Thomas, Minta; De Brabanter, Kris; De Moor, Bart
2014-05-10
DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.
Feature extraction via KPCA for classification of gait patterns.
Wu, Jianning; Wang, Jue; Liu, Li
2007-06-01
Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.
Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU
NASA Astrophysics Data System (ADS)
Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji
2016-12-01
Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.
Improving KPCA Online Extraction by Orthonormalization in the Feature Space.
Souza Filho, Joao B O; Diniz, Paulo S R
2018-04-01
Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extraction algorithms, exploiting orthogonalized versions of the GHA rule. In both the cases, the orthogonalization of kernel components is achieved by the inclusion of some low complexity additional steps to the kernel Hebbian algorithm, thus not substantially affecting the computational cost of the algorithm. Results show improved convergence speed and accuracy of components extracted by the proposed methods, as compared with the state-of-the-art online KPCA extraction algorithms.
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600
Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.
Understanding the pattern of the BSE Sensex
NASA Astrophysics Data System (ADS)
Mukherjee, I.; Chatterjee, Soumya; Giri, A.; Barat, P.
2017-09-01
An attempt is made to understand the pattern of behaviour of the BSE Sensex by analysing the tick-by-tick Sensex data for the years 2006 to 2012 on yearly as well as cumulative basis using Principal Component Analysis (PCA) and its nonlinear variant Kernel Principal Component Analysis (KPCA). The latter technique ensures that the nonlinear character of the interactions present in the system gets captured in the analysis. The analysis is carried out by constructing vector spaces of varying dimensions. The size of the data set ranges from a minimum of 360,000 for one year to a maximum of 2,520,000 for seven years. In all cases the prices appear to be highly correlated and restricted to a very low dimensional subspace of the original vector space. An external perturbation is added to the system in the form of noise. It is observed that while standard PCA is unable to distinguish the behaviour of the noise-mixed data from that of the original, KPCA clearly identifies the effect of the noise. The exercise is extended in case of daily data of other stock markets and similar results are obtained.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less
Image preprocessing study on KPCA-based face recognition
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Dehua
2015-12-01
Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.
Identification of spilled oils by NIR spectroscopy technology based on KPCA and LSSVM
NASA Astrophysics Data System (ADS)
Tan, Ailing; Bi, Weihong
2011-08-01
Oil spills on the sea surface are seen relatively often with the development of the petroleum exploitation and transportation of the sea. Oil spills are great threat to the marine environment and the ecosystem, thus the oil pollution in the ocean becomes an urgent topic in the environmental protection. To develop the oil spill accident treatment program and track the source of the spilled oils, a novel qualitative identification method combined Kernel Principal Component Analysis (KPCA) and Least Square Support Vector Machine (LSSVM) was proposed. The proposed method adapt Fourier transform NIR spectrophotometer to collect the NIR spectral data of simulated gasoline, diesel fuel and kerosene oil spills samples and do some pretreatments to the original spectrum. We use the KPCA algorithm which is an extension of Principal Component Analysis (PCA) using techniques of kernel methods to extract nonlinear features of the preprocessed spectrum. Support Vector Machines (SVM) is a powerful methodology for solving spectral classification tasks in chemometrics. LSSVM are reformulations to the standard SVMs which lead to solving a system of linear equations. So a LSSVM multiclass classification model was designed which using Error Correcting Output Code (ECOC) method borrowing the idea of error correcting codes used for correcting bit errors in transmission channels. The most common and reliable approach to parameter selection is to decide on parameter ranges, and to then do a grid search over the parameter space to find the optimal model parameters. To test the proposed method, 375 spilled oil samples of unknown type were selected to study. The optimal model has the best identification capabilities with the accuracy of 97.8%. Experimental results show that the proposed KPCA plus LSSVM qualitative analysis method of near infrared spectroscopy has good recognition result, which could work as a new method for rapid identification of spilled oils.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
2011-01-01
Background The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD). In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA). Method Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence. Results and Discussion The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA) approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD. Conclusion This KPCA-based method requires only a digital camera and a decorated corridor setup. The ease of use and installation of the current method provides clinicians and researchers a low cost solution to monitor the progression of and the treatment to PD. In summary, the proposed method provides an alternative to perform gait analysis for patients with PD. PMID:22074315
Health status monitoring for ICU patients based on locally weighted principal component analysis.
Ding, Yangyang; Ma, Xin; Wang, Youqing
2018-03-01
Intelligent status monitoring for critically ill patients can help medical stuff quickly discover and assess the changes of disease and then make appropriate treatment strategy. However, general-type monitoring model now widely used is difficult to adapt the changes of intensive care unit (ICU) patients' status due to its fixed pattern, and a more robust, efficient and fast monitoring model should be developed to the individual. A data-driven learning approach combining locally weighted projection regression (LWPR) and principal component analysis (PCA) is firstly proposed and applied to monitor the nonlinear process of patients' health status in ICU. LWPR is used to approximate the complex nonlinear process with local linear models, in which PCA could be further applied to status monitoring, and finally a global weighted statistic will be acquired for detecting the possible abnormalities. Moreover, some improved versions are developed, such as LWPR-MPCA and LWPR-JPCA, which also have superior performance. Eighteen subjects were selected from the Physiobank's Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database, and two vital signs of each subject were chosen for online monitoring. The proposed method was compared with several existing methods including traditional PCA, Partial least squares (PLS), just in time learning combined with modified PCA (L-PCA), and Kernel PCA (KPCA). The experimental results demonstrated that the mean fault detection rate (FDR) of PCA can be improved by 41.7% after adding LWPR. The mean FDR of LWPR-MPCA was increased by 8.3%, compared with the latest reported method L-PCA. Meanwhile, LWPR spent less training time than others, especially KPCA. LWPR is first introduced into ICU patients monitoring and achieves the best monitoring performance including adaptability to changes in patient status, sensitivity for abnormality detection as well as its fast learning speed and low computational complexity. The algorithm is an excellent approach to establishing a personalized model for patients, which is the mainstream direction of modern medicine in the following development, as well as improving the global monitoring performance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Variable importance in nonlinear kernels (VINK): classification of digitized histopathology.
Ginsburg, Shoshana; Ali, Sahirzeeshan; Lee, George; Basavanhally, Ajay; Madabhushi, Anant
2013-01-01
Quantitative histomorphometry is the process of modeling appearance of disease morphology on digitized histopathology images via image-based features (e.g., texture, graphs). Due to the curse of dimensionality, building classifiers with large numbers of features requires feature selection (which may require a large training set) or dimensionality reduction (DR). DR methods map the original high-dimensional features in terms of eigenvectors and eigenvalues, which limits the potential for feature transparency or interpretability. Although methods exist for variable selection and ranking on embeddings obtained via linear DR schemes (e.g., principal components analysis (PCA)), similar methods do not yet exist for nonlinear DR (NLDR) methods. In this work we present a simple yet elegant method for approximating the mapping between the data in the original feature space and the transformed data in the kernel PCA (KPCA) embedding space; this mapping provides the basis for quantification of variable importance in nonlinear kernels (VINK). We show how VINK can be implemented in conjunction with the popular Isomap and Laplacian eigenmap algorithms. VINK is evaluated in the contexts of three different problems in digital pathology: (1) predicting five year PSA failure following radical prostatectomy, (2) predicting Oncotype DX recurrence risk scores for ER+ breast cancers, and (3) distinguishing good and poor outcome p16+ oropharyngeal tumors. We demonstrate that subsets of features identified by VINK provide similar or better classification or regression performance compared to the original high dimensional feature sets.
In-TFT-array-process micro defect inspection using nonlinear principal component analysis.
Liu, Yi-Hung; Wang, Chi-Kai; Ting, Yung; Lin, Wei-Zhi; Kang, Zhi-Hao; Chen, Ching-Shun; Hwang, Jih-Shang
2009-11-20
Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD) manufacture, and has received much attention in the field of automatic optical inspection (AOI). Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA) algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM) with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image.
Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C
2011-05-01
Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani
2018-06-01
There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.
Gaussian process regression for tool wear prediction
NASA Astrophysics Data System (ADS)
Kong, Dongdong; Chen, Yongjie; Li, Ning
2018-05-01
To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.
In-TFT-Array-Process Micro Defect Inspection Using Nonlinear Principal Component Analysis
Liu, Yi-Hung; Wang, Chi-Kai; Ting, Yung; Lin, Wei-Zhi; Kang, Zhi-Hao; Chen, Ching-Shun; Hwang, Jih-Shang
2009-01-01
Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD) manufacture, and has received much attention in the field of automatic optical inspection (AOI). Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA) algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM) with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image. PMID:20057957
Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun
2018-02-21
Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
Web document ranking via active learning and kernel principal component analysis
NASA Astrophysics Data System (ADS)
Cai, Fei; Chen, Honghui; Shu, Zhen
2015-09-01
Web document ranking arises in many information retrieval (IR) applications, such as the search engine, recommendation system and online advertising. A challenging issue is how to select the representative query-document pairs and informative features as well for better learning and exploring new ranking models to produce an acceptable ranking list of candidate documents of each query. In this study, we propose an active sampling (AS) plus kernel principal component analysis (KPCA) based ranking model, viz. AS-KPCA Regression, to study the document ranking for a retrieval system, i.e. how to choose the representative query-document pairs and features for learning. More precisely, we fill those documents gradually into the training set by AS such that each of which will incur the highest expected DCG loss if unselected. Then, the KPCA is performed via projecting the selected query-document pairs onto p-principal components in the feature space to complete the regression. Hence, we can cut down the computational overhead and depress the impact incurred by noise simultaneously. To the best of our knowledge, we are the first to perform the document ranking via dimension reductions in two dimensions, namely, the number of documents and features simultaneously. Our experiments demonstrate that the performance of our approach is better than that of the baseline methods on the public LETOR 4.0 datasets. Our approach brings an improvement against RankBoost as well as other baselines near 20% in terms of MAP metric and less improvements using P@K and NDCG@K, respectively. Moreover, our approach is particularly suitable for document ranking on the noisy dataset in practice.
An algorithm of improving speech emotional perception for hearing aid
NASA Astrophysics Data System (ADS)
Xi, Ji; Liang, Ruiyu; Fei, Xianju
2017-07-01
In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.
A new classification scheme of plastic wastes based upon recycling labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr
Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less
The pre-image problem in kernel methods.
Kwok, James Tin-yau; Tsang, Ivor Wai-hung
2004-11-01
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
Kernel-PCA data integration with enhanced interpretability
2014-01-01
Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge. PMID:25032747
Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei
2014-01-01
Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544
Wang, Wei; Heitschmidt, Gerald W; Windham, William R; Feldner, Peggy; Ni, Xinzhi; Chu, Xuan
2015-01-01
The feasibility of using a visible/near-infrared hyperspectral imaging system with a wavelength range between 400 and 1000 nm to detect and differentiate different levels of aflatoxin B1 (AFB1 ) artificially titrated on maize kernel surface was examined. To reduce the color effects of maize kernels, image analysis was limited to a subset of original spectra (600 to 1000 nm). Residual staining from the AFB1 on the kernels surface was selected as regions of interest for analysis. Principal components analysis (PCA) was applied to reduce the dimensionality of hyperspectral image data, and then a stepwise factorial discriminant analysis (FDA) was performed on latent PCA variables. The results indicated that discriminant factors F2 can be used to separate control samples from all of the other groups of kernels with AFB1 inoculated, whereas the discriminant factors F1 can be used to identify maize kernels with levels of AFB1 as low as 10 ppb. An overall classification accuracy of 98% was achieved. Finally, the peaks of β coefficients of the discrimination factors F1 and F2 were analyzed and several key wavelengths identified for differentiating maize kernels with and without AFB1 , as well as those with differing levels of AFB1 inoculation. Results indicated that Vis/NIR hyperspectral imaging technology combined with the PCA-FDA was a practical method to detect and differentiate different levels of AFB1 artificially inoculated on the maize kernels surface. However, indicated the potential to detect and differentiate naturally occurring toxins in maize kernel. © 2014 Institute of Food Technologists®
A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.
2016-12-01
It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.
A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong
Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.
Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan
2007-11-01
Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan
2007-11-01
Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.
Evaluation of driver fatigue on two channels of EEG data.
Li, Wei; He, Qi-chang; Fan, Xiu-min; Fei, Zhi-min
2012-01-11
Electroencephalogram (EEG) data is an effective indicator to evaluate driver fatigue. The 16 channels of EEG data are collected and transformed into three bands (θ, α, and β) in the current paper. First, 12 types of energy parameters are computed based on the EEG data. Then, Grey Relational Analysis (GRA) is introduced to identify the optimal indicator of driver fatigue, after which, the number of significant electrodes is reduced using Kernel Principle Component Analysis (KPCA). Finally, the evaluation model for driver fatigue is established with the regression equation based on the EEG data from two significant electrodes (Fp1 and O1). The experimental results verify that the model is effective in evaluating driver fatigue. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Deep Restricted Kernel Machines Using Conjugate Feature Duality.
Suykens, Johan A K
2017-08-01
The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-09-02
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-01-01
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance. PMID:27598160
NASA Astrophysics Data System (ADS)
Park, Jihoon; Yang, Guang; Satija, Addy; Scheidt, Céline; Caers, Jef
2016-12-01
Sensitivity analysis plays an important role in geoscientific computer experiments, whether for forecasting, data assimilation or model calibration. In this paper we focus on an extension of a method of regionalized sensitivity analysis (RSA) to applications typical in the Earth Sciences. Such applications involve the building of large complex spatial models, the application of computationally extensive forward modeling codes and the integration of heterogeneous sources of model uncertainty. The aim of this paper is to be practical: 1) provide a Matlab code, 2) provide novel visualization methods to aid users in getting a better understanding in the sensitivity 3) provide a method based on kernel principal component analysis (KPCA) and self-organizing maps (SOM) to account for spatial uncertainty typical in Earth Science applications and 4) provide an illustration on a real field case where the above mentioned complexities present themselves. We present methods that extend the original RSA method in several ways. First we present the calculation of conditional effects, defined as the sensitivity of a parameter given a level of another parameters. Second, we show how this conditional effect can be used to choose nominal values or ranges to fix insensitive parameters aiming to minimally affect uncertainty in the response. Third, we develop a method based on KPCA and SOM to assign a rank to spatial models in order to calculate the sensitivity on spatial variability in the models. A large oil/gas reservoir case is used as illustration of these ideas.
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-01-01
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-05-07
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.
Turan, Semra; Topcu, Ali; Karabulut, Ihsan; Vural, Halil; Hayaloglu, Ali Adnan
2007-12-26
The fatty acid, sn-2 fatty acid, triacyglycerol (TAG), tocopherol, and phytosterol compositions of kernel oils obtained from nine apricot varieties grown in the Malatya region of Turkey were determined ( P<0.05). The names of the apricot varieties were Alyanak (ALY), Cataloglu (CAT), Cöloglu (COL), Hacihaliloglu (HAC), Hacikiz (HKI), Hasanbey (HSB), Kabaasi (KAB), Soganci (SOG), and Tokaloglu (TOK). The total oil contents of apricot kernels ranged from 40.23 to 53.19%. Oleic acid contributed 70.83% to the total fatty acids, followed by linoleic (21.96%), palmitic (4.92%), and stearic (1.21%) acids. The s n-2 position is mainly occupied with oleic acid (63.54%), linoleic acid (35.0%), and palmitic acid (0.96%). Eight TAG species were identified: LLL, OLL, PLL, OOL+POL, OOO+POO, and SOO (where P, palmitoyl; S, stearoyl; O, oleoyl; and L, linoleoyl), among which mainly OOO+POO contributed to 48.64% of the total, followed by OOL+POL at 32.63% and OLL at 14.33%. Four tocopherol and six phytosterol isomers were identified and quantified; among these, gamma-tocopherol (475.11 mg/kg of oil) and beta-sitosterol (273.67 mg/100 g of oil) were predominant. Principal component analysis (PCA) was applied to the data from lipid components of apricot kernel oil in order to explore the distribution of the apricot variety according to their kernel's lipid components. PCA separated some varieties including ALY, COL, KAB, CAT, SOG, and HSB in one group and varieties TOK, HAC, and HKI in another group based on their lipid components of apricot kernel oil. So, in the present study, PCA was found to be a powerful tool for classification of the samples.
NASA Astrophysics Data System (ADS)
Kimuli, Daniel; Wang, Wei; Wang, Wei; Jiang, Hongzhe; Zhao, Xin; Chu, Xuan
2018-03-01
A short-wave infrared (SWIR) hyperspectral imaging system (1000-2500 nm) combined with chemometric data analysis was used to detect aflatoxin B1 (AFB1) on surfaces of 600 kernels of four yellow maize varieties from different States of the USA (Georgia, Illinois, Indiana and Nebraska). For each variety, four AFB1 solutions (10, 20, 100 and 500 ppb) were artificially deposited on kernels and a control group was generated from kernels treated with methanol solution. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA) and factorial discriminant analysis (FDA) were applied to explore and classify maize kernels according to AFB1 contamination. PCA results revealed partial separation of control kernels from AFB1 contaminated kernels for each variety while no pattern of separation was observed among pooled samples. A combination of standard normal variate and first derivative pre-treatments produced the best PLSDA classification model with accuracy of 100% and 96% in calibration and validation, respectively, from Illinois variety. The best AFB1 classification results came from FDA on raw spectra with accuracy of 100% in calibration and validation for Illinois and Nebraska varieties. However, for both PLSDA and FDA models, poor AFB1 classification results were obtained for pooled samples relative to individual varieties. SWIR spectra combined with chemometrics and spectra pre-treatments showed the possibility of detecting maize kernels of different varieties coated with AFB1. The study further suggests that increase of maize kernel constituents like water, protein, starch and lipid in a pooled sample may have influence on detection accuracy of AFB1 contamination.
A new classification scheme of plastic wastes based upon recycling labels.
Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil
2015-01-01
Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD.
Sidhu, Gagan S; Asgarian, Nasimeh; Greiner, Russell; Brown, Matthew R G
2012-01-01
This study explored various feature extraction methods for use in automated diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance Image (fMRI) data. Each participant's data consisted of a resting state fMRI scan as well as phenotypic data (age, gender, handedness, IQ, and site of scanning) from the ADHD-200 dataset. We used machine learning techniques to produce support vector machine (SVM) classifiers that attempted to differentiate between (1) all ADHD patients vs. healthy controls and (2) ADHD combined (ADHD-c) type vs. ADHD inattentive (ADHD-i) type vs. controls. In different tests, we used only the phenotypic data, only the imaging data, or else both the phenotypic and imaging data. For feature extraction on fMRI data, we tested the Fast Fourier Transform (FFT), different variants of Principal Component Analysis (PCA), and combinations of FFT and PCA. PCA variants included PCA over time (PCA-t), PCA over space and time (PCA-st), and kernelized PCA (kPCA-st). Baseline chance accuracy was 64.2% produced by guessing healthy control (the majority class) for all participants. Using only phenotypic data produced 72.9% accuracy on two class diagnosis and 66.8% on three class diagnosis. Diagnosis using only imaging data did not perform as well as phenotypic-only approaches. Using both phenotypic and imaging data with combined FFT and kPCA-st feature extraction yielded accuracies of 76.0% on two class diagnosis and 68.6% on three class diagnosis-better than phenotypic-only approaches. Our results demonstrate the potential of using FFT and kPCA-st with resting-state fMRI data as well as phenotypic data for automated diagnosis of ADHD. These results are encouraging given known challenges of learning ADHD diagnostic classifiers using the ADHD-200 dataset (see Brown et al., 2012).
Distinguishing Nonpareil marketing group almond cultivars through multivariate analyses.
Ledbetter, Craig A; Sisterson, Mark S
2013-09-01
More than 80% of the world's almonds are grown in California with several dozen almond cultivars available commercially. To facilitate promotion and sale, almond cultivars are categorized into marketing groups based on kernel shape and appearance. Several marketing groups are recognized, with the Nonpareil Marketing Group (NMG) demanding the highest prices. Placement of cultivars into the NMG is historical and no objective standards exist for deciding whether newly developed cultivars belong in the NMG. Principal component analyses (PCA) were used to identify nut and kernel characteristics best separating the 4 NMG cultivars (Nonpareil, Jeffries, Kapareil, and Milow) from a representative of the California Marketing Group (cultivar Carmel) and the Mission Marketing Group (cultivar Padre). In addition, discriminant analyses were used to determine cultivar misclassification rates between and within the marketing groups. All 19 evaluated carpological characters differed significantly among the 6 cultivars and during 2 harvest seasons. A clear distinction of NMG cultivars from representatives of the California and Mission Marketing Groups was evident from a PCA involving the 6 cultivars. Further, NMG kernels were successfully discriminated from kernels representing the California and Mission Marketing Groups with overall kernel misclassification of only 2% using 16 of the 19 evaluated characters. Pellicle luminosity was the most discriminating character, regardless of the character set used in analyses. Results provide an objective classification of NMG almond kernels, clearly distinguishing them from kernels of cultivars representing the California and Mission Marketing Groups. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.
Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R
2015-01-01
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058
Li, Wu; Hu, Bing; Wang, Ming-wei
2014-12-01
In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species identification of borneol in Chinese medicine.
Gaussian mass optimization for kernel PCA parameters
NASA Astrophysics Data System (ADS)
Liu, Yong; Wang, Zulin
2011-10-01
This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.
Unsupervised multiple kernel learning for heterogeneous data integration.
Mariette, Jérôme; Villa-Vialaneix, Nathalie
2018-03-15
Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na
2014-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935
Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R
2015-11-01
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
[Identification of varieties of cashmere by Vis/NIR spectroscopy technology based on PCA-SVM].
Wu, Gui-Fang; He, Yong
2009-06-01
One mixed algorithm was presented to discriminate cashmere varieties with principal component analysis (PCA) and support vector machine (SVM). Cashmere fiber has such characteristics as threadlike, softness, glossiness and high tensile strength. The quality characters and economic value of each breed of cashmere are very different. In order to safeguard the consumer's rights and guarantee the quality of cashmere product, quickly, efficiently and correctly identifying cashmere has significant meaning to the production and transaction of cashmere material. The present research adopts Vis/NIRS spectroscopy diffuse techniques to collect the spectral data of cashmere. The near infrared fingerprint of cashmere was acquired by principal component analysis (PCA), and support vector machine (SVM) methods were used to further identify the cashmere material. The result of PCA indicated that the score map made by the scores of PC1, PC2 and PC3 was used, and 10 principal components (PCs) were selected as the input of support vector machine (SVM) based on the reliabilities of PCs of 99.99%. One hundred cashmere samples were used for calibration and the remaining 75 cashmere samples were used for validation. A one-against-all multi-class SVM model was built, the capabilities of SVM with different kernel function were comparatively analyzed, and the result showed that SVM possessing with the Gaussian kernel function has the best identification capabilities with the accuracy of 100%. This research indicated that the data mining method of PCA-SVM has a good identification effect, and can work as a new method for rapid identification of cashmere material varieties.
Kernel analysis of partial least squares (PLS) regression models.
Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro
2011-05-01
An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.
Effect of finite sample size on feature selection and classification: a simulation study.
Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping
2010-02-01
The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.
Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.
2017-03-01
Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.
Luo, Junhai; Fu, Liang
2017-06-09
With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.
Robust fiber clustering of cerebral fiber bundles in white matter
NASA Astrophysics Data System (ADS)
Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin
2014-11-01
Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.
Predicting radiotherapy outcomes using statistical learning techniques
NASA Astrophysics Data System (ADS)
El Naqa, Issam; Bradley, Jeffrey D.; Lindsay, Patricia E.; Hope, Andrew J.; Deasy, Joseph O.
2009-09-01
Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model variables. These models have the capacity to predict on unseen data. Part of this work was first presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11-13 December 2008.
Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah
2017-02-01
Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Buettner, Florian; Moignard, Victoria; Göttgens, Berthold; Theis, Fabian J
2014-07-01
High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to low or absent expression, and the true expression level is unknown. Because this censoring can occur for high proportions of the data, it is one of the main challenges when dealing with single-cell qPCR data. Principal component analysis (PCA) is an important tool for visualizing the structure of high-dimensional data as well as for identifying subpopulations of cells. However, to date it is not clear how to perform a PCA of censored data. We present a probabilistic approach that accounts for the censoring and evaluate it for two typical datasets containing single-cell qPCR data. We use the Gaussian process latent variable model framework to account for censoring by introducing an appropriate noise model and allowing a different kernel for each dimension. We evaluate this new approach for two typical qPCR datasets (of mouse embryonic stem cells and blood stem/progenitor cells, respectively) by performing linear and non-linear probabilistic PCA. Taking the censoring into account results in a 2D representation of the data, which better reflects its known structure: in both datasets, our new approach results in a better separation of known cell types and is able to reveal subpopulations in one dataset that could not be resolved using standard PCA. The implementation was based on the existing Gaussian process latent variable model toolbox (https://github.com/SheffieldML/GPmat); extensions for noise models and kernels accounting for censoring are available at http://icb.helmholtz-muenchen.de/censgplvm. © The Author 2014. Published by Oxford University Press. All rights reserved.
