LOQs) were estimated to be between 0.02 to 0.08 mg kg(-1), depending on the types of 3-MCPD ester. Repeatability expressed as relative standard deviation (RSD(r)%) varied from 5.5% to 25.5%. The new method was shown to be applicable to various commercial edible oils and showed levels of 3-MCPD esters varying from 0.58 to 25.35 mg kg(-1). The levels of mono- and diesters ranged from 0.10 to 0.69 mg kg(-1) and from 0.06 to 16 mg kg(-1), respectively.
Methods of refining natural oils and methods of producing fuel compositions
Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S
2015-11-04
A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.
NASA Astrophysics Data System (ADS)
Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya
2017-11-01
Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS
[Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].
Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan
2012-10-01
To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.
2013-01-01
Background Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability. Methods Experiments were performed in an analytical centrifuge at 11×g to 1140×g (LUMiFuge® 116 particle separation analyzer). The samples in the LUMiFuge® 116 particle separation analyzer were centrifuged at 3000 rpm for 15 h at 32°C. Sample volume of 2 cm3 was used. The rheological property of nanoemulsions was investigated using oscillatory measurements test. A rotational/oscillatory viscometer, Kinexus Rheometer (Malvern Instrument, UK) was used. All measurements were performed with a stainless steel cone-plate sensor at 25.0 ± 0.1°C with 4°/40 mm. Results The stable nanoemulsions showed sedimentation rates at earth gravity of 5.2, 3.0 and 2.6 mm/month for 10%, 20% and 30% (w/w) oil phase, respectively. Rheological behavior is an important target during the design of palm oil esters-based nanocosmeceuticals. The presence of a network structure was indicated by measurements which showed G’ to be greater than G”. This result implied the predominant elastic response and high storage stability of the nanoemulsion. It was also observed that the increase in oil phase concentration led to the profile which strongly indicated that the solid like elastic property; where the values of phase angle, δ of these nanoemulsions was lower than 45°. Conclusions The nanoemulsions with higher oil phase concentration (30% (w/w)) showed greater elasticity which implied strong dynamic rigidity of the nanoemulsion. It was the most stable with longest shelf-life. PMID:24059593
Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun
2011-01-01
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Serra-Sogas, Norma; O'Hara, Patrick D; Canessa, Rosaline; Keller, Peter; Pelot, Ronald
2008-05-01
This paper examines the use of exploratory spatial analysis for identifying hotspots of shipping-based oil pollution in the Pacific Region of Canada's Exclusive Economic Zone. It makes use of data collected from fiscal years 1997/1998 to 2005/2006 by the National Aerial Surveillance Program, the primary tool for monitoring and enforcing the provisions imposed by MARPOL 73/78. First, we present oil spill data as points in a "dot map" relative to coastlines, harbors and the aerial surveillance distribution. Then, we explore the intensity of oil spill events using the Quadrat Count method, and the Kernel Density Estimation methods with both fixed and adaptive bandwidths. We found that oil spill hotspots where more clearly defined using Kernel Density Estimation with an adaptive bandwidth, probably because of the "clustered" distribution of oil spill occurrences. Finally, we discuss the importance of standardizing oil spill data by controlling for surveillance effort to provide a better understanding of the distribution of illegal oil spills, and how these results can ultimately benefit a monitoring program.
Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru
2014-10-15
Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Panda, Jibitesh Kumar; Sastry, Gadepalli Ravi Kiran; Rai, Ram Naresh
2018-05-25
The energy situation and the concerns about global warming nowadays have ignited research interest in non-conventional and alternative fuel resources to decrease the emission and the continuous dependency on fossil fuels, particularly for various sectors like power generation, transportation, and agriculture. In the present work, the research is focused on evaluating the performance, emission characteristics, and combustion of biodiesel such as palm kernel methyl ester with the addition of diesel additive "triacetin" in it. A timed manifold injection (TMI) system was taken up to examine the influence of durations of several blends induced on the emission and performance characteristics as compared to normal diesel operation. This experimental study shows better performance and releases less emission as compared with mineral diesel and in turn, indicates that high performance and low emission is promising in PKME-triacetin fuel operation. This analysis also attempts to describe the application of the fuzzy logic-based Taguchi analysis to optimize the emission and performance parameters.
21 CFR 172.735 - Glycerol ester of rosin.
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood rosin... citrus oils used in the preparation of beverages whereby the amount of the additive does not exceed 100...
21 CFR 172.735 - Glycerol ester of rosin.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood rosin... citrus oils used in the preparation of beverages whereby the amount of the additive does not exceed 100...
NASA Astrophysics Data System (ADS)
Soudagar, Manzoor Elahi M.; Kittur, Prasanna; Parmar, Fulchand; Batakatti, Sachin; Kulkarni, Prasad; Kallannavar, Vinayak
2017-08-01
Biodiesel is a substitute for gasoline that is produced from vegetable oils and animal fats. It has gained popularity due to depleting fossil fuel resources, its renewable character and comparable combustion properties to diesel fuel. Biodiesel is formed from non-edible oils, edible oils, tallow, animal fats and waste cooked oils. Biodiesels are monoalkyl esters of elongated chain fatty acids. Biodiesel can be a viable choice for satisfying long term energy requirements if they are managed proficiently. The method of the transesterification shows how the reaction occurs and advances. In this study, biodiesel is produced from Madhuca indica seeds commonly known as Mahua by using transesterification process using a low capacity pressure reactor and by-product of transesterification is glycerol, which is used in preparation of soaps. Mahua Oil Ethyl Ester (MOEE) was produced from the Mahua oil and is mixed with diesel to get different ratios of blends. MOEE was tested in a 4-stroke single cylinder VCR diesel engine. The study was extended to understand the effect of biodiesel blend magnitude on the performance of engine parameters like, brake thermal efficiency, brake power and fuel properties like flash point, cloud point, kinematic viscosity, calorific value, cetane number and density were studied.
How 'ground-picked' olive fruits affect virgin olive oil ethanol content, ethyl esters and quality.
Beltran, Gabriel; Sánchez, Raquel; Sánchez-Ortiz, Araceli; Aguilera, Maria P; Bejaoui, Mohamed A; Jimenez, Antonio
2016-08-01
Olives dropped on the ground naturally sometimes are not separated from those fresh and healthy collected from the tree for harvest and processing. In this work we compared the quality, ethanol content and bioactive components of virgin olive oils from ground-picked olives, tree-picked fruits and their mixture. Ground-picked olives produced 'Lampante' virgin olive oils; these are of a lower quality category, because of important alterations in chemical and sensory characteristics. Ethyl esters showed the highest values, although under the regulated limit. The mixture of ground and tree-picked olives gave oils classified as 'virgin' because of sensory defects, although the quality parameters did not exceed the limits for the 'extra' category. Ethanol content showed a significant increase in the oils from ground- picked olives and their mixture with respect to those from tree-picked fruits. Furthermore, bioactive compounds showed a significant decrease as fruit quality was poorer. Ground-picked olives must be harvested and processed separately since they produce low-quality virgin olive oils with sensory defects and lower concentrations of bioactive compounds. The higher acidity and ethanol concentration observed in oils from ground-picked fruits or their mixture may help ethyl ester synthesis during storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Food potentials of some unconventional oilseeds grown in Nigeria--a brief review.
Badifu, G I
1993-05-01
A brief review of literature on kernels of Citrullus and Cucumeropsis ('egusi' melon) species, Telfairia occidentalis (fluted pumpkin), Lagenaria (gourd) species of all of Cucurbitaceae family and other oilseeds such as Pentaclethra macrophylla (African oil bean), Parkia spp. (African locust bean) both of Mimosaceae family and Butyrospermum paradoxum (shea butter) of Sapotaceae family which are grown and widely used as food in Nigeria is presented. The kernels of species of Cucurbitaceae form the bulk of unconventional oilseeds used for food in Nigeria. The nutritional value of some of the kernels and the physicochemical properties and storage stability of the oils obtained from them are discussed. The various consumable forms in which they exist are also described. The problems and prospects of these neglected oilseeds in Nigeria are highlighted.
azelaic , and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols...of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...dibasic acid esters in all the characteristics studied so far, and this type of ester therefore represents a promising source of synthetic oil. Mono
Dubois, Mathieu; Tarres, Adrienne; Goldmann, Till; Empl, Anna Maria; Donaubauer, Alfred; Seefelder, Walburga
2012-05-04
The presence of fatty acid esters of monochloropropanediol (MEs) in food is a recent concern raised due to the carcinogenicity of their hydrolysable moieties 2- and 3-monochloropropanediol (2- and 3-MCPD). Several indirect methods for the quantification of MEs have been developed and are commonly in use until today, however significant discrepancies among analytical results obtained are challenging their reliability. The aim of the present study was therefore to test the trueness of an indirect method by comparing it to a newly developed direct method using palm oil and palm olein as examples. The indirect method was based on ester cleavage under acidic conditions, derivatization of the liberated 2- and 3-MCPD with heptafluorobutyryl imidazole and GC-MS determination. The direct method was comprised of two extraction procedures targeting 2-and 3-MCPD mono esters (co-extracting as well glycidyl esters) by the use of double solid phase extraction (SPE), and 2- and 3-MCPD di-esters by the use of silica gel column, respectively. Detection was carried out by liquid chromatography coupled to time of flight mass spectrometry (LC-ToF-MS). Accurate quantification of the intact compounds was assured by means of matrix matched standard addition on extracts. Analysis of 22 palm oil and 7 palm olein samples (2- plus 3-MCPD contamination ranged from 0.3 to 8.8 μg/g) by both methods revealed no significant bias. Both methods were therefore considered as comparable in terms of results; however the indirect method was shown to require less analytical standards, being less tedious and furthermore applicable to all type of different vegetable oils and hence recommended for routine application. Copyright © 2012 Elsevier B.V. All rights reserved.
Cherif, Aicha O; Trabelsi, Hajer; Ben Messaouda, Mhamed; Kâabi, Belhassen; Pellerin, Isabelle; Boukhchina, Sadok; Kallel, Habib; Pepe, Claude
2010-08-11
4-Desmethylsterols, the main component of the phytosterol fraction, have been analyzed during the development of Tunisian peanut kernels ( Arachis hypogaea L.), Trabelsia (AraT) and Chounfakhi (AraC), which are monocultivar species, and Arbi (AraA), which is a wild species, by gas chromatography-mass spectrometry. Immature wild peanut (AraA) showed the highest contents of beta-sitosterol (554.8 mg/100 g of oil), campesterol (228.6 mg/100 g of oil), and Delta(5)-avenasterol (39.0 mg/100 g of oil) followed by peanut cultivar AraC with beta-sitosterol, campesterol, and Delta(5)-avenasterol averages of 267.7, 92.1, and 28.6 mg/100 g of oil, respectively, and similarly for AraT 309.1, 108.4, and 27.4 mg/100 g of oil, respectively, were found. These results suggest that, in immature stages, phytosterol contents can be important regulator factors for the functional quality of peanut oil for the agro-industry chain from plant to nutraceuticals.
Balakrishnan, K; Olutoye, M A; Hameed, B H
2013-01-01
The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Controlling lipid accumulation in cereal grains.
Barthole, Guillaume; Lepiniec, Loïc; Rogowsky, Peter M; Baud, Sébastien
2012-04-01
Plant oils have so far been mostly directed toward food and feed production. Nowadays however, these oils are more and more used as competitive alternatives to mineral hydrocarbon-based products. This increasing demand for vegetable oils has led to a renewed interest in elucidating the metabolism of storage lipids and its regulation in various plant systems. Cereal grains store carbon in the form of starch in a large endosperm and as oil in an embryo of limited size. Complementary studies on kernel development and metabolism have paved the way for breeding or engineering new varieties with higher grain oil content. This could be achieved either by increasing the relative proportion of the oil-rich embryo within the grain, or by enhancing oil synthesis and accumulation in embryonic structures. For instance, diacylglycerol acyltransferase (DGAT) that catalyses the ultimate reaction in the biosynthesis of triacylglycerol appears to be a promising target for increasing oil content in maize embryos. Similarly, over-expression of the maize transcriptional regulators ZmLEAFY COTYLEDON1 and ZmWRINKLED1 efficiently stimulates oil accumulation in the kernels of transgenic lines. Redirecting carbon from starch to oil in the endosperm, though not yet realized, is discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin
2017-12-01
This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.
Famurewa, Ademola C; Nwankwo, Onyebuchi E; Folawiyo, Abiola M; Igwe, Emeka C; Epete, Michael A; Ufebe, Odomero G
2017-01-01
The literature reports that the health benefits of vegetable oil can be deteriorated by repeated heating, which leads to lipid oxidation and the formation of free radicals. Virgin coconut oil (VCO) is emerging as a functional food oil and its health benefits are attributed to its potent polyphenolic compounds. We investigated the beneficial effect of VCO supplementation on lipid profile, liver and kidney markers in rats fed repeatedly heated palm kernel oil (HPO). Rats were divided into four groups (n = 5). The control group rats were fed with a normal diet; group 2 rats were fed a 10% VCO supplemented diet; group 3 administered 10 ml HPO/kg b.w. orally; group 4 were fed 10% VCO + 10 ml HPO/kg for 28 days. Subsequently, serum markers of liver damage (ALT, AST, ALP and albumin), kidney damage (urea, creatinine and uric acid), lipid profile and lipid ratios as cardiovascular risk indices were evaluated. HPO induced a significant increase in serum markers of liver and kidney damage as well as con- comitant lipid abnormalities and a marked reduction in serum HDL-C. The lipid ratios evaluated for atherogenic and coronary risk indices in rats administered HPO only were remarkably higher than control. It was observed that VCO supplementation attenuated the biochemical alterations, including the indices of cardiovascular risks. VCO supplementation demonstrates beneficial health effects against HPO-induced biochemical alterations in rats. VCO may serve to modulate the adverse effects associated with consumption of repeatedly heated palm kernel oil.
Military Aircraft Propulsion Lubricants - Current and Future Trends
1986-02-01
are presented in Table I. The selected candidate base oil was a blend of commercially available neopentyl polyol esters. It was selected based on...validation consisted of: 1. a neopentyl polyol ester blend 2. a deposit inhibitor (Ref. 7) 3. a heterocyclic amine oxidation inhibitor 4. dioctyldiphenyl...The use of a glycol or a synthetic hydrocarbon (polyalphaolefin (PAO)) based fluid has been suggested as a possible basestock material for this oil
Ermacora, Alessia; Hrncirik, Karel
2014-05-01
The establishment of effective strategies for the mitigation of 3-MCPD esters in refined vegetable oils is restricted by limited knowledge of their mechanisms of formation and decomposition. In order to gain better understanding on the thermal stability of these compounds, a model system for mimicking oil refining conditions was developed. Pure 3-MCPD esters (3-MCPD dipalmitate and 3-MCPD dilaurate) were subjected to thermal treatment (180-260°C) and the degradation products where monitored over time (0-24h). After 24h of treatment, both 3-MCPD esters showed a significant degradation (ranging from 30% to 70%), correlating with the temperature applied. The degradation pathway, similar for both compounds, was found to involve isomerisation (very rapid, equilibrium was reached within 2h at 260°C), dechlorination and deacylation reactions. The higher relative abundance of non-chlorinated compounds, namely acylglycerols, in the first stages of the treatment suggested that dechlorination is preferred over deacylation with the conditions applied in this study. Copyright © 2013 Elsevier Ltd. All rights reserved.
Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik
2015-02-01
A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas
2017-02-01
Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.
Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.
2015-01-01
Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432
[Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].
Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I
2016-01-01
The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.
Li, Heli; Chen, Dawei; Miao, Hong; Zhao, Yunfeng; Shen, Jianzhong; Wu, Yongning
2015-09-04
A selective and sensitive ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-MS/MS) method coupled with matrix solid phase dispersion (MSPD) extraction was developed for the direct determination of fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible vegetable oils. The method integrated the isotope dilution technique, MSPD extraction and UHPLC - MS/MS analysis with multi-reaction monitoring mode (MRM). Matrix-matched calibration curves showed good linearity within the range of 0.01-10mgL(-1) with the correlation coefficient not less than 0.999. Limits of detection (LODs) and limit of quantification (LOQs) of the 3-MCPD esters fell into the range of 0.0001-0.02mgkg(-1) and 0.0004-0.05mgkg(-1), respectively. The recoveries for the spiked extra virgin olive oils ranged from 94.4% to 108.3%, with the relative standard deviations (RSD) ranging from 0.6% to 10.5%. The method was applied for the oil sample (T2642) of the official Food Analysis Performance Assessment Scheme (FAPAS) in 2014 and other real samples from supermarket, and the results showed that the present method was comparative to the gas chromatography-mass spectrometry (GC-MS) method based on the improved German Society for Fat Science (DGF) standard method C-III 18 (09) except for palm oil. Copyright © 2015. Published by Elsevier B.V.
CFD simulation of fatty acid methyl ester production in bubble column reactor
NASA Astrophysics Data System (ADS)
Salleh, N. S. Mohd; Nasir, N. F.
2017-09-01
Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.
Effects of Fatty Acid Addition to Oil-in-water Emulsions Stabilized with Sucrose Fatty Acid Ester.
Watanabe, Takamasa; Kawai, Takahiro; Nonomura, Yoshimune
2018-03-01
Adding fatty acids to an oil-in-water (O/W) emulsion changes the stability of the emulsion. In this study, we prepared a series of O/W emulsions consisting of oil (triolein/fatty acid mixture), water and a range of surfactants (sucrose fatty acid esters) with varying hydrophilic-lipophilic balance (HLB) in order to determine the effects of alkyl chain length and the degree of unsaturation of the fatty acid molecules on the stability of the emulsions. As a result, sucrose fatty acid esters with HLB = 5-7 were suitable for obtaining O/W emulsions. In addition, the creaming phenomenon was inhibited for 30 days or more when fatty acids having a linear saturated alkyl chain with 14 or more carbon atoms were added. These findings are useful for designing stable O/W emulsions for food and cosmetic products.
NASA Astrophysics Data System (ADS)
Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.
2018-03-01
Biodiesel production was carried out from Thespesia populnea seed oil through rapid insitu transesterification. Influence of reaction parameters such as catalyst type and concentration, methanol to biomass ratio, co-solvent volume, temperature and agitation speed on conversion of oil into methyl esters was investigated. The effect of different co-solvents on conversion was evaluated. Optimum methyl ester conversion of 97.80% was achieved at 1.5wt% of KOH catalyst, 5.5:1 (v/w) methanol to biomass ratio, 25vol%tetrahydrofuranco-solvent, 60°C and 500 rpm within 120min of reaction time. Fuel properties of produced methyl esters were well fitted within the limits of ASTMD 6751 standards. Considering the properties of produced biodiesel, Thespesia populnea seed derived biodiesel can be used as potential alternate to fossil diesel fuel.
A Simple, Safe Method for Preparation of Biodiesel
ERIC Educational Resources Information Center
Behnia, Mahin S.; Emerson, David W.; Steinberg, Spencer M.; Alwis, Rasika M.; Duenas, Josue A.; Serafino, Jessica O.
2011-01-01
An experiment suitable for organic chemistry students is described. Biodiesel, a "green" fuel, consists of methyl or ethyl esters of long-chain fatty acids called FAMES (fatty acid methyl esters) or FAEES (fatty acid ethyl esters). A quick way to make FAMES is a base-catalyzed transesterification of oils or fats derived from plants or from animal…
USDA-ARS?s Scientific Manuscript database
Esters, most commonly methyl esters, of vegetable oils or animal fats or other lipid feedstocks have found increasing use as an alternative diesel fuel known as biodiesel. However, biodiesel also has good solvent properties, a feature rendered additionally attractive by its biodegradability, low tox...
Elastohydrodynamics of farm-based blends comprising amphiphilic oils
USDA-ARS?s Scientific Manuscript database
Vegetable oils contain non-polar hydrocarbon chains and polar ester groups (and possibly also other functional groups such as hydroxyl groups in castor oil). The presence of polar and non-polar groups within the same molecule gives vegetable oil amphiphilic character. The density, refractive index, ...
Production of Renewable Diesel Fuel
DOT National Transportation Integrated Search
2012-06-01
Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...
Reductive Etherification of Fatty Acids or Esters with Alcohols using Molecular Hydrogen.
Erb, Benjamin; Risto, Eugen; Wendling, Timo; Gooßen, Lukas J
2016-06-22
In the presence of a catalyst system consisting of a ruthenium/triphos complex and the Brønsted acid trifluoromethanesulfonimide, mixtures of fatty acids and aliphatic alcohols are converted into the corresponding ethers at 70 bar H2 . The protocol allows the sustainable one-step synthesis of valuable long-chain ether fragrances, lubricants, and surfactants from renewable sources. The reaction protocol is extended to various fatty acids and esters both in pure form and as mixtures, for example, tall oil acids or rapeseed methyl ester (RME). Even the mixed triglyceride rapeseed oil was converted in one step. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan
2012-12-15
Coconut cream and fusel oil, two low-cost natural substances, were used as starting materials for the biosynthesis of flavour-active octanoic acid esters (ethyl-, butyl-, isobutyl- and (iso)amyl octanoate) using lipase Palatase as the biocatalyst. The Taguchi design method was used for the first time to optimize the biosynthesis of esters by a lipase in an aqueous system of coconut cream and fusel oil. Temperature, time and enzyme amount were found to be statistically significant factors and the optimal conditions were determined to be as follows: temperature 30°C, fusel oil concentration 9% (v/w), reaction time 24h, pH 6.2 and enzyme amount 0.26 g. Under the optimised conditions, a yield of 14.25mg/g (based on cream weight) and signal-to-noise (S/N) ratio of 23.07 dB were obtained. The results indicate that the Taguchi design method was an efficient and systematic approach to the optimisation of lipase-catalysed biological processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Safety evaluation of wild apricot oil.
Gandhi, V M; Mulky, M J; Mukerji, B; Iyer, V J; Cherian, K M
1997-06-01
Wild apricot, a variety of Prunus armeniaca, grows in the hilly regions of India. The seeds yield 27% of kernels. The potential availability of the kernels is 40,000 tons/year and these yield 47% of oil. The oil has 94% unsaturated fatty acids, rich in oleic and linoleic acids. Systemic effects and nutritional quality of wild apricot oil (WAO) were assessed in a 13-wk feeding study in weanling albino rats using a diet containing 10% WAO as the sole source of dietary fat. A similar diet containing groundnut oil (GNO) was used as the control. WAO did not manifest any toxic potential. The food consumption, growth rate and food efficiency ratio of rats fed WAO were similar to those fed GNO. The digestibility of this oil was found to be comparable to that of GNO. There were no macroscopic or microscopic lesions in any of the organs that could be ascribed to WAO incorporation in the diet. The results of this study indicate that WAO could be used for edible purposes without any overt toxic signs or symptoms. However a long-term study may be needed to confirm its innocuousness further.
Antidiarrhoeal efficacy of Mangifera indica seed kernel on Swiss albino mice.
Rajan, S; Suganya, H; Thirunalasundari, T; Jeeva, S
2012-08-01
To examine the antidiarrhoeal activity of alcoholic and aqueous seed kernel extract of Mangifera indica (M. indica) on castor oil-induced diarrhoeal activity in Swiss albino mice. Mango seed kernels were processed and extracted using alcohol and water. Antidiarrhoeal activity of the extracts were assessed using intestinal motility and faecal score methods. Aqueous and alcoholic extracts of M. indica significantly reduced intestinal motility and faecal score in Swiss albino mice. The present study shows the traditional claim on the use of M. indica seed kernel for treating diarrhoea in Southern parts of India. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.
2010-01-01
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850
Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L
2010-08-20
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.
Suitability of polystyrene as a functional barrier layer in coloured food contact materials.
Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy
2015-01-01
Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act.
Lubricating Coolant for Cold Rolling of Aluminum and Its Alloys,
The title fluid consists of a mixtures of alkyl esters of high molecular weight acids, an ester of xylitol and a C(subscript 6) or higher fatty acid...molecular weight acids 3-6, an ester of xylitol and a C(subscript 6) or higher fatty acid 1-3, an Al soap 0.3-1, a mineral oil 10-60, a polyoxyethylene
Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.
Ghayal, Dyneshwar; Pandit, Aniruddha B; Rathod, Virendra K
2013-01-01
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10(-3) (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
Wong, Yu Hua; Muhamad, Halimah; Abas, Faridah; Lai, Oi Ming; Nyam, Kar Lin; Tan, Chin Ping
2017-03-15
The effects of frying duration, frying temperature and concentration of sodium chloride on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GEs) of refined, bleached and deodorized (RBD) palm olein during deep-fat frying (at 160°C and 180°C) of potato chips (0%, 1%, 3% and 5% NaCl) for 100min/d for five consecutive days in eight systems were compared in this study. All oil samples collected after each frying cycle were analyzed for 3-MCPD esters, GEs, free fatty acid (FFA) contents, specific extinction at 232 and 268 nm (K 232 and K 268 ), p-anisidine value (pAV), and fatty acid composition. The 3-MCPD ester trend was decreasing when the frying duration increased, whereas the trend was increasing when frying temperature and concentration of NaCl increased. The GEs trend was increasing when the frying temperature, frying duration and concentration of NaCl increased. All of the oil qualities were within the safety limit. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Triacylglycerols (TAGs) are the major molecules of energy storage in eukaryotes. Trees contribute to part of enormous plant oil reserves because fruits and kernels of many trees contain up to 50-80% of oil. TAGs accumulate in oil bodies in plants, similar to oil droplets in animals. Oleosins (OLEs) ...
Matsuura, Tsutashi; Ogawa, Akihiro; Ohara, Yukari; Nishina, Shogo; Nakanishi, Maho; Gohtani, Shoichi
2018-02-01
The effect of alcohols (ethanol, 1-propanol, propylene glycol, glycerin, sucrose) on the phase behavior and emulsification of sucrose stearic acid ester (SSE)/water/edible vegetable oil (EVO) systems was investigated. Adding sucrose, propylene glycol, and glycerin narrowed the oil-separated two-phase region in the phase diagram of the SSE/water/EVO systems, whereas adding ethanol and 1-propanol expanded the oil-separated two-phase region. Changing the course of emulsification in the phase diagram showed that the size of the oil-droplet particle typically decreased in a system with a narrowed oil-separated region. The emulsification properties of the systems varied with respect to changes in the phase diagram. The microstructure of the systems was examined using small-angle X-ray scattering, and the ability to retain the oil in the lamellar structure of the SSEs was suggested as an important role in emulsification, because the mechanism of the systems was the same as that for the liquid crystal emulsification method.
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.342 - Chlorpyrifos; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., oil 20 Corn, field, forage 8.0 Corn, field, grain 0.05 Corn, field, refined oil 0.25 Corn, field, stover 8.0 Corn, sweet, forage 8.0 Corn, sweet, kernel plus cob with husk removed 0.05 Corn, sweet...
40 CFR 180.666 - Fluxapyroxad; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., meat 0.01 Cattle, meat byproducts 0.03 Corn, field, grain 0.01 Corn, oil 0.03 Corn, pop, grain 0.01 Corn, sweet, kernels plus cobs with husks removed 0.15 Cotton, gin byproducts 0.01 Cotton, undelinted...; except corn, pop, grain; except corn, kernels plus cobs with husks removed; except rice; except wheat 3.0...
40 CFR 180.666 - Fluxapyroxad; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... corn, pop, grain; except corn, kernels plus cobs with husks removed; except wheat) 3.0 Grain, cereal..., meat byproducts 0.03 Corn, field, grain 0.01 Corn, oil 0.03 Corn, pop, grain 0.01 Corn, sweet, kernels plus cobs with husks removed 0.15 Cotton, gin byproducts 0.01 Cotton, undelinted seed 0.01 Egg 0.002...
Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei
2018-01-01
The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a high value α-olefin product with high carbon utilization.
Sampieri, B R; Furquim, K C S; Nunes, P H; Camargo-Mathias, M I
2013-02-01
Tick control has been accomplished through the use of synthetic acaricides, which has created resistant individuals, as well as contaminating the environment and nontarget organisms. Substances of plant origin, such as oils and extracts of eucalyptus and neem leaves, have been researched as an alternative to replace the synthetic acaricides. Ricinoleic acid esters from castor oil have recently been shown as a promising alternative in eliminating bacterial contamination during ethanol fermentation, by acting as an effective biocide. The same positive results have been observed when these esters are added to the food given to tick-infested rabbits. This study tested the effect of these substance on the reproductive system of Rhipicephalus sanguineus females, added to rabbit food, more specifically on oogenesis. For this, four groups were established: four control groups (CG1, CG2, CG3, and CG4) and four treatment groups (TG1, TG2, TG3, and TG4) with one rabbit in each (New Zealand White), used as hosts. After full 4 days feeding (semi-engorgement), the females were collected and had their ovaries extracted. In this study, it was observed that R. sanguineus females exposed to esters had their ovaries modified, which was demonstrated through transmission electron microscopy techniques. The addition of ricinoleic esters to the diet of tick-infested rabbits revealed how toxic such substances are for the cytoplasmic organelles of oocytes and pedicel cells. These compounds can change the morphophysiology of germ and somatic cells, consequently influencing their viability and, therefore, confirming that the ricinoleic acid esters from castor oil are a promising substance in the control of R. sanguineus.
NASA Astrophysics Data System (ADS)
Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil
2017-03-01
Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.
Eras, Jordi; Ferran, Javier; Perpiña, Belén; Canela, Ramon
2004-08-20
Acylglycerides present in oil seeds and meat can be transformed into volatile fatty esters using chlorotrimethylsilane (CTMS) and 1-pentanol as reagents. The volatile esters can then be analysed by GC. The method is quantitative and involves only minor sample manipulation. It often permits major recoveries of the total saponifiable lipids present in solid samples. A 40 min reaction time is enough to ensure the total conversion of saponifiable lipids to the corresponding FAPEs.
Mitigation of 3-Monochloro-1,2-propanediol Ester Formation by Radical Scavengers.