Buettner, Florian; Moignard, Victoria; Göttgens, Berthold; Theis, Fabian J.
2014-01-01
Motivation: High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to low or absent expression, and the true expression level is unknown. Because this censoring can occur for high proportions of the data, it is one of the main challenges when dealing with single-cell qPCR data. Principal component analysis (PCA) is an important tool for visualizing the structure of high-dimensional data as well as for identifying subpopulations of cells. However, to date it is not clear how to perform a PCA of censored data. We present a probabilistic approach that accounts for the censoring and evaluate it for two typical datasets containing single-cell qPCR data. Results: We use the Gaussian process latent variable model framework to account for censoring by introducing an appropriate noise model and allowing a different kernel for each dimension. We evaluate this new approach for two typical qPCR datasets (of mouse embryonic stem cells and blood stem/progenitor cells, respectively) by performing linear and non-linear probabilistic PCA. Taking the censoring into account results in a 2D representation of the data, which better reflects its known structure: in both datasets, our new approach results in a better separation of known cell types and is able to reveal subpopulations in one dataset that could not be resolved using standard PCA. Availability and implementation: The implementation was based on the existing Gaussian process latent variable model toolbox (https://github.com/SheffieldML/GPmat); extensions for noise models and kernels accounting for censoring are available at http://icb.helmholtz-muenchen.de/censgplvm. Contact: fbuettner.phys@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24618470
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.
2016-12-01
The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao
2014-09-01
This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.
Human Activity Recognition from Body Sensor Data using Deep Learning.
Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed
2018-04-16
In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.
NASA Astrophysics Data System (ADS)
Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi
2010-03-01
In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.
NASA Astrophysics Data System (ADS)
Li, S. X.; Zhang, Y. J.; Zeng, Q. Y.; Li, L. F.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H.
2014-06-01
Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA-SVM methods. The results prove that a RBF kernel PCA-SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample.
A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.
Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan
2015-01-01
The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.
A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System
Yuan, Xianfeng; Song, Mumin; Chen, Zhumin; Li, Yan
2015-01-01
The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526
Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
Jaiswal, Abeg Kumar; Banka, Haider
2017-01-01
Epilepsy is one of the most common neurological disorders caused by recurrent seizures. Electroencephalograms (EEGs) record neural activity and can detect epilepsy. Visual inspection of an EEG signal for epileptic seizure detection is a time-consuming process and may lead to human error; therefore, recently, a number of automated seizure detection frameworks were proposed to replace these traditional methods. Feature extraction and classification are two important steps in these procedures. Feature extraction focuses on finding the informative features that could be used for classification and correct decision-making. Therefore, proposing effective feature extraction techniques for seizure detection is of great significance. Principal Component Analysis (PCA) is a dimensionality reduction technique used in different fields of pattern recognition including EEG signal classification. Global modular PCA (GModPCA) is a variation of PCA. In this paper, an effective framework with GModPCA and Support Vector Machine (SVM) is presented for epileptic seizure detection in EEG signals. The feature extraction is performed with GModPCA, whereas SVM trained with radial basis function kernel performed the classification between seizure and nonseizure EEG signals. Seven different experimental cases were conducted on the benchmark epilepsy EEG dataset. The system performance was evaluated using 10-fold cross-validation. In addition, we prove analytically that GModPCA has less time and space complexities as compared to PCA. The experimental results show that EEG signals have strong inter-sub-pattern correlations. GModPCA and SVM have been able to achieve 100% accuracy for the classification between normal and epileptic signals. Along with this, seven different experimental cases were tested. The classification results of the proposed approach were better than were compared the results of some of the existing methods proposed in literature. It is also found that the time and space complexities of GModPCA are less as compared to PCA. This study suggests that GModPCA and SVM could be used for automated epileptic seizure detection in EEG signal.
Support vector machine and principal component analysis for microarray data classification
NASA Astrophysics Data System (ADS)
Astuti, Widi; Adiwijaya
2018-03-01
Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.
Stochastic Multiscale Analysis and Design of Engine Disks
2010-07-28
shown recently to fail when used with data-driven non-linear stochastic input models (KPCA, IsoMap, etc.). Need for scalable exascale computing algorithms Materials Process Design and Control Laboratory Cornell University
A SPECTRAL GRAPH APPROACH TO DISCOVERING GENETIC ANCESTRY1
Lee, Ann B.; Luca, Diana; Roeder, Kathryn
2010-01-01
Mapping human genetic variation is fundamentally interesting in fields such as anthropology and forensic inference. At the same time, patterns of genetic diversity confound efforts to determine the genetic basis of complex disease. Due to technological advances, it is now possible to measure hundreds of thousands of genetic variants per individual across the genome. Principal component analysis (PCA) is routinely used to summarize the genetic similarity between subjects. The eigenvectors are interpreted as dimensions of ancestry. We build on this idea using a spectral graph approach. In the process we draw on connections between multidimensional scaling and spectral kernel methods. Our approach, based on a spectral embedding derived from the normalized Laplacian of a graph, can produce more meaningful delineation of ancestry than by using PCA. The method is stable to outliers and can more easily incorporate different similarity measures of genetic data than PCA. We illustrate a new algorithm for genetic clustering and association analysis on a large, genetically heterogeneous sample. PMID:20689656
Robust prediction of protein subcellular localization combining PCA and WSVMs.
Tian, Jiang; Gu, Hong; Liu, Wenqi; Gao, Chiyang
2011-08-01
Automated prediction of protein subcellular localization is an important tool for genome annotation and drug discovery, and Support Vector Machines (SVMs) can effectively solve this problem in a supervised manner. However, the datasets obtained from real experiments are likely to contain outliers or noises, which can lead to poor generalization ability and classification accuracy. To explore this problem, we adopt strategies to lower the effect of outliers. First we design a method based on Weighted SVMs, different weights are assigned to different data points, so the training algorithm will learn the decision boundary according to the relative importance of the data points. Second we analyse the influence of Principal Component Analysis (PCA) on WSVM classification, propose a hybrid classifier combining merits of both PCA and WSVM. After performing dimension reduction operations on the datasets, kernel-based possibilistic c-means algorithm can generate more suitable weights for the training, as PCA transforms the data into a new coordinate system with largest variances affected greatly by the outliers. Experiments on benchmark datasets show promising results, which confirms the effectiveness of the proposed method in terms of prediction accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ju, Da-Tong; Kuo, Wei-Wen; Ho, Tsung-Jung; Paul, Catherine Reena; Kuo, Chia-Hua; Viswanadha, Vijaya Padma; Lin, Chien-Chung; Chen, Yueh-Sheng; Chang, Yung-Ming; Huang, Chih-Yang
2015-01-01
Alpinia oxyphylla MIQ (Alpinate Oxyphyllae Fructus, AOF) is an important traditional Chinese medicinal herb whose fruits is widely used to prepare tonics and is used as an aphrodisiac, anti salivary, anti diuretic and nerve-protective agent. Protocatechuic acid (PCA), a simple phenolic compound was isolated from the kernels of AOF. This study investigated the role of PCA in promoting neural regeneration and the underlying molecular mechanisms. Nerve regeneration is a complex physiological response that takes place after injury. Schwann cells play a crucial role in the endogenous repair of peripheral nerves due to their ability to proliferate and migrate. The role of PCA in Schwann cell migration was determined by assessing the induced migration potential of RSC96 Schwann cells. PCA induced changes in the expression of proteins of three MAPK pathways, as determined using Western blot analysis. In order to determine the roles of MAPK (ERK1/2, JNK, and p38) pathways in PCA-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production, the expression of several MAPK-associated proteins was analyzed after siRNA-mediated inhibition assays. Treatment with PCA-induced ERK1/2, JNK, and p38 phosphorylation that activated the downstream expression of PAs and MMPs. PCA-stimulated ERK1/2, JNK and p38 phosphorylation was attenuated by individual pretreatment with siRNAs or MAPK inhibitors (U0126, SP600125, and SB203580), resulting in the inhibition of migration and the uPA-related signal pathway. Taken together, our data suggest that PCA extract regulate the MAPK (ERK1/2, JNK, and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) mediated regeneration and migration signaling pathways in Schwann cells. Therefore, PCA plays a major role in Schwann cell migration and the regeneration of damaged peripheral nerve.
A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification
NASA Astrophysics Data System (ADS)
He, Hui; Yu, Xianchuan
2005-10-01
In this paper a performance comparison of a variety of data preprocessing algorithms in remote sensing image classification is presented. These selected algorithms are principal component analysis (PCA) and three different independent component analyses, ICA (Fast-ICA (Aapo Hyvarinen, 1999), Kernel-ICA (KCCA and KGV (Bach & Jordan, 2002), EFFICA (Aiyou Chen & Peter Bickel, 2003). These algorithms were applied to a remote sensing imagery (1600×1197), obtained from Shunyi, Beijing. For classification, a MLC method is used for the raw and preprocessed data. The results show that classification with the preprocessed data have more confident results than that with raw data and among the preprocessing algorithms, ICA algorithms improve on PCA and EFFICA performs better than the others. The convergence of these ICA algorithms (for data points more than a million) are also studied, the result shows EFFICA converges much faster than the others. Furthermore, because EFFICA is a one-step maximum likelihood estimate (MLE) which reaches asymptotic Fisher efficiency (EFFICA), it computers quite small so that its demand of memory come down greatly, which settled the "out of memory" problem occurred in the other algorithms.
NASA Astrophysics Data System (ADS)
Ngan, Henry Y. T.; Yung, Nelson H. C.; Yeh, Anthony G. O.
2015-02-01
This paper aims at presenting a comparative study of outlier detection (OD) for large-scale traffic data. The traffic data nowadays are massive in scale and collected in every second throughout any modern city. In this research, the traffic flow dynamic is collected from one of the busiest 4-armed junction in Hong Kong in a 31-day sampling period (with 764,027 vehicles in total). The traffic flow dynamic is expressed in a high dimension spatial-temporal (ST) signal format (i.e. 80 cycles) which has a high degree of similarities among the same signal and across different signals in one direction. A total of 19 traffic directions are identified in this junction and lots of ST signals are collected in the 31-day period (i.e. 874 signals). In order to reduce its dimension, the ST signals are firstly undergone a principal component analysis (PCA) to represent as (x,y)-coordinates. Then, these PCA (x,y)-coordinates are assumed to be conformed as Gaussian distributed. With this assumption, the data points are further to be evaluated by (a) a correlation study with three variant coefficients, (b) one-class support vector machine (SVM) and (c) kernel density estimation (KDE). The correlation study could not give any explicit OD result while the one-class SVM and KDE provide average 59.61% and 95.20% DSRs, respectively.
Epileptic seizure detection in EEG signal using machine learning techniques.
Jaiswal, Abeg Kumar; Banka, Haider
2018-03-01
Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.
Face recognition by applying wavelet subband representation and kernel associative memory.
Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam
2004-01-01
In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.
2006-06-14
Robert Graybill . A Raw hoard for the use of this project was provided by the Computer Architecture Croup at the Massachusetts Institute of Technology...simulator is presented by MIT as being an accurate model of the Raw chip, we have found that it does not accurately model the board. Our comparison...G4 processor, model 7410. with a 32 kbyte level-1 cache on-chip and a 2 Mbyte L2 cache connected through a 250 MH/ bus [12]. Each node has 256 Mbyte
Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent
2013-12-01
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.
Astrobiological complexity with probabilistic cellular automata.
Vukotić, Branislav; Ćirković, Milan M
2012-08-01
The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.
Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach
NASA Astrophysics Data System (ADS)
Liu, Wenyang; Sawant, Amit; Ruan, Dan
2016-07-01
The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.
Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K
2015-01-01
The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.
Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.
In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientificmore » questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to indicate that one needs 4 or 5 components to account for most of the variance in the data, hence this 5D dataset does not necessarily lie on a well-defined, low dimensional manifold. In terms of specific clustering techniques, K-means was generally useful in exploring the dataset. The partition around medoids (pam) technique produced the most definitive results for our data showing distinctive patterns for both a sample of the complete data and time-series. The gap statistic with tibshirani criteria did not provide any distinction across the 2 dataset. The gap statistic w/DandF criteria, Model based clustering and hierarchical modeling simply failed to run on our datasets. Thankfully, the vanilla PCA technique was successful in handling our entire dataset. PCA revealed some interesting patterns for the scalar value distribution. Kernel PCA techniques (vanilladot, RBF, Polynomial) and MDS failed to run on the entire dataset, or even a significant fraction of the dataset, and we resorted to creating an explicit feature map followed by conventional PCA. Clustering using K-means and PAM in the new basis set seems to produce promising results. Understanding the new basis set in the scientific context of the problem is challenging, and we are currently working to further examine and interpret the results.« less
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Jia, Cangzhi; Zuo, Yun; Zou, Quan; Hancock, John
2018-02-06
Protein O-GlcNAcylation (O-GlcNAc) is an important post-translational modification of serine (S)/threonine (T) residues that involves multiple molecular and cellular processes. Recent studies have suggested that abnormal O-G1cNAcylation causes many diseases, such as cancer and various neurodegenerative diseases. With the available protein O-G1cNAcylation sites experimentally verified, it is highly desired to develop automated methods to rapidly and effectively identify O-G1cNAcylation sites. Although some computational methods have been proposed, their performance has been unsatisfactory, particularly in terms of prediction sensitivity. In this study, we developed an ensemble model O-GlcNAcPRED-II to identify potential O-G1cNAcylation sites. A K-means principal component analysis oversampling technique (KPCA) and fuzzy undersampling method (FUS) were first proposed and incorporated to reduce the proportion of the original positive and negative training samples. Then, rotation forest, a type of classifier-integrated system, was adopted to divide the eight types of feature space into several subsets using four sub-classifiers: random forest, k-nearest neighbour, naive Bayesian and support vector machine. We observed that O-GlcNAcPRED-II achieved a sensitivity of 81.05%, specificity of 95.91%, accuracy of 91.43% and Matthew's correlation coefficient of 0.7928 for five-fold cross-validation run 10 times. Additionally, the results obtained by O-GlcNAcPRED-II on two independent datasets also indicated that the proposed predictor outperformed five published prediction tools. http://121.42.167.206/OGlcPred/. cangzhijia@dlmu.edu.cn or zouquan@nclab.net. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Araki, Tadashi; Ikeda, Nobutaka; Shukla, Devarshi; Jain, Pankaj K; Londhe, Narendra D; Shrivastava, Vimal K; Banchhor, Sumit K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S
2016-05-01
Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup. This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS). Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K=10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS. This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary risk assessment and stratification while demonstrating a successful design of the machine learning system based on our assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.
Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan
2015-01-01
A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.
A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Goldberg, Hirsh; Nasrabadi, Nasser M.
2007-04-01
In this paper we implement various linear and nonlinear subspace-based anomaly detectors for hyperspectral imagery. First, a dual window technique is used to separate the local area around each pixel into two regions - an inner-window region (IWR) and an outer-window region (OWR). Pixel spectra from each region are projected onto a subspace which is defined by projection bases that can be generated in several ways. Here we use three common pattern classification techniques (Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST)) to generate projection vectors. In addition to these three algorithms, the well-known Reed-Xiaoli (RX) anomaly detector is also implemented. Each of the four linear methods is then implicitly defined in a high- (possibly infinite-) dimensional feature space by using a nonlinear mapping associated with a kernel function. Using a common machine-learning technique known as the kernel trick all dot products in the feature space are replaced with a Mercer kernel function defined in terms of the original input data space. To determine how anomalous a given pixel is, we then project the current test pixel spectra and the spectral mean vector of the OWR onto the linear and nonlinear projection vectors in order to exploit the statistical differences between the IWR and OWR pixels. Anomalies are detected if the separation of the projection of the current test pixel spectra and the OWR mean spectra are greater than a certain threshold. Comparisons are made using receiver operating characteristics (ROC) curves.
Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine
NASA Astrophysics Data System (ADS)
Lawi, Armin; Sya'Rani Machrizzandi, M.
2018-03-01
Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Sawant, A; Ruan, D
Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit moremore » descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction reliability in such low dimensional manifold. The fixed-point iterative approach turns out to work well practically for the pre-image recovery. Our approach is particularly suitable to facilitate managing respiratory motion in image-guide radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less
NASA Astrophysics Data System (ADS)
Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey
2018-04-01
Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.
A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation
Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen
2013-01-01
In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218
NASA Astrophysics Data System (ADS)
Baccar, D.; Söffker, D.
2017-11-01
Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, MM; University of California San Diego, La Jolla, California; Long, T
Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes canmore » be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for large-scale radiation therapy optimization research.« less
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-01-01
Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-02-16
Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.
[Spectral scatter correction of coal samples based on quasi-linear local weighted method].
Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng
2014-07-01
The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.
NASA Astrophysics Data System (ADS)
Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy
2017-02-01
Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.
2D/3D facial feature extraction
NASA Astrophysics Data System (ADS)
Çinar Akakin, Hatice; Ali Salah, Albert; Akarun, Lale; Sankur, Bülent
2006-02-01
We propose and compare three different automatic landmarking methods for near-frontal faces. The face information is provided as 480x640 gray-level images in addition to the corresponding 3D scene depth information. All three methods follow a coarse-to-fine suite and use the 3D information in an assist role. The first method employs a combination of principal component analysis (PCA) and independent component analysis (ICA) features to analyze the Gabor feature set. The second method uses a subset of DCT coefficients for template-based matching. These two methods employ SVM classifiers with polynomial kernel functions. The third method uses a mixture of factor analyzers to learn Gabor filter outputs. We contrast the localization performance separately with 2D texture and 3D depth information. Although the 3D depth information per se does not perform as well as texture images in landmark localization, the 3D information has still a beneficial role in eliminating the background and the false alarms.
Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif
2014-11-01
Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less
Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung
2017-06-14
Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Chou, Ping-Yi; Chou, Jyh-Horng
2015-11-01
The aim of this study is to generate vector quantisation (VQ) codebooks by integrating principle component analysis (PCA) algorithm, Linde-Buzo-Gray (LBG) algorithm, and evolutionary algorithms (EAs). The EAs include genetic algorithm (GA), particle swarm optimisation (PSO), honey bee mating optimisation (HBMO), and firefly algorithm (FF). The study is to provide performance comparisons between PCA-EA-LBG and PCA-LBG-EA approaches. The PCA-EA-LBG approaches contain PCA-GA-LBG, PCA-PSO-LBG, PCA-HBMO-LBG, and PCA-FF-LBG, while the PCA-LBG-EA approaches contain PCA-LBG, PCA-LBG-GA, PCA-LBG-PSO, PCA-LBG-HBMO, and PCA-LBG-FF. All training vectors of test images are grouped according to PCA. The PCA-EA-LBG used the vectors grouped by PCA as initial individuals, and the best solution gained by the EAs was given for LBG to discover a codebook. The PCA-LBG approach is to use the PCA to select vectors as initial individuals for LBG to find a codebook. The PCA-LBG-EA used the final result of PCA-LBG as an initial individual for EAs to find a codebook. The search schemes in PCA-EA-LBG first used global search and then applied local search skill, while in PCA-LBG-EA first used local search and then employed global search skill. The results verify that the PCA-EA-LBG indeed gain superior results compared to the PCA-LBG-EA, because the PCA-EA-LBG explores a global area to find a solution, and then exploits a better one from the local area of the solution. Furthermore the proposed PCA-EA-LBG approaches in designing VQ codebooks outperform existing approaches shown in the literature.
Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials.
Hori, Tomoaki; Montcho, David; Agbangla, Clement; Ebana, Kaworu; Futakuchi, Koichi; Iwata, Hiroyoshi
2016-11-01
A method based on a multi-task Gaussian process using self-measuring similarity gave increased accuracy for imputing missing phenotypic data in multi-trait and multi-environment trials. Multi-environmental trial (MET) data often encounter the problem of missing data. Accurate imputation of missing data makes subsequent analysis more effective and the results easier to understand. Moreover, accurate imputation may help to reduce the cost of phenotyping for thinned-out lines tested in METs. METs are generally performed for multiple traits that are correlated to each other. Correlation among traits can be useful information for imputation, but single-trait-based methods cannot utilize information shared by traits that are correlated. In this paper, we propose imputation methods based on a multi-task Gaussian process (MTGP) using self-measuring similarity kernels reflecting relationships among traits, genotypes, and environments. This framework allows us to use genetic correlation among multi-trait multi-environment data and also to combine MET data and marker genotype data. We compared the accuracy of three MTGP methods and iterative regularized PCA using rice MET data. Two scenarios for the generation of missing data at various missing rates were considered. The MTGP performed a better imputation accuracy than regularized PCA, especially at high missing rates. Under the 'uniform' scenario, in which missing data arise randomly, inclusion of marker genotype data in the imputation increased the imputation accuracy at high missing rates. Under the 'fiber' scenario, in which missing data arise in all traits for some combinations between genotypes and environments, the inclusion of marker genotype data decreased the imputation accuracy for most traits while increasing the accuracy in a few traits remarkably. The proposed methods will be useful for solving the missing data problem in MET data.
NASA Astrophysics Data System (ADS)
Farda, N. M.
2017-12-01
Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A.; del Pozo, Alejandro; Astudillo, Cesar A.; Lobos, Gustavo A.
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ13C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ13C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection. PMID:28337210
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A; Del Pozo, Alejandro; Astudillo, Cesar A; Lobos, Gustavo A
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ 13 C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and k NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ 13 C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.
Hanft, J M; Jones, R J
1986-06-01
Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.
Behavior of the PCA3 gene in the urine of men with high grade prostatic intraepithelial neoplasia.
Morote, Juan; Rigau, Marina; Garcia, Marta; Mir, Carmen; Ballesteros, Carlos; Planas, Jacques; Raventós, Carles X; Placer, José; de Torres, Inés M; Reventós, Jaume; Doll, Andreas
2010-12-01
An ideal marker for the early detection of prostate cancer (PCa) should also differentiate between men with isolated high grade prostatic intraepithelial neoplasia (HGPIN) and those with PCa. Prostate Cancer Gene 3 (PCA3) is a highly specific PCa gene and its score, in relation to the PSA gene in post-prostate massage urine (PMU-PCA3), seems to be useful in ruling out PCa, especially after a negative prostate biopsy. Because PCA3 is also expressed in the HGPIN lesion, the aim of this study was to determine the efficacy of PMU-PCA3 scores for ruling out PCa in men with previous HGPIN. The PMU-PCA3 score was assessed by quantitative PCR (multiplex research assay) in 244 men subjected to prostate biopsy: 64 men with an isolated HGPIN (no cancer detected after two or more repeated biopsies), 83 men with PCa and 97 men with benign pathology findings (BP: no PCa, HGPIN or ASAP). The median PMU-PCA3 score was 1.56 in men with BP, 2.01 in men with HGPIN (p = 0.128) and 9.06 in men with PCa (p = 0.008). The AUC in the ROC analysis was 0.705 in the subset of men with BP and PCa, while it decreased to 0.629 when only men with isolated HGPIN and PCa were included in the analysis. Fixing the sensitivity of the PMU-PCA3 score at 90%, its specificity was 79% in men with BP and 69% in men with isolated HGPIN. The efficacy of the PMU-PCA3 score to rule out PCa in men with HGPIN is lower than in men with BP.
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of flaxseed kernels that are badly ground-damaged, badly weather... instructions. Also, underdeveloped, shriveled, and small pieces of flaxseed kernels removed in properly... recleaning. (c) Heat-damaged kernels. Kernels and pieces of flaxseed kernels that are materially discolored...
Hanft, Jonathan M.; Jones, Robert J.
1986-01-01
Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846
Out-of-Sample Extensions for Non-Parametric Kernel Methods.
Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang
2017-02-01
Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... kernels. Kernels, pieces of rye kernels, and other grains that are badly ground-damaged, badly weather.... Also, underdeveloped, shriveled, and small pieces of rye kernels removed in properly separating the...-damaged kernels. Kernels, pieces of rye kernels, and other grains that are materially discolored and...
Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
Shao, Xiaolong; Li, Hui; Wang, Nan; Zhang, Qiang
2015-10-21
An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results.
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of grain kernels for which standards have been established under the.... (d) Heat-damaged kernels. Kernels and pieces of grain kernels for which standards have been...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Classification With Truncated Distance Kernel.
Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas
2018-05-01
This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.
PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.
Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur
2017-07-01
Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Perdonà, Sisto; Bruzzese, Dario; Ferro, Matteo; Autorino, Riccardo; Marino, Ada; Mazzarella, Claudia; Perruolo, Giuseppe; Longo, Michele; Spinelli, Rosa; Di Lorenzo, Giuseppe; Oliva, Andrea; De Sio, Marco; Damiano, Rocco; Altieri, Vincenzo; Terracciano, Daniela
2013-02-15
Prostate health index (phi) and prostate cancer antigen 3 (PCA3) have been recently proposed as novel biomarkers for prostate cancer (PCa). We assessed the diagnostic performance of these biomarkers, alone or in combination, in men undergoing first prostate biopsy for suspicion of PCa. One hundred sixty male subjects were enrolled in this prospective observational study. PSA molecular forms, phi index (Beckman coulter immunoassay), PCA3 score (Progensa PCA3 assay), and other established biomarkers (tPSA, fPSA, and %fPSA) were assessed before patients underwent a 18-core first prostate biopsy. The discriminating ability between PCa-negative and PCa-positive biopsies of Beckman coulter phi and PCA3 score and other used biomarkers were determined. One hundred sixty patients met inclusion criteria. %p2PSA (p2PSA/fPSA × 100), phi and PCA3 were significantly higher in patients with PCa compared to PCa-negative group (median values: 1.92 vs. 1.55, 49.97 vs. 36.84, and 50 vs. 32, respectively, P ≤ 0.001). ROC curve analysis showed that %p2PSA, phi, and PCA3 are good indicator of malignancy (AUCs = 0.68, 0.71, and 0.66, respectively). A multivariable logistic regression model consisting of both the phi index and PCA3 score allowed to reach an overall diagnostic accuracy of 0.77. Decision curve analysis revealed that this "combined" marker achieved the highest net benefit over the examined range of the threshold probability. phi and PCA3 showed no significant difference in the ability to predict PCa diagnosis in men undergoing first prostate biopsy. However, diagnostic performance is significantly improved by combining phi and PCA3. Copyright © 2012 Wiley Periodicals, Inc.
A pilot study assessing the association between paraoxonase 1 gene polymorphism and prostate cancer.
Uluocak, Nihat; Atılgan, Doğan; Parlaktaş, Bekir Süha; Erdemir, Fikret; Ateş, Ömer
2017-09-01
We aimed to show the relationship between paraoxonase 1 (PON1) gene polymorphism and the development of prostate cancer (PCa). We investigated the association of single nuclotide polymorphisms of PON1 enzyme with the development of PCa risk. A total of 147 male patients were divided into PCa, and control groups. The control group was also divided into two subgroups according to serum prostate specific antigen (PSA) levels as non PCa-high PSA (>4 ng/mL) and non PCa-low PSA (≤4 ng/mL) groups. The mean ages of the patients were 64.81 years, 63.27 years and 64.22 years in PCa group, non PCa-low PSA and non PCa -high PSA groups, respectively. The mean PSA levels were 10.9 ng/mL, 1.16 ng/mL and 6.63 ng/mL for PCa group, non PCa -low PSA and non PCa -high PSA groups, respectively. In terms of PON1 polymorphisms and allele frequencies, there were no statistically significant differences between PCa and control groups. There was not a statistically significant difference between PCa and non PCa-high PSA groups as for genotypic and allelic frequencies. As a result of this small sample sized hypothetical study of polymorphism, a relationship could not be detected between PCa development and PON1 gene polymorphism. According to the results of this preliminary study, it is thought that more comprehensive future studies are necessary to clarify the possible role of PON1 gene polymorphism in the etiology of PCa.
A pilot study assessing the association between paraoxonase 1 gene polymorphism and prostate cancer
Uluocak, Nihat; Atılgan, Doğan; Parlaktaş, Bekir Süha; Erdemir, Fikret; Ateş, Ömer
2017-01-01
Objective We aimed to show the relationship between paraoxonase 1 (PON1) gene polymorphism and the development of prostate cancer (PCa). Material and methods We investigated the association of single nuclotide polymorphisms of PON1 enzyme with the development of PCa risk. A total of 147 male patients were divided into PCa, and control groups. The control group was also divided into two subgroups according to serum prostate specific antigen (PSA) levels as non PCa-high PSA (>4 ng/mL) and non PCa-low PSA (≤4 ng/mL) groups. Results The mean ages of the patients were 64.81 years, 63.27 years and 64.22 years in PCa group, non PCa-low PSA and non PCa –high PSA groups, respectively. The mean PSA levels were 10.9 ng/mL, 1.16 ng/mL and 6.63 ng/mL for PCa group, non PCa –low PSA and non PCa –high PSA groups, respectively. In terms of PON1 polymorphisms and allele frequencies, there were no statistically significant differences between PCa and control groups. There was not a statistically significant difference between PCa and non PCa-high PSA groups as for genotypic and allelic frequencies. As a result of this small sample sized hypothetical study of polymorphism, a relationship could not be detected between PCa development and PON1 gene polymorphism. Conclusion According to the results of this preliminary study, it is thought that more comprehensive future studies are necessary to clarify the possible role of PON1 gene polymorphism in the etiology of PCa. PMID:28861298
Seisen, Thomas; Rouprêt, Morgan; Brault, Didier; Léon, Priscilla; Cancel-Tassin, Géraldine; Compérat, Eva; Renard-Penna, Raphaële; Mozer, Pierre; Guechot, Jérome; Cussenot, Olivier
2015-01-01
It remains unclear whether the Prostate Health Index (PHI) or the urinary Prostate-Cancer Antigen 3 (PCA-3) score is more accurate at screening for prostate cancer (PCa). The aim of this study was to prospectively compare the accuracy of PHI and PCA-3 scores to predict overall and significant PCa in men undergoing an initial prostate biopsy. Double-blind assessments of PHI and PCA-3 were conducted by referent physicians in 138 patients who subsequently underwent trans-rectal ultrasound-guided prostate biopsy according to a 12-core scheme. Predictive accuracies of PHI and PCA-3 were assessed using AUC and compared according to the DeLong method. Diagnostic performances with usual cut-off values for positivity (i.e., PHI >40 and PCA-3 >35) were calculated, and odds ratios associated with predicting PCa overall and significant PCa as defined by pathological updated Epstein criteria (i.e., Gleason score ≥7, more than three positive cores, or >50% cancer involvement in any core) were estimated using logistic regression. Prevalences of overall and significant PCa were 44.9% and 28.3%, respectively. PCA-3 (AUC = 0.71) was the most accurate predictor of PCa overall, and significantly outperformed PHI (AUC = 0.65; P = 0.03). However, PHI (AUC = 0.80) remained the most accurate predictor when screening exclusively for significant PCa and significantly outperformed PCA-3 (AUC = 0.55; P = 0.03). Furthermore, PCA-3 >35 had the best accuracy, and positive or negative predictive values when screening for PCa overall whereas these diagnostic performances were greater for PHI >40 when exclusively screening for significant PCa. PHI > 40 combined with PCA-3 > 35 was more specific in both cases. In multivariate analyses, PCA-3 >35 (OR = 5.68; 95%CI = [2.21-14.59]; P < 0.001) was significantly correlated with the presence of PCa overall, but PHI >40 (OR = 9.60; 95%CI = [1.72-91.32]; P = 0.001) was the only independent predictor for detecting significant PCa. Although PCA-3 score is the best predictor for PCa overall at initial biopsy, our findings strongly indicate that PHI should be used for population-based screening to avoid over-diagnosis of indolent tumors that are unlikely to cause death. © 2014 Wiley Periodicals, Inc.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
Ferro, Matteo; Bruzzese, Dario; Perdonà, Sisto; Mazzarella, Claudia; Marino, Ada; Sorrentino, Alessandra; Di Carlo, Angelina; Autorino, Riccardo; Di Lorenzo, Giuseppe; Buonerba, Carlo; Altieri, Vincenzo; Mariano, Angela; Macchia, Vincenzo; Terracciano, Daniela
2012-08-16
Indication for prostate biopsy is presently mainly based on prostate-specific antigen (PSA) serum levels and digital-rectal examination (DRE). In view of the unsatisfactory accuracy of these two diagnostic exams, research has focused on novel markers to improve pre-biopsy prostate cancer detection, such as phi and PCA3. The purpose of this prospective study was to assess the diagnostic accuracy of phi and PCA3 for prostate cancer using biopsy as gold standard. Phi index (Beckman coulter immunoassay), PCA3 score (Progensa PCA3 assay) and other established biomarkers (tPSA, fPSA and %fPSA) were assessed before a 18-core prostate biopsy in a group of 251 subjects at their first biopsy. Values of %p2PSA and phi were significantly higher in patients with PCa compared with PCa-negative group (p<0.001) and also compared with high grade prostatic intraepithelial neoplasia (HGPIN) (p<0.001). PCA3 score values were significantly higher in PCa compared with PCa-negative subjects (p<0.001) and in HGPIN vs PCa-negative patients (p<0.001). ROC curve analysis showed that %p2PSA, phi and PCA3 are predictive of malignancy. In conclusion, %p2PSA, phi and PCA3 may predict a diagnosis of PCa in men undergoing their first prostate biopsy. PCA3 score is more useful in discriminating between HGPIN and non-cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...
Kernel K-Means Sampling for Nyström Approximation.
He, Li; Zhang, Hong
2018-05-01
A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.
Consensus classification of posterior cortical atrophy
Crutch, Sebastian J.; Schott, Jonathan M.; Rabinovici, Gil D.; Murray, Melissa; Snowden, Julie S.; van der Flier, Wiesje M.; Dickerson, Bradford C.; Vandenberghe, Rik; Ahmed, Samrah; Bak, Thomas H.; Boeve, Bradley F.; Butler, Christopher; Cappa, Stefano F.; Ceccaldi, Mathieu; de Souza, Leonardo Cruz; Dubois, Bruno; Felician, Olivier; Galasko, Douglas; Graff-Radford, Jonathan; Graff-Radford, Neill R.; Hof, Patrick R.; Krolak-Salmon, Pierre; Lehmann, Manja; Magnin, Eloi; Mendez, Mario F.; Nestor, Peter J.; Onyike, Chiadi U.; Pelak, Victoria S.; Pijnenburg, Yolande; Primativo, Silvia; Rossor, Martin N.; Ryan, Natalie S.; Scheltens, Philip; Shakespeare, Timothy J.; González, Aida Suárez; Tang-Wai, David F.; Yong, Keir X. X.; Carrillo, Maria; Fox, Nick C.
2017-01-01
Introduction A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. Methods Consensus statements about PCA were developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. Results A three-level classification framework for PCA is described comprising both syndrome- and disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. Discussion There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work. PMID:28259709
Consensus classification of posterior cortical atrophy.
Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Murray, Melissa; Snowden, Julie S; van der Flier, Wiesje M; Dickerson, Bradford C; Vandenberghe, Rik; Ahmed, Samrah; Bak, Thomas H; Boeve, Bradley F; Butler, Christopher; Cappa, Stefano F; Ceccaldi, Mathieu; de Souza, Leonardo Cruz; Dubois, Bruno; Felician, Olivier; Galasko, Douglas; Graff-Radford, Jonathan; Graff-Radford, Neill R; Hof, Patrick R; Krolak-Salmon, Pierre; Lehmann, Manja; Magnin, Eloi; Mendez, Mario F; Nestor, Peter J; Onyike, Chiadi U; Pelak, Victoria S; Pijnenburg, Yolande; Primativo, Silvia; Rossor, Martin N; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Timothy J; Suárez González, Aida; Tang-Wai, David F; Yong, Keir X X; Carrillo, Maria; Fox, Nick C
2017-08-01
A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. Consensus statements about PCA were developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. A three-level classification framework for PCA is described comprising both syndrome- and disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Genetic Progression of High Grade Prostatic Intraepithelial Neoplasia to Prostate Cancer.
Jung, Seung-Hyun; Shin, Sun; Kim, Min Sung; Baek, In-Pyo; Lee, Ji Youl; Lee, Sung Hak; Kim, Tae-Min; Lee, Sug Hyung; Chung, Yeun-Jun
2016-05-01
Although high grade prostatic intraepithelial neoplasia (HGPIN) is considered a neoplastic lesion that precedes prostate cancer (PCA), the genomic structures of HGPIN remain unknown. Identification of the genomic landscape of HGPIN and the genomic differences between HGPIN and PCA that may drive the progression to PCA. We analyzed 20 regions of paired HGPIN and PCA from six patients using whole-exome sequencing and array-comparative genomic hybridization. Somatic mutation and copy number alteration (CNA) profiles of paired HGPIN and PCA were measured and compared. The number of total mutations and CNAs of HGPINs were significantly fewer than those of PCAs. Mutations in FOXA1 and CNAs (1q and 8q gains) were detected in both HGPIN and PCA ('common'), suggesting their roles in early PCA development. Mutations in SPOP, KDM6A, and KMT2D were 'PCA-specific', suggesting their roles in HGPIN progression to PCA. The 8p loss was either 'common' or 'PCA-specific'. In-silico estimation of evolutionary ages predicted that HGPIN genomes were much younger than PCA genomes. Our data show that PCAs are direct descendants of HGPINs in most cases that require more genomic alterations to progress to PCA. The nature of heterogeneous HGPIN population that might attenuate genomic signals should further be studied. HGPIN genomes harbor relatively fewer mutations and CNAs than PCA but require additional hits for the progression. In this study, we suggest a systemic diagram from high grade prostatic intraepithelial neoplasia (HGPIN) to prostate cancer (PCA). Our results provide a clue to explain the long latency from HGPIN to PCA and provide useful information for the genetic diagnosis of HGPIN and PCA. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
7 CFR 810.2202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernels, foreign material, and shrunken and broken kernels. The sum of these three factors may not exceed... the removal of dockage and shrunken and broken kernels. (g) Heat-damaged kernels. Kernels, pieces of... sample after the removal of dockage and shrunken and broken kernels. (h) Other grains. Barley, corn...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...
7 CFR 51.1415 - Inedible kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Inedible kernels. 51.1415 Section 51.1415 Agriculture... Standards for Grades of Pecans in the Shell 1 Definitions § 51.1415 Inedible kernels. Inedible kernels means that the kernel or pieces of kernels are rancid, moldy, decayed, injured by insects or otherwise...
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
Occipital-posterior cerebral artery bypass via the occipital interhemispheric approach
Kazumata, Ken; Yokoyama, Yuka; Sugiyama, Taku; Asaoka, Katsuyuki
2013-01-01
Background: The unavailability of the superficial temporal artery (STA) and the location of lesions pose a more technically demanding challenge when compared with conventional STA-superior cerebellar or posterior cerebral artery (PCA) bypass in vascular reconstruction procedures. To describe a case series of patients with cerebrovascular lesions who were treated using an occipital artery (OA) to PCA bypass via the occipital interhemispheric approach. Methods: We retrospectively reviewed three consecutive cases of patients with cerebrovascular lesions who were treated using OA-PCA bypass. Results: OA-PCA bypass was performed via the occipital interhemispheric approach. This procedure included: (1) OA-PCA bypass (n = 1), and combined OA-posterior inferior cerebellar artery and OA-PCA saphenous vein interposition graft bypass (n = 1) in patients with vertebrobasilar ischemia; (2) OA-PCA radial artery interposition graft bypass in one patient with residual PCA aneurysm. Conclusions: OA-PCA bypass represents a useful alternative to conventional STA-SCA or PCA bypass. PMID:23956933
Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit
2018-02-13
Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Unconventional protein sources: apricot seed kernels.
Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M
1981-09-01
Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.
Rodón, N; Trías, I; Verdú, M; Román, R; Domínguez, A; Calvo, M; Banus, J M; Ballesta, A M; Maestro, M L; Puig, X
2014-04-01
Analyze the impact of the introduction of the study of PCA3 gene in post-prostatic massage urine in the clinical management of patients with PSA altered, evaluating its diagnostic ability and predictive value of tumor aggressiveness. Observational, prospective, multicenter study of patients with suspected prostate cancer (PC) candidates for biopsy. We present a series of 670 consecutive samples of urine collected post-prostatic massage for three years in which we determined the "PCA3 score" (s-PCA3). Biopsy was only indicated in cases with s-positive PCA3. The s-PCA3 was positive in 43.7% of samples. In the 124 biopsies performed, the incidence of PC or atypical small acinar proliferation was 54%, reaching 68,6% in s-PCA3≥100. Statistically significant relationship between the s-PCA3 and tumor grade was demonstrated. In cases with s-PCA3 between 35 and 50 only 23% of PC were high grade (Gleason≥7), compared to 76.7% in cases with s-PCA3 over 50. There was a statistically significant correlation between s-PCA3 and cylinders affected. Both relationships were confirmed by applying a log-linear model. The incorporation of PCA3 can avoid the need for biopsies in 54% of patients. s-PCA3 positivity increases the likelihood of a positive biopsy, especially in higher s-PCA3 100 (68.6%). s-PCA3 is also an indicator of tumor aggressiveness and provides essential information in making treatment decisions. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...
Design of CT reconstruction kernel specifically for clinical lung imaging
NASA Astrophysics Data System (ADS)
Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.
2005-04-01
In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.
Quality changes in macadamia kernel between harvest and farm-gate.
Walton, David A; Wallace, Helen M
2011-02-01
Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Anthraquinones isolated from the browned Chinese chestnut kernels (Castanea mollissima blume)
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Qi, J. H.; Qin, L.; Wang, F.; Pang, M. X.
2016-08-01
Anthraquinones (AQS) represent a group of secondary metallic products in plants. AQS are often naturally occurring in plants and microorganisms. In a previous study, we found that AQS were produced by enzymatic browning reaction in Chinese chestnut kernels. To find out whether non-enzymatic browning reaction in the kernels could produce AQS too, AQS were extracted from three groups of chestnut kernels: fresh kernels, non-enzymatic browned kernels, and browned kernels, and the contents of AQS were determined. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) methods were used to identify two compounds of AQS, rehein(1) and emodin(2). AQS were barely exists in the fresh kernels, while both browned kernel groups sample contained a high amount of AQS. Thus, we comfirmed that AQS could be produced during both enzymatic and non-enzymatic browning process. Rhein and emodin were the main components of AQS in the browned kernels.
PCA-LBG-based algorithms for VQ codebook generation
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Yang, Po-Yuan
2015-04-01
Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.
Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis
Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Li, Qinlong; Hu, Peizhen; Shi, Changhong; Li, Yang; Chen, Yi-Ting; Yin, Fei; Liao, Chun-Peng; Stiles, Bangyan L.; Zhau, Haiyen E.; Shih, Jean C.; Chung, Leland W.K.
2014-01-01
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa. PMID:24865426
Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis.
Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Li, Qinlong; Hu, Peizhen; Shi, Changhong; Li, Yang; Chen, Yi-Ting; Yin, Fei; Liao, Chun-Peng; Stiles, Bangyan L; Zhau, Haiyen E; Shih, Jean C; Chung, Leland W K
2014-07-01
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.
Broken rice kernels and the kinetics of rice hydration and texture during cooking.
Saleh, Mohammed; Meullenet, Jean-Francois
2013-05-01
During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.
MD-11 PCA - Research flight team photo
NASA Technical Reports Server (NTRS)
1995-01-01
On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.
Prostate-Specific Antigen (PSA) Screening and New Biomarkers for Prostate Cancer (PCa)
Rittenhouse, Harry; Hu, Xinhai; Cammann, Henning; Jung, Klaus
2014-01-01
Abstract PSA screening reduces PCa-mortality but the disadvantages overdiagnosis and overtreatment require multivariable risk-prediction tools to select appropriate treatment or active surveillance. This review explains the differences between the two largest screening trials and discusses the drawbacks of screening and its meta-analysisxs. The current American and European screening strategies are described. Nonetheless, PSA is one of the most widely used tumor markers and strongly correlates with the risk of harboring PCa. However, while PSA has limitations for PCa detection with its low specificity there are several potential biomarkers presented in this review with utility for PCa currently being studied. There is an urgent need for new biomarkers especially to detect clinically significant and aggressive PCa. From all PSA-based markers, the FDA-approved prostate health index (phi) shows improved specificity over percent free and total PSA. Another kallikrein panel, 4K, which includes KLK2 has recently shown promise in clinical research studies but has not yet undergone formal validation studies. In urine, prostate cancer gene 3 (PCA3) has also been validated and approved by the FDA for its utility to detect PCa. The potential correlation of PCA3 with cancer aggressiveness requires more clinical studies. The detection of the fusion of androgen-regulated genes with genes of the regulatory transcription factors in tissue of ~50% of all PCa-patients is a milestone in PCa research. A combination of the urinary assays for TMPRSS2:ERG gene fusion and PCA3 shows an improved accuracy for PCa detection. Overall, the field of PCa biomarker discovery is very exciting and prospective. PMID:27683457
Hughes, Lucinda; Zhu, Fang; Ross, Eric; Gross, Laura; Uzzo, Robert G.; Chen, David Y. T.; Viterbo, Rosalia; Rebbeck, Timothy R.; Giri, Veda N.
2011-01-01
Background Men with familial prostate cancer (PCA) and African American men are at risk for developing PCA at younger ages. Genetic markers predicting early-onset PCA may provide clinically useful information to guide screening strategies for high-risk men. We evaluated clinical information from six polymorphisms associated with early-onset PCA in a longitudinal cohort of high-risk men enrolled in PCA early detection with significant African American participation. Methods Eligibility criteria include ages 35–69 with a family history of PCA or African American race. Participants undergo screening and biopsy per study criteria. Six markers associated with early-onset PCA (rs2171492 (7q32), rs6983561 (8q24), rs10993994 (10q11), rs4430796 (17q12), rs1799950 (17q21), and rs266849 (19q13)) were genotyped. Cox models were used to evaluate time to PCA diagnosis and PSA prediction for PCA by genotype. Harrell’s concordance index was used to evaluate predictive accuracy for PCA by PSA and genetic markers. Results 460 participants with complete data and ≥1 follow-up visit were included. 56% were African American. Among African American men, rs6983561 genotype was significantly associated with earlier time to PCA diagnosis (p=0.005) and influenced prediction for PCA by the PSA (p<0.001). When combined with PSA, rs6983561 improved predictive accuracy for PCA compared to PSA alone among African American men (PSA= 0.57 vs. PSA+rs6983561=0.75, p=0.03). Conclusions Early-onset marker rs6983561 adds potentially useful clinical information for African American men undergoing PCA risk assessment. Further study is warranted to validate these findings. Impact Genetic markers of early-onset PCA have potential to refine and personalize PCA early detection for high-risk men. PMID:22144497
Niu, Yue; Zhang, Ling; Bi, Xing; Yuan, Shuai; Chen, Peng
2016-03-05
To detect the expression of vitronectin (VTN) in the tissues and blood serum of prostate cancer (PCa) patients, and evaluate its clinical significance and to evaluate the significance of the combined assay of VTN and prostate specific antigens (PSA) in PCa diagnosis. To detect the expression of VTN as a potential marker for PCa diagnosis and prognosis, immunohistochemistry was performed on the tissues of 32 patients with metastatic PCa (PCaM), 34 patients with PCa without metastasis (PCa), and 41 patients with benign prostatic hyperplasia (BPH). The sera were then subjected to Western blot analysis. All cases were subsequently examined to determine the concentrations of PSA and VTN in the sera. The collected data were collated and analyzed. The positive expression rates of VTN in the tissues of the BPH and PCa groups (including PCa and PCaM groups) were 75.61% and 45.45%, respectively (P = .005). VTN was more highly expressed in the sera of the BPH patients (0.83 ± 0.07) than in the sera of the PCa patients (0.65 ± 0.06) (P < .05). It was also more highly expressed in the sera of the PCa patients than in the sera of the PCaM patients (0.35 ± 0.08) (P < .05). In the diagnosis of BPH and PCa, the Youden indexes of PSA detection, VTN detection, and combined detection were 0.2620, 0.3468, and 0.5635; the kappa values were 0.338, 0.304, and 0.448, respectively, and the areas under the receiver operating characteristic curve were 0.625, 0.673, and 0.703 (P < .05), respectively. VTN levels in sera may be used as a potential marker of PCa for the diagnosis and assessment of disease progression and metastasis. The combined detection of VTN and PSA in sera can be clinically applied in PCa diagnosis. .
LeTourneau, Melissa K; Marshall, Matthew J; Cliff, John B; Bonsall, Robert F; Dohnalkova, Alice C; Mavrodi, Dmitri V; Devi, S Indira; Mavrodi, Olga V; Harsh, James B; Weller, David M; Thomashow, Linda S
2018-04-24
Phenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Furthermore, the relationships between soil moisture and the rates of PCA biosynthesis and degradation have not been established. In this study, expression of PCA biosynthesis genes was up-regulated relative to background transcription, and persistence of PCA was slightly decreased in dryland relative to irrigated wheat rhizospheres. Biofilms in dryland rhizospheres inoculated with the PCA-producing (PCA + ) strain Pseudomonas synxantha 2-79RN 10 were more robust than those in rhizospheres inoculated with an isogenic PCA-deficient (PCA - ) mutant strain. This trend was reversed in irrigated rhizospheres. In dryland PCA + rhizospheres, the turnover of 15 N-labelled rhizobacterial biomass was slower than in the PCA - and irrigated PCA + treatments, and incorporation of bacterial 15 N into root cell walls was observed in multiple treatments. These results indicate that PCA promotes biofilm development in dryland rhizospheres, and likely influences crop nutrition and soil health in dryland wheat fields. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Incidental prostate cancer in radical cystoprostatectomy specimens.
Jin, Xiao-Dong; Chen, Zhao-Dian; Wang, Bo; Cai, Song-Liang; Yao, Xiao-Lin; Jin, Bai-Ye
2008-09-01
To investigate the rates of prostate cancer (PCa) in radical cystoprostatectomy (RCP) specimens for bladder cancer in mainland China. To determine the follow-up outcome of patients with two concurrent cancers and identify whether prostate-specific antigen (PSA) is a useful tool for the detection of PCa prior to surgery. From January 2002 to January 2007, 264 male patients with bladder cancer underwent RCP at our center. All patients underwent digital rectal examination (DRE) and B ultrasound. Serum PSA levels were tested in 168 patients. None of the patients had any evidence of PCa before RCP. Entire prostates were embedded and sectioned at 5 mm intervals. Incidental PCa was observed in 37 of 264 (14.0%) RCP specimens. Of these, 12 (32.4%) were clinically significant according to an accepted definition. The PSA levels were not significantly different between patients with PCa and those without PCa, nor between patients with significant PCa and those with insignificant PCa. Thirty-four patients with incidental PCa were followed up. During a mean follow-up period of 26 months, two patients with PSA > 4 ng/mL underwent castration. None of the patients died of PCa. The incidence of PCa in RCP specimens in mainland China is lower than that in most developed countries. PSA cannot identify asymptomatic PCa prior to RCP. In line with published reports, incidental PCa does not impact the prognosis of bladder cancer patients undergoing RCP. (c) 2008, Asian Journal of Andrology, SIMM and SJTU. All rights reserved.
NASA Astrophysics Data System (ADS)
LeTourneau, M.; Marshall, M.; Grant, M.; Freeze, P.; Cliff, J. B.; Lai, B.; Strawn, D. G.; Thomashow, L. S.; Weller, D. M.; Harsh, J. B.
2015-12-01
Phenazine-1-carboxylic acid (PCA) is a redox-active antibiotic produced by diverse bacterial taxa, and has been shown to facilitate interactions between biofilms and iron (hydr)oxides in culture systems (Wang et al. 2011, J Bacteriol 192: 365). Because rhizobacterial biofilms are a major sink for plant-derived carbon and source for soil organic matter (SOM), and Fe (hydr)oxides have reactive surfaces that influence the stability of microbial biomass and SOM, PCA-producing rhizobacteria could influence soil carbon fluxes. Large populations of Pseudomonas fluorescens strains producing PCA in concentrations up to 1 μg/g root have been observed in the rhizosphere of non-irrigated wheat fields covering 1.56 million hectares of central Washington state. This is one of the highest concentrations ever reported for a natural antibiotic in a terrestrial ecosystem (Mavrodi et al. 2012, Appl Environ Microb 78: 804). Microscopic comparisons of PCA-producing (PCA+) and non-PCA-producing (PCA-) rhizobacterial colony morphologies, and comparisons of Fe extractions from rhizosphere soil inoculated with PCA+ and PCA- strains suggest that PCA promotes biofilm development as well as dramatic Fe transformations throughout the rhizosphere (unpublished data). In order to illustrate PCA-mediated interactions between biofilms and Fe (hydr)oxides in the rhizosphere, identify the specific Fe phases favored by PCA, and establish the ramifications for stability and distribution of microbial biomass and SOM, we have collected electron micrographs, X-ray fluorescence images, X-ray absorption near-edge spectra, and secondary-ion mass spectrometry images of wheat root sections inoculated with 15N-labelled PCA+ or PCA- rhizobacteria. These images and spectra allow us to assess the accumulation, turnover, and distribution of microbial biomass, the associations between Fe and other nutrients such as phosphorus, and the redox status and speciation of iron in the presence and absence of PCA. This information provides a starting point to model the impact of PCA upon carbon fluxes in Columbia Basin agro-ecosystems and other environments where PCA-producing bacteria are prevalent.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Multineuron spike train analysis with R-convolution linear combination kernel.
Tezuka, Taro
2018-06-01
A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer.
Wu, Yishuo; Yu, Hongjie; Zheng, S Lilly; Na, Rong; Mamawala, Mufaddal; Landis, Tricia; Wiley, Kathleen; Petkewicz, Jacqueline; Shah, Sameep; Shi, Zhuqing; Novakovic, Kristian; McGuire, Michael; Brendler, Charles B; Ding, Qiang; Helfand, Brian T; Carter, H Ballentine; Cooney, Kathleen A; Isaacs, William B; Xu, Jianfeng
2018-06-01
Germline mutations in CHEK2 have been associated with prostate cancer (PCa) risk. Our objective is to examine whether germline pathogenic CHEK2 mutations can differentiate risk of lethal from indolent PCa. A case-case study of 703 lethal PCa patients and 1455 patients with low-risk localized PCa of European, African, and Chinese origin was performed. Germline DNA samples from these patients were sequenced for CHEK2. Mutation carrier rates and their association with lethal PCa were analyzed using the Fisher exact test and Kaplan-Meier survival analysis. In the entire study population, 40 (1.85%) patients were identified as carrying one of 15 different germline CHEK2 pathogenic or likely pathogenic mutations. CHEK2 mutations were detected in 16 (2.28%) of 703 lethal PCa patients compared with 24 (1.65%) of 1455 low-risk PCa patients (P = 0.31). No association was found between CHEK2 mutation status and early-diagnosis or PCa-specific survival time. However, the most common mutation in CHEK2, c.1100delC (p.T367 fs), had a significantly higher carrier rate (1.28%) in lethal PCa patients than low-risk PCa patients of European American origin (0.16%), P = 0.0038. The estimated Odds Ratio of this mutation for lethal PCa was 7.86. The carrier rate in lethal PCa was also significantly higher than that (0.46%) in 32 461 non-Finnish European subjects from the Exome Aggregation Consortium (ExAC) (P = 0.01). While overall CHEK2 mutations were not significantly more common in men with lethal compared to low-risk PCa, the specific CHEK2 mutation, c.1100delC, appears to contribute to an increased risk of lethal PCa in European American men. © 2018 Wiley Periodicals, Inc.
Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth
Mainetti, Leandro E.; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D.; Cho, Won Jin; Cher, Michael L.; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R. Daniel
2014-01-01
Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis. PMID:24798488
Thomas, C; Wootten, A C; Robinson, P; Law, P C F; McKenzie, D P
2018-03-01
Prostate cancer (PCa) poses a large health burden globally. Research indicates that men experience a range of psychological challenges associated with PCa including changes to identity, self-esteem and body image. The ways in which sexual orientation plays a role in the experience of PCa, and the subsequent impact on quality of life (QoL), body image and self-esteem have only recently been addressed. By addressing treatment modality, where participant numbers were sufficient, we also sought to explore whether gay (homosexual) men diagnosed with PCa (PCaDx) and with a primary treatment modality of surgery would report differences in body image and self-esteem compared with straight (heterosexual) men with PCaDx with a primary treatment modality of surgery, compared with gay and straight men without PCaDx. The results of our study identified overall differences with respect to PCaDx (related to urinary function, sexual function and health evaluation), and sexual orientation (related to self-esteem), rather than interactions between sexual orientation and PCaDx. Gay men with PCaDx exhibited higher levels of urinary functioning than straight men with PCaDx, the difference being reversed for gay and straight men without PCaDx; but this result narrowly failed to achieve statistical significance, suggesting a need for further research, with larger samples. © 2018 John Wiley & Sons Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...
An SVM model with hybrid kernels for hydrological time series
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiple kernels learning-based biological entity relationship extraction method.
Dongliang, Xu; Jingchang, Pan; Bailing, Wang
2017-09-20
Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.
De Luca, Stefano; Passera, Roberto; Bollito, Enrico; Manfredi, Matteo; Scarpa, Roberto Mario; Sottile, Antonino; Randone, Donato Franco; Porpiglia, Francesco
2014-12-01
To determine if prostate cancer gene 3 (PCA3) score, Prostate Health Index (PHI), and percent free prostate-specific antigen (%fPSA) may be used to differentiate prostatitis from prostate cancer (PCa), benign prostatic hyperplasia (BPH) and high-grade prostate intraepithelial neoplasia (HG-PIN) in patients with elevated PSA and negative digital rectal examination (DRE). in the present prospective study, 274 patients, undergoing PCA3 score, PHI and %fPSA assessments before initial biopsy, were enrolled. Three multivariate logistic regression models were used to test PCA3 score, PHI and %fPSA as risk factors for prostatitis vs. PCa, vs. BPH, and vs. HG-PIN. All the analyses were performed for the whole patient cohort and for the 'gray zone' of PSA (4-10 ng/ml) cohort (188 individuals). The determinants for prostatitis vs. PCa were PCA3 score, PHI and %fPSA (Odds Ratio [OR]=0.97, 0.96 and 0.94, respectively). Unit increase of PHI was the only risk factor for prostatitis vs. BPH (OR=1.06), and unit increase of PCA3 score for HG-PIN vs. prostatitis (OR=0.98). In the 'gray zone' PSA cohort, the determinants for prostatitis vs. PCa were PCA3 score, PHI and %fPSA (OR=0.96, 0.94 and 0.92, respectively), PCA3 score and PHI for prostatitis vs. BPH (OR=0.96 and 1.08, respectively), and PCA3 score for prostatitis vs. HG-PIN (OR=0.97). The clinical benefit of using PCA3 score and PHI to estimate prostatitis vs. PCa was comparable; even %fPSA had good diagnostic performance, being a faster and cheaper marker. PHI was the only determinant for prostatitis vs. BPH, while PCA3 score for prostatitis vs. HG-PIN. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Oppermann, Johannes; Bredow, Jan; Beyer, Frank; Neiss, Wolfram Friedrich; Spies, Christian K; Eysel, Peer; Dargel, Jens; Wacker, Max
2015-01-01
The purpose of the study was to investigate differences in the osseous structure anatomy of male and female distal radii. Morphometric data were obtained of 49 distal human cadaveric radii. An imprint of the distal edge was attained using silicone mass and the palmar cortical angle (PCA) of the lateral and intermediate column, here declared as medial, according to the concept of Rikli and Rigazzoni. The lateral and medial length and five widths were digitally measured by three observers. In order to compare the measurements an unpaired t test was used. To prove the reliability of the measurements an intraclass correlation analyses was done. Overall mean medial PCA was 148.25° (SD ± 6.83) and mean lateral PCA 156.07° (SD ± 7.00). In male specimens, the mean medial PCA was 147.38° (SD ± 6.01) and mean lateral PCA was 153.6° (SD ± 6.20) whereas in female specimens, the mean medial PCA was 149.41° (SD ± 7.79) and the mean lateral PCA 159.37° (SD ± 6.78), with statistical significance for the female lateral PCA. No gender significant difference for the medial PCA and no significant side difference for the PCA's could be found. The ICC of the observers was r = 0.936 and 0.976 for the medial and for lateral PCA 0.957-0.984. The palmar cortical length of the distal radius was significantly longer in male specimens. For all widths, larger values for male radii were measured, being statistically significant in all cases. Male dimensions concerning the wide were significantly larger when compared with females. Regarding the PCA at the medial and lateral column, we found significant difference for lateral PCA concerning the gender. Overall, study results demonstrated an angle of 148.25° ± 6.83 for the medial PCA and 156.07° ± 7.00 for the lateral PCA.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...
7 CFR 810.206 - Grades and grade requirements for barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jin Boo; Lee, Seong-Ho, E-mail: slee2000@umd.edu
Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment ofmore » PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.« less
Moradi Sardareh, Hemen; Goodarzi, Mohammad Taghi; Yadegar-Azari, Reza; Poorolajal, Jalal; Mousavi-Bahar, Seyed Habibollah; Saidijam, Massoud
2014-11-30
To determine the expression of prostate cancer antigen 3 (PCA3) gene in peripheral blood and urine sediments from patients with prostate cancer (PCa) and benign prostatic hyperplasia (BPH) and normal subjects. A total number of 48 patients [24 with biopsy proven prostate cancer (PCa) and 24 with benign prostate hyperplasia (BPH)] were studied. Twenty-four healthy individuals were also recruited as control group. After blood and urine sampling, total RNA was extracted and cDNA was synthesized. Expression of PCA3 gene was assessed by quantitative reverse transcription polymerase chain reaction. Comparison of PCA3 gene expression between control and BPH groups indicated no statistically significant differences in both urine and blood samples. Patients with PCa demonstrated an increased PCA3 gene expression rate compared to control and BPH groups (10.64 and 7.17 folds, respectively). The rate of fold increased PCA3 gene expression in urine was 20.90, 20.90, and 20.35 in patients with PCa, BPH and normal subjects, respectively. Evaluation of PCA3 gene expression can be considered as a reliable marker for detection of PCa. Increased level of this marker in urine sediments is more sensitive than blood for distinguishing between cancerous and non-cancerous groups.
Perdonà, Sisto; Marino, Ada; Mazzarella, Claudia; Perruolo, Giuseppe; D’Esposito, Vittoria; Cosimato, Vincenzo; Buonerba, Carlo; Di Lorenzo, Giuseppe; Musi, Gennaro; De Cobelli, Ottavio; Chun, Felix K.; Terracciano, Daniela
2013-01-01
Many efforts to reduce prostate specific antigen (PSA) overdiagnosis and overtreatment have been made. To this aim, Prostate Health Index (Phi) and Prostate Cancer Antigen 3 (PCA3) have been proposed as new more specific biomarkers. We evaluated the ability of phi and PCA3 to identify prostate cancer (PCa) at initial prostate biopsy in men with total PSA range of 2–10 ng/ml. The performance of phi and PCA3 were evaluated in 300 patients undergoing first prostate biopsy. ROC curve analyses tested the accuracy (AUC) of phi and PCA3 in predicting PCa. Decision curve analyses (DCA) were used to compare the clinical benefit of the two biomarkers. We found that the AUC value of phi (0.77) was comparable to those of %p2PSA (0.76) and PCA3 (0.73) with no significant differences in pairwise comparison (%p2PSA vs phi p = 0.673, %p2PSA vs. PCA3 p = 0.417 and phi vs. PCA3 p = 0.247). These three biomarkers significantly outperformed fPSA (AUC = 0.60), % fPSA (AUC = 0.62) and p2PSA (AUC = 0.63). At DCA, phi and PCA3 exhibited a very close net benefit profile until the threshold probability of 25%, then phi index showed higher net benefit than PCA3. Multivariable analysis showed that the addition of phi and PCA3 to the base multivariable model (age, PSA, %fPSA, DRE, prostate volume) increased predictive accuracy, whereas no model improved single biomarker performance. Finally we showed that subjects with active surveillance (AS) compatible cancer had significantly lower phi and PCA3 values (p<0.001 and p = 0.01, respectively). In conclusion, both phi and PCA3 comparably increase the accuracy in predicting the presence of PCa in total PSA range 2–10 ng/ml at initial biopsy, outperforming currently used %fPSA. PMID:23861782
Ferro, Matteo; Bruzzese, Dario; Perdonà, Sisto; Marino, Ada; Mazzarella, Claudia; Perruolo, Giuseppe; D'Esposito, Vittoria; Cosimato, Vincenzo; Buonerba, Carlo; Di Lorenzo, Giuseppe; Musi, Gennaro; De Cobelli, Ottavio; Chun, Felix K; Terracciano, Daniela
2013-01-01
Many efforts to reduce prostate specific antigen (PSA) overdiagnosis and overtreatment have been made. To this aim, Prostate Health Index (Phi) and Prostate Cancer Antigen 3 (PCA3) have been proposed as new more specific biomarkers. We evaluated the ability of phi and PCA3 to identify prostate cancer (PCa) at initial prostate biopsy in men with total PSA range of 2-10 ng/ml. The performance of phi and PCA3 were evaluated in 300 patients undergoing first prostate biopsy. ROC curve analyses tested the accuracy (AUC) of phi and PCA3 in predicting PCa. Decision curve analyses (DCA) were used to compare the clinical benefit of the two biomarkers. We found that the AUC value of phi (0.77) was comparable to those of %p2PSA (0.76) and PCA3 (0.73) with no significant differences in pairwise comparison (%p2PSA vs phi p = 0.673, %p2PSA vs. PCA3 p = 0.417 and phi vs. PCA3 p = 0.247). These three biomarkers significantly outperformed fPSA (AUC = 0.60), % fPSA (AUC = 0.62) and p2PSA (AUC = 0.63). At DCA, phi and PCA3 exhibited a very close net benefit profile until the threshold probability of 25%, then phi index showed higher net benefit than PCA3. Multivariable analysis showed that the addition of phi and PCA3 to the base multivariable model (age, PSA, %fPSA, DRE, prostate volume) increased predictive accuracy, whereas no model improved single biomarker performance. Finally we showed that subjects with active surveillance (AS) compatible cancer had significantly lower phi and PCA3 values (p<0.001 and p = 0.01, respectively). In conclusion, both phi and PCA3 comparably increase the accuracy in predicting the presence of PCa in total PSA range 2-10 ng/ml at initial biopsy, outperforming currently used %fPSA.
Thomas-Jardin, Shayna E; Kanchwala, Mohammed S; Jacob, Joan; Merchant, Sana; Meade, Rachel K; Gahnim, Nagham M; Nawas, Afshan F; Xing, Chao; Delk, Nikki A
2018-06-01
In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR + ) PCa cells into AR negative (AR - ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. LNCaP and PC3 PCa cells were treated with IL-1β or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1β, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. Comparative analysis of sequencing data from the AR + LNCaP PCa cell line versus the AR - PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. Our data supports that IL-1 reprograms AR + PCa cells to mimic AR - PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival. © 2018 Wiley Periodicals, Inc.
Farnell, D J J; Popat, H; Richmond, S
2016-06-01
Methods used in image processing should reflect any multilevel structures inherent in the image dataset or they run the risk of functioning inadequately. We wish to test the feasibility of multilevel principal components analysis (PCA) to build active shape models (ASMs) for cases relevant to medical and dental imaging. Multilevel PCA was used to carry out model fitting to sets of landmark points and it was compared to the results of "standard" (single-level) PCA. Proof of principle was tested by applying mPCA to model basic peri-oral expressions (happy, neutral, sad) approximated to the junction between the mouth/lips. Monte Carlo simulations were used to create this data which allowed exploration of practical implementation issues such as the number of landmark points, number of images, and number of groups (i.e., "expressions" for this example). To further test the robustness of the method, mPCA was subsequently applied to a dental imaging dataset utilising landmark points (placed by different clinicians) along the boundary of mandibular cortical bone in panoramic radiographs of the face. Changes of expression that varied between groups were modelled correctly at one level of the model and changes in lip width that varied within groups at another for the Monte Carlo dataset. Extreme cases in the test dataset were modelled adequately by mPCA but not by standard PCA. Similarly, variations in the shape of the cortical bone were modelled by one level of mPCA and variations between the experts at another for the panoramic radiographs dataset. Results for mPCA were found to be comparable to those of standard PCA for point-to-point errors via miss-one-out testing for this dataset. These errors reduce with increasing number of eigenvectors/values retained, as expected. We have shown that mPCA can be used in shape models for dental and medical image processing. mPCA was found to provide more control and flexibility when compared to standard "single-level" PCA. Specifically, mPCA is preferable to "standard" PCA when multiple levels occur naturally in the dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...
7 CFR 51.2296 - Three-fourths half kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
UNICOS Kernel Internals Application Development
NASA Technical Reports Server (NTRS)
Caredo, Nicholas; Craw, James M. (Technical Monitor)
1995-01-01
Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Modeling adaptive kernels from probabilistic phylogenetic trees.
Nicotra, Luca; Micheli, Alessio
2009-01-01
Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.
Aflatoxin and nutrient contents of peanut collected from local market and their processed foods
NASA Astrophysics Data System (ADS)
Ginting, E.; Rahmianna, A. A.; Yusnawan, E.
2018-01-01
Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
2012-01-01
Background PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. Methods LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. Results LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. Conclusions Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control. PMID:23130941
Zhang, Hu; Zheng, Jiajia; Shen, Hongliang; Huang, Yongyi; Liu, Te; Xi, Hao; Chen, Chuan
2018-01-01
Curcumin can suppress human prostate cancer (HuPCa) cell proliferation and invasion. However, it is not known whether curcumin can inhibit HuPCa stem cell (HuPCaSC) proliferation and invasion. We used methyl thiazolyl tetrazolium and Transwell assays to examine the proliferation and invasion of the HuPCaSC lines DU145 and 22Rv1 following curcumin or dimethyl sulfoxide (control) treatment. The microRNA (miRNA) expression levels in the DLK1-DIO3 imprinted genomic region in the cells and in tumor tissues from patients with PCa were examined using microarray and quantitative PCR. The median inhibitory concentration of curcumin for HuPCa cells significantly inhibited HuPCaSC proliferation and invasion in vitro. The miR-770-5p and miR-1247 expression levels in the DLK1-DIO3 imprinted gene cluster were significantly different between the curcumin-treated and control HuPCaSCs. Overexpression of these positive miRNAs significantly increased the inhibition rates of miR-770-5p- and miR-1247-transfected HuPCaSCs compared to the control miR-Mut-transfected HuPCaSCs. Lastly, low-tumor grade PCa tissues had higher miR-770-5p and miR-1247 expression levels than high-grade tumor tissues. Curcumin can suppress HuPCaSC proliferation and invasion in vitro by modulating specific miRNAs in the DLK1-DIO3 imprinted gene cluster.
Shao, Xiaolong; Li, Hui; Wang, Nan; Zhang, Qiang
2015-01-01
An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results. PMID:26506350
Beyond textbook neuroanatomy: The syndrome of malignant PCA infarction.
Gogela, Steven L; Gozal, Yair M; Rahme, Ralph; Zuccarello, Mario; Ringer, Andrew J
2015-01-01
Given its limited vascular territory, occlusion of the posterior cerebral artery (PCA) usually does not result in malignant infarction. Challenging this concept, we present 3 cases of unilateral PCA infarction with secondary malignant progression, resulting from extension into what would classically be considered the posterior middle cerebral artery (MCA) territory. Interestingly, these were true PCA infarctions, not "MCA plus" strokes, since the underlying occlusive lesion was in the PCA. We hypothesize that congenital and/or acquired variability in the distribution and extent of territory supplied by the PCA may underlie this rare clinical entity. Patients with a PCA infarction should thus be followed closely and offered early surgical decompression in the event of malignant progression.
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838
Hadamard Kernel SVM with applications for breast cancer outcome predictions.
Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong
2017-12-21
Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.
Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna
2017-08-15
Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Dibash K.; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016; Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065
Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and themore » androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa. - Graphical abstract: miR-1207-3p/FNDC1/FN1/AR is a novel regulatory pathway in prostate cancer. - Highlights: • Expression of microRNA-1207-3p is significantly lost in prostate cancer (PCa) cells. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • FNDC1, FN1, and AR are concurrently overexpressed in metastatic PCa.« less
Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes.
Llop, Esther; Ferrer-Batallé, Montserrat; Barrabés, Sílvia; Guerrero, Pedro Enrique; Ramírez, Manel; Saldova, Radka; Rudd, Pauline M; Aleixandre, Rosa N; Comet, Josep; de Llorens, Rafael; Peracaula, Rosa
2016-01-01
New markers based on PSA isoforms have recently been developed to improve prostate cancer (PCa) diagnosis. However, novel approaches are still required to differentiate aggressive from non-aggressive PCa to improve decision making for patients. PSA glycoforms have been shown to be differentially expressed in PCa. In particular, changes in the extent of core fucosylation and sialylation of PSA N-glycans in PCa patients compared to healthy controls or BPH patients have been reported. The objective of this study was to determine these specific glycan structures in serum PSA to analyze their potential value as markers for discriminating between BPH and PCa of different aggressiveness. In the present work, we have established two methodologies to analyze the core fucosylation and the sialic acid linkage of PSA N-glycans in serum samples from BPH (29) and PCa (44) patients with different degrees of aggressiveness. We detected a significant decrease in the core fucose and an increase in the α2,3-sialic acid percentage of PSA in high-risk PCa that differentiated BPH and low-risk PCa from high-risk PCa patients. In particular, a cut-off value of 0.86 of the PSA core fucose ratio, could distinguish high-risk PCa patients from BPH with 90% sensitivity and 95% specificity, with an AUC of 0.94. In the case of the α2,3-sialic acid percentage of PSA, the cut-off value of 30% discriminated between high-risk PCa and the group of BPH, low-, and intermediate-risk PCa with a sensitivity and specificity of 85.7% and 95.5%, respectively, with an AUC of 0.97. The latter marker exhibited high performance in differentiating between aggressive and non-aggressive PCa and has the potential for translational application in the clinic.
Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes
Llop, Esther; Ferrer-Batallé, Montserrat; Barrabés, Sílvia; Guerrero, Pedro Enrique; Ramírez, Manel; Saldova, Radka; Rudd, Pauline M.; Aleixandre, Rosa N.; Comet, Josep; de Llorens, Rafael; Peracaula, Rosa
2016-01-01
New markers based on PSA isoforms have recently been developed to improve prostate cancer (PCa) diagnosis. However, novel approaches are still required to differentiate aggressive from non-aggressive PCa to improve decision making for patients. PSA glycoforms have been shown to be differentially expressed in PCa. In particular, changes in the extent of core fucosylation and sialylation of PSA N-glycans in PCa patients compared to healthy controls or BPH patients have been reported. The objective of this study was to determine these specific glycan structures in serum PSA to analyze their potential value as markers for discriminating between BPH and PCa of different aggressiveness. In the present work, we have established two methodologies to analyze the core fucosylation and the sialic acid linkage of PSA N-glycans in serum samples from BPH (29) and PCa (44) patients with different degrees of aggressiveness. We detected a significant decrease in the core fucose and an increase in the α2,3-sialic acid percentage of PSA in high-risk PCa that differentiated BPH and low-risk PCa from high-risk PCa patients. In particular, a cut-off value of 0.86 of the PSA core fucose ratio, could distinguish high-risk PCa patients from BPH with 90% sensitivity and 95% specificity, with an AUC of 0.94. In the case of the α2,3-sialic acid percentage of PSA, the cut-off value of 30% discriminated between high-risk PCa and the group of BPH, low-, and intermediate-risk PCa with a sensitivity and specificity of 85.7% and 95.5%, respectively, with an AUC of 0.97. The latter marker exhibited high performance in differentiating between aggressive and non-aggressive PCa and has the potential for translational application in the clinic. PMID:27279911
Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila
2018-05-07
Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Wilton, Donald R.; Champagne, Nathan J.
2008-01-01
Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.
Chen, Hsing-Hsia; Yeh, Mei-Ling; Yang, Hui-Ju
2005-07-01
This study aimed to develop a multimedia video CD (VCD) of patient-controlled analgesia (PCA) and test its effects on pain knowledge and pain relief in patients receiving surgery. This multimedia VCD of PCA was created to convey fundamental knowledge to both patients and their family members and help patients properly utilize PCA devices to relieve pain and improve recovery. The content of multimedia VCD of PCA included pre-admission pain education, introduction of PCA, nursing care procedures, and questions and answers. This study used a quasi-experimental research design to test effects of the multimedia education program in the experimental group of 30 subjects compared to the control subjects of equal number (without the multimedia VCD of PCA). (1) The intervention of multimedia VCD of PCA resulted in a statistically significant difference in pain knowledge between the experimental and control groups. (2) Subjects in the experimental group obtained a better outcome of pain relief compared to control subjects. (3) Subjects in the experimental group indicated that the multimedia VCD of PCA indeed helped them effectively operate their PCA devices to relieve surgery pain. The clinical application of the multimedia VCD of PCA could help patients improve knowledge on pain, learn how to use PCA devices, achieve proper pain relief, and increase effectiveness of recovery activities.
Dai, Yuanqing; Li, Dongjie; Chen, Xiong; Tan, Xinji; Gu, Jie; Chen, Mingquan; Zhang, Xiaobo
2018-05-25
BACKGROUND In developed countries, prostate cancer (PCa) is a frequently diagnosed cancer with the second highest fatality rate. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) stably expressed in cells and involved in a series of carcinomas. However, few research studies have reported on the role of circRNAs in PCa. MATERIAL AND METHODS We used qRT-PCR to detect the expression of circMYLK (circRNA ID: hsa_circ_0141940) and miR-29a in PCa tissues and cell lines. MTT, colony formation, and TUNEL assays were performed to analysis the cell viability of PCa cells. Transwell and wound scratch assays were performed to investigate the cell invasion and migration of PCa cells. RESULTS In the present study, we confirmed that circMYLK expression level was significantly higher in PCa samples and PCa cells than in normal tissues and normal prostatic cells. The upregulated circRNA-MYLK promoted PCa cells proliferation, invasion, and migration; however, si-circRNA-MYLK significantly accelerated the PCa cell apoptosis. We also observed that the aforementioned function of circRNA-MYLK on PCa cells was affected through targeting miR-29a. CONCLUSIONS We confirmed circRNA-MYLK was an oncogene in PCa and revealed a novel mechanism underlying circRNA-MYLK in PC progression.
Guo, Yuehua; Qu, Shuxin; Lu, Xiong; Xie, Haodong; Zhang, Hongping; Weng, Jie
2010-07-01
The aim of this study is to investigate the interaction between dicalcium phosphate dihydrate (CaHPO(4) x 2H(2)O, DCPD) and Protocatechuic aldehyde (C(7)H(6)O(3), Pca), which is the water-soluble constituents of Chinese Medicine, Salvia Miltiorrhiza Bunge (SMB), by calculating the absorption energy through molecular dynamics simulation. Furthermore, the effects of functional groups of Pca and temperature on Pca adsorbed by DCPD are calculated respectively. DCPD/Pca and DCPD were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TG). The simulation results showed that Pca mostly absorbed on the (0 2 0) surface of DCPD. The aldehyde group of Pca played a moren important role on the adsorption of Pca on DCPD than hydroxyl did, while temperature had no distinct effects on the adsorption. XRD results indicated that Pca induced the preferential growth of (0 2 0) crystal surface in DCPC/Pca whereas it had no influence on the crystal structure, the crystallinity and grain size of DCPD. FTIR and TG results showed that the characteristic peak of Pca was at 1295 cm(-1) and the content of Pca in DCPD was 16%, respectively. The present results show that molecular dynamics simulation is a very effective and complementary method to study the interaction between materials and medicine.
NASA Astrophysics Data System (ADS)
Gharibnezhad, Fahit; Mujica, Luis E.; Rodellar, José
2015-01-01
Using Principal Component Analysis (PCA) for Structural Health Monitoring (SHM) has received considerable attention over the past few years. PCA has been used not only as a direct method to identify, classify and localize damages but also as a significant primary step for other methods. Despite several positive specifications that PCA conveys, it is very sensitive to outliers. Outliers are anomalous observations that can affect the variance and the covariance as vital parts of PCA method. Therefore, the results based on PCA in the presence of outliers are not fully satisfactory. As a main contribution, this work suggests the use of robust variant of PCA not sensitive to outliers, as an effective way to deal with this problem in SHM field. In addition, the robust PCA is compared with the classical PCA in the sense of detecting probable damages. The comparison between the results shows that robust PCA can distinguish the damages much better than using classical one, and even in many cases allows the detection where classic PCA is not able to discern between damaged and non-damaged structures. Moreover, different types of robust PCA are compared with each other as well as with classical counterpart in the term of damage detection. All the results are obtained through experiments with an aircraft turbine blade using piezoelectric transducers as sensors and actuators and adding simulated damages.
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Optimizing the clinical utility of PCA3 to diagnose prostate cancer in initial prostate biopsy.
Rubio-Briones, Jose; Borque, Angel; Esteban, Luis M; Casanova, Juan; Fernandez-Serra, Antonio; Rubio, Luis; Casanova-Salas, Irene; Sanz, Gerardo; Domínguez-Escrig, Jose; Collado, Argimiro; Gómez-Ferrer, Alvaro; Iborra, Inmaculada; Ramírez-Backhaus, Miguel; Martínez, Francisco; Calatrava, Ana; Lopez-Guerrero, Jose A
2015-09-11
PCA3 has been included in a nomogram outperforming previous clinical models for the prediction of any prostate cancer (PCa) and high grade PCa (HGPCa) at the initial prostate biopsy (IBx). Our objective is to validate such IBx-specific PCA3-based nomogram. We also aim to optimize the use of this nomogram in clinical practice through the definition of risk groups. Independent external validation. Clinical and biopsy data from a contemporary cohort of 401 men with the same inclusion criteria to those used to build up the reference's nomogram in IBx. The predictive value of the nomogram was assessed by means of calibration curves and discrimination ability through the area under the curve (AUC). Clinical utility of the nomogram was analyzed by choosing thresholds points that minimize the overlapping between probability density functions (PDF) in PCa and no PCa and HGPCa and no HGPCa groups, and net benefit was assessed by decision curves. We detect 28% of PCa and 11 % of HGPCa in IBx, contrasting to the 46 and 20% at the reference series. Due to this, there is an overestimation of the nomogram probabilities shown in the calibration curve for PCa. The AUC values are 0.736 for PCa (C.I.95%:0.68-0.79) and 0.786 for HGPCa (C.I.95%:0.71-0.87) showing an adequate discrimination ability. PDF show differences in the distributions of nomogram probabilities in PCa and not PCa patient groups. A minimization of the overlapping between these curves confirms the threshold probability of harboring PCa >30 % proposed by Hansen is useful to indicate a IBx, but a cut-off > 40% could be better in series of opportunistic screening like ours. Similar results appear in HGPCa analysis. The decision curve also shows a net benefit of 6.31% for the threshold probability of 40%. PCA3 is an useful tool to select patients for IBx. Patients with a calculated probability of having PCa over 40% should be counseled to undergo an IBx if opportunistic screening is required.
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
graphkernels: R and Python packages for graph comparison
Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-01-01
Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902
Aflatoxin variability in pistachios.
Mahoney, N E; Rodriguez, S B
1996-01-01
Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun S., E-mail: sikhkim@jhmi.edu; Czuczman, Gregory J.; Nicholson, Wanda K.
The purpose of this study was to assess the presence and severity of pain levels during 24 h after uterine fibroid embolization (UFE) for symptomatic leiomyomata and compare the effectiveness and adverse effects of morphine patient-controlled analgesia (PCA) versus fentanyl PCA. We carried out a prospective, nonrandomized study of 200 consecutive women who received UFE and morphine or fentanyl PCA after UFE. Pain perception levels were obtained on a 0-10 scale for the 24-h period after UFE. Linear regression methods were used to determine pain trends and differences in pain trends between two groups and the association between pain scoresmore » and patient covariates. One hundred eighty-five patients (92.5%) reported greater-than-baseline pain after UFE, and 198 patients (99%) required IV opioid PCA. One hundred thirty-six patients (68.0%) developed nausea during the 24-h period. Seventy-two patients (36%) received morphine PCA and 128 (64%) received fentanyl PCA, without demographic differences. The mean dose of morphine used was 33.8 {+-} 26.7 mg, while the mean dose of fentanyl was 698.7 {+-} 537.4 {mu}g. Using this regimen, patients who received morphine PCA had significantly lower pain levels than those who received fentanyl PCA (p < 0.0001). We conclude that patients develop pain requiring IV opioid PCA within 24 h after UFE. Morphine PCA is more effective in reducing post-uterine artery embolization pain than fentanyl PCA. Nausea is a significant adverse effect from opioid PCA.« less
Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.
1995-01-01
Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.
Thomas, John E.; Sem, Daniel S.
2009-01-01
Introduction The purpose of this in vitro study was to determine whether para-chloroaniline (PCA) is formed through the reaction of mixing sodium hypochlorite (NaOCl) and chlorhexidine (CHX). Methods Initially commercially available samples of chlorhexidine acetate (CHXa) and PCA were analyzed with 1H NMR spectroscopy. Two solutions, NaOCl and CHXa, were warmed to 37°C and when mixed they produced a brown precipitate. This precipitate was separated in half and pure PCA was added to one of the samples for comparison before they were each analyzed with 1H NMR spectroscopy. Results The peaks in the 1H NMR spectra of CHXa and PCA were assigned to specific protons of the molecules, and the location of the aromatic peaks in the PCA spectrum defined the PCA doublet region. While the spectrum of the precipitate alone resulted in a complex combination of peaks, upon magnification there were no peaks in the PCA doublet region which were intense enough to be quantified. In the spectrum of the precipitate, to which PCA was added, two peaks do appear in the PCA doublet region. Comparing this spectrum to that of precipitate alone, the peaks in the PCA doublet region are not visible prior to the addition of PCA. Conclusions Based on this in vitro study, the reaction mixture of NaOCl and CHXa does not produce PCA at any measurable quantity and further investigation is needed to determine the chemical composition of the brown precipitate. PMID:20113799
Greene, Daniel J; Elshafei, Ahmed; Nyame, Yaw A; Kara, Onder; Malkoc, Ercan; Gao, Tianming; Jones, J Stephen
2016-08-01
The aim of this study was to externally validate a previously developed PCA3-based nomogram for the prediction of prostate cancer (PCa) and high-grade (intermediate and/or high-grade) prostate cancer (HGPCa) at the time of initial prostate biopsy. A retrospective review was performed on a cohort of 336 men from a large urban academic medical center. All men had serum PSA <20 ng/ml and underwent initial transrectal ultrasound-guided prostate biopsy with at least 10 cores sampling for suspicious exam and/or elevated PSA. Covariates were collected for the nomogram and included age, ethnicity, family history (FH) of PCa, PSA at diagnosis, PCA3, total prostate volume (TPV), and abnormal finding on digital rectal exam (DRE). These variables were used to test the accuracy (concordance index) and calibration of a previously published PCA3 nomogram. Biopsy confirms PCa and HGPCa in 51.0% and 30.4% of validation patients, respectively. This differed from the original cohort in that it had significantly more PCa and HGPCA (51% vs. 44%, P = 0.019; and 30.4% vs. 19.1%, P < 0.001). Despite the differences in PCa detection the concordance index was 75% and 77% for overall PCa and HGPCa, respectively. Calibration for overall PCa was good. This represents the first external validation of a PCA3-based prostate cancer predictive nomogram in a North American population. Prostate 76:1019-1023, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.
2013-01-01
Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507
Does adding ketamine to morphine patient-controlled analgesia safely improve post-thoracotomy pain?
Mathews, Timothy J; Churchhouse, Antonia M D; Housden, Tessa; Dunning, Joel
2012-02-01
A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'is the addition of ketamine to morphine patient-controlled analgesia (PCA) following thoracic surgery superior to morphine alone'. Altogether 201 papers were found using the reported search, of which nine represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. This consisted of one systematic review of PCA morphine with ketamine (PCA-MK) trials, one meta-analysis of PCA-MK trials, four randomized controlled trials of PCA-MK, one meta-analysis of trials using a variety of peri-operative ketamine regimes and two cohort studies of PCA-MK. Main outcomes measured included pain score rated on visual analogue scale, morphine consumption and incidence of psychotomimetic side effects/hallucination. Two papers reported the measurements of respiratory function. This evidence shows that adding ketamine to morphine PCA is safe, with a reported incidence of hallucination requiring intervention of 2.9%, and a meta-analysis finding an incidence of all central nervous system side effects of 18% compared with 15% with morphine alone, P = 0.31, RR 1.27 with 95% CI (0.8-2.01). All randomized controlled trials of its use following thoracic surgery found no hallucination or psychological side effect. All five studies in thoracic surgery (n = 243) found reduced morphine requirements with PCA-MK. Pain scores were significantly lower in PCA-MK patients in thoracic surgery papers, with one paper additionally reporting increased patient satisfaction. However, no significant improvement was found in a meta-analysis of five papers studying PCA-MK in a variety of surgical settings. Both papers reporting respiratory outcomes found improved oxygen saturations and PaCO(2) levels in PCA-MK patients following thoracic surgery. We conclude that adding low-dose ketamine to morphine PCA is safe and post-thoracotomy may provide better pain control than PCA with morphine alone (PCA-MO), with reduced morphine consumption and possible improvement in respiratory function. These studies thus support the routine use of PCA-MK instead of PCA-MO to improve post-thoracotomy pain control.
Dai, Liping; Li, Jitian; Xing, Mengtao; Sanchez, Tino W; Casiano, Carlos A; Zhang, Jian-Ying
2016-11-01
The prostate-specific antigen (PSA) testing has been widely implemented for the early detection and management of prostate cancer (PCa). However, the lack of specificity has led to overdiagnosis, resulting in many possibly unnecessary biopsies and overtreatment. Therefore, novel serological biomarkers with high sensitivity and specificity are of vital importance needed to complement PSA testing in the early diagnosis and effective management of PCa. This is particularly critical in the context of PCa health disparities, where early detection and management could help reduce the disproportionately high PCa mortality observed in African-American men. Previous studies have demonstrated that sera from patients with PCa contain autoantibodies that react with tumor-associated antigens (TAAs). The serological proteome analysis (SERPA) approach was used to identify tumor-associated antigens (TAAs) of PCa. In evaluation study, the level of anti-NPM1 antibody was examined in sera from test cohort, validation cohort, as well as European-American (EA) and African-American (AA) men with PCa by using immunoassay. Nucleophosmin 1 (NPM1) as a 33 kDa TAA in PCa was identified and characterized by SERPA approach. Anti-NPM1 antibody level in PCa was higher than in benign prostatic hyperplasia (BPH) patients and healthy individuals. Receiver operating characteristic (ROC) curve analysis showed similar high diagnostic value for PCa in the test cohort (area under the curve (AUC):0.860) and validation cohort (AUC: 0.822) to differentiate from normal individuals and BPH. Interestingly, AUC values were significantly higher for AA PCa patients. When considering concurrent serum measurements of anti-NPM1 antibody and PSA, 97.1% PCa patients at early stage were identified correctly, while 69.2% BPH patients who had elevated PSA levels were found to be anti-NPM1 negative. Additionally, anti-NPM1 antibody levels in PCa patients at early stage significantly increased after surgery treatment. This intriguing data suggested that NPM1 can elicit autoantibody response in PCa and might be a potential biomarker for the immunodiagnosis and prognosis of PCa, and for supplementing PSA testing in distinguishing PCa from BPH. Prostate 76:1375-1386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K
2015-05-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.
Neuropsychiatric Symptoms in Posterior Cortical Atrophy and Alzheimer Disease
Crutch, Sebastian J.; Franco-Macías, Emilio; Gil-Néciga, Eulogio
2016-01-01
Background: Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome characterized by early progressive visual dysfunction in the context of relative preservation of memory and a pattern of atrophy mainly involving the posterior cortex. The aim of the present study is to characterize the neuropsychiatric profile of PCA. Methods: The Neuropsychiatric Inventory was used to assess 12 neuropsychiatric symptoms (NPS) in 28 patients with PCA and 34 patients with typical Alzheimer disease (AD) matched by age, disease duration, and illness severity. Results: The most commonly reported NPS in both groups were depression, anxiety, apathy, and irritability. However, aside from a trend toward lower rates of apathy in patients with PCA, there were no differences in the percentage of NPS presented in each group. All those patients presenting visual hallucinations in the PCA group also met diagnostic criteria for dementia with Lewy bodies (DLB). Auditory hallucinations were only present in patients meeting diagnosis criteria for DLB. Conclusion: Prevalence of the 12 NPS examined was similar between patients with PCA and AD. Hallucinations in PCA may be helpful in the differential diagnosis between PCA-AD and PCA-DLB. PMID:26404166
Xu, Huan; Fu, Shi; Chen, Qi; Gu, Meng; Zhou, Juan; Liu, Chong; Chen, Yanbo; Wang, Zhong
2017-05-09
To measure the level of oxytocin in serum and prostate cancer (PCa) tissue and study its effect on the proliferation of PCa cells. Oxytocin level in serum was significantly increased in PCa patients compared with the no-carcinoma individuals. Additionally, the levels of oxytocin and its receptor were also elevated in the PCa tissue. However, no significant difference existed among the PCa of various Gleason grades. Western blot analysis confirmed the previous results and revealed an increased expression level of APPL1. The level of oxytocin in serum was measured by ELISA analysis. The expression of oxytocin and its receptor in prostate was analyzed by immunohistochemistry. The proliferation and apoptosis of PCa cells were assessed by the Cell Counting Kit 8 (CCK8) assay, cell cycle analysis and caspase3 activity analysis, respectively. Western blot analysis was used for the detection of PCNA, Caspase3 and APPL1 protein levels. Serum and prostatic oxytocin levels are increased in the PCa subjects. Serum oxytocin level may be a biomarker for PCa in the future. Oxytocin increases PCa growth and APPL1 expression.
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; von Davier, Alina A.
2008-01-01
The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…
Code of Federal Regulations, 2010 CFR
2010-01-01
...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...
Code of Federal Regulations, 2013 CFR
2013-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
Code of Federal Regulations, 2014 CFR
2014-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (percent) Maximum limits of— Wild oats (percent) Foreign material (percent) Skinned and broken kernels... Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered...
Application of kernel method in fluorescence molecular tomography
NASA Astrophysics Data System (ADS)
Zhao, Yue; Baikejiang, Reheman; Li, Changqing
2017-02-01
Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.
Credit scoring analysis using kernel discriminant
NASA Astrophysics Data System (ADS)
Widiharih, T.; Mukid, M. A.; Mustafid
2018-05-01
Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.
Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.
2014-01-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435
Wang, Kai; Chen, Xinguang; Bird, Victoria Y; Gerke, Travis A; Manini, Todd M; Prosperi, Mattia
2017-11-01
The relationship between serum total testosterone and prostate cancer (PCa) risk is controversial. The hypothesis that faster age-related reduction in testosterone is linked with increased PCa risk remains untested. We conducted our study at a tertiary-level hospital in southeast of the USA, and derived data from the Medical Registry Database of individuals that were diagnosed of any prostate-related disease from 2001 to 2015. Cases were those diagnosed of PCa and had one or more measurements of testosterone prior to PCa diagnosis. Controls were those without PCa and had one or more testosterone measurements. Multivariable logistic regression models for PCa risk of absolute levels (one-time measure and 5-year average) and annual change in testosterone were respectively constructed. Among a total of 1,559 patients, 217 were PCa cases, and neither one-time measure nor 5-year average of testosterone was found to be significantly associated with PCa risk. Among the 379 patients with two or more testosterone measurements, 27 were PCa cases. For every 10 ng/dL increment in annual reduction of testosterone, the risk of PCa would increase by 14% [adjusted odds ratio, 1.14; 95% confidence interval (CI), 1.03-1.25]. Compared to patients with a relatively stable testosterone, patients with an annual testosterone reduction of more than 30 ng/dL had 5.03 [95% CI: 1.53, 16.55] fold increase in PCa risk. This implies a faster age-related reduction in, but not absolute level of serum total testosterone as a risk factor for PCa. Further longitudinal studies are needed to confirm this finding. © 2017 UICC.
Gómez-Gómez, Enrique; Carrasco-Valiente, Julia; Blanca-Pedregosa, Ana; Barco-Sánchez, Beatriz; Fernandez-Rueda, Jose Luis; Molina-Abril, Helena; Valero-Rosa, Jose; Font-Ugalde, Pilar; Requena-Tapia, Maria José
2017-04-01
To externally validate the European Randomized Study of Screening for Prostate Cancer (ERSPC) risk calculator (RC) and to evaluate its variability between 2 consecutive prostate-specific antigen (PSA) values. We prospectively catalogued 1021 consecutive patients before prostate biopsy for suspicion of prostate cancer (PCa). The risk of PCa and significant PCa (Gleason score ≥7) from 749 patients was calculated according to ERSPC-RC (digital rectal examination-based version 3 of 4) for 2 consecutive PSA tests per patient. The calculators' predictions were analyzed using calibration plots and the area under the receiver operating characteristic curve (area under the curve). Cohen kappa coefficient was used to compare the ability and variability. Of 749 patients, PCa was detected in 251 (33.5%) and significant PCa was detected in 133 (17.8%). Calibration plots showed an acceptable parallelism and similar discrimination ability for both PSA levels with an area under the curve of 0.69 for PCa and 0.74 for significant PCa. The ERSPC showed 226 (30.2%) unnecessary biopsies with the loss of 10 significant PCa. The variability of the RC was 16% for PCa and 20% for significant PCa, and a higher variability was associated with a reduced risk of significant PCa. We can conclude that the performance of the ERSPC-RC in the present cohort shows a high similitude between the 2 PSA levels; however, the RC variability value is associated with a decreased risk of significant PCa. The use of the ERSPC in our cohort detects a high number of unnecessary biopsies. Thus, the incorporation of ERSPC-RC could help the clinical decision to carry out a prostate biopsy. Copyright © 2016 Elsevier Inc. All rights reserved.
Substantial Family History of Prostate Cancer in Black Men Recruited for Prostate Cancer Screening
Mastalski, Kathleen; Coups, Elliot J.; Ruth, Karen; Raysor, Susan; Giri, Veda N.