Zhang, Hai; Jin, Pengwei; Zhang, Min; Cheong, Ling-Zhi; Hu, Peng; Zhao, Yue; Yu, Liangli; Wang, Yong; Jiang, Yuanrong; Xu, Xuebing
2016-07-27
The present study investigated the possible mechanism of free radical scavengers on mitigation of 3-monochloro-1,2-propanediol (3-MCPD) fatty acid ester formation in vegetable oils. The electron spin resonance investigation showed that the concentration of free radicals could be clearly decreased in 1,2-distearoyl-sn-glycerol (DSG) samples by all four antioxidants (l-ascorbyl palmitate, α-tocopherol, lipophilic tea polyphenols, and rosemary extract) at 120 °C for 20 min under a N2 atmosphere. Moreover, the rosemary extract exhibited the highest inhibition efficiency. The Fourier transform infrared spectroscopy examination of DSG with α-tocopherol at 25 and 120 °C revealed that α-tocopherol could prevent the involvement of an ester carbonyl group of DSG in forming the cyclic acyloxonium free radical intermediate. Furthermore, the ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry analysis showed that α-tocopherol could suppress the formation of 3-MCPD di- and monoesters. Finally, the four antioxidants could decrease 3-MCPD esters in the palm oil during deodorization. Particularly, the rosemary extract also showed the highest efficiency in 3-MCPD ester mitigation.
40 CFR 116.4 - Designation of hazardous substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ammonium sulfocyanide Amly acetate 628637 Amylacetic ester iso- 123922 Pear oil sec- 626380 Banana oil tert... Antimony trifluoride 7783564 Antimony fluoride Antimony trioxide 1309644 Diantimony trioxide, flowers of...
40 CFR 116.4 - Designation of hazardous substances.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ammonium sulfocyanide Amly acetate 628637 Amylacetic ester iso- 123922 Pear oil sec- 626380 Banana oil tert... Antimony trifluoride 7783564 Antimony fluoride Antimony trioxide 1309644 Diantimony trioxide, flowers of...
40 CFR 116.4 - Designation of hazardous substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ammonium sulfocyanide Amly acetate 628637 Amylacetic ester iso- 123922 Pear oil sec- 626380 Banana oil tert... Antimony trifluoride 7783564 Antimony fluoride Antimony trioxide 1309644 Diantimony trioxide, flowers of...
Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L
2015-02-01
Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gamma irradiation of peanut kernel to control mold growth and to diminish aflatoxin contamination
NASA Astrophysics Data System (ADS)
Y.-Y. Chiou, R.
1996-09-01
Peanut kernel inoculated with Aspergillus parasiticus conidia were gamma irradiated with 0, 2.5, 5.0 and 10 kGy using Co60. Levels higher than 2.5 kGy were effective in retarding the outgrowth of A. parasiticus and reducing the population of natural mold contaminants. However, complete elimination of these molds was not achieved even at the dose of 10 kGy. After 4 wk incubation of the inoculated kernels in a humidified condition, aflatoxins produced by the surviving A. parasiticus were 69.12, 2.42, 57.36 and 22.28 μ/g, corresponding to the original irradiation levels. Peroxide content of peanut oils prepared from the irradiated peanuts increased with increased irradiation dosage. After storage, at each irradiation level, peroxide content in peanuts stored at -14°C was lower than that in peanuts stored at an ambient temperature. TBA values and CDHP contents of the oil increased with increased irradiation dosage and changed slightly after storage. However, fatty acid contents of the peanut oil varied in a limited range as affected by the irradiation dosage and storage temperature. The SDS-PAGE protein pattern of peanuts revealed no noticeable variation of protein subunits resulting from irradiation and storage.
USDA-ARS?s Scientific Manuscript database
Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...
Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels
NASA Astrophysics Data System (ADS)
Klyus, Oleg; Bezyukov, O.
2017-06-01
The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.
Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul
2009-10-01
Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.
Ruiz-Aracama, Ainhoa; Goicoechea, Encarnación; Guillén, María D
2017-08-01
Proton Nuclear Magnetic Resonance ( 1 H NMR) was employed to study monovarietal commercial Spanish extra-virgin olive oils (EVOO) (Arbequina, Arroniz, Cornicabra, Hojiblanca and Picual). Each sample was analyzed by a standard pulse and by an experiment suppressing the main lipid signals, enabling the detection of signals of minor components. The aim was to determine the possibilities of both 1 H NMR approaches to characterize EVOO composition, focusing on acyl groups, squalene, sterols, triterpene acids/esters, fatty alcohols, wax esters and phenols (lignans, tyrosol, hydroxytyrosol, oleocanthal, oleacein, oleokoronal, oleomissional, ligstrodials and oleuropeindials), and to determine hydrolysis and oxidation levels. The signal assignments (in deuterated chloroform) are thoroughly described, identifying for the first time those of the protons of esters of phytol and of geranylgeraniol. Correct signal assignment is fundamental for obtaining sound results when interpreting statistical data from metabolomic studies of EVOO composition and adulteration, making it possible to differentiate and classify oils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jabeur, Hazem; Zribi, Akram; Abdelhedi, Ridha; Bouaziz, Mohamed
2015-02-15
The present paper accounts for the study of the storage of Chemlali olive fruits at two conditions of limited aerobiosis: in closed plastic bags and in open perforated plastic boxes for different periods before oil extraction. The ultimate objective is to investigate the effect of the container type of the postharvest fruit storage on the deterioration of the olive oil quality. The results have shown that the oil quality of Chemlali olives deteriorated more rapidly during fruit storage in closed plastic bags than in perforated plastic boxes. Therefore, the use of perforated plastic boxes is recommended for keeping the olives for longer periods of storage. The repeated measures analysis of variance of all parameters analyzed indicated that the olive oil quality is mainly affected by the olives storage conditions (containers type and storage periods). Finally, blends of extra-virgin olive oil and mildly deodorized low-quality olive oils can be detected by their alkyl esters concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vaikousi, Hariklia; Lazaridou, Athina; Biliaderis, Costas G; Zawistowski, Jerzy
2007-03-07
The thermal properties, solubility characteristics, and crystallization kinetics of four commercial phytosterol preparations (soy and wood sterols and stanols) and their blends with corn oil were examined. Differential scanning calorimetry (DSC) revealed narrow melting peaks between 138 and 145 degrees C for all phytosterol samples, reversible on rescan. Broader and less symmetrical melting transitions at lower temperatures with increasing oil content were observed for two samples of phytosterol-oil admixtures. The estimated, from the solubility law, deltaH values (34.7 and 70.7 mJ/mg for wood sterols and stanols, respectively), were similar to the DSC experimental data. Fatty acid esters of soy stanols differing in the chain length of the acyl groups (C2-C12) exhibited suppression of the melting point and increase of the fusion enthalpy with increasing chain length of the acyl group; the propionate ester exhibited the highest melting point (Tm: 151 degrees C) among all stanol-fatty acid esters. Solubility of phytosterols in corn oil was low (2-3% w/w at 25 degrees C) and increased slightly with a temperature rise. Plant sterols appeared more soluble than stanols with higher critical concentrations at saturation. The induction time for recrystallization of sterol-oil liquid blends, as determined by spectrophotometry, depended on the supersaturation ratio. The calculated interfacial free energies between crystalline sediments and oil were smaller for sterol samples (3.80 and 3.85 mJ/m2) than stanol mixtures (5.95 and 6.07 mJ/m2), in accord with the higher solubility of the sterol crystals in corn oil. The XRD patterns and light microscopy revealed some differences in the characteristics among the native and recrystallized in oil phytosterol preparations.
Oparaocha, Evangeline T; Iwu, Iraneus; Ahanakuc, J E
2010-03-01
The study examined the mosquito-repellent and mosquitocidal activities of the volatile oil of Ocimum gratissimum at three different locations (World Bank Estate, Ihitte and Umuekunne) in Imo State, eastern Nigeria, with the purpose of sourcing for mosquito repellent that is cheap, abundant, environment and user-friendly. Four different lotions; 20% (v/v) and 30% (v/v) concentrations each of the extracted volatile oil in two natural oil bases (olive and palm kernel) were made and six volunteered human baits were used to evaluate the mosquito repellent and mosquitocidal activities of the stock materials at the three different centres from September to November 2008. Topical application of each of the four different lotions significantly (p <0.05) reduced the biting rate of mosquitoes in all the three locations tested. The 30% (v/v) concentration in olive oil base exhibiting highest average percentage repellencies of 97.2, 95.7 and 96.3% at World Bank Estate, Ihitte and Umuekunne centres respectively while the 20% (v/v) concentration in palm kernel oil base had the least repellency of 36.3, 41.6 and 36.3%, respectively. The other two formulations had values ranging from 67.8 to 80% in the three locations. The 30% (v/v) concentration in both olive and palm kernel oil bases afforded all night protection against mosquito bites in all the centres, and demonstrated fast knockdown and paralyzing effect on few mosquitoes at the urban centre (World Bank Estate). The study confirms that O. gratissimum grown in eastern Nigeria has mosquito-repellent and mosquitocidal potentials and the formulations could be used to reduce human-mosquito contacts and hence mosquito-borne diseases and irritations caused by their bites.
Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.
Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan
2017-12-01
The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik
2010-12-01
Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.
Applicability of spectral indices on thickness identification of oil slick
NASA Astrophysics Data System (ADS)
Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo
2016-10-01
Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.
Evans, Kervin O; Laszlo, Joseph A; Compton, David L
2015-05-01
The phenols hydroxytyrosol and tyrosol made abundantly available through olive oil processing were enzymatically transesterified into effective lipophilic antioxidants with cuphea oil. The hydroxytyrosyl and tyrosyl esters made from cuphea oil were assessed for their ability to partition into, locate within and effect the bilayer behavior of 1,2-dioloeoylphosphatidylcholine liposomes and compared to their counterparts made from decanoic acid. Partitioning into liposomes was on the same scale for both hydroxytyrosyl derivatives and both tyrosyl derivatives. All were found to locate nearly at the same depth within the bilayer. Each was found to affect bilayer behavior in a distinct manner. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, B.
1973-01-01
From international colloquium: the identification of irradiated foodstuffs; Karlsrahe, Germany (24 Oct 1973). Tripalmitate, tristearate, trioleate, oleic acid methyl ester, linoleic acid methyl ester, lauric acid, lard, coconut butter, sunflower oil, and olive oil were irradiated at 0.5-6 Mrad,or heated up to 174 deg C for 24 hr. The fission products were fractionally distilled with silica gel according to polarity into elutropic series. Subsequent identification and quantitative determination were done by gas chromatography and mass spectrometry. Approximately 28 hydrocarbons and 24 oxygen compounds are dealt with, the typical substances being described individually as regards their identification and quantitative distribution. (GE)
40 CFR 180.535 - Fluroxypyr 1-methylheptyl ester; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
....0 Cattle, fat 0.1 Cattle, kidney 1.5 Cattle, meat 0.1 Cattle, meat byproducts 0.1 Corn, field, forage 1.0 Corn, field, grain 0.02 Corn, field, stover 0.5 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 2.0 Fruit, pome, group 11 0.02 Garlic, bulb 0.03...
40 CFR 180.535 - Fluroxypyr 1-methylheptyl ester; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
....0 Cattle, fat 0.1 Cattle, kidney 1.5 Cattle, meat 0.1 Cattle, meat byproducts 0.1 Corn, field, forage 1.0 Corn, field, grain 0.02 Corn, field, stover 0.5 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed 0.02 Corn, sweet, stover 2.0 Fruit, pome, group 11 0.02 Garlic, bulb 0.03...
USDA-ARS?s Scientific Manuscript database
Effective lipophilic antioxidants were readily prepared by non-aqueous enzymatic transesterification of plant phenols with cuphea oil. Tyrosol (2-(4-hydroxyphenyl)ethanol) and hydroxytyrosol (2-(3,4-dihydroxyphenyl)ethanol), abundantly available phenols from olive oil processing byproduct, were foun...
USDA-ARS?s Scientific Manuscript database
Cuphea is a new crop of temperate regions that produces seed oil with medium-chain length fatty acids, which can substitute for imported coconut and palm kernels oils. Only four herbicides are known to be tolerated by cuphea to date. More herbicides, especially POST products, are needed for continue...
NASA Astrophysics Data System (ADS)
Taslim, Indra, Leonardo; Manurung, Renita; Winarta, Agus; Ramadhani, Debbie Aditia
2017-03-01
Biodiesel is usually produced from transesterification using methanol or ethanol as alcohol. However, biodiesel produced using methanol has several disadvantages because methanol is toxic and not entirely bio-based as it is generally produced from petroleum, natural gas and coal. On the other hand, ethanol also has several disadvantages such as lower reactivity in transesterification process and formation of stable emulsion between ester and glycerol. To improve ethanolysis process, deep eutectic solvent (DES) was prepared from choline chloride and ethylene glycol to be used as co-solvent in ethanolysis. Deep eutectic solvent was prepared by mixing choline chloride and ethylene glycol at molar ratio of 1:2, temperature of 80 °C, and stirring speed of 300 rpm for 1 hour. The DES was characterized by its density and viscosity. The ethanolysis of DPO / Degummed Palm Oil was performed at 70 °C, ethanol to oil molar ratio of 9:1, catalyst (potassium hydroxide) concentration of 0.75 wt.% concentration, co-solvent (DES) concentration of 1, 2, 3, 4, 5 and 6 wt.%, stirring speed of 600 rpm, and reaction time of 1 hour. The obtained biodiesel was then characterized by its density, viscosity and ester content. The oil - ethanol phase condition was observed in reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to that without DES. Which implied that oil and ethanol become more slightly miscible, which favours the reaction. Using DES as co-solvent in ethanolysis resulted in an increase in yield and easier purification. The esters properties met the international standards ASTM D6751, with highest yield achieved at 81.72 % with 99.35 % ethyl ester contents at 4% DES concentration.
Ermacora, Alessia; Hrnčiřík, Karel
2014-01-01
Substantial progress has been recently made in the development and optimisation of analytical methods for the quantification of 2-MCPD, 3-MCPD and glycidyl esters in oils and fats, and there are a few methods currently available that allow a reliable quantification of these contaminants in bulk oils and fats. On the other hand, no standard method for the analysis of foodstuffs has yet been established. The aim of this study was the development and validation of a new method for the simultaneous quantification of 2-MCPD, 3-MCPD and glycidyl esters in oil-based food products. The developed protocol includes a first step of liquid-liquid extraction and purification of the lipophilic substances of the sample, followed by the application of a previously developed procedure based on acid transesterification, for the indirect quantification of these contaminants in oils and fats. The method validation was carried out on food products (fat-based spreads, creams, margarine, mayonnaise) manufactured in-house, in order to control the manufacturing process and account for any food matrix-analyte interactions (the sample spiking was carried out on the single components used for the formulations rather than the final products). The method showed good accuracy (the recoveries ranged from 97% to 106% for bound 3-MCPD and 2-MCPD and from 88% to 115% for bound glycidol) and sensitivity (the LOD was 0.04 and 0.05 mg kg(-1) for bound MCPD and glycidol, respectively). Repeatability and reproducibility were satisfactory (RSD below 2% and 5%, respectively) for all analytes. The levels of salts and surface-active compounds in the formulation were found to have no impact on the accuracy and the other parameters of the method.