2008-01-01
Background Black men are at increased risk for prostate cancer (PCA), particularly with a family history (FH) of the disease. Previous reports have raised concern for suboptimal screening of Black men with a FH of PCA. We report on the extent of FH of PCA from a prospective, longitudinal PCA screening program for high-risk men. Methods Black men ages 35-69 are eligible for PCA screening through the Prostate Cancer Risk Assessment Program (PRAP) regardless of FH. Rates of self-reported FH of PCA, breast, and colon cancer at baseline were compared with an age-matched sample of Black men from the 2005 National Health Interview Survey (NHIS) using standard statistical methods. Results As of January 2007, 332 Black men with pedigree information were enrolled in PRAP and FH of PCA was compared to 838 Black men from the 2005 NHIS. Black men in PRAP reported significantly more first-degree relatives with PCA compared to Black men in the 2005 NHIS (34.3%, 95% CI 29.2-39.7 vs. 5.7%, 95% CI 3.9-7.4). Black men in PRAP also had more FH of breast cancer compared to the 2005 NHIS (11.5%, 95% CI 8.2-15.4 vs 6.3%, 95% CI 4.6-8.0). Conclusions FH of PCA appears to be a motivating factor for Black men seeking PCA screening. Targeted recruitment and education among Black families should improve PCA screening rates. Efforts to recruit Black men without a FH of PCA are also needed. Condensed Abstract Black men seeking prostate cancer screening have a substantial burden of family history of prostate cancer. Targeted education and enhancing discussion in Black families should increase prostate cancer screening and adherence. PMID:18816608
Arthur, Rhonda; Møller, Henrik; Garmo, Hans; Holmberg, Lars; Stattin, Pår; Malmstrom, Håkan; Lambe, Mats; Hammar, Niklas; Walldius, Göran; Robinson, David; Jungner, Ingmar; Hemelrijck, Mieke Van
2016-06-01
Lifestyle-related risk factors such as hyperglycemia and dyslipidemia have been associated with several cancers. However, studies exploring their link with prostate cancer (PCa) clinicopathological characteristics are sparse and inconclusive. Here, we investigated the associations between serum metabolic markers and PCa clinicopathological characteristics. The study comprised 14,294 men from the Swedish Apolipoprotein MOrtality RISk (AMORIS) cohort who were diagnosed with PCa between 1996 and 2011. Univariate and multivariable logistic regression were used to investigate the relation between glucose, triglycerides and total cholesterol and PCa risk categories, PSA, Gleason score, and T-stage. Mean age at time of PCa diagnosis was 69 years. Men with glucose levels >6.9 mmol/L tend to have PSA<4 μg/L, while those with glucose levels of 5.6-6.9 mmol/L had a greater odds of PSA>20 μg/L compared to PSA 4.0-9.9 μg/L. Hypertriglyceridemia was also positively associated with PSA>20 μg/L. Hyperglycemic men had a greater odds of intermediate- and high-grade PCa and advanced stage or metastatic PCa. Similarly, hypertriglyceridemia was positively associated with high-grade PCa. There was also a trend toward an increased odds of intermediate risk localized PCa and advanced stage PCa among men with hypertriglyceridemia. Total cholesterol did not have any statistically significant association with any of the outcomes studied. Our findings suggest that high serum levels of glucose and triglycerides may influence PCa aggressiveness and severity. Further investigation on the role of markers of glucose and lipid metabolism in influencing PCa aggressiveness and severity is needed as this may help define important targets for intervention. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Baumann, A; Cuignet-Royer, E; Cornet, C; Trueck, S; Heck, M; Taron, F; Peignier, C; Chastel, A; Gervais, P; Bouaziz, H; Audibert, G; Mertes, P-M
2010-10-01
To evaluate the daily practice of postoperative PCA in Nancy University Hospital, in continuity with a quality program of postoperative pain (POP) care conducted in 2003. A retrospective audit of patient medical records. A review of all the medical records of consecutive surgical patients managed by PCA over a 5-week period in six surgical services. Criteria studied: Evaluation of hospital means (eight criteria) and of medical and nursing staff practice (16 criteria). A second audit was conducted 6 months after the implementation of quality improvement measures. Assessment of the hospital means: temperature chart including pain scores and PCA drug consumption, patient information leaflet, PCA protocol, postoperative pre-filled prescription form (PFPF) for post-anaesthesia care including PCA, and optional training of nurses in postoperative pain management. EVALUATION OF PRACTICES: One hundred and fifty-nine files of a total of 176 patients were analyzed (88%). Improvements noted after 6 months: trace of POP evaluation progressed from 73 to 87%, advance prescription of PCA adjustment increased from 56 to 68% and of the treatment of adverse effects from 54 to 68%, trace of PCA adaptation by attending nurse from 15 to 43%, trace of the administration of the treatment of adverse effects by attending nurse from 24% to 64%, as did the use of PFPF from 59 to 70%. The usefulness of a pre-filled prescription form for post-anaesthesia care including PCA prescription is demonstrated. Quality improvement measures include: poster information and pocket guides on PCA for nurses, training of 3 nurses per service to act as "PCA advisers" who will in turn train their ward colleagues in PCA management and the use of equipment until an acute pain team is established. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D
2010-05-01
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
Steckel, S; Stewart, S D
2015-06-01
Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Saulsberry, Regor L.; McDougle, Stephen H.; Garcia,Roberto; Johnson, Kenneth L.; Sipes, William; Rickman, Steven; Hosangadi, Ashvin
2011-01-01
An assessment of four spacecraft pyrovalve anomalies that occurred during ground testing was conducted by the NASA Engineering & Safety Center (NESC) in 2008. In all four cases, a common aluminum (Al) primer chamber assembly (PCA) was used with dual NASA Standard Initiators (NSIs) and the nearly simultaneous (separated by less than 80 microseconds) firing of both initiators failed to ignite the booster charge. The results of the assessment and associated test program were reported in AIAA Paper AIAA-2008-4798, NESC Independent Assessment of Pyrovalve Ground Test Anomalies. As a result of the four Al PCA anomalies, and the test results and findings of the NESC assessment, the Mars Science Laboratory (MSL) project team decided to make changes to the PCA. The material for the PCA body was changed from aluminum (Al) to stainless steel (SS) to avoid melting, distortion, and potential leakage of the NSI flow passages when the device functioned. The flow passages, which were interconnected in a Y-shaped configuration (Y-PCA) in the original design, were changed to a V-shaped configuration (V-PCA). The V-shape was used to more efficiently transfer energy from the NSIs to the booster. Development and qualification testing of the new design clearly demonstrated faster booster ignition times compared to the legacy AL Y-PCA design. However, the final NESC assessment report recommended that the SS V-PCA be experimentally characterized and quantitatively compared to the Al Y-PCA design. This data was deemed important for properly evaluating the design options for future NASA projects. This test program has successfully quantified the improvement of the SS V-PCA over the Al Y-PCA. A phase B of the project was also conducted and evaluated the effect of firing command skew and enlargement of flame channels to further assist spacecraft applications.
Sanchez, Tino W.; Zhang, Guangyu; Li, Jitian; Dai, Liping; Mirshahidi, Saied; Wall, Nathan R.; Yates, Clayton; Wilson, Colwick; Montgomery, Susanne; Zhang, Jian-Ying; Casiano, Carlos A.
2016-01-01
African American (AA) men suffer from a disproportionately high incidence and mortality of prostate cancer (PCa) compared with other racial/ethnic groups. Despite these disparities, African American men are underrepresented in clinical trials and in studies on PCa biology and biomarker discovery. We used immunoseroproteomics to profile antitumor autoantibody responses in AA and European American (EA) men with PCa, and explored differences in these responses. This minimally invasive approach detects autoantibodies to tumor-associated antigens that could serve as clinical biomarkers and immunotherapeutic agents. Sera from AA and EA men with PCa were probed by immunoblotting against PC3 cell proteins, with AA sera showing stronger immunoreactivity. Mass spectrometry analysis of immunoreactive protein spots revealed that several AA sera contained autoantibodies to a number of proteins associated with both the glycolysis and plasminogen pathways, particularly to alpha-enolase (ENO1). The proteomic data is deposited in ProteomeXchange with identifier PXD003968. Analysis of sera from 340 racially diverse men by enzyme-linked immunosorbent assays (ELISA) showed higher frequency of anti-ENO1 autoantibodies in PCa sera compared with control sera. We observed differences between AA-PCa and EA-PCa patients in their immunoreactivity against ENO1. Although EA-PCa sera reacted with higher frequency against purified ENO1 in ELISA and recognized by immunoblotting the endogenous cellular ENO1 across a panel of prostate cell lines, AA-PCa sera reacted weakly against this protein by ELISA but recognized it by immunoblotting preferentially in metastatic cell lines. These race-related differences in immunoreactivity to ENO1 could not be accounted by differential autoantibody recognition of phosphoepitopes within this antigen. Proteomic analysis revealed differences in the posttranslational modification profiles of ENO1 variants differentially recognized by AA-PCa and EA-PCa sera. These intriguing results suggest the possibility of race-related differences in the antitumor autoantibody response in PCa, and have implications for defining novel biological determinants of PCa health disparities. PMID:27742740
Elshafei, Ahmed; Chevli, K Kent; Moussa, Ayman S; Kara, Onder; Chueh, Shih-Chieh; Walter, Peter; Hatem, Asmaa; Gao, Tianming; Jones, J Stephen; Duff, Michael
2015-12-01
To develop a validated prostate cancer antigen 3 (PCA3) based nomogram that predicts likelihood of overall prostate cancer (PCa) and intermediate/high grade prostate cancer (HGPCa) in men pursuing initial transrectal prostate biopsy (TRUS-PBx). Data were collected on 3,675 men with serum prostate specific antigen level (PSA) ≤ 20 ng/ml who underwent initial prostate biopsy with at least 10 cores sampling at time of the biopsy. Two logistic regression models were constructed to predict overall PCa and HGPCa incorporating age, race, family history (FH) of PCa, PSA at diagnosis, PCA3, total prostate volume (TPV), and digital rectal exam (DRE). One thousand six hundred twenty (44%) patients had biopsy confirmed PCa with 701 men (19.1%) showing HGPCa. Statistically significant predictors of overall PCa were age (P < 0.0001, OR. 1.51), PSA at diagnosis (P < 0.0001, OR.1.95), PCA3 (P < 0.0001, OR.3.06), TPV (P < 0.0001, OR.0.47), FH (P = 0.003, OR.1.32), and abnormal DRE (P = 0.001, OR. 1.32). While for HGPCa, predictors were age (P < 0.0001, OR.1.77), PSA (P < 0.0001, OR.2.73), PCA3 (P < 0.0001, OR.2.26), TPV (P < 0.0001, OR.0.4), and DRE (P < 0.0001, OR.1.53). Two nomograms were reconstructed for predicted overall PCa probability at time of initial biopsy with a concordance index of 0.742 (Fig. 1), and HGPCa with a concordance index of 0.768 (Fig. 2). Our internally validated initial biopsy PCA3 based nomogram is reconstructed based on a large dataset. The c-index indicates high predictive accuracy, especially for high grade PCa and improves the ability to predict biopsy outcomes. © 2015 Wiley Periodicals, Inc.
Evidence-based Kernels: Fundamental Units of Behavioral Influence
Biglan, Anthony
2008-01-01
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Kertész, István; Vida, András; Nagy, Gábor; Emri, Miklós; Farkas, Antal; Kis, Adrienn; Angyal, János; Dénes, Noémi; Szabó, Judit P; Kovács, Tünde; Bai, Péter; Trencsényi, György
2017-01-01
The most aggressive form of skin cancer is the malignant melanoma. Because of its high metastatic potential the early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of the disease. Previous studies have already shown that benzamide derivatives, such as procainamide (PCA) specifically bind to melanin pigment. The aim of this study was to synthesize and investigate the melanin specificity of the novel 68 Ga-labeled NODAGA-PCA molecule in vitro and in vivo using PET techniques. Procainamide (PCA) was conjugated with NODAGA chelator and was labeled with Ga-68 ( 68 Ga-NODAGA-PCA). The melanin specificity of 68 Ga-NODAGA-PCA was tested in vitro , ex vivo and in vivo using melanotic B16-F10 and amelanotic Melur melanoma cell lines. By subcutaneous and intravenous injection of melanoma cells tumor-bearing mice were prepared, on which biodistribution studies and small animal PET/CT scans were performed for 68 Ga-NODAGA-PCA and 18 FDG tracers. 68 Ga-NODAGA-PCA was produced with high specific activity (14.9±3.9 GBq/µmol) and with excellent radiochemical purity (98%<), at all cases. In vitro experiments showed that 68 Ga-NODAGA-PCA uptake of B16-F10 cells was significantly ( p ≤0.01) higher than Melur cells. Ex vivo biodistribution and in vivo PET/CT studies using subcutaneous and metastatic tumor models showed significantly ( p ≤0.01) higher 68 Ga-NODAGA-PCA uptake in B16-F10 primary tumors and lung metastases in comparison with amelanotic Melur tumors. In experiments where 18 FDG and 68 Ga-NODAGA-PCA uptake of B16-F10 tumors was compared, we found that the tumor-to-muscle (T/M) and tumor-to-lung (T/L) ratios were significantly ( p ≤0.05 and p ≤0.01) higher using 68 Ga-NODAGA-PCA than the 18 FDG accumulation. Our novel radiotracer 68 Ga-NODAGA-PCA showed specific binding to the melanin producing experimental melanoma tumors. Therefore, 68 Ga-NODAGA-PCA is a suitable diagnostic radiotracer for the detection of melanoma tumors and metastases in vivo .
Kertész, István; Vida, András; Nagy, Gábor; Emri, Miklós; Farkas, Antal; Kis, Adrienn; Angyal, János; Dénes, Noémi; Szabó, Judit P.; Kovács, Tünde; Bai, Péter; Trencsényi, György
2017-01-01
Purpose: The most aggressive form of skin cancer is the malignant melanoma. Because of its high metastatic potential the early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of the disease. Previous studies have already shown that benzamide derivatives, such as procainamide (PCA) specifically bind to melanin pigment. The aim of this study was to synthesize and investigate the melanin specificity of the novel 68Ga-labeled NODAGA-PCA molecule in vitro and in vivo using PET techniques. Methods: Procainamide (PCA) was conjugated with NODAGA chelator and was labeled with Ga-68 (68Ga-NODAGA-PCA). The melanin specificity of 68Ga-NODAGA-PCA was tested in vitro, ex vivo and in vivo using melanotic B16-F10 and amelanotic Melur melanoma cell lines. By subcutaneous and intravenous injection of melanoma cells tumor-bearing mice were prepared, on which biodistribution studies and small animal PET/CT scans were performed for 68Ga-NODAGA-PCA and 18FDG tracers. Results: 68Ga-NODAGA-PCA was produced with high specific activity (14.9±3.9 GBq/µmol) and with excellent radiochemical purity (98%<), at all cases. In vitro experiments showed that 68Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p≤0.01) higher than Melur cells. Ex vivo biodistribution and in vivo PET/CT studies using subcutaneous and metastatic tumor models showed significantly (p≤0.01) higher 68Ga-NODAGA-PCA uptake in B16-F10 primary tumors and lung metastases in comparison with amelanotic Melur tumors. In experiments where 18FDG and 68Ga-NODAGA-PCA uptake of B16-F10 tumors was compared, we found that the tumor-to-muscle (T/M) and tumor-to-lung (T/L) ratios were significantly (p≤0.05 and p≤0.01) higher using 68Ga-NODAGA-PCA than the 18FDG accumulation. Conclusion: Our novel radiotracer 68Ga-NODAGA-PCA showed specific binding to the melanin producing experimental melanoma tumors. Therefore, 68Ga-NODAGA-PCA is a suitable diagnostic radiotracer for the detection of melanoma tumors and metastases in vivo. PMID:28382139
Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A
2014-01-01
Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.
E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis
Yasmin-Karim, Sayeda; King, Michael R.; Messing, Edward M.; Lee, Yi-Fen
2014-01-01
Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1. PMID:25301730
Hsp70 and gama-Semino protein as possible prognostic marker of prostate cancer.
Kumar, Sanjay; Gurshaney, Sanjeev; Adagunodo, Yori; Gage, Erica; Qadri, Shezreen; Sharma, Mahak; Malik, Shalie; Manne, Upender; Singh, Udai P; Singh, Rajesh; Mishra, Manoj K
2018-06-01
In the United States, Prostate Cancer (PCa) is the leading cause of cancer-related mortality in men. PCa resulted in abnormal growth and function of prostate gland such as secretion of high level of gamma-seminoprotein (gama-SM)/Prostate-Specific Antigen (PSA) which could be detected in the blood. Beside gama-SM protein, the levels of heat shock proteins (Hsp70) were also observed significantly high. Therefore, gama-SM and Hsp70 are unique proteins with high potential for PCa therapeutics and diagnostics. High level of Hsp70 suppresses apoptosis, thus allowing PCa cells to exist; however, depletion of Hsp70 induces apoptosis in PCa cells. Gama-SM is the most prominent biomarker for PCa screening; however, its accuracy is still questionable. Thus, a more suitable streamline biomarker for PCa screening is urgently needed. Hsp70 and gama-SM proteins could be used as a revolutionary biomarker for PCa, and could help to identify possible therapeutic target(s). In this review article we will discuss the relationship between the Hsp70 and gama-SM proteins with PCa, their potential as a dual biomarker, and the possibility for both proteins being used as therapeutic targets.
Xu, S; Adisetiyo, H; Tamura, S; Grande, F; Garofalo, A; Roy-Burman, P; Neamati, N
2015-07-14
Survivin and monoamine oxidase A (MAOA) levels are elevated in prostate cancer (PCa) compared to normal prostate glands. However, the relationship between survivin and MAOA in PCa is unclear. We examined MAOA expression in the prostate lobes of a conditional PTEN-deficient mouse model mirroring human PCa, with or without survivin knockout. We also silenced one gene at a time and examined the expression of the other. We further evaluated the combination of MAOA inhibitors and survivin suppressants on the growth, viability, migration and invasion of PCa cells. Survivin and MAOA levels are both increased in clinical PCa tissues and significantly associated with patients' survival. Survivin depletion delayed MAOA increase during PCa progression, and silencing MAOA decreased survivin expression. The combination of MAOA inhibitors and the survivin suppressants (YM155 and SC144) showed significant synergy on the inhibition of PCa cell growth, migration and invasion with concomitant decrease in survivin and MMP-9 levels. There is a positive feedback loop between survivin and MAOA expression in PCa. Considering that survivin suppressants and MAOA inhibitors are currently available in clinical trials and clinical use, their synergistic effects in PCa support a rapid translation of this combination to clinical practice.
Knockdown of Mediator Complex Subunit 19 Suppresses the Growth and Invasion of Prostate Cancer Cells
Zhao, Hongwei; Lv, Wei; Chen, Jian; Wan, Fengchun; Liu, Dongfu; Gao, Zhenli; Wu, Jitao
2017-01-01
Prostate cancer (PCa) is one of the most common cancers in elderly men. Mediator Complex Subunit 19 (Med19) is overexpressed and plays promotional roles in many cancers. However, the roles of Med19 in PCa are still obscure. In this study, by using immunohistochemical staining, we found higher expression level of Med19 in PCa tissues than in adjacent benign prostate tissues. We then knocked down the Med19 expression in PCa cell lines LNCaP and PC3 by using lentivirus siRNA. Cell proliferation, anchor-independent growth, migration, and invasion were suppressed in Med19 knockdown PCa cells. In nude mice xenograft model, we found that Med19 knockdown PCa cells formed smaller tumors with lower proliferation index than did control cells. In the mechanism study, we found that Med19 could regulate genes involved in cell proliferation, cell cycle, and epithelial-mesenchymal transition, including P27, pAKT, pPI3K, IGF1R, E-Cadherin, N-Cadherin, Vimentin, ZEB2, Snail-1 and Snail-2. Targeting Med19 in PCa cells could inhibit the PCa growth and metastasis, and might be a therapeutic option for PCa in the future. PMID:28125713
Physical activity in relation to risk of prostate cancer: a systematic review and meta-analysis.
Benke, I N; Leitzmann, M F; Behrens, G; Schmid, D
2018-05-01
Prostate cancer (PCa) is one of the most common cancers among men, yet little is known about its modifiable risk and protective factors. This study aims to quantitatively summarize observational studies relating physical activity (PA) to PCa incidence and mortality. Published articles pertaining to PA and PCa incidence and mortality were retrieved in July 2017 using the Medline and EMBASE databases. The literature review yielded 48 cohort studies and 24 case-control studies with a total of 151 748 PCa cases. The mean age of the study participants at baseline was 61 years. In random-effects models, comparing the highest versus the lowest level of overall PA showed a summary relative risk (RR) estimate for total PCa incidence close to the null [RR = 0.99, 95% confidence interval (CI) = 0.94-1.04]. The corresponding RRs for advanced and non-advanced PCa were 0.92 (95% CI = 0.80-1.06) and 0.95 (95% CI = 0.85-1.07), respectively. We noted a statistically significant inverse association between long-term occupational activity and total PCa (RR = 0.83, 95% CI = 0.71-0.98, n studies = 13), although that finding became statistically non-significant when individual studies were removed from the analysis. When evaluated by cancer subtype, an inverse association with long-term occupational activity was noted for non-advanced/non-aggressive PCa (RR = 0.51, 95% CI = 0.37-0.71, n studies = 2) and regular recreational activity was inversely related to advanced/aggressive PCa (RR = 0.75, 95% CI = 0.60-0.95, n studies = 2), although these observations are based on a low number of studies. Moreover, PA after diagnosis was related to reduced risk of PCa mortality among survivors of PCa (summary RR based on four studies = 0.69, 95% CI = 0.55-0.85). Whether PA protects against PCa remains elusive. Further investigation taking into account the complex clinical and pathologic nature of PCa is needed to clarify the PA and PCa incidence relation. Moreover, future studies are needed to confirm whether PA after diagnosis reduces risk of PCa mortality.
Roudier, Martine P; Winters, Brian R; Coleman, Ilsa; Lam, Hung-Ming; Zhang, Xiaotun; Coleman, Roger; Chéry, Lisly; True, Lawrence D.; Higano, Celestia S.; Montgomery, Bruce; Lange, Paul H.; Snyder, Linda A.; Srivistava, Shiv; Corey, Eva; Vessella, Robert L.; Nelson, Peter S.; Üren, Aykut; Morrissey, Colm
2017-01-01
Background The TMPRSS2-ERG gene fusion is detected in approximately half of primary prostate cancers (PCa) yet the prognostic significance remains unclear. We hypothesized that ERG promotes the expression of common genes in primary PCa and metastatic castration-resistant PCa (CRPC), with the objective of identifying ERG-associated pathways, which may promote the transition from primary PCa to CRPC. Methods We constructed tissue microarrays (TMA) from 127 radical prostatectomy specimens, 20 LuCaP patient-derived xenografts (PDX), and 152 CRPC metastases obtained immediately at time of death. Nuclear ERG was assessed by immunohistochemistry (IHC). To characterize the molecular features of ERG-expressing PCa, a subset of IHC confirmed ERG+ or ERG-specimens including 11 radical prostatectomies, 20 LuCaP PDXs, and 45 CRPC metastases underwent gene expression analysis. Genes were ranked based on expression in primary PCa and CRPC. Common genes of interest were targeted for IHC analysis and expression compared with biochemical recurrence (BCR) status. Results IHC revealed that 43% of primary PCa, 35% of the LuCaP PDXs, and 18% of the CRPC metastases were ERG+ (12 of 48 patients [25%] had at least 1 ERG+ metastasis). Based on gene expression data and previous literature, two proteins involved in calcium signaling (NCALD, CACNA1D), a protein involved in inflammation (HLA-DMB), CD3 positive immune cells, and a novel ERG-associated protein, DCLK1 were evaluated in primary PCa and CRPC metastases. In ERG+ primary PCa, a weak association was seen with NCALD and CACNA1D protein expression. HLA-DMB expression and the presence of CD3 positive immune cells were decreased in CRPC metastases compared to primary PCa. DCLK1 was upregulated at the protein level in unpaired ERG+ primary PCa and CRPC metastases (p=0.0013 and p<0.0001, respectively). In primary PCa, ERG status or expression of targeted proteins was not associated with BCR-free survival. However for primary PCa, ERG+DCLK1+ patients exhibited shorter time to BCR (p=0.06) compared with ERG+DCLK1- patients. Conclusions This study examined ERG expression in primary PCa and CRPC. We have identified altered levels of inflammatory mediators associated with ERG expression. We determined expression of DCLK1 correlates with ERG expression and may play a role in primary PCa progression to metastatic CPRC. PMID:26990456
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
Li, Jieying; Wu, Liyong; Tang, Yi; Zhou, Aihong; Wang, Fen; Xing, Yi; Jia, Jianping
2018-05-10
Posterior cortical atrophy (PCA) is a group of clinical syndromes characterized by visuospatial and visuoperceptual impairment, with memory relatively preserved. Although PCA is pathologically almost identical to Alzheimer's disease (AD), they have different cognitive features. Those differences have only rarely been reported in any Chinese population. The purpose of the study is to establish neuropsychological tests that distinguish the clinical features of PCA from early onset AD (EOAD). Twenty-one PCA patients, 20 EOAD patients, and 20 healthy controls participated in this study. Patients had disease duration of ≤4 years. All participants completed a series of neuropsychological tests to evaluate their visuospatial, visuoperceptual, visuo-constructive, language, executive function, memory, calculation, writing, and reading abilities. The cognitive features of PCA and EOAD were compared. All the neuropsychological test scores showed that both the PCA and EOAD patients were significantly more impaired than people in the control group. However, PCA patients were significantly more impaired than EOAD patients in visuospatial, visuoperceptual, and visuo-constructive function, as well as in handwriting, and reading Chinese characters. The profile of neuropsychological test results highlights cognitive features that differ between PCA and EOAD. One surprising result is that the two syndromes could be distinguished by patients' ability to read and write Chinese characters. Tests based on these characteristics could therefore form a brief PCA neuropsychological examination that would improve the diagnosis of PCA.
Muoio, Barbara; Pascale, Mariarosa; Roggero, Enrico
2018-01-01
In this systematic review, we evaluated the value of serum concentrations of neuron-specific enolase (NSE) in patients with prostate cancer (PCa) in order to clarify the possible role of NSE in the diagnosis, management, treatment and monitoring of PCa. A comprehensive search of the recent literature was conducted to find relevant data on the role of NSE in PCa. Two hundred and eighty-two records were revealed, and 19 articles including 1,772 patients with PCa (either confirmed or suspected) were selected. After reviewing the articles, the major result was that elevated serum NSE appears to correlate with prognosis in advanced PCa, particularly in patients with progressive and metastatic castration-resistant PCa. Based on the existing literature, the role of serum NSE in PCa patients should be further evaluated.
Spyropoulos, Evangelos; Kotsiris, Dimitrios; Spyropoulos, Katherine; Panagopoulos, Aggelos; Galanakis, Ioannis; Mavrikos, Stamatios
2017-02-01
We developed a mathematical "prostate cancer (PCa) conditions simulating" predictive model (PCP-SMART), from which we derived a novel PCa predictor (prostate cancer risk determinator [PCRD] index) and a PCa risk equation. We used these to estimate the probability of finding PCa on prostate biopsy, on an individual basis. A total of 371 men who had undergone transrectal ultrasound-guided prostate biopsy were enrolled in the present study. Given that PCa risk relates to the total prostate-specific antigen (tPSA) level, age, prostate volume, free PSA (fPSA), fPSA/tPSA ratio, and PSA density and that tPSA ≥ 50 ng/mL has a 98.5% positive predictive value for a PCa diagnosis, we hypothesized that correlating 2 variables composed of 3 ratios (1, tPSA/age; 2, tPSA/prostate volume; and 3, fPSA/tPSA; 1 variable including the patient's tPSA and the other, a tPSA value of 50 ng/mL) could operate as a PCa conditions imitating/simulating model. Linear regression analysis was used to derive the coefficient of determination (R 2 ), termed the PCRD index. To estimate the PCRD index's predictive validity, we used the χ 2 test, multiple logistic regression analysis with PCa risk equation formation, calculation of test performance characteristics, and area under the receiver operating characteristic curve analysis using SPSS, version 22 (P < .05). The biopsy findings were positive for PCa in 167 patients (45.1%) and negative in 164 (44.2%). The PCRD index was positively signed in 89.82% positive PCa cases and negative in 91.46% negative PCa cases (χ 2 test; P < .001; relative risk, 8.98). The sensitivity was 89.8%, specificity was 91.5%, positive predictive value was 91.5%, negative predictive value was 89.8%, positive likelihood ratio was 10.5, negative likelihood ratio was 0.11, and accuracy was 90.6%. Multiple logistic regression revealed the PCRD index as an independent PCa predictor, and the formulated risk equation was 91% accurate in predicting the probability of finding PCa. On the receiver operating characteristic analysis, the PCRD index (area under the curve, 0.926) significantly (P < .001) outperformed other, established PCa predictors. The PCRD index effectively predicted the prostate biopsy outcome, correctly identifying 9 of 10 men who were eventually diagnosed with PCa and correctly ruling out PCa for 9 of 10 men who did not have PCa. Its predictive power significantly outperformed established PCa predictors, and the formulated risk equation accurately calculated the probability of finding cancer on biopsy, on an individual patient basis. Copyright © 2016 Elsevier Inc. All rights reserved.
Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.
Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D
2016-04-01
Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparison between a disposable and an electronic PCA device for labor epidural analgesia.
Sumikura, Hiroyuki; van de Velde, Marc; Tateda, Takeshi
2004-01-01
The aims of the present study were (1) to investigate if a disposable patient-controlled analgesia (PCA) device can be used for labor analgesia and (2) to evaluate the device by midwives and parturients. Forty healthy parturients were divided into two groups and received combined spinal epidural analgesia for labor pain relief. Following intrathecal administration of 3 mg ropivacaine and 1.5 microg sufentanil, either a disposable PCA device (Coopdech Syrinjector; Daiken Medical, Osaka, Japan) or an electronic PCA device (IVAC PCAM PCA Syringe Pump; Alaris, Basingstoke, UK) was connected to the epidural catheter, and 0.15% ropivacaine with sufentanil 0.75 microg/ml was used for continuous infusion and PCA. For an electronic PCA device, continuous infusion rate, bolus dose, lockout time, and hourly limit were set at 4 ml/h, 3 ml, 15 min, and 16 ml, respectively. For a disposable PCA device, continuous infusion rate, bolus dose, and an hourly limit were set at 4 ml/h, 3 ml, and 16 ml, respectively, but lockout function was not available. No differences were observed between the groups concerning demographic data, obstetric data, and outcome of labor. Anesthetic requirements (disposable, 9.7 +/- 4.7 ml/h; electronic, 8.2 +/- 4.0 ml/h) and VAS score during the delivery (disposable, 26 +/- 25; electronic, 21 +/- 22) were similar between the groups. Midwives praised the disposable PCA device as well as the electronic one. The present results imply that the disposable PCA device can be an alternative to the electronic PCA device for labor analgesia.
The Association Between Calcium Channel Blocker Use and Prostate Cancer Outcome
Poch, Michael A.; Mehedint, Diana; Green, Dawn J.; Payne-Ondracek, Rochelle; Fontham, Elizabeth T.H.; Bensen, Jeannette T.; Attwood, Kristopher; Wilding, Gregory E.; Guru, Khurshid A.; Underwood, Willie; Mohler, James L.; Heemers, Hannelore V.
2018-01-01
BACKGROUND Epidemiological studies indicate that calcium channel blocker (CCB) use is inversely related to prostate cancer (PCa) incidence. The association between CCB use and PCa aggressiveness at the time of radical prostatectomy (RP) and outcome after RP was examined. METHODS Medication use, PCa aggressiveness and post-RP outcome were retrieved from a prospectively populated database that contains clinical and outcome for RP patients at Roswell Park Cancer Institute (RPCI) from 1993 to 2010. The database was queried for anti-hypertensive medication use at diagnosis for patients with ≥1 year follow-up. Recurrence was defined using NCCN guidelines. Chi-Square tests assessed the relationship between CCB use and PCa aggressiveness. Cox regression models compared the distribution of progression-free survival (PFS) and overall survival (OS) with adjustment for covariates. Results for association between CCB usage and PCa aggressiveness were validated using data from the population-based North Carolina-Louisiana Prostate Cancer Project (PCaP). RESULTS 48%, 37%, and 15% of RPCI’s RP patients (n = 875) had low, intermediate, and high aggressive PCa, respectively. 104 (11%) had a history of CCB use. Patients taking CCBs were more likely to be older, have a higher BMI and use additional anti-hypertensive medications. Diagnostic PSA levels, PCa aggressiveness, and margin status were similar for CCB users and non-users. PFS and OS did not differ between the two groups. Tumor aggressiveness was associated with PFS. CCB use in the PCaP study population was not associated with PCa aggressiveness. CONCLUSIONS CCB use is not associated with PCa aggressiveness at diagnosis, PFS or OS. PMID:23280547
Testosterone inhibits the growth of prostate cancer xenografts in nude mice.
Song, Weitao; Soni, Vikram; Soni, Samit; Khera, Mohit
2017-09-07
Traditional beliefs of androgen's stimulating effects on the growth of prostate cancer (PCa) have been challenged in recent years. Our previous in vitro study indicated that physiological normal levels of androgens inhibited the proliferation of PCa cells. In this in vivo study, the ability of testosterone (T) to inhibit PCa growth was assessed by testing the tumor incidence rate and tumor growth rate of PCa xenografts on nude mice. Different serum testosterone levels were manipulated in male nude/nude athymic mice by orchiectomy or inserting different dosages of T pellets subcutaneously. PCa cells were injected subcutaneously to nude mice and tumor incidence rate and tumor growth rate of PCa xenografts were tested. The data demonstrated that low levels of serum T resulted in the highest PCa incidence rate (50%). This PCa incidence rate in mice with low T levels was significantly higher than that in mice treated with higher doses of T (24%, P < 0.01) and mice that underwent orchiectomy (8%, P < 0.001). Mice that had low serum T levels had the shortest tumor volume doubling time (112 h). This doubling time was significantly shorter than that in the high dose 5 mg T arm (158 h, P < 0.001) and in the orchiectomy arm (468 h, P < 0.001). These results indicated that low T levels are optimal for PCa cell growth. Castrate T levels, as seen after orchiectomy, are not sufficient to support PCa cell growth. Higher levels of serum T inhibited PCa cell growth.
PSMA PET and radionuclide therapy in prostate cancer
Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter L.
2016-01-01
Prostate cancer (Pca) is the most common malignancy in men and a major cause of cancer death. Accurate imaging plays an important role in diagnosis, staging, restaging, detection of biochemical recurrence, and for therapy of PCa patients. Since no effective treatment is available for advanced PCa, there is an urgent need to develop new and more effective therapeutic strategies. In order to optimize treatment outcome, especially in high risk PCa patients, therapy of PCa is moving rapidly towards personalization. Medical imaging, including positron emission tomography (PET)/computed tomography (CT), plays an important role in personalized medicine in oncology. In the recent years, much focus has been on prostate specific membrane antigen (PSMA) as a promising target for imaging and therapy with radionuclides, since it is upregulated in most PCa. In the prostate, one potential role for PSMA PET imaging is to help guiding focal therapy. Several studies have shown great potential of PSMA PET/CT for initial staging, lymph node staging, and detection of recurrence of PCa, even at very low PSA values after primary therapy. Furthermore, studies have shown that PSMA PET/CT has a higher detection rate than choline PET/CT. Radiolabeled PSMA ligands for therapy show promise in several studies with metastatic PCa, and is an area of active investigation. The “Image and treat” strategy, with radiolabeled PSMA ligands, has the potential to improve the treatment outcome of PCa patients, and is paving the way for precision medicine in PCa. The aim of this review is to give an overview of recent advancement in PSMA PET and radionuclide therapy of PCa. PMID:27825432
NASA Astrophysics Data System (ADS)
Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas
2015-05-01
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.
Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme
Warfield, Colleen Y.; Gilchrist, David G.
1999-01-01
Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming
2014-01-01
To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.
Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe
2018-02-19
Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.
Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.
Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang
2017-07-01
Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptive kernel function using line transect sampling
NASA Astrophysics Data System (ADS)
Albadareen, Baker; Ismail, Noriszura
2018-04-01
The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall be...
7 CFR 51.2090 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... defect which makes a kernel or piece of kernel unsuitable for human consumption, and includes decay...: Shriveling when the kernel is seriously withered, shrunken, leathery, tough or only partially developed: Provided, that partially developed kernels are not considered seriously damaged if more than one-fourth of...
Anisotropic hydrodynamics with a scalar collisional kernel
NASA Astrophysics Data System (ADS)
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Ideal regularization for learning kernels from labels.
Pan, Binbin; Lai, Jianhuang; Shen, Lixin
2014-08-01
In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
NASA Astrophysics Data System (ADS)
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
The site, size, spatial stability, and energetics of an X-ray flare kernel
NASA Technical Reports Server (NTRS)
Petrasso, R.; Gerassimenko, M.; Nolte, J.
1979-01-01
The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.
Exploring patterns enriched in a dataset with contrastive principal component analysis.
Abid, Abubakar; Zhang, Martin J; Bagaria, Vivek K; Zou, James
2018-05-30
Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected under different conditions, e.g., a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. This paper proposes a method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in many applications where PCA is currently used.
Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid.
Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Soewandhi, Sundani Nurono; Wikarsa, Saleh; Tjandrawinata, Raymond R
2016-01-30
We report novel pharmaceutical cocrystal of a popular antipyretic drug paracetamol (PCA) with coformer 5-nitroisophhthalic acid (5NIP) to improve its tabletability. The cocrystal (PCA-5NIP at molar ratio of 1:1) was synthesized by solvent evaporation technique using methanol as solvent. The physicochemical properties of cocrystal were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), fourier transform infrared spectroscopy (FTIR), hot stage polarized microscopy (HSPM) and scanning electron microscopy (SEM). Stability of the cocrystal was assessed by storing them at 40°C/75% RH for one month. Compared to PCA, the cocrystal displayed superior tableting performance. PCA-5NIP cocrystal showed a similar dissolution profile as compared to PCA and exhibited good stability. This study showed the utility of PCA-5NIP cocrystal for improving mechanical properties of PCA. Copyright © 2015 Elsevier B.V. All rights reserved.
PEM-PCA: a parallel expectation-maximization PCA face recognition architecture.
Rujirakul, Kanokmon; So-In, Chakchai; Arnonkijpanich, Banchar
2014-01-01
Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages' complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.
Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.
Yamshanov, V A; Kovan'ko, E G; Pustovalov, Yu I
2016-03-01
The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor.
Development of a kernel function for clinical data.
Daemen, Anneleen; De Moor, Bart
2009-01-01
For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu
2017-12-15
Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.
NASA Astrophysics Data System (ADS)
Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo
2018-02-01
Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a potential to improve the reliability of imaging biomarker, especially in evaluating the longitudinal changes of EI even when the patient CT scans were performed with different kernels.
Metabolic network prediction through pairwise rational kernels.
Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian
2014-09-26
Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.
The influence of stigma on the quality of life for prostate cancer survivors.
Wood, Andrew W; Barden, Sejal; Terk, Mitchell; Cesaretti, Jamie
2017-01-01
The purpose of the present study was to investigate the influence of stigma on prostate cancer (PCa) survivors' quality of life. Stigma for lung cancer survivors has been the focus of considerable research (Else-Quest & Jackson, 2014); however, gaps remain in understanding the experience of PCa stigma. A cross-sectional correlational study was designed to assess the incidence of PCa stigma and its influence on the quality of life of survivors. Eighty-five PCa survivors were administered survey packets consisting of a stigma measure, a PCa-specific quality of life measure, and a demographic survey during treatment of their disease. A linear regression analysis was conducted with the data received from PCa survivors. Results indicated that PCa stigma has a significant, negative influence on the quality of life for survivors (R 2 = 0.33, F(4, 80) = 11.53, p < 0.001). There were no statistically significant differences in PCa stigma based on demographic variables (e.g., race and age). Implications for physical and mental health practitioners and researchers are discussed.
Motor features in posterior cortical atrophy and their imaging correlates☆
Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.
2014-01-01
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839
Wright, Terry W.; Malone, Jane E.; Haidaris, Constantine G.; Harber, Martha; Sant, Andrea J.; Nayak, Jennifer L.
2016-01-01
ABSTRACT Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4+ T cells were depleted, and the mice were exposed to Pneumocystis murina. Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii. Potential orthologs of Pca1 have been identified in P. jirovecii. Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation. PMID:28031260
Huang, Mingguo; Narita, Shintaro; Inoue, Takamitsu; Koizumi, Atsushi; Saito, Mitsuru; Tsuruta, Hiroshi; Numakura, Kazuyuki; Satoh, Shigeru; Nanjo, Hiroshi; Sasaki, Takehiko; Habuchi, Tomonori
2017-01-01
Fatty acid binding protein 4 (FABP4) is an abundant protein in adipocytes, and its production is influenced by high-fat diet (HFD) or obesity. The prostate stromal microenvironment induces proinflammatory cytokine production, which is key for the development and progression of prostate cancer (PCa). Here, we show that high FABP4 expression and its secretion by PCa cells directly stimulated PCa cell invasiveness by upregulating matrix metalloproteinases through phosphatidylinositol 3-kinase and mitogen-activated protein kinase signaling pathways. In addition, prostate stromal cells augmented PCa cell invasiveness by secreting interleukin-8 and -6 in response to FABP4. This was abrogated by the FABP4 specific inhibitor, BMS309403. Furthermore, a mouse xenograft experiment showed HFD enhanced PCa metastasis and invasiveness by the upregulation of FABP4 and interleukin-8. Clinically, the serum level of FABP4 was significantly associated with an aggressive type of PCa rather than obesity. Taken together, FABP4 may enhance PCa progression and invasiveness by upregulating matrix metalloproteinases and cytokine production in the PCa stromal microenvironment, especially under HFD or obesity. PMID:29340091
Novel targets for prostate cancer chemoprevention
Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Kong, Dejuan
2010-01-01
Among many endocrine-related cancers, prostate cancer (PCa) is the most frequent male malignancy, and it is the second most common cause of cancer-related death in men in the United States. Therefore, this review focuses on summarizing the knowledge of molecular signaling pathways in PCa because, in order to better design new preventive strategies for the fight against PCa, documentation of the knowledge on the pathogenesis of PCa at the molecular level is very important. Cancer cells are known to have alterations in multiple cellular signaling pathways; indeed, the development and the progression of PCa are known to be caused by the deregulation of several selective signaling pathways such as the androgen receptor, Akt, nuclear factor-κB, Wnt, Hedgehog, and Notch. Therefore, strategies targeting these important pathways and their upstream and downstream signaling could be promising for the prevention of PCa progression. In this review, we summarize the current knowledge regarding the alterations in cell signaling pathways during the development and progression of PCa, and document compelling evidence showing that these are the targets of several natural agents against PCa progression and its metastases. PMID:20576802
Differential metabolome analysis of field-grown maize kernels in response to drought stress
USDA-ARS?s Scientific Manuscript database
Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...
Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...
7 CFR 868.203 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...
7 CFR 868.203 - Basis of determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...
Dual inhibition of survivin and MAOA synergistically impairs growth of PTEN-negative prostate cancer
Xu, S; Adisetiyo, H; Tamura, S; Grande, F; Garofalo, A; Roy-Burman, P; Neamati, N
2015-01-01
Background: Survivin and monoamine oxidase A (MAOA) levels are elevated in prostate cancer (PCa) compared to normal prostate glands. However, the relationship between survivin and MAOA in PCa is unclear. Methods: We examined MAOA expression in the prostate lobes of a conditional PTEN-deficient mouse model mirroring human PCa, with or without survivin knockout. We also silenced one gene at a time and examined the expression of the other. We further evaluated the combination of MAOA inhibitors and survivin suppressants on the growth, viability, migration and invasion of PCa cells. Results: Survivin and MAOA levels are both increased in clinical PCa tissues and significantly associated with patients' survival. Survivin depletion delayed MAOA increase during PCa progression, and silencing MAOA decreased survivin expression. The combination of MAOA inhibitors and the survivin suppressants (YM155 and SC144) showed significant synergy on the inhibition of PCa cell growth, migration and invasion with concomitant decrease in survivin and MMP-9 levels. Conclusions: There is a positive feedback loop between survivin and MAOA expression in PCa. Considering that survivin suppressants and MAOA inhibitors are currently available in clinical trials and clinical use, their synergistic effects in PCa support a rapid translation of this combination to clinical practice. PMID:26103574
Kumar, Rahul; Dhar, Deepanshi; Agarwal, Chapla; Bergman, Bryan; Graner, Michael; Maroni, Paul; Singh, Rana P.; Agarwal, Rajesh; Deep, Gagan
2015-01-01
Hypoxia is an independent prognostic indicator of poor outcome in several malignancies. However, precise mechanism through which hypoxia promotes disease aggressiveness is still unclear. Here, we report that under hypoxia (1% O2), human prostate cancer (PCA) cells, and extracellular vesicles (EVs) released by these cells, are significantly enriched in triglycerides due to the activation of lipogenesis-related enzymes and signaling molecules. This is likely a survival response to hypoxic stress as accumulated lipids could support growth following reoxygenation. Consistent with this, significantly higher proliferation was observed in hypoxic PCA cells following reoxygenation associated with rapid use of accumulated lipids. Importantly, lipid utilization inhibition by CPT1 inhibitor etomoxir and shRNA-mediated CPT1-knockdown significantly compromised hypoxic PCA cell proliferation following reoxygenation. Furthermore, COX2 inhibitor celecoxib strongly reduced growth and invasiveness following hypoxic PCA cells reoxygenation, and inhibited invasiveness induced by hypoxic PCA EVs. This establishes a role for COX2 enzymatic products in the enhanced PCA growth and invasiveness. Importantly, concentration and loading of EVs secreted by PCA cells were significantly compromised under delipidized serum condition and by lipogenesis inhibitors (fatostatin and silibinin). Overall, present study highlights the biological significance of lipid accumulation in hypoxic PCA cells and its therapeutic relevance in PCA. PMID:26087400
Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, L.L.; Hendricks, J.S.
1983-01-01
The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.
Performance Characteristics of a Kernel-Space Packet Capture Module
2010-03-01
Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to
Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M
2018-01-01
Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.
A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions
NASA Astrophysics Data System (ADS)
Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.
2017-05-01
Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.
Optimized Kernel Entropy Components.
Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau
2017-06-01
This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.
Prostate cancer characterization by optical contrast enhanced photoacoustics
NASA Astrophysics Data System (ADS)
Xu, Guan; Qin, Ming; Mukundan, Ananya; Siddiqui, Javed; Takada, Marilia; Vilar-Saavedra, Paulo; Tomlins, Scott A.; Kopelman, Raoul; Wang, Xueding
2016-03-01
During the past decades, prostate cancer (PCa), with an annual incident rate much higher than any other cancer, is the most commonly diagnosed cancer in American men. PCa has a relatively low progression rate yet the survival percentage decreases dramatically once the cancer has metastasized. Identifying aggressive from indolent PCa to prevent metastasis and death is critical to improving outcomes for patients with PCa. Standard procedure for assessing the aggressiveness of PCa involves the removal of tumor tissues by transrectal (TR) ultrasound (US) guided needle biopsy. The microscopic architecture of the biopsied tissue is visualized by histological or immunohistochemical staining procedures. The heterogeneity of the microscopic architecture is characterized by a Gleason score, a quantitative description of the aggressiveness of PCa. Due to the inability to identify the cancer cells, most noninvasive imaging modalities can only provide diagnosis of PCa at limited accuracy. This study investigates the feasibility of identifying PCa tumors and characterizing the aggressiveness of PCa by photoacoustic imaging assisted by cancer targeting polyacrylamide (PAA) nanoparticles (NPs). PAA is a biocompatible material used in clinics for the past 20 years. PAA NPs can protect capsulated optical contrast agents from interference by enzymes and enable prolonged systematic circulation in the living biological environment. The cancer targeting mechanism is achieved by conjugating the NPs to F3 peptides, which trace nucleolin overexpressed on the surface of cancer cells. Preliminary studies have shown that the NPs are capable of staining the PCa cells in vivo.
Facilitating text reading in posterior cortical atrophy.
Yong, Keir X X; Rajdev, Kishan; Shakespeare, Timothy J; Leff, Alexander P; Crutch, Sebastian J
2015-07-28
We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%-270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. © 2015 American Academy of Neurology.
Facilitating text reading in posterior cortical atrophy
Rajdev, Kishan; Shakespeare, Timothy J.; Leff, Alexander P.; Crutch, Sebastian J.
2015-01-01
Objective: We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Methods: Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Results: Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%–270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. Conclusions: These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. Classification of evidence: This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. PMID:26138948
AMACR polymorphisms, dietary intake of red meat and dairy and prostate cancer risk.