Chai, Xiu-Hang; Meng, Zong; Cao, Pei-Rang; Liang, Xin-Yu; Piatko, Michael; Campbell, Shawn; Koon Lo, Seong; Liu, Yuan-Fa
2018-07-30
Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from β' to β occurred in FHPKO after the removal of minor components, and from α to β' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sundararaman, B; Muthuramu, K L
2016-11-01
The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.
Yan, Xiaobo; Wu, Shaoming; Li, Nan; Lü, Huadong; Fu, Wusheng
2013-02-01
Fatty acid esters of chloropropanediols are a kinds of newly emerged food contaminants, especially 3-monochloropropane-1,2-diol (3-MCPD) esters that have been detected in many foodstuffs such as infant formula and edible oils at relatively high levels. Based on the Tolerable Dose Intake (TDI) of 3-MCPD, the intake of 3-MCPD from 3-MCPD esters may cause the health risk to human beings. The researches for the analysis of 3-MCPD esters have been carried out in some institutes abroad, but there were only a few in China. This paper reviews the methods for the determination of 3-MCPD esters in fat-rich foods, including the extraction, hydrolysis, the derivatization of 3-MCPD esters, the total amount of 3-MCPD esters and the amounts of monoesters and diesters of 3-MCPD.
Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula
2017-09-01
Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.
Methods of making organic compounds by metathesis
Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John
2015-09-01
Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
Mukherjee, Sohini; Ghosh, Mahua
2017-02-10
The esterification of furfuryl alcohol (FA) and castor oil fatty acid (COFA) at 3:1 molar ratio, by immobilized Candida antarctica Lipase B (NS 435 from Novozyme) in a solvent free system gave a maximum yield of 88.64% (%w/w) at 5h. Performance of the FA-COFA ester plasticized Ethyl Cellulose (EC) films were evaluated by surface morphologies, XRD analysis, mechanical properties,thermal properties, water vapor permeability and migration stability test. It was an effective plasticizer with better mechanical properties and thermal stability at the increasing concentration of FA-COFA ester (15-25%) containing EC film, than the traditional plasticizer, i.e; dibutyl phthalate (DBP) in producing good quality films. Chemical structure and the intermolecular interactions between FA-COFA ester and ethyl cellulose chains were the causative agents of these outstanding performances. Therefore, this FA-COFA ester, with significant plasticizing property, at a certain concentration, can be a substitute of DBP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
Syed, Mahin Basha
2017-01-01
High-performance liquid chromatography (HPLC) was used for the determination of compounds occurring during the production of biodiesel from karanja and jatropha oil. Methanol was used for fast monitoring of conversion of karanja and jatropha oil triacylglycerols to fatty acid methyl esters and for quantitation of residual triacylglycerols (TGs), in the final biodiesel product. The individual sample compounds were identified using HPLC. Analysis of fatty acid methyl esters (FAMES) in blends of biodiesel by HPLC using a refractive index and a UV detector at 238 nm. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min. Hence HPLC was found to be best for the analysis of biodiesel. Analysis of biodiesel by HPLC using RID detector. Estimation of amount of FAMES in biodiesel. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min.
Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiczynski, T.A.; Marolewski, T.A.
1993-03-01
Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.
USDA-ARS?s Scientific Manuscript database
Unpurified red salmon oil (UPSO) was purified (PSO) using chitosan. Both unpurified and purified oils were evaluated for peroxide value (PV), free fatty acids (FFA), fatty acid methyl esters (FAME), moisture, and color. An emulsion system containing PSO (EPSO) was prepared: system was analyzed for c...
USDA-ARS?s Scientific Manuscript database
An initial evaluation of several oils, including: soybean oil (SBO), high oleic SBO, and thermally modified SBO, compared their acid values and viscosities over 28 days stored at 85 deg C. As expected, the acid values and viscosities increased and the high oleic oil demonstrated a smaller effect. ...
NASA Technical Reports Server (NTRS)
Haug, P.; Schnoes, H. K.; Burlingame, A. L.
1971-01-01
Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.
Lipid oxidation. Part 2. Oxidation products of olive oil methyl esters.
Pokorný, J; Tài, P; Parízková, H; Smidrkalová, E; El-Tarras, M F; Janícek, G
1976-01-01
Olive oil was converted into methyl esters which were autoxidized at 60 degrees C. The composition of oxidized products was determined by the comparison of infrared spectra and NMR spectra of the original and acetylated samples, the sample reduced with potassium iodide and the acetylated reduced sample. Oxidized products were separated by preparative thin layer chromatography on silica gel and characterized by selective detection and by infrared spectrometry of the fractions. The oxidation products consisted of hydroperoxido butyl oleate, substituted hydroperoxides, mono- and disubstituted monomeric derivatives and a small amount of oligomers.
Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y
2004-01-01
Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.
Experimental investigation on fuel properties of biodiesel prepared from cottonseed oil
NASA Astrophysics Data System (ADS)
Payl, Ashish Naha; Mashud, Mohammad
2017-06-01
In recent time's world's energy demands are satisfied by coal, natural gas as well as petroleum though the prices of these are escalating. If this continues, global recession is unavoidable and diminution of world reserve accelerates undoubtedly. Recently, Biodiesel is found to be more sustainable, non-toxic and energy efficient alternative which is also biodegradable. The use of biofuels in compression ignition engines is now a contemplation attention in place of petrochemicals. In view of this, cottonseed oil is quite a favorable candidate as an alternative fuel. The present study covers the various aspects of biodiesels fuel prepared from cottonseed oil. In this work Biodiesel was prepared from cottonseed oil through transesterification process with methanol, using sodium hydroxide as catalyst. The fuel properties of cottonseed oil methyl esters, kinematic viscosity, flash point, density, calorific value, boiling point etc. were evaluated and discussed in the light of Conventional Diesel Fuel. The properties of biodiesel produced from cotton seed oil are quite close to that of diesel except from flash point. And so the methyl esters of cottonseed oil can be used in existing diesel engines without any modifications.
Yalegama, L L W C; Nedra Karunaratne, D; Sivakanesan, Ramiah; Jayasekara, Chitrangani
2013-11-01
The coconut kernel residues obtained after extraction of coconut milk (MR) and virgin coconut oil (VOR) were analysed for their potential as dietary fibres. VOR was defatted and treated chemically using three solvent systems to isolate coconut cell wall polysaccharides (CCWP). Nutritional composition of VOR, MR and CCWPs indicated that crude fibre, neutral detergent fibre, acid detergent fibre and hemicelluloses contents were higher in CCWPs than in VOR and MR. MR contained a notably higher content of fat than VOR and CCWPs. The oil holding capacity, water holding capacity and swelling capacity were also higher in CCWPs than in VOR and MR. All the isolates and MR and VOR had high metal binding capacities. The CCWPs when compared with commercially available fibre isolates, indicated improved dietary fibre properties. These results show that chemical treatment of coconut kernel by-products can enhance the performance of dietary fibre to yield a better product. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Allan, Brian G.
2000-01-01
A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) remains after distillation of the fatty acids from tall oil recovered from wood in the course of its chemical disintegration to produce cellulose. In addition to the free resin acids, rosin may contain relatively small proportions of fatty acids, resin esters and other esters, unsaponifiable resenes, and non...
Code of Federal Regulations, 2011 CFR
2011-01-01
...) remains after distillation of the fatty acids from tall oil recovered from wood in the course of its chemical disintegration to produce cellulose. In addition to the free resin acids, rosin may contain relatively small proportions of fatty acids, resin esters and other esters, unsaponifiable resenes, and non...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 [60 FR 49792...
NASA Astrophysics Data System (ADS)
Dora, Nagaraju; Jothi, T. J. Sarvoththama
2018-05-01
The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.
Formation of furan fatty alkyl esters from their bis-epoxide fatty esters
USDA-ARS?s Scientific Manuscript database
Epoxidation of vegetable oils and consecutive epoxide ring-opening reaction is a widely investigated path for producing biobased lubricants and polymers. The reaction mechanism and products are considered well-studied and known. In the current study, the reactions of epoxidized alkyl soyate with fou...
Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...
Haq, I; Muhammad, A; Hameed, U
2014-01-01
The use of alternative fuels for the mitigation of ecological impacts by use of diesel has been focus of intensive research. In the present work, algal oils extracted from cultivated biomass of Cladophora sp., Spirogyra sp. and Oedogonium sp. were evaluated for the lipase-mediated synthesis of fatty acid monoalkyl esters (FAME, biodiesel). To optimize the transesterification of these oils, different parameters such as the alkyl group donor, reaction temperature, stirring time and oil to alcohol ratio were investigated. Four different alcohols i.e. methanol, ethanol, n-propanol and n-butanol were tested as alkyl group donor for the biosynthesis FAME and methanol was found to be the best. Similarly, temperature 50 C and stirring time of 6 h were optimized for the transesterification of oils with methanol. The maximum biodiesel conversions from Cladophora (75.0%), Spirogyra (87.5%) and Oedogonium (92.0%) were obtained when oil to alcohol ratio was 1 : 8.
Essential Oils in Foods: From Ancient Times to the 21st Century.
Sendra, Esther
2016-06-14
Medicinal plants and culinary herbs have been used since ancient times. Essential oils (EO) are a mixture of numerous compounds, mainly terpenes, alcohols, acids, esters, epoxides, aldehydes, ketones,aminesandsulfides,thatareprobablyproducedbyplantsasaresponsetostress[1].[...].
Synthesis biolubricant from rubber seed oil
NASA Astrophysics Data System (ADS)
Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan
2017-09-01
The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.
Transesterification process to manufacture ethyl ester of rape oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korus, R.A.; Hoffman, D.S.; Bam, N.
1993-12-31
A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. Themore » optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].« less
Kathiele Poppe, Jakeline; Matte, Carla Roberta; Olave de Freitas, Vitória; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Záchia Ayub, Marco Antônio
2018-04-30
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed-bed continuous reactor, using mixtures of immobilized lipases (combi-lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions were studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi-lipase composition: 40% of TLL, 35% of CALB, and 25% of RML), and soybean oil (combi-lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert-butanol as solvent, and the flow rate of 0.08 mL min -1 . The combi-lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of approximately 50%, with average productivity of 1.94 g ethyl esters g substrate -1 h -1 , regardless of the type of oil in use. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Oil content in seeds of the NPGS jojoba (Simmondsia chinensis) germplasm collection
USDA-ARS?s Scientific Manuscript database
Jojoba, Simmondsia chinensis, (Link) Schneider is a shrub native to warm and arid land regions of North and Latin America. Its seeds contain vegetable oil composed of long (C20-22), straight-chain liquid wax of non-glyceride esters. Minute amounts of triglycerides in its composition make the oil a l...
Experimental investigation of engine emissions with marine gas oil-oxygenate blends.
Nabi, Md Nurun; Hustad, Johan Einar
2010-07-15
This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.
Jones, G P; Birkett, A; Sanigorski, A; Sinclair, A J; Hooper, P T; Watson, T; Rieger, V
1994-06-01
Quandong kernels are a traditional Aboriginal food item; they are rich in oil and contain large amounts of an unusual fatty acid, trans-11-octadecen-9-ynoic acid (santalbic acid), but it is not known whether this acid is absorbed and/or metabolized. The oil was fed at 12.6% of total energy content in semi-synthetic diets to groups of male Sprague-Dawley rats for 10 and 20 days. Santalbic acid was found in the lipids of plasma, adipose tissue, skeletal muscle, kidney, heart and liver but not in brain. Hepatic microsomal cytochrome P-450 activity in animals fed for 20 days was significantly higher (P < 0.05) than in controls. Histopathological examination did not reveal any lesions in the tissues of any animal fed quandong oil. The fact that santalbic acid was readily absorbed, widely distributed in tissues and was associated with an elevated level of hepatic cytochrome P-450 indicates that further studies are required to investigate whether or not there is a hazard associated with the human practice of consuming quandong kernels.
Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.
Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A
2016-03-01
A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Xiaojing; Xiong, Wenming; Lin, Hua; Zhuo, Liyang; Lv, Shuiyuan; Tang, Xi; Chen, Minshi; Zou, Zhexiang; Lin, Zhenyu; Qiu, Bin; Chen, Guonan
2013-02-01
An RP LC-ESI-MS/MS method for the determination of the migration of 16 primary phthalic acid esters from plastic samples has been developed using distilled water, 3% acetic acid, 10% alcohol, and olive oil as food simulants. Detection limits were 1.6-18.5 μg/kg in distilled water, 1.4-17.3 μg/kg in 3% acetic acid, 1.4-19.2 μg/kg in 10% alcohol, and 31.9-390.8 μg/kg in olive oil. The RSDs were in the range of 0.07-11.28%. The real plastic products inspection showed that only few analyzed samples were phthalates contaminated. Bis-2-ethylhexyl ester and dibutyl phthalate were the common items migrated from the plastic products into food and feeds, but the migration concentrations were far below the limits set by European Union (1.5 mg/kg for bis-2-ethylhexyl ester and 0.3 mg/kg for dibutyl phthalate). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Statistical optimization for lipase production from solid waste of vegetable oil industry.
Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara
2018-04-21
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.
USDA-ARS?s Scientific Manuscript database
Transesterification of refined cottonseed oil was carried out with methanol, ethanol, 1-butanol, and various mixtures of these alcohols at constant volume ratio of alcohol to oil (1:2) using KOH (1 wt%) as catalyst to produce biodiesel. In the mixed alcohol transesterifications, the formation of met...
USDA-ARS?s Scientific Manuscript database
Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, is an alternative to conventional petroleum-based diesel fuel. Biodiesel has been prepared from numerous common vegetable oils or fats as well as new or less common feedstocks. Major issues facing biodiesel include seve...
Zeolite/magnetite composites as catalysts on the Synthesis of Methyl Esters (MES) from cooking oil
NASA Astrophysics Data System (ADS)
Sriatun; Darmawan, Adi; Sriyanti; Cahyani, Wuri; Widyandari, Hendri
2018-05-01
The using of zeolite/magnetite composite as a catalyst for the synthesis of methyl esters (MES) of cooking oil has been performed. In this study the natural magnetite was extracted from the iron sand of Semarang marina beach and milled by high energy Milling (HEM) with ball: magnetite ratio: 1:1. The composites prepared from natural zeolite and natural magnetite with zeolite: magnetite ratio 1:1; 2:1; 3:1 and 4:1. Preparation of methyl ester was catalyzed by composite of zeolite/magnetite through transeserification reaction, it was studied on variation of catalyst concentration (w/v) 1%, 3%, 5% and 10% to feed volume. The reaction product are mixture of methyl Oleic (MES), methyl Palmitic (MES) and methyl Stearic (MES). Character product of this research include density, viscosity, acid number and iodine number has fulfilled to SNI standard 7182: 2015.
Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind
2015-09-01
Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.
Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis.
Li, Chunhong; Ng, Ailing; Xie, Lifen; Mao, Huizhu; Qiu, Chengxiang; Srinivasan, Ramachandran; Yin, Zhongchao; Hong, Yan
2016-01-01
Casbene is a precursor to phorbol esters and down-regulating casbene synthase effectively reduces phorbol ester biosynthesis. Seed-specific reduction of phorbol ester (PE) helps develop Jatropha seed cake for animal nutrition. Phorbol esters (PEs) are diterpenoids present in some Euphorbiaceae family members like Jatropha curcas L. (Jatropha), a tropical shrub yielding high-quality oil suitable as feedstock for biodiesel and bio jet fuel. Jatropha seed contains up to 40 % of oil and can produce oil together with cake containing high-quality proteins. However, skin-irritating and cancer-promoting PEs make Jatropha cake meal unsuitable for animal nutrition and also raise some safety and environmental concerns on its planting and processing. Two casbene synthase gene (JcCASA163 and JcCASD168) homologues were cloned from Jatropha genome and both genes were highly expressed during seed development. In vitro functional analysis proved casbene synthase activity of JcCASA163 in converting geranylgeranyl diphosphate into casbene which has been speculated to be the precursor to PEs. A seed-specific promoter driving inverted repeats for RNAi interference targeting at either JcCASA163 or both genes could effectively down-regulate casbene synthase gene expression with concurrent marked reduction of PE level (by as much as 85 %) in seeds with no pleiotropic effects observed. Such engineered low PE in seed was heritable and co-segregated with the transgene. Our work implicated casbene synthase in Jatropha PE biosynthesis and provided evidence for casbene being the precursor for PEs. The success in reducing seed PE content through down-regulation of casbene synthase demonstrates the feasibility of intercepting PE biosynthesis in Jatropha seed to help address safety concerns on Jatropha plantation and seed processing and facilitate use of its seed protein for animal nutrition.
Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind
2015-01-01
Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298
Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim
2010-05-01
The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
Trox, Jennifer; Vadivel, Vellingiri; Vetter, Walter; Stuetz, Wolfgang; Scherbaum, Veronika; Gola, Ute; Nohr, Donatus; Biesalski, Hans Konrad
2010-05-12
In the present study, the effects of various conventional shelling methods (oil-bath roasting, direct steam roasting, drying, and open pan roasting) as well as a novel "Flores" hand-cracking method on the levels of bioactive compounds of cashew nut kernels were investigated. The raw cashew nut kernels were found to possess appreciable levels of certain bioactive compounds such as beta-carotene (9.57 microg/100 g of DM), lutein (30.29 microg/100 g of DM), zeaxanthin (0.56 microg/100 g of DM), alpha-tocopherol (0.29 mg/100 g of DM), gamma-tocopherol (1.10 mg/100 g of DM), thiamin (1.08 mg/100 g of DM), stearic acid (4.96 g/100 g of DM), oleic acid (21.87 g/100 g of DM), and linoleic acid (5.55 g/100 g of DM). All of the conventional shelling methods including oil-bath roasting, steam roasting, drying, and open pan roasting revealed a significant reduction, whereas the Flores hand-cracking method exhibited similar levels of carotenoids, thiamin, and unsaturated fatty acids in cashew nuts when compared to raw unprocessed samples.
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726
40 CFR 180.544 - Methoxyfenozide; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
....0 Canistel 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Citrus, oil 100 Coriander, leaves 30 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0...
Viscous lubricant composition comprising mixed esters and a silicone oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, P.J.
1981-03-03
A viscous composition capable of substantially retaining its viscosity within a temperature range of from 5*-30* C. Comprising as its components diisopropyl adipate, a mixture of cetyl and stearyl octanoates, glyceryl tribehenate, silicone oil and a surfactant is described.
Phenylpropanoid esters of lesquerella and castor oil
USDA-ARS?s Scientific Manuscript database
Lesquerella (LO) and castor oil (CO) were esterified at the secondary hydroxyl groups of their 14-hydroxyeicos-cis-11-enoic fatty acids and 12-hydroxyoctadec-cis-9-enoic fatty acids, respectively, with 4-acetoxy-3-methoxycinnamic acid (acetoxyferulic acid). The unconventional esterifications were co...
Leigh, Jessica; MacMahon, Shaun
2017-03-01
This work presents occurrence data for fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD) and glycidol in 98 infant formula samples purchased in the United States. These contaminants are considered potentially carcinogenic and/or genotoxic, making their presence in refined oils and foods a potential health risk. Recently, attention has focused on methodology to quantify MCPD and glycidyl esters in infant formula for risk-assessment purposes. Occurrence data for 3-MCPD and glycidyl esters were produced using a procedure for extracting fat from infant formula and an LC-MS/MS method for analysing fat extracts for intact esters. Infant formulas were produced by seven manufacturers, five of which use palm oil and/or palm olein in their formulations. In formulas containing palm/palm olein, concentrations for bound 3-MCPD and glycidol ranged from 0.021 to 0.92 mg kg - 1 (ppm) and from < LOQ to 0.40 mg kg - 1 (ppm), respectively. Formulas not containing palm/palm olein, bound 3-MCPD and glycidol concentrations ranged from 0.072 to 0.16 mg kg - 1 (ppm) and from 0.005 to 0.15 mg kg - 1 (ppm), respectively. Although formulas from manufacturers A and G did not contain palm/palm olein, formulas from manufacturer E (containing palm olein) had the lowest concentrations of bound 3-MCPD and glycidol, demonstrating the effectiveness of industrial mitigation strategies.
Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.
Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C
2012-08-01
Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.
USDA-ARS?s Scientific Manuscript database
The production of fatty acid methyl esters (FAME) by direct alkali- and acid-catalyzed in situ transesterification of soybean flakes in CO2-expanded methanol was examined at various temperatures and pressures. Attempts to synthesize FAME from soy flakes via alkaline catalysis, using sodium methoxid...
Shaikh, Saame Raza; Shaver, Patti R; Shewchuk, Brian M
2018-05-08
Dietary fat composition can modulate gene expression in peripheral tissues in obesity. Observations of the dysregulation of growth hormone (GH) in obesity indicate that these effects extend to the hypothalamic-pituitary (H-P) axis. The authors thus determine whether specific high fat (HF) diets influence the levels of Gh and other key gene transcripts in the H-P axis. C57BL/6 mice are fed a lean control diet or a HF diet in the absence or presence of OA, EPA, or DHA ethyl esters. Comparative studies are conducted with menhaden fish oil. The HF diet lowered pituitary Gh mRNA and protein levels, and cell culture studies reveal that elevated insulin and glucose can reduce Gh transcripts. Supplementation of the HF diet with OA, EPA, DHA, or menhaden fish oil do not improve pituitary Gh levels. The HF diet also impaired the levels of additional genes in the pituitary and hypothalamus, which are selectively rescued with EPA or DHA ethyl esters. The effects of EPA and DHA are more robust relative to fish oil. A HF diet can affect H-P axis transcription, which can be mitigated in some genes by EPA and DHA, but not fish oil in most cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost
NASA Astrophysics Data System (ADS)
Olagunju, O. A.; Musonge, P.
2017-07-01
This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.
Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I
2013-12-01
The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.
Effect of water on foaming properties of diglycerol fatty acid ester-oil systems.
Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Solans, Conxita; Aramaki, Kenji
2007-06-19
We have studied the effect of added water on the nonaqueous foaming properties of diglycerol fatty acid ester nonionic surfactant systems. Diglycerol monomyristate (designated as DGM) could not foam in nonpolar oils squalane and hexadecane at normal room temperature. Nevertheless, addition of a small amount of water induces a dramatic change in foaming properties. Both the foamability and foam stability increases with the amount of added water within the studied concentration range. Phase behavior study showed that in the dilute regions there is dispersion of solid surfactant in the aforementioned oils in the DGM systems. The particle size of the dispersed solid phase was found to be several tens of microns in the water free system, and hence it tends to coagulate and precipitate. In the case of shorter alkyl chain length, diglycerol monolaurate (DGL) surfactant-oil systems, dispersion of lamellar liquid crystal (Lalpha) is observed at room temperature, and the poor foaming properties were attributed to the large particle size of the liquid crystal. In both the DGL and DGM-oil systems, we observed a tendency of the particle size to decrease with the increasing concentration of added water. At higher temperature, the solid surfactant transforms to lamellar liquid crystal phase, and foaming is improved in the DGM/squalane system. Foams are stable for several minutes. Judging from the foaming test and particle size distribution data it can be concluded that the poor foaming in the diglycerol fatty acid esters-oil systems may possibly be due to bigger particle size, which causes precipitation. Addition of water results in the dispersion of smaller particles and improves the foaming behavior.
Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha
2014-01-01
Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198
Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha
2014-11-06
Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.
Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst.
Tian, Wenying; Liu, Renlong; Wang, Wenjia; Yin, Zhaosen; Yi, Xuewen
2018-05-04
In this study, the effects of reaction temperature, holding time, algae/water ratio and catalyst dosage on the yield and quality of bio-oil produced via the HTL of Spirulina were investigated. The maximum bio-oil yield (43.05 wt%) and energy recovery (ER) value (64.62%) were obtained at 260 °C for 30 min, with an algae/water ratio of 1/4 and a catalyst dosage of 5 wt%. The bio-oil samples were characterized by elemental analysis, Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared (FI-IR), and Thermo-gravimetric analysis (TGA). Results indicated that higher heating values (HHVs) of bio-oils were in the range of 27.28-36.01 MJ/kg, and main compounds of bio-oil were amides, esters, nitriles, hydroperoxide and alkanes. Adding of the Ni/TiO 2 catalyst can decrease the contents of oxygenated and nitrogenous compounds and promote the formation of desirable components such as esters and alkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alberdi-Cedeño, Jon; Ibargoitia, María L; Cristillo, Giovanna; Sopelana, Patricia; Guillén, María D
2017-04-15
The possibilities offered by a new methodology to determine minor components in edible oils are described. This is based on immersion of a solid-phase microextraction fiber of PDMS/DVB into the oil matrix, followed by Gas Chromatography/Mass Spectrometry. It enables characterization and differentiation of edible oils in a simple way, without either solvents or sample modification. This methodology allows simultaneous identification and quantification of sterols, tocols, hydrocarbons of different natures, fatty acids, esters, monoglycerides, fatty amides, aldehydes, ketones, alcohols, epoxides, furans, pyrans and terpenic oxygenated derivatives. The broad information provided by this methodology is useful for different areas of interest such as nutritional value, oxidative stability, technological performance, quality, processing, safety and even the prevention of fraudulent practices. Furthermore, for the first time, certain fatty amides, gamma- and delta-lactones of high molecular weight, and other aromatic compounds such as some esters derived from cinnamic acid have been detected in edible oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H
2017-01-01
The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Analysis of EPA and DHA in the viscera of marine fish using gas chromatography.
Zhang, De-Yong; Xu, Xiao-Lu; Shen, Xiu-Ying; Mei, Yu; Xu, Hui-Ying
2016-03-01
The viscera of 10 kinds of marine fishes were collected for fish oil extraction and detection of DHA and EPA, two most important polyunsaturated fatty acids. The fish oil extraction ratio for the evaluated fishes varied from 0.95% to 10.18% (wt%). Pseudosciaena crocea presented the highest fish oil yield, followed by Mustelus manazo, Hippoglossus and Sciaenopsocellatus. A gas chromatography method was then established for analysis of EPA/DHA. The EPA concentration (in methyl ester form) in the fish oil varied from 1.39 to 10.65(mg/g). Epinephelus awoara presented the highest EPA concentration (p<0.05), followed by Epinephelussp, Sciaenopsocellatus and Hippoglossus. The DHA concentration (in methyl ester form) in the fish oil varied from 0.58 to 37.02 (mg/g). Epinephelus awoara presented the highest DHA concentration (p<0.05), followed by Sciaenopsocellatus, Pseudosciaena crocea and Hippoglossus. No strict positive correlation between the EPA/DHA concentration and the sea depth where the fish live was observed. The fishes living in middle depth presented highest EPA/DHA concentration.
NASA Astrophysics Data System (ADS)
Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling
2016-10-01
A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.
NASA Technical Reports Server (NTRS)
Chisnell, J. R.; Bandurski, R. S.
1988-01-01
Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.
Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni
2005-08-05
The migration of epoxidized soy bean oil (ESBO) from the gasket in the lids of glass jars into foods, particularly those rich in edible oil, often far exceeds the legal limit (60 mg/kg). ESBO was determined through a methyl ester isomer of diepoxy linoleic acid. Transesterification occurred directly in the homogenized food. From the extracted methyl esters, the diepoxy components were isolated by normal-phase LC and transferred on-line to gas chromatography with flame ionization detection using the on-column interface in the concurrent solvent evaporation mode. The method involves verification elements to ensure the reliability of the results for every sample analyzed. The detection limit is 2-5 mg/kg, depending on the food. Uncertainty of the procedure is below 10%.
Glycerol extracting dealcoholization for the biodiesel separation process.
Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng
2011-04-01
By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina.
Cansian, R L; Vanin, A B; Orlando, T; Piazza, S P; Puton, B M S; Cardoso, R I; Gonçalves, I L; Honaiser, T C; Paroul, N; Oliveira, D
2017-03-01
The production of compounds via enzymatic esterification has great scientific and technological interest due to the several inconveniences related to acid catalysis, mainly by these systems do not fit to the concept of "green chemistry". Besides, natural products as clove oil present compounds with excellent biological potential. Bioactives compounds are often toxic at high doses. The evaluation of lethality in a less complex animal organism can be used to a monitoring simple and rapid, helping the identification of compounds with potential insecticide activity against larvae of insect vector of diseases. In this sense, the toxicity against Artemia salina of clove essential oil and its derivative eugenyl acetate obtained by enzymatic esterification using Novozym 435 as biocatalyst was evaluated. The conversion of eugenyl acetate synthesis was 95.6%. The results about the evaluation of toxicity against the microcrustacean Artemia salina demonstrated that both oil (LC50= 0.5993 µg.mL-1) and ester (LC50= 0.1178 µg.mL-1) presented high toxic potential, being the eugenyl acetate almost 5 times more toxic than clove essential oil. The results reported here shows the potential of employing clove oil and eugenyl acetate in insecticide formulations.
Qiu, Xujian; Jacobsen, Charlotte; Villeneuve, Pierre; Durand, Erwann; Sørensen, Ann-Dorit Moltke
2017-11-01
Antioxidant effects of ferulic acid and lipophilized ferulate esters were investigated in fish oil-enriched milk. Methyl ferulate (C1) and ethyl ferulate (C2) more efficiently prevented lipid oxidation than dodecyl ferulate (C12) did, followed by ferulic acid (C0). The combination of C1 or C2 with C12 could have a "synergistic" effect indicated by peroxide value, hexanal, and 1-penten-3-ol analysis results. These antioxidants also showed protein oxidation inhibition effects. The most effective antioxidants (C1 and C2) had the highest concentration in the precipitate phase but the lowest concentration in the aqueous phase, which was the opposite of the partitioning of C0. C12 had the highest concentration in the oil and emulsion phase. In particular, the interaction between ferulates esterified with short and medium alkyl chain lengths could lead to their "synergistic" effects in fish oil-enriched milk, which could be caused by the change in their partitioning or localization at the interface.
Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.).
Zitterl-Eglseer, K; Sosa, S; Jurenitsch, J; Schubert-Zsilavecz, M; Della Loggia, R; Tubaro, A; Bertoldi, M; Franz, C
1997-07-01
Separation and isolation of the genuine faradiol esters (1, 2) from flower heads of Marigold (Calendula (officinalis L., Asteraceae) could be achieved by means of repeated column chromatography (CC) and HPLC for the first time. Structure elucidation of faradiol-3-myristic acid ester 1, faradiol-3-palmitic acid ester 2 and psi-taraxasterol 3 has been also performed, without any previous degradation by means of MS, 1H-NMR, 13C-NMR and 2D-NMR experiments. The anti-oedematous activities of these three compounds were tested by means of inhibition of Croton oil-induced oedema of the mouse ear. Both faradiol esters showed nearly the same dose dependent anti-oedematous activity and no significant synergism appeared with their mixture. The free monol, psi-taraxasterol, had a slightly lower effect. Furthermore, faradiol was more active than its esters and than psi-taraxasterol and showed the same effect as an equimolar dose of indomethacin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stryjek, R.; Bobbo, S.; Camporese, R.
1999-05-01
Activity coefficients at infinite dilution have been measured by gas chromatography for 14 refrigerants (R12, R22, R32, R124, R125, R134a, R142b, R143a, RE170, R236ea, R290, R600, R600a, and R236fa) as solutes, using a polyol ester oil (POE), EMKARATE by ICI, as a stationary phase (solvent). Instrumental analysis (NMR, IR) showed that the main components of the oil are pentaerithritol esters of carboxylic acids, and electrospray ionization spectrometry revealed an average molecular mass of the POE of 618 g/mol. The measurements were performed within a temperature range of 244 K to 313 K, but a specific temperature range for each refrigerantmore » was adopted depending on its retention data. The experimental findings are well-represented by the equation: ln {gamma}{sub i}{sup {infinity}} = a{sub i} {minus} b{sub i}/T. Some refrigerants, i.e., R22, R124, R125, R236ea, and R236fa, show quite a considerable positive temperature dependence of their activity coefficients at infinite dilution, which can be attributed to hydrogen bonding with the POE, unlike other refrigerants that show a small, either positive or negative temperature dependence. To the authors` knowledge, there are no data in the literature on activity coefficients at infinite dilution for refrigerant and oil (lubricant) systems, and details on the solubility of refrigerants in oils are also extremely scarce.« less
Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan
2018-02-01
In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.
40 CFR 180.544 - Methoxyfenozide; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 0.6 Cattle, fat 0.50 Cattle, meat 0.02 Cherimoya 0.60 Citrus, oil 100 Corn, field, forage 15 Corn, field, grain 0.05 Corn, field, refined oil 0.20 Corn, field, stover 125 Corn, pop, grain 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet...
Wong, Yoke-Ming; Brigham, Christopher J; Rha, ChoKyun; Sinskey, Anthony J; Sudesh, Kumar
2012-10-01
The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Antioxidation behavior of milkweed oil 4-hydroxy-3-methyoxycinnamate esters in phospholipid bilayers
USDA-ARS?s Scientific Manuscript database
Milkweed (Asclepia syriaca) has seed oil that is rich in polyunsaturated triacylglycerides that contain olefinic groups. The olefinic groups can be chemically oxidized to form either epoxy or polyhydroxy triacylglycerides that can be esterified with trans-4-hydroxy-3-methoxoycinnamic acid, commonly...
Biodiesel from non-food alternative feed-stock
USDA-ARS?s Scientific Manuscript database
As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...
Biodiesel lubricity and other properties
USDA-ARS?s Scientific Manuscript database
Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an “alternative” diesel fuel that is becoming accepted in a steadily growing number of countries worldwide. Since the source of biodiesel varies with the location, and other sources such as recycled oils are continuousl...
Counter-current carbon dioxide purification of partially deacylated sunflower oil
USDA-ARS?s Scientific Manuscript database
High oleic sunflower oil was partially deacylated by propanolysis to produce a mixture of diglycerides and triglycerides. To remove by-product fatty acid propyl esters (FAPEs) from this reaction mixture, a liquid carbon dioxide (L-CO2) counter-current fractionation method was developed. The fracti...
Code of Federal Regulations, 2010 CFR
2010-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2012 CFR
2012-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2011 CFR
2011-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Code of Federal Regulations, 2014 CFR
2014-04-01
... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...-octadecadienoic acids). The food additive, methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10... conditions: (a) The food additive is manufactured by the reaction of refined sunflower oil with methanol to...
Chowdhury, Avisha; Mitra, Debarati
2015-01-01
Octyl esters can serve as an important class of biolubricant components replacing their mineral oil counterparts. The purpose of the current work was to investigate the enzymatic esterification reaction of free fatty acids (FFA, from waste cooking oil) with octanol in a solvent-free system using a commercial lipase Novozyme 435. It was found that the esterificaton reaction followed the Ping-pong bi-bi kinetics with no inhibition by substrates or products within the studied concentration range. The maximum reaction rate was estimated to be 0.041 mol L(-1) g(-1) h(-1) . Additionally, the stability of Novozyme 435 in the current reaction system was studied by determining its activity and final conversion of FFA to esters after 12 successive utilizations. Novozyme 435 exhibited almost 100% enzyme activity up to 7 cycles of reaction and gradually decreased (by 5%) thereafter. The kinetic parameters evaluated from the study shall assist in the design of reactors for large-scale production of octyl esters from a cheap biomass source. The enzyme reusability data can further facilitate mass production by curtailing the cost of expensive enzyme consumption. © 2015 American Institute of Chemical Engineers.
Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A
2016-01-01
This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). Copyright © 2015 Elsevier Ltd. All rights reserved.
Yan, Wei; Li, Furong; Wang, Li; Zhu, Yaxin; Dong, Zhiyang; Bai, Linhan
2017-03-01
A new gene encoding a lipase (designated as Lip-1 ) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.
NASA Astrophysics Data System (ADS)
Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini
2017-09-01
Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.
Weiss, W P; Wyatt, D J
2000-02-01
Corn silages were produced from a high oil corn hybrid and from its conventional hybrid counterpart and were harvested with a standard silage chopper or a chopper equipped with a kernel processing unit. High oil silages had higher concentrations of fatty acids (5.5 vs. 3.4% of dry matter) and crude protein (8.4 vs. 7.5% of dry matter) than the conventional hybrid. Processed silage had larger particle size than unprocessed silage, but more starch was found in small particles for processed silage. Dry matter intake was not influenced by treatment (18.4 kg/d), but yield of fat-corrected milk (23.9 vs. 22.6 kg/d) was increased by feeding high oil silage. Overall, processing corn silage did not affect milk production, but cows fed processed conventional silage tended to produce more milk than did cows fed unprocessed conventional silage. Milk protein percent, but not yield, was reduced with high oil silage. Milk fat percent, but not yield, was higher with processed silage. Overall, processed silage had higher starch digestibility, but the response was much greater for the conventional silage hybrid. The concentration of total digestible nutrients (TDN) tended to be higher for diets with high oil silage (71.6 vs. 69.9%) and tended to be higher for processed silage than unprocessed silage (71.7 vs. 69.8%), but an interaction between variety and processing was observed. Processing conventional corn silage increased TDN to values similar to high oil corn silage but processing high oil corn silage did not influence TDN.
Stability and changes in astaxanthin ester composition from Haematococcus pluvialis during storage
NASA Astrophysics Data System (ADS)
Miao, Fengping; Geng, Yahong; Lu, Dayan; Zuo, Jincheng; Li, Yeguang
2013-11-01
In this paper, we investigated the effects of temperature, oxygen, antioxidants, and corn germ oil on the stability of astaxanthin from Haematococcus pluvialis under different storage conditions, and changes in the composition of astaxanthin esters during storage using high performance liquid chromatography and spectrophotometry. Oxygen and high temperatures (22-25°C) significantly reduced the stability of astaxanthin esters. Corn germ oil and antioxidants (ascorbic acid and vitamin E) failed to protect astaxanthin from oxidation, and actually significantly increased the instability of astaxanthin. A change in the relative composition of astaxanthin esters was observed after 96 weeks of long-term storage. During storage, the relative amounts of free astaxanthin and astaxanthin monoesters declined, while the relative amount of astaxanthin diesters increased. Thus, the ratio of astaxanthin diester to monoester increased, and this ratio could be used to indicate if astaxanthin esters have been properly preserved. If the ratio is greater than 0.2, it suggests that the decrease in astaxanthin content could be higher than 20%. Our results show that storing algal powder from H. pluvialis or other natural astaxanthin products under vacuum and in the dark below 4°C is the most economical and applicable storage method for the large-scale production of astaxanthin from H. pluvialis. This storage method can produce an astaxanthin preservation rate of at least 80% after 96 weeks of storage.
Epidemiologic evidence for a new class of compounds associated with toxic oil syndrome.
Posada de la Paz, M; Philen, R M; Schurz, H; Hill, R H; Giménez Ribota, O; Gómez de la Camara, A; Kilbourne, E M; Abaitua, I
1999-03-01
Toxic oil syndrome appeared in epidemic form in Spain in 1981. Epidemiologic studies have demonstrated that illness was caused by consumption of rapeseed oil that had been denatured with aniline. Chemical analyses of oil specimens conducted in conjunction with epidemiologic studies have established that consumption of specific oils containing fatty acid anilide contaminants was associated with increased risk for disease. New chemical analytic methods identified a family of compounds, the di-fatty acid esters of phenylamino propane-diol, and one of these compounds, the 1,2-di-oleyl ester of 3-(N-phenylamino)-1,2-propanediol (DPAP), has been found to be more strongly associated with disease status than the fatty acid anilides. We found the odds ratio for exposure to DPAP (OR = 26.4, 95% CI = 6.4-76.3) is much higher than the odds ratio for exposure to oleyl anilide (OR = 4.1, 95% CI = 2.2-7.8), implying that exposure to DPAP was a more relevant risk factor for development of toxic oil syndrome than exposure to oleyl anilide. In this paper, we review and present analyses of data from multiple studies of the possible etiologic role of DPAP in toxic oil syndrome. The presence of DPAP in oil collected from affected and unaffected households was a more specific correlate of case relatedness than was the presence of fatty acid anilides, and it was equally sensitive. Moreover, DPAP was found in oil from the only refinery whose oil was clearly associated with illness.
Thurnhofer, Saskia; Vetter, Walter
2006-05-03
Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.
USDA-ARS?s Scientific Manuscript database
Field pennycress (Thlaspi arvense L.) is a widely distributed winter annual with high seed oil content (36%) and is suitable as an off-season rotational crop in the Midwestern U.S. Erucic [(13Z)-docosenoic] acid (36.2%) is the most abundant constituent in the oil, with unsaturated and very long chai...
Daughton, Christian G.
1983-01-01
Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Fox, Glen; Manley, Marena
2014-01-30
Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Liamocins are a heterogeneous mixture of denser-than-water oils produced by the fungus Aureobasidium pullulans. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of multiple 3,5-dihydroxydecanoic acid ester groups, some of which are ...
Synthesis and physical properties of new estolide esters
USDA-ARS?s Scientific Manuscript database
Vegetable oil-based oils usually fail to meet the rigorous demands of industrial lubricants by not having acceptable low temperature properties, pour point (PP) and/or cloud point (CP). The oleic estolide was esterified with a series of 16 different alcohols that were either branched or straight-cha...
The potential of biodiesel with improved properties to an alternative energy mix
USDA-ARS?s Scientific Manuscript database
Fuels derived from renewable biological sources (biomass) are prominent among the sustainable energy sources. Biodiesel, the mono-alkyl esters of vegetable oils or animal fats, is one of the significant biomass-derived fuels. It is obtained from vegetable oils or other triacylglycerol feedstocks b...
Derivatization of castor oil based estolide esters: Preparation of epoxides and cyclic carbonates
USDA-ARS?s Scientific Manuscript database
Estolides that are based on castor oil and oleic acid are versatile starting points for the production of industrial fluids with new properties. A variety of unsaturated estolides were derivatized by epoxidation with hydrogen peroxide. The epoxidized estolides were further modified using supercritic...
Nitrogen Derivatives of Soybean Oil and Fatty Acid Methyl Esters
USDA-ARS?s Scientific Manuscript database
Vegetable oil based products are eco-friendly and non-toxic in nature, which is increasing their utilization in lot of applications. The presence of double bonds in some of the fatty acids, are attractive sites for functionalization. In this study we have used these sites for functionalization usi...
Synethesis of cyclic ketal from soybean oil and fatty esters
USDA-ARS?s Scientific Manuscript database
In this work we have shown a facile and environmentally friendly reaction to form a cyclic ketal out of soybean oil, methyl soyate, methyl linoleate, and methyl oleate. There are many advantages of this reaction. First, the ketal reaction produces a branched fatty acid moiety and is reversible. S...
Synthesis and physical properties of new coco-oleic estolide branched esters
USDA-ARS?s Scientific Manuscript database
Oils derived from vegetable oils tend to not meet the standards for industrial lubricants because of unacceptable low temperature properties, pour point (PP), and/or cloud point (CP). However, a catalytic amount of perchloric acid with oleic and coconut (coco) fatty acids produced a coco-oleic estol...
Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel
USDA-ARS?s Scientific Manuscript database
Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm, or soybean and has a number of properties that make it compatible in compression-ignition engines. Despite...
21 CFR 177.2800 - Textiles and textile fibers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ethyl sulfate For use only as a lubricant in the manufacture of polyethylene terephthalate fibers...-octadecenamido)ethyl-2-imidazolinium ethyl sulfate. Hexylene glycol (2-methyl,-2,4-pentanediol) Isobutyl alcohol Isopropyl alcohol Kerosene Methyl ester of sulfated ricebran oil Mineral oil For use only at a level not to...
21 CFR 177.2800 - Textiles and textile fibers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ethyl sulfate For use only as a lubricant in the manufacture of polyethylene terephthalate fibers...-octadecenamido)ethyl-2-imidazolinium ethyl sulfate. Hexylene glycol (2-methyl,-2,4-pentanediol) Isobutyl alcohol Isopropyl alcohol Kerosene Methyl ester of sulfated ricebran oil Mineral oil For use only at a level not to...
Olutoye, M A; Lee, S C; Hameed, B H
2011-12-01
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hu, Ai-Peng; Liu, Yu-Lan; Shi, Long-Kai
2016-09-01
Seven different phthalic acid esters (PAEs) were quantified in 124 samples of 16 types of oilseeds from China using a simplified GC-MS method. Di-2-ethylhexyl phthalate and di-n-butyl phthalate were found in all tested oilseed samples. Each made a high contribution to the summed total PAEs. Total PAE concentrations in 124 oilseeds ranged from 0.14 to 3.05 mg kg(-1), and the mean was 0.99 mg kg(-1). Mandulapalka (Cyperus esculentus) samples were the most severely contaminated among all the tested specimens; maize germ samples were least contaminated. Di-n-octyl phthalate and butylbenzyl phthalate were not detected in 12 and five types of oilseeds, respectively. Only eight samples contained all seven analytes. No difference was observed between woody oil-bearing plant and herbaceous oil-bearing plant in terms of PAEs content.
Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study.
Bouaid, Abderrahim; Martinez, Mercedes; Aracil, Jose
2009-04-01
In the present work the synthesis from bioethanol and Brassica carinata, as alternative vegetable oil, using KOH as catalyst, has been developed and optimized by application of the factorial design and response surface methodology (RSM). Temperature and catalyst concentration were found to have significant influence on conversion. A second-order model was obtained to predict conversions as a function of temperature and catalyst concentration. The maximum yield of ester (98.04%) was obtained working with an initial concentration of catalyst (1.5%) and an operation temperature of (35 degrees C). Results show that the acid value, peroxide value, and viscosity, increased while the iodine value decreased with increasing storage time of the biodiesel sample. Fatty acid ethyl esters (biodiesel) from B. carinata oil were very stable because they did not demonstrate rapid increase in peroxide value, acid value, and viscosity with increasing storage time to a period of 12 months.
Jia, Puyou; Zhang, Meng; Hu, Lihong; Song, Fei; Feng, Guodong; Zhou, Yonghong
2018-01-25
The waste cooking oil (WCO) production from the catering industry and food processing industry causes serious environmental, economic and social problems. However, WCO can be used for the preparation of fine chemicals such as internal plasticizer. With this aim, this work is focused on preparing internal plasticizer by using WCO and determining technical viability of non-migration poly (vinyl chloride) (PVC) materials. The mannich base of waste cooking oil methyl ester (WCOME) was synthesized from WCO via esterification, interesterification and mannich reaction, which was used to produce self-plasticization PVC materials as an internal plasticizer. The results showed that the PVC was plasticized effectively. Self-plasticization PVC films showed no migration in n-hexane, but 15.7% of dioctyl phthalate (DOP) leached from DOP/PVC(50/50) system into n-hexane. These findings transformed the traditional plastic processing technology and obtained cleaner production of no migration plasticizer from WCO.
He, Wei; King, Andrew J; Khan, M Awais; Cuevas, Jesús A; Ramiaramanana, Danièle; Graham, Ian A
2011-10-01
Jatropha curcas L. has been promoted as an oilseed crop for use to meet the increased world demand for vegetable oil production, and in particular, as a feedstock for biodiesel production. Seed meal is a protein-rich by-product of vegetable oil extraction, which can either be used as an organic fertilizer, or converted to animal feed. However, conversion of J. curcas seed meal into animal feed is complicated by the presence of toxins, though plants producing "edible" or "non-toxic" seeds occur in Mexico. Toxins present in the seeds of J. curcas include phorbol esters and a type-I ribosome inactivating protein (curcin). Although the edible seeds of J. curcas are known to lack phorbol esters, the curcin content of these seeds has not previously been studied. We analyzed the phorbol ester and curcin content of J. curcas seeds obtained from Mexico and Madagascar, and conclude that while phorbol esters are lacking in edible seeds, both types contain curcin. We also analyzed spatial distribution of these toxins in seeds. Phorbol-esters were most concentrated in the tegmen. Curcin was found in both the endosperm and tegmen. We conclude that seed toxicity in J. curcas is likely to be due to a monogenic trait, which may be under maternal control. We also conducted AFLP analysis and conclude that genetic diversity is very limited in the Madagascan collection compared to the Mexican collection. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Screening for toxic phorbol esters in jerky pet treat products using LC-MS.
Nishshanka, Upul; Jayasuriya, Hiranthi; Chattopadhaya, Chaitali; Kijak, Philip J; Chu, Pak-Sin; Reimschuessel, Renate; Tkachenko, Andriy; Ceric, Olgica; De Alwis, Hemakanthi G
2016-05-01
Since 2007, the U.S. FDA's Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats. Jerky used in pet treats contains glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Because some biodiesel is produced using oil from Jatropha curcas, a plant that contains toxic compounds including phorbol esters, CVM developed a liquid chromatography-mass spectrometry (LC-MS) screening method to evaluate investigational jerky samples for the presence of these toxins. Results indicated that the samples analyzed with the new method did not contain Jatropha toxins at or above the lowest concentration tested. Published by Elsevier B.V.
Evaluation of PS 212 Coatings Under Boundary Lubrication Conditions with an Ester-based Oil to 300 C
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Loomis, William R.; Dellacorte, Christopher
1994-01-01
High friction and wear of turbine engine components occur during high temperature excursions above the oxidation threshold of the liquid lubricant. This paper reports on research to study the use of a high temperature self lubricating coating, PS 212 for back-up lubrication in the event of failure of the liquid lubricant. Pin on disk tests were performed under dry and boundary-lubricated conditions at disk temperatures up to 300 C. The liquid lubricant was a formulated polyol ester qualified under MIL L-23699. At test temperatures above the oil's thermal degradation level, the use of PS 212 reduced wear, providing a back-up lubricant effect.
Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.
2017-01-01
Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908
Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J
2017-06-01
Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.
Transesterification reaction of the fat originated from solid waste of the leather industry.
Işler, Asli; Sundu, Serap; Tüter, Melek; Karaosmanoğlu, Filiz
2010-12-01
The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry. Copyright © 2010 Elsevier Ltd. All rights reserved.
Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.
Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung
2006-12-01
This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pulp 1.0 Citrus, oil 38 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04...
40 CFR 180.582 - Pyraclostrobin; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 12.5 Citrus, oil 9.0 Coffee, bean, green 0.31 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 23.0 Cotton, gin...
40 CFR 180.555 - Trifloxystrobin; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pulp 1.0 Citrus, oil 38 Corn, field, forage 6.0 Corn, field, grain 0.05 Corn, field, stover 7 Corn, field, refined oil 0.1 Corn, pop, grain 0.05 Corn, pop, stover 7 Corn, sweet, cannery waste 0.6 Corn, sweet, forage 7.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 4.0 Egg 0.04...
40 CFR 180.582 - Pyraclostrobin; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 12.5 Citrus, oil 9.0 Coffee, bean, green 0.31 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0.04 Corn, sweet, stover 23.0 Cotton, gin...
Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi
2014-01-01
It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.
Aircraft Recirculation Filter for Air-Quality and Incident Assessment
Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.
2015-01-01
The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977
Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin
2015-01-01
The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.
Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M
2014-03-01
Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.
Aircraft Recirculation Filter for Air-Quality and Incident Assessment.
Eckels, Steven J; Jones, Byron; Mann, Garrett; Mohan, Krishnan R; Weisel, Clifford P
The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters.
Purifying contaminated water. [DOE patent application
Daughton, C.G.
1981-10-27
Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Sulphide Production and Corrosion in Seawaters During Exposure to FAME Diesel
2012-05-12
FAME diesel is a renewable fuel produced from vegetable oils made by converting triglyceride oils to methyl (or ethyl) esters by... oil from which the biodiesel was made (Knothe 2004; Barabas and Todorut 2011). FAME diesel mixes easily with petro- leum diesel (Chotwichien et al...Materials and methods FAME diesel A previously characterized soy -based diesel was obtained from US Navy Fuel and Lubes, Patuxent River, MD (Lee
Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.
Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu
2016-04-01
The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.
Optimization of bio-mineral lubricants
NASA Astrophysics Data System (ADS)
Osama, M.; Rashmi, W.; Khalid, M.; Gupta, TCSM; Yin, Wong W.
2017-10-01
Lubricants in metalworking play an essential role in controlling the quality of the final product. Different approaches have been researched to improve the performance of metalworking fluids. The use of vegetable oil such as groundnut oil and fatty acid methyl esters such as palm oil methyl ester (POME) has demonstrated improvements in machining operation parameters. These two types of lubricants provide environmental and lubricating advantages over conventional mineral oil based lubricants. In this study, naphthenic and groundnut oils were blended in three different ratios (3:1, 1:1, 3:1) to study viscosity index, thermal conductivity and evaporation losses with respect to temperature ranging from 24°C - 100°C. In addition, another set of samples were prepared by adding POME to the aforementioned blend ratios with volume fractions of 0.03, 0.05 and 0.07. The evaporation loss was evaluated using the TGA Noack test. Furthermore, results obtained on the viscosity index, thermal conductivity and evaporation losses were modeled using quadratic functions under experimental setup of full factorial design. The models generated are proposed to be used for variety of optimization problems of the groundnut oil and POME contents for this class of lubricants. The results show that as the content of the groundnut oil and POME increase, the viscosity index also increases. Moreover, groundnut oil showed higher thermal conductivity enhancement of about 36% compared to naphthenic oil which depicts that groundnut oil is capable of removing the heat generated during machining operation more efficiently than the naphthenic base oil. In contrast, POME content and temperature did not show strong influence on thermal conductivity. Along with this, it was also found that by increasing the content of the groundnut oil, the evaporation losses are reduced which could be due to the higher viscosity of the groundnut oil.
Syamsuddin, Y; Murat, M N; Hameed, B H
2016-08-01
The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Czaplicki, Sylwester; Ogrodowska, Dorota; Zadernowski, Ryszard; Konopka, Iwona
2017-06-01
An in vivo experiment was conducted to determine the effect of sea-buckthorn pulp oil feeding on the fatty acid composition of liver and adipose tissue of Wistar rats and the liver accumulation of retinol, its esters and α-tocopherol. For a period of 28 days, rats were given a modified casein diet (AIN-93) in which sea-buckthorn pulp oil, soybean oil and pork lard were used as sources of fat. Compared to the other fat sources, sea-buckthorn pulp oil was the most abundant in C16 fatty acids, carotenoids (mainly β-carotene) and tocopherols (mainly α-tocopherol). Its consumption was reflected in an increased share of palmitoleic acid in adipose tissue and the liver and an increased level of retinol in liver tissues (this was not observed for its esters). Although the type of fat did not have a significant effect on the average content of α-tocopherol in the liver, the variation of saturation of this tissue with α-tocopherol was the lowest when rats were fed a diet containing sea-buckthorn oil. This experiment indicates the possibility of affecting adipose tissue and liver by a diet.
Yang, Zeyu; Hollebone, Bruce P; Wang, Zhendi; Yang, Chun; Brown, Carl; Landriault, Mike
2013-06-01
A case study is presented for the forensic identification of several spilled biodiesels and its blends with petroleum oil using integrated forensic oil fingerprinting techniques. The integrated fingerprinting techniques combined SPE with GC/MS for obtaining individual petroleum hydrocarbons (aliphatic hydrocarbons, polyaromatic hydrocarbons and their alkylated derivatives and biomarkers), and biodiesel hydrocarbons (fatty acid methyl esters, free fatty acids, glycerol, monoacylglycerides, and free sterols). HPLC equipped with evaporative scattering laser detector was also used for identifying the compounds that conventional GC/MS could not finish. The three environmental samples (E1, E2, and E3) and one suspected source sample (S2) were dominant with vegetable oil with high acid values and low concentration of fatty acid methyl ester. The suspected source sample S2 was responsible for the three spilled samples although E1 was slightly contaminated by petroleum oil with light hydrocarbons. The suspected source sample S1 exhibited with the high content of glycerol, low content of glycerides, and high polarity, indicating its difference from the other samples. These samples may be the separated byproducts in producing biodiesel. Canola oil source is the most possible feedstock for the three environmental samples and the suspected source sample S2. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Manurung, Renita; Ramadhani, Debbie Aditia; Maisarah, Siti
2017-06-01
Biodiesel production by using sludge palm oil (SPO) as raw material is generally synthesized in two step reactions, namely esterification and transesterification, because the free fatty acid (FFA) content of SPO is relatively high. However, the presence of choline chloride (ChCl), glycerol based deep eutectic solvent (DES), in transesterification may produce biodiesel from SPO in just one step. In this study, DES was produced by the mixture of ChCl and glycerol at molar ratio of 1:2 at a temperature of 80°C and stirring speed of 400 rpm for 1 hour. DES was characterized by its density and viscosity. The transesterification process was performed at reaction temperature of 70 °C, ethanol to oil molar with ratio of 9:1, sodium hydroxide as catalyst concentration of 1 % wt, DES as cosolvent with concentration of 0 to 5 % wt, stirring speed of 400 rpm, and one hour reaction time. The obtained biodiesel was then assessed with density, viscosity, and ester content as the parameters. FFA content of SPO as the raw material was 7.5290 %. In this case, DES as cosolvent in one step transesterification process of low feedstock could reduce the side reaction (saponification), decrease the time reaction, decrease the surface tension between ethanol and oil, and increase the mass transfer that simultaneously simplified the purification process and obtained the highest yield. The esters properties met the international standards of ASTM D 6751, with the highest yield obtained was 83.19% with 99.55% of ester content and the ratio of ethanol:oil of 9:1, concentration of DES of 4%, catalyst amount of 1%, temperature of reaction at 70°C and stirring speed of 400 rpm.
An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarathy, S M; Thomson, M J; Pitz, W J
2009-12-04
Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents opposed-flow diffusion flame data for one large fatty acid methyl ester, methyl decanoate, and uses the experiments to validate an improved skeletal mechanism consisting of 648 species and 2998 reactions. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.
Narayanankutty, Arunaksharan; Mukesh, Reshma K; Ayoob, Shabna K; Ramavarma, Smitha K; Suseela, Indu M; Manalil, Jeksy J; Kuzhivelil, Balu T; Raghavamenon, Achuthan C
2016-01-01
Virgin Coconut Oil (VCO), extracted from fresh coconut kernel possess similar fatty acid composition to that of Copra Oil (CO), a product of dried kernel. Although CO forms the predominant dietary constituent in south India, VCO is being promoted for healthy life due to its constituent antioxidant molecules. High fructose containing CO is an established model for insulin resistance and steatohepatitis in rodents. In this study, replacement of CO with VCO in high fructose diet markedly improved the glucose metabolism and dyslipidemia. The animals fed VCO diet had only 17 % increase in blood glucose level compared to CO fed animals (46 %). Increased level of GSH and antioxidant enzyme activities in VCO fed rats indicate improved hepatic redox status. Reduced lipid peroxidation and carbonyl adducts in VCO fed rats well corroborate with the histopathological findings that hepatic damage and steatosis were comparatively reduced than the CO fed animals. These results suggest that VCO could be an efficient nutraceutical in preventing the development of diet induced insulin resistance and associated complications possibly through its antioxidant efficacy.
Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.
Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra
2009-12-01
The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.
Anti-Fungal activity of essential oil from Baeckea frutescens L against Pleuratus ostreatus
NASA Astrophysics Data System (ADS)
Jemi, Renhart; Barus, Ade Irma; Nuwa, Sarinah, Luhan, Gimson
2017-11-01
Ujung Atap is an herb that have distinctive odor on its leaves. The plant's essential oil contains bioactive compounds but has not been investigated its anti-fungal activity against Pleurotus ostreatus. Essential oil from Ujung Atap leaves is one environmentally friendly natural preservative. This study consisted of distillation Ujung Atap leaves with boiled method, determining the number of acid, essential oil ester, and anti-fungal activity against Pleurotus ostreatus. Analysis of the data to calculate anti-fungal activity used probit analysis method to determine the IC50. Results for the distillation of leaves Ujung Atap produce essential oil yield of 0.071% and the average yield of the acid number and the ester of essential oils Ujung Atap leaves are 5.24 and 12.15. Anti-fungal activity Pleurotus ostreatus at a concentration of 1000 µg/mL, 100 µg/mL, 75 µg/mL, 50 µg/mL and 100 µg/mL BA defunct or fungi was declared dead, while at a concentration of 25 µg/mL, 10 µg/mL and 5 µg/mL still occur inhibitory processes. Results obtained probit analysis method IC50 of 35.48 mg/mL; means the essential oil of Ujung Atap leaf can inhibit fungal growth by 50 percent to 35.48 µg/mL concentration.
USDA-ARS?s Scientific Manuscript database
The fungus Aureobasidium pullulans produces denser-than-water oils called liamocins. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of three, four or five 3,5-dihydroxydecanoic acid esters, some of which are O-acetylated. Broth di...
Thermosets of epoxy monomer from Tung oil fatty acids cured in two synergistic ways
USDA-ARS?s Scientific Manuscript database
A new epoxy monomer from tung oil fatty acids, glycidyl ester of eleostearic acid (GEEA), was synthesized and characterized by 1H-NMR and 13C-NMR spectroscopy. Differential scanning calorimetry analysis (DSC) and FT-IR were utilized to investigate the curing process of GEEA cured by both dienophiles...
USDA-ARS?s Scientific Manuscript database
Steryl ferulates (SF) are ferulic acid esters of phytosterols and/or triterpene alcohols which have potential as frying oil antioxidants. The objective of this study was to evaluate the anti-polymerization and antioxidant activity at frying temperatures of corn steryl ferulates (CSF), rice steryl f...
USDA-ARS?s Scientific Manuscript database
In recent literature, seashore mallow (Kosteletzkya pentacarpos; also known previously as Kosteletzkya virginica) seed oil was reported as a potential alternative feedstock for biodiesel. In the present work, the fatty acid profile of K. pentacarpos is shown to correspond to that of other plants in ...
Adachi, Daisuke; Hama, Shinji; Nakashima, Kazunori; Bogaki, Takayuki; Ogino, Chiaki; Kondo, Akihiko
2013-05-01
For enzymatic biodiesel production from plant oil hydrolysates, an Aspergillus oryzae whole-cell biocatalyst that expresses Candida antarctica lipase B (r-CALB) with high esterification activity was developed. Each of soybean and palm oils was hydrolyzed using Candida rugosa lipase, and the resultant hydrolysates were subjected to esterification where immobilized r-CALB was used as a catalyst. In esterification, r-CALB afforded a methyl ester content of more than 90% after 6 h with the addition of 1.5 M equivalents of methanol. Favorably, stepwise additions of methanol and a little water were unnecessary for maintaining the lipase stability of r-CALB during esterification. During long-term esterification in a rotator, r-CALB can be recycled for 20 cycles without a significant loss of lipase activity, resulting in a methyl ester content of more than 90% even after the 20th batch. Therefore, the presented reaction system using r-CALB shows promise for biodiesel production from plant oil hydrolysates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Marc, Corinne; Drouard-Pascarel, Valérie; Rétho, Cécile; Janvion, Patrice; Saltron, Frédéric
2016-06-01
This paper describes a method for the determination of 3-monochloropropane-1,2-diol and 2-monochloropropane-1,3-diol (MCPD) esters and glycidyl esters in various foodstuffs, which are isolated using microwave extraction. The next step is based on alkaline-catalyzed ester cleavage. The released glycidol is transformed into monobromopropanediol (MBPD). All compounds are derivatized in free diols (MCPD and MBPD) with phenylboronic acid and analyzed by gas chromatography-mass spectrometry (GC-MS). The method was validated for oils with a limit of quantitation (LOQ) of 0.1 mg/kg, for chips and crisps with a LOQ of 0.02 mg/kg, and for infant formula with a LOQ of 0.0025 mg/L. Recoveries of each sample were controlled by standard addition on extracts before derivatization. Quantitation was performed by the addition of isotopically labeled glycidyl and 3-monochloropropane-1,2-diol (3-MCPD) esters.
Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel
2017-06-01
The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.
2010-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives. A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives: branching glycosyltransferase from Rhodothermus obamensis expressed in Bacillus subtilis, cassia gum, cyclamic acid and its salts (dietary exposure assessment), cyclotetraglucose and cyclotetraglucose syrup, ferrous ammonium phosphate, glycerol ester of gum rosin, glycerol ester of tall oil rosin, lycopene from all sources, lycopene extract from tomato, mineral oil (low and medium viscosity) class II and class III, octenyl succinic acid modified gum arabic, sodium hydrogen sulfate and sucrose oligoesters type I and type II. Specifications for the following food additives were revised: diacetyltartaric acid and fatty acid esters of glycerol, ethyl lauroyl arginate, glycerol ester of wood rosin, nisin preparation, nitrous oxide, pectins, starch sodium octenyl succinate, tannic acid, titanium dioxide and triethyl citrate. Annexed to the report are tables summarizing the Committee's recommendations for intakes and toxicological evaluations of the food additives considered.
NASA Astrophysics Data System (ADS)
Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri
2017-11-01
Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.
Chen, Ningning; He, Juan; Wu, Chaojun; Li, Yuanyuan; Suo, An; Wei, Hongliang; He, Lijun; Zhang, Shusheng
2017-03-01
Novel molecularly imprinted polymers of phthalate esters were prepared by atom transfer radical polymerization using methyl methacrylate as functional monomer, cyclohexanone as solvent, cuprous chloride as catalyst, 1-chlorine-1-ethyl benzene as initiator and 2,2-bipyridyl as cross-linker in the mixture of methanol and water (1:1, v/v). The effect of reaction conditions such as monomer ratio and template on the adsorption properties was investigated. The optimum condition was obtained by an orthogonal experiment. The obtained polymers were characterized using scanning electron microscopy. The binding property was studied with both static and dynamic methods. Results showed that the polymers exhibited excellent recognition capacity and outstanding selectivity for ten phthalate esters. Factors affecting the extraction efficiency of the molecularly imprinted solid-phase extraction were systematically investigated. An analytical method based on the molecularly imprinted coupled with gas chromatography and flame ionization detection was successfully developed for the simultaneous determination of ten phthalate esters from edible oil. The method detection limits were 0.10-0.25 μg/mL, and the recoveries of spiked samples were 82.5-101.4% with relative standard deviations of 1.24-5.37% (n = 6). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Weiwei; Liu, Guoqin; Liu, Xinqi
2016-07-27
In the present study, the formation mechanisms of glycidyl fatty acid esters (GEs) were investigated both in real edible oils (soybean oil, camellia oil, and palm oil) during laboratory-scale preparation and refining and in chemical model (1,2-dipalmitin (DPG) and 1-monopalmitin (MPG)) during high temperature exposure (160-260 °C under nitrogen). The formation process of GEs in the chemical model was monitored using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The results showed that the roasting and pressing process could produce certain amounts of GEs that were much lower than that produced in the deodorization process. GE contents in edible oils increased continuously and significantly with increasing deodorization time below 200 °C. However, when the temperature exceeded 200 °C, GE contents sharply increased in 1-2 h followed by a gradual decrease, which could verify a simultaneous formation and degradation of GEs at high temperature. In addition, it was also found that the presence of acylglycerol (DAGs and MAGs) could significantly increase the formation yield of GEs both in real edible oils and in chemical model. Compared with DAGs, moreover, MAGs displayed a higher formation capacity but substantially lower contribution to GE formation due to their low contents in edible oils. In situ ATR-FTIR spectroscopic evidence showed that cyclic acyloxonium ion intermediate was formed during GE formation derived from DPG and MPG in chemical model heated at 200 °C.
Zhang, Zhen; Liu, Fang; Ma, Xiang; Huang, Huihua; Wang, Yong
2018-01-10
Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.
Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar
2017-10-18
The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.
40 CFR 180.582 - Pyraclostrobin; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 13-07A 4.0 Canistel 0.6 Citrus, dried pulp 12.5 Citrus, oil 9.0 Coffee, green bean 1 0.3 Corn, field, forage 5.0 Corn, field, grain 0.1 Corn, field, refined oil 0.2 Corn, field, stover 17.0 Corn, pop, grain 0.1 Corn, pop, stover 17.0 Corn, sweet, forage 5.0 Corn, sweet, kernel plus cob with husks removed 0...
Effects of low frequency ultrasonic treatment on the maturation of steeped greengage wine.
Zheng, Xinhua; Zhang, Min; Fang, Zhongxiang; Liu, Yaping
2014-11-01
To accelerate wine maturation, low frequency ultrasonic waves of 28 kHz and 45 kHz were used to treat the steeped greengage wine. The contents of total acid, total ester, fusel oils and the wine chromaticity were determined before and after the ultrasonic treatment. The volatile compounds were analysed by GC-MS method, and the sensory quality was evaluated by panelist. The results indicated that ultrasonic treatment of the steeped greengage wine at 45 kHz 360 W for 30 min was effective to accelerate the aging process, where the fusel oils and alcohol compounds were significantly reduced and acid and ester compounds were significantly increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Numerical estimation of deformation energy of selected bulk oilseeds in compression loading
NASA Astrophysics Data System (ADS)
Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.
2017-09-01
This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.
[Inhibition of Linseed Oil Autooxidation by Essential Oils and Extracts from Spice Plants].
Misharina, T A; Alinkina, E S; Terenina, M B; Krikunova, N I; Kiseleva, V I; Medvedeva, I B; Semenova, M G
2015-01-01
Clove bud essential oil, extracts from ginger, pimento and black pepper, or ascorbyl palmytate were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids in linseed oil. Different methods were used to estimate antioxidant efficiency. These methods are based on the following parameters: peroxide values; peroxide concentration; content of degradation products of unsaturated fatty acid peroxides, which acted with thiobarbituric acid; diene conjugate content; the content of volatile compounds that formed as products of unsaturated fatty acid peroxide degradation; and the composition of methyl esters of fatty acids in samples of oxidized linseed oil.
Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme
NASA Technical Reports Server (NTRS)
Leznicki, A. J.; Bandurski, R. S.
1988-01-01
The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.
Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1
Leznicki, Antoni J.; Bandurski, Robert S.
1988-01-01
The synthesis of indole-3-acetyl-1-O-β-d-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as ρ-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid, and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439
Analysis of the constituents in jojoba wax used as a food additive by LC/MS/MS.
Tada, Atsuko; Jin, Zhe-Long; Sugimoto, Naoki; Sato, Kyoko; Yamazaki, Takeshi; Tanamoto, Kenichi
2005-10-01
Jojoba wax is a natural gum base used as a food additive in Japan, and is obtained from jojoba oil with a characteristically high melting point. Although the constituents of jojoba oil have been reported, the quality of jojoba wax used as a food additive has not yet been clarified. In order to evaluate its quality as a food additive and to obtain basic information useful for setting official standards, we investigated the constituents and their concentrations in jojoba wax. LC/MS analysis of the jojoba wax showed six peaks with [M+H]+ ions in the range from m/z 533.6 to 673.7 at intervals of m/z 28. After isolation of the components of the four main peaks by preparative LC/MS, the fatty acid and long chain alcohol moieties of the wax esters were analyzed by methanolysis and hydrolysis, followed by GC/MS. The results indicated that the main constituents in jojoba wax were various kinds of wax esters, namely eicosenyl octadecenoate (C20:1-C18:1) (1), eicosenyl eicosenoate (C20:1-C20:1) (II), docosenyl eicosenoate (C22:1-C20:1) (III), eicosenyl docosenoate (C20:1-C22:1) (IV) and tetracosenyl eiosenoate (C24:1-C20:1) (V). To confirm and quantify the wax esters in jojoba wax directly, LC/MS/MS analysis was performed. The product ions corresponding to the fatty acid moieties of the wax esters were observed, and by using the product ions derived from the protonated molecular ions of wax esters the fatty acid moieties were identified by MRM analysis. The concentrations of the wax esters I, II and III, in jojoba wax were 5.5, 21.4 and 37.8%, respectively. In summary, we clarified the main constituents of jojoba wax and quantified the molecular species of the wax esters without hydrolysis by monitoring their product ions, using a LC/MS/MS system.
Biodegradation of biodiesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.; Haws, R.; Wright, B.
1995-12-31
Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percentmore » CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.« less
USDA-ARS?s Scientific Manuscript database
A new bio-based epoxy monomer with conjugated double bonds, glycidyl ester of eleostearic acid (GEEA), was synthesized from tung oil fatty acids and characterized by 1H-NMR, 13C-NMR and Mass Spectrometry Analysis (MSA). Differential Scanning Calorimetry (DSC) analysis and FT-IR were utilized to inve...
USDA-ARS?s Scientific Manuscript database
A new bio-based epoxy monomer containing conjugated double bonds, the glycidyl ester of eleostearic acid (GEEA), was synthesized from tung oil fatty acids. It was characterized using 1H-NMR, 13C-NMR and mass spectrometric analysis. Differential scanning calorimetry (DSC) and FT-IR spectroscopy were ...
Physical characteristics of tetrahydroxy and acylated derivatives of jojoba liquid wax
USDA-ARS?s Scientific Manuscript database
Jojoba liquid wax is a mixture of esters of long chain fatty acids and fatty alcohols, mainly (C38:2-C46:2). The oil exhibits excellent emolliency on the skin and therefore is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the Jojoba (Simmondsia...
USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS
One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...
Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils
USDA-ARS?s Scientific Manuscript database
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...
Santin, Claudia M T; Michelin, Simone; Scherer, Robison P; Valério, Alexsandra; Luccio, Marco di; Oliveira, Débora; Oliveira, J Vladimir
2017-03-01
The objective of this study is to evaluate the batch enzymatic production of biodiesel in solvent-free system under ultrasound using as substrates ethanol, soybean oil and macauba fruit oil. For this purpose, a Plackett & Burman experimental design was carried out for soybean oil while a 2 4-1 design was conducted for macauba oil in order to maximize the biodiesel conversion for each system. Good conversions to fatty acid ethyl esters (FAEE), 88% for soybean oil and 75.2% for macauba oil, was obtained thus demonstrating the potential use of ultrasound for this reaction system. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Algae, brown Laminaria spp. and Nereocystis spp. Algae, red Porphyra spp. and Rhodymenia palmata... (see algae, brown). Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Algae, brown Laminaria spp. and Nereocystis spp. Algae, red Porphyra spp. and Rhodymenia palmata... (see algae, brown). Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis...
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Algae, brown Laminaria spp. and Nereocystis spp. Algae, red Porphyra spp. and Rhodymenia palmata... (see algae, brown). Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis...
Code of Federal Regulations, 2014 CFR
2014-04-01
... source Algae, brown Laminaria spp. and Nereocystis spp. Algae, red Porphyra spp. and Rhodymenia palmata... (see algae, brown). Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis...
40 CFR 180.475 - Difenoconazole; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Canola, seed 0.01 Citrus, dried pulp 2.0 Citrus, oil 25 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01 Cotton, gin byproducts 0.05 Cotton, undelinted...