Wright, Jonathan L; Neuhouser, Marian L; Lin, Daniel W; Kwon, Erika M; Feng, Ziding; Ostrander, Elaine A; Stanford, Janet L
2011-04-01
Alpha-methylacyl CoA racemase (AMACR) is an enzyme involved in fatty acids metabolism. One of AMACRs primary substrates, phytanic acid, is principally obtained from dietary red meat/dairy, which are associated with prostate cancer (PCa) risk. AMACR is also a tumor tissue biomarker over-expressed in PCa. In this study, we explored the potential relationship between AMACR polymorphisms, red meat/dairy intake, and PCa risk. Caucasian participants from two population-based PCa case-control studies were included. AMACR single nucleotide polymorphisms (SNPs) were selected to capture variation across the gene and regulatory regions. Red meat and dairy intake was determined from food frequency questionnaires. The odds ratio (OR) of PCa (overall and by disease aggressiveness) was estimated by logistic and polytomous regression. Potential interactions between genotypes and dietary exposures were evaluated. Data from 1,309 cases and 1,267 controls were analyzed. Carriers of the variant T allele (rs2287939) had an OR of 0.81 (95% CI 0.68-0.97) for less aggressive PCa, but no alteration in risk for more aggressive PCa. Red meat consumption was positively associated with PCa risk, and the association was stronger for more aggressive disease (lowest vs. highest tertile OR=1.55, 95% CI 1.10-2.20). No effect modification of AMACR polymorphisms by either dietary red meat or dairy intake on PCa risk was observed. PCa risk varied by level of red meat intake and by one AMACR SNP, but there was no evidence for gene-environment interaction. These findings suggest that the effects of AMACR polymorphisms and red meat and dairy on PCa risk are independent. Copyright © 2010 Wiley-Liss, Inc.
Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen
2014-01-01
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. PMID:24981110
Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen
2014-10-01
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. © 2014 The authors.
Wu, Chen-Jiang; Wang, Qing; Li, Hai; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin; Zhang, Yu-Dong
2015-10-01
To investigate diagnostic efficiency of DWI using entire-tumor histogram analysis in differentiating the low-grade (LG) prostate cancer (PCa) from intermediate-high-grade (HG) PCa in comparison with conventional ROI-based measurement. DW images (b of 0-1400 s/mm(2)) from 126 pathology-confirmed PCa (diameter >0.5 cm) in 110 patients were retrospectively collected and processed by mono-exponential model. The measurement of tumor apparent diffusion coefficients (ADCs) was performed with using histogram-based and ROI-based approach, respectively. The diagnostic ability of ADCs from two methods for differentiating LG-PCa (Gleason score, GS ≤ 6) from HG-PCa (GS > 6) was determined by ROC regression, and compared by McNemar's test. There were 49 LG-tumor and 77 HG-tumor at pathologic findings. Histogram-based ADCs (mean, median, 10th and 90th) and ROI-based ADCs (mean) showed dominant relationships with ordinal GS of Pca (ρ = -0.225 to -0.406, p < 0.05). All above imaging indices reflected significant difference between LG-PCa and HG-PCa (all p values <0.01). Histogram 10th ADCs had dominantly high Az (0.738), Youden index (0.415), and positive likelihood ratio (LR+, 2.45) in stratifying tumor GS against mean, median and 90th ADCs, and ROI-based ADCs. Histogram mean, median, and 10th ADCs showed higher specificity (65.3%-74.1% vs. 44.9%, p < 0.01), but lower sensitivity (57.1%-71.3% vs. 84.4%, p < 0.05) than ROI-based ADCs in differentiating LG-PCa from HG-PCa. DWI-associated histogram analysis had higher specificity, Az, Youden index, and LR+ for differentiation of PCa Gleason grade than ROI-based approach.
Giri, Veda N; Knudsen, Karen E; Kelly, William K; Abida, Wassim; Andriole, Gerald L; Bangma, Chris H; Bekelman, Justin E; Benson, Mitchell C; Blanco, Amie; Burnett, Arthur; Catalona, William J; Cooney, Kathleen A; Cooperberg, Matthew; Crawford, David E; Den, Robert B; Dicker, Adam P; Eggener, Scott; Fleshner, Neil; Freedman, Matthew L; Hamdy, Freddie C; Hoffman-Censits, Jean; Hurwitz, Mark D; Hyatt, Colette; Isaacs, William B; Kane, Christopher J; Kantoff, Philip; Karnes, R Jeffrey; Karsh, Lawrence I; Klein, Eric A; Lin, Daniel W; Loughlin, Kevin R; Lu-Yao, Grace; Malkowicz, S Bruce; Mann, Mark J; Mark, James R; McCue, Peter A; Miner, Martin M; Morgan, Todd; Moul, Judd W; Myers, Ronald E; Nielsen, Sarah M; Obeid, Elias; Pavlovich, Christian P; Peiper, Stephen C; Penson, David F; Petrylak, Daniel; Pettaway, Curtis A; Pilarski, Robert; Pinto, Peter A; Poage, Wendy; Raj, Ganesh V; Rebbeck, Timothy R; Robson, Mark E; Rosenberg, Matt T; Sandler, Howard; Sartor, Oliver; Schaeffer, Edward; Schwartz, Gordon F; Shahin, Mark S; Shore, Neal D; Shuch, Brian; Soule, Howard R; Tomlins, Scott A; Trabulsi, Edouard J; Uzzo, Robert; Vander Griend, Donald J; Walsh, Patrick C; Weil, Carol J; Wender, Richard; Gomella, Leonard G
2018-02-01
Purpose Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management. Methods An expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review. Results Consensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy. Conclusion To our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA-a clinically heterogeneous disease.
Seikkula, Heikki A; Kaipia, Antti J; Ryynänen, Heidi; Seppä, Karri; Pitkäniemi, Janne M; Malila, Nea K; Boström, Peter J
2018-03-01
Socioeconomic status (SES) has an impact on prostate cancer (PCa) outcomes. Men with high SES have higher incidence and lower mortality of PCa versus lower SES males. PCa cases diagnosed in Finland in 1985-2014 (N = 95,076) were identified from the Finnish Cancer Registry. Information on education level (EL) was obtained from Statistics Finland. EL was assessed with three-tiered scale: basic, upper secondary and higher education. PCa stage at diagnosis was defined as localized, metastatic or unknown. Years of diagnosis 1985-1994 were defined as pre-PSA period and thereafter as post-PSA period. We report PCa-specific survival (PCSS) and relative risks (RR) for PCa specific mortality (PCSM) among cancer cases in Finland, where healthcare is 100% publicly reimbursed and inequality in healthcare services low. Men with higher EL had markedly better 10-year PCSS: 68 versus 63% in 1985-1994 and 90 versus 85% in 1995-2004 compared to basic EL in localized PCa. The RR for PCSM among men with localized PCa and higher EL compared to basic EL was 0.76(95%confidence interval (CI) 0.66-0.88) in 1985-1994 and 0.61(95%CI 0.53-0.70) in 1995-2004. Variation in PCSS and PCSM between EL categories was evident in metastatic PCa, too. The difference in PCSM between EL categories was larger in the first 10-year post-PSA period than before that but decreased thereafter in localized PCa, suggesting PSA testing became earlier popular among men with high EL. In summary, higher SES/EL benefit PCa survival both in local and disseminated disease and the effect of EL was more pronounced in early post-PSA period. © 2017 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chang Yoon; Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul; Ku, Cheol Ryong
2012-06-22
Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a varietymore » of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.« less
Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians.
Song, Yan; Chavarro, Jorge E; Cao, Yin; Qiu, Weiliang; Mucci, Lorelei; Sesso, Howard D; Stampfer, Meir J; Giovannucci, Edward; Pollak, Michael; Liu, Simin; Ma, Jing
2013-02-01
Previous studies have associated higher milk intake with greater prostate cancer (PCa) incidence, but little data are available concerning milk types and the relation between milk intake and risk of fatal PCa. We investigated the association between intake of dairy products and the incidence and survival of PCa during a 28-y follow-up. We conducted a cohort study in the Physicians' Health Study (n = 21,660) and a survival analysis among the incident PCa cases (n = 2806). Information on dairy product consumption was collected at baseline. PCa cases and deaths (n = 305) were confirmed during follow-up. The intake of total dairy products was associated with increased PCa incidence [HR = 1.12 (95% CI: 0.93, 1.35); >2.5 servings/d vs. ≤0.5 servings/d]. Skim/low-fat milk intake was positively associated with risk of low-grade, early stage, and screen-detected cancers, whereas whole milk intake was associated only with fatal PCa [HR = 1.49 (95% CI: 0.97, 2.28); ≥237 mL/d (1 serving/d) vs. rarely consumed]. In the survival analysis, whole milk intake remained associated with risk of progression to fatal disease after diagnosis [HR = 2.17 (95% CI: 1.34, 3.51)]. In this prospective cohort, higher intake of skim/low-fat milk was associated with a greater risk of nonaggressive PCa. Most importantly, only whole milk was consistently associated with higher incidence of fatal PCa in the entire cohort and higher PCa-specific mortality among cases. These findings add further evidence to suggest the potential role of dairy products in the development and prognosis of PCa.
Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells
Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.
2012-01-01
Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898
Shovel, Louisa; Max, Bryan; Correll, Darin J
2016-01-01
The purpose of this study was to see if an instructional card, attached to the PCA machine following total hip arthroplasty describing proper use of the device, would positively affect subjects' understanding of device usage, pain scores, pain medication consumption and satisfaction. Eighty adults undergoing total hip replacements who had been prescribed PCA were randomized into two study groups. Forty participants received the standard post-operative instruction on PCA device usage at our institution. The other 40 participants received the standard of care in addition to being given a typed instructional card immediately post-operatively, describing proper PCA device use. This card was attached to the PCA device during their recovery period. On post-operative day one, each patient completed a questionnaire on PCA usage, pain scores and satisfaction scores. The pain scores in the Instructional Card group were significantly lower than the Control group (p = 0.024). Subjects' understanding of PCA usage was also improved in the Instructional Card group for six of the seven questions asked. The findings from this study strongly support that postoperative patient information on proper PCA use by means of an instructional card improves pain control and hence the overall recovery for patients undergoing surgery. In addition, through improved understanding it adds an important safety feature in that patients and potentially their family members and/or friends may refrain from PCA-by-proxy. This article demonstrates that the simple intervention of adding an instructional card to a PCA machine is an effective method to improve patients' knowledge as well as pain control and potentially increase the safety of the device use.
Chao, Hsueh-Ping; Deng, Qu; Jeter, Collene; Liu, Can; Honorio, Sofia; Li, Hangwen; Davis, Tammy; Suraneni, Mahipal; Laffin, Brian; Qin, Jichao; Li, Qiuhui; Yang, Tao; Whitney, Pamela; Shen, Jianjun; Huang, Jiaoti; Tang, Dean G.
2015-01-01
Human cancers are heterogeneous containing stem-like cancer cells operationally defined as cancer stem cells (CSCs) that possess great tumor-initiating and long-term tumor-propagating properties. In this study, we systematically dissect the phenotypic, functional and tumorigenic heterogeneity in human prostate cancer (PCa) using xenograft models and >70 patient tumor samples. In the first part, we further investigate the PSA−/lo PCa cell population, which we have recently shown to harbor self-renewing long-term tumor-propagating cells and present several novel findings. We show that discordant AR and PSA expression in both untreated and castration-resistant PCa (CRPC) results in AR+PSA+, AR+PSA−, AR−PSA−, and AR−PSA+ subtypes of PCa cells that manifest differential sensitivities to therapeutics. We further demonstrate that castration leads to a great enrichment of PSA−/lo PCa cells in both xenograft tumors and CRPC samples and systemic androgen levels dynamically regulate the relative abundance of PSA+ versus PSA−/lo PCa cells that impacts the kinetics of tumor growth. We also present evidence that the PSA−/lo PCa cells possess distinct epigenetic profiles. As the PSA−/lo PCa cell population is heterogeneous, in the second part, we employ two PSA− (Du145 and PC3) and two PSA+ (LAPC9 and LAPC4) PCa models as well as patient tumor cells to further dissect the clonogenic and tumorigenic subsets. We report that different PCa models possess distinct tumorigenic subpopulations that both commonly and uniquely express important signaling pathways that could represent therapeutic targets. Our results have important implications in understanding PCa cell heterogeneity, response to clinical therapeutics, and cellular mechanisms underlying CRPC. PMID:26246472
Evidence for Masturbation and Prostate Cancer Risk: Do We Have a Verdict?
Aboul-Enein, Basil H; Bernstein, Joshua; Ross, Michael W
2016-07-01
Prostate cancer (PCa) is one of the leading causes of cancer death in men and remains one of the most diagnosed malignancies worldwide. Ongoing public health efforts continue to promote protective factors, such as diet, physical activity, and other lifestyle modifications, against PCa development. Masturbation is a nearly universal safe sexual activity that transcends societal boundaries and geography yet continues to be met with stigma and controversy in contemporary society. Although previous studies have examined associations between sexual activity and PCa risk, anecdotal relations have been suggested regarding masturbation practice and PCa risk. To provide a summary of the published literature and examine the contemporary evidence for relations between masturbation practice and PCa risk. A survey of the current literature using seven academic electronic databases was conducted using search terms and key words associated with masturbation practice and PCa risk. The practice of masturbation and its relation to PCa risk. The literature search identified study samples (n = 16) published before October 2015. Sample inclusions varied by study type, sample size, and primary objective. Protective relations (n = 7) between ejaculation through masturbation and PCa risk were reported by 44% of the study sample. Age range emerged as a significant variable in the relation between masturbation and PCa. Findings included relations among masturbation, ejaculation frequency, and age range as individual factors of PCa risk. No universally accepted themes were identified across the study sample. Throughout the sample, there was insufficient agreement in survey design and data reporting. Potential avenues for new research include frequency of ejaculation and age range as covarying factors that could lead to more definitive statements about masturbation practice and PCa risk. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Okai, Naoko; Masuda, Takaya; Takeshima, Yasunobu; Tanaka, Kosei; Yoshida, Ken-Ichi; Miyamoto, Masanori; Ogino, Chiaki; Kondo, Akihiko
2017-12-01
Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.
Brain tumor image segmentation using kernel dictionary learning.
Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H
2015-08-01
Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan
2013-01-01
Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108
Ferro, Matteo; Lucarelli, Giuseppe; Bruzzese, Dario; Perdonà, Sisto; Mazzarella, Claudia; Perruolo, Giuseppe; Marino, Ada; Cosimato, Vincenzo; Giorgio, Emilia; Tagliamonte, Virginia; Bottero, Danilo; De Cobelli, Ottavio; Terracciano, Daniela
2015-02-01
Several efforts have been made to find biomarkers that could help clinicians to preoperatively determine prostate cancer (PCa) pathological characteristics and choose the best therapeutic approach, avoiding over-treatment. On this effort, prostate cancer antigen 3 (PCA3), prostate health index (phi) and sarcosine have been presented as promising tools. We evaluated the ability of these biomarkers to predict the pathologic PCa characteristics within a prospectively collected contemporary cohort of patients who underwent radical prostatectomy (RP) for clinically localized PCa at a single high-volume Institution. The prognostic performance of PCA3, phi and sarcosine were evaluated in 78 patients undergoing RP for biopsy-proven PCa. Receiver operating characteristic (ROC) curve analyses tested the accuracy (area under the curve (AUC)) in predicting PCa pathological characteristics. Decision curve analyses (DCA) were used to assess the clinical benefit of the three biomarkers. We found that PCA3, phi and sarcosine levels were significantly higher in patients with tumor volume (TV)≥0.5 ml, pathologic Gleason sum (GS)≥7 and pT3 disease (all p-values≤0.01). ROC curve analysis showed that phi is an accurate predictor of high-stage (AUC 0.85 [0.77-0.93]), high-grade (AUC 0.83 [0.73-0.93]) and high-volume disease (AUC 0.94 [0.88-0.99]). Sarcosine showed a comparable AUC (0.85 [0.76-0.94]) only for T3 stage prediction, whereas PCA3 score showed lower AUCs, ranging from 0.74 (for GS) to 0.86 (for TV). PCA3, phi and sarcosine are predictors of PCa characteristics at final pathology. Successful clinical translation of these findings would reduce the frequency of surveillance biopsies and may enhance acceptance of active surveillance (AS). Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Biggs, Colleen N; Siddiqui, Khurram M; Al-Zahrani, Ali A; Pardhan, Siddika; Brett, Sabine I; Guo, Qiu Q; Yang, Jun; Wolf, Philipp; Power, Nicholas E; Durfee, Paul N; MacMillan, Connor D; Townson, Jason L; Brinker, Jeffrey C; Fleshner, Neil E; Izawa, Jonathan I; Chambers, Ann F; Chin, Joseph L; Leong, Hon S
2016-02-23
Extracellular vesicles released by prostate cancer present in seminal fluid, urine, and blood may represent a non-invasive means to identify and prioritize patients with intermediate risk and high risk of prostate cancer. We hypothesize that enumeration of circulating prostate microparticles (PMPs), a type of extracellular vesicle (EV), can identify patients with Gleason Score≥4+4 prostate cancer (PCa) in a manner independent of PSA. Plasmas from healthy volunteers, benign prostatic hyperplasia patients, and PCa patients with various Gleason score patterns were analyzed for PMPs. We used nanoscale flow cytometry to enumerate PMPs which were defined as submicron events (100-1000nm) immunoreactive to anti-PSMA mAb when compared to isotype control labeled samples. Levels of PMPs (counts/µL of plasma) were also compared to CellSearch CTC Subclasses in various PCa metastatic disease subtypes (treatment naïve, castration resistant prostate cancer) and in serially collected plasma sets from patients undergoing radical prostatectomy. PMP levels in plasma as enumerated by nanoscale flow cytometry are effective in distinguishing PCa patients with Gleason Score≥8 disease, a high-risk prognostic factor, from patients with Gleason Score≤7 PCa, which carries an intermediate risk of PCa recurrence. PMP levels were independent of PSA and significantly decreased after surgical resection of the prostate, demonstrating its prognostic potential for clinical follow-up. CTC subclasses did not decrease after prostatectomy and were not effective in distinguishing localized PCa patients from metastatic PCa patients. PMP enumeration was able to identify patients with Gleason Score ≥8 PCa but not patients with Gleason Score 4+3 PCa, but offers greater confidence than CTC counts in identifying patients with metastatic prostate cancer. CTC Subclass analysis was also not effective for post-prostatectomy follow up and for distinguishing metastatic PCa and localized PCa patients. Nanoscale flow cytometry of PMPs presents an emerging biomarker platform for various stages of prostate cancer.
Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi
2016-05-01
The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.
Calcium channel blocker use and risk of prostate cancer by TMPRSS2:ERG gene fusion status
Geybels, Milan S.; McCloskey, Karen D.; Mills, Ian G.; Stanford, Janet L.
2017-01-01
Background Calcium channel blockers (CCBs) may affect prostate cancer (PCa) growth by various mechanisms including those related to androgens. The fusion of the androgen-regulated gene TMPRSS2 and the oncogene ERG (TMPRSS2:ERG or T2E) is common in PCa, and prostate tumors that harbor the gene fusion are believed to represent a distinct disease subtype. We studied the association of CCB use with the risk of PCa, and molecular subtypes of PCa defined by T2E status. Methods Participants were residents of King County, Washington, recruited for population-based case–control studies (1993–1996 or 2002–2005). Tumor T2E status was determined by fluorescence in situ hybridization using tumor tissue specimens from radical prostatectomy. Detailed information on use of CCBs and other variables was obtained through in-person interviews. Binomial and polytomous logistic regression were used to generate odds ratios (ORs) and 95% confidence intervals (CIs). Results The study includes 1,747 PCa patients and 1,635 age-matched controls. A subset of 563 patients treated with radical prostatectomy had T2E status determined, of which 295 were T2E positive (52%). Use of CCBs (ever vs. never) was not associated with overall PCa risk. However, among European-American men, users had a reduced risk of higher-grade PCa (Gleason scores ≥7: adjusted OR = 0.64; 95% CI: 0.44–0.95). Further, use of CCBs was associated with a reduced risk of T2E positive PCa (adjusted OR = 0.38; 95% CI: 0.19–0.78), but was not associated with T2E negative PCa. Conclusions This study found suggestive evidence that use of CCBs is associated with reduced relative risks for higher Gleason score and T2E positive PCa. Future studies of PCa etiology should consider etiologic heterogeneity as PCa subtypes may develop through different causal pathways. PMID:27753122
Kong, Byung Soo; Cho, Yoon Hee; Lee, Eun Jig
2014-01-01
Protocatechuic aldehyde (PCA), a phenolic aldehyde, has therapeutic potency against atherosclerosis. Although PCA is known to inhibit the migration and proliferation of vascular smooth muscle cells and intravascular thrombosis, the underlying mechanism remains unclear. In this study, we investigated the protective effect of PCA on endothelial cells and injured vessels in vivo in association with G protein-coupled estrogen receptor-1 (GPER-1). With PCA treatment, cAMP production was increased in HUVECs, while GPER-1 expression was increased in both HUVECs and a rat aortic explant. PCA and G1, a GPER-1 agonist, reduced H2O2 stimulated ROS production in HUVECs, whereas, G15, a GPER-1 antagonist, increased ROS production further. These elevations were inhibited by co-treatment with PCA or G1. TNFα stimulated the expression of inflammatory markers (VCAM-1, ICAM-1 and CD40), phospho-NF-κB, phospho-p38 and HIF-1α; however, co-treatment with PCA or G1 down-regulated this expression significantly. Likewise, increased expression of inflammatory markers by treatment with G15 was inhibited by co-treatment with PCA. In re-endothelization, aortic ring sprouting and neointima formation assay, rat aortas treated with PCA or G1 showed accelerated re-endothelization of the endothelium and reduced sprouting and neointima formation. However, aortas from G15-treated rats showed decelerated re-endothelization and increased sprouting and neointima formation. The effects of G15 were restored by co-treatment with PCA or G1. Also, in the endothelia of these aortas, PCA and G1 increased CD31 and GPER-1 and decreased VCAM-1 and CD40 expression. In contrast, the opposite effect was observed in G15-treated endothelium. These results suggest that GPER-1 might mediate the protective effect of PCA on the endothelium. PMID:25411835
Kong, Byung Soo; Cho, Yoon Hee; Lee, Eun Jig
2014-01-01
Protocatechuic aldehyde (PCA), a phenolic aldehyde, has therapeutic potency against atherosclerosis. Although PCA is known to inhibit the migration and proliferation of vascular smooth muscle cells and intravascular thrombosis, the underlying mechanism remains unclear. In this study, we investigated the protective effect of PCA on endothelial cells and injured vessels in vivo in association with G protein-coupled estrogen receptor-1 (GPER-1). With PCA treatment, cAMP production was increased in HUVECs, while GPER-1 expression was increased in both HUVECs and a rat aortic explant. PCA and G1, a GPER-1 agonist, reduced H2O2 stimulated ROS production in HUVECs, whereas, G15, a GPER-1 antagonist, increased ROS production further. These elevations were inhibited by co-treatment with PCA or G1. TNFα stimulated the expression of inflammatory markers (VCAM-1, ICAM-1 and CD40), phospho-NF-κB, phospho-p38 and HIF-1α; however, co-treatment with PCA or G1 down-regulated this expression significantly. Likewise, increased expression of inflammatory markers by treatment with G15 was inhibited by co-treatment with PCA. In re-endothelization, aortic ring sprouting and neointima formation assay, rat aortas treated with PCA or G1 showed accelerated re-endothelization of the endothelium and reduced sprouting and neointima formation. However, aortas from G15-treated rats showed decelerated re-endothelization and increased sprouting and neointima formation. The effects of G15 were restored by co-treatment with PCA or G1. Also, in the endothelia of these aortas, PCA and G1 increased CD31 and GPER-1 and decreased VCAM-1 and CD40 expression. In contrast, the opposite effect was observed in G15-treated endothelium. These results suggest that GPER-1 might mediate the protective effect of PCA on the endothelium.
Al-Zahrani, Ali A.; Pardhan, Siddika; Brett, Sabine I.; Guo, Qiu Q.; Yang, Jun; Wolf, Philipp; Power, Nicholas E.; Durfee, Paul N.; MacMillan, Connor D.; Townson, Jason L.; Brinker, Jeffrey C.; Fleshner, Neil E.; Izawa, Jonathan I.; Chambers, Ann F.; Chin, Joseph L.; Leong, Hon S.
2016-01-01
Background Extracellular vesicles released by prostate cancer present in seminal fluid, urine, and blood may represent a non-invasive means to identify and prioritize patients with intermediate risk and high risk of prostate cancer. We hypothesize that enumeration of circulating prostate microparticles (PMPs), a type of extracellular vesicle (EV), can identify patients with Gleason Score≥4+4 prostate cancer (PCa) in a manner independent of PSA. Patients and Methods Plasmas from healthy volunteers, benign prostatic hyperplasia patients, and PCa patients with various Gleason score patterns were analyzed for PMPs. We used nanoscale flow cytometry to enumerate PMPs which were defined as submicron events (100-1000nm) immunoreactive to anti-PSMA mAb when compared to isotype control labeled samples. Levels of PMPs (counts/μL of plasma) were also compared to CellSearch CTC Subclasses in various PCa metastatic disease subtypes (treatment naïve, castration resistant prostate cancer) and in serially collected plasma sets from patients undergoing radical prostatectomy. Results PMP levels in plasma as enumerated by nanoscale flow cytometry are effective in distinguishing PCa patients with Gleason Score≥8 disease, a high-risk prognostic factor, from patients with Gleason Score≤7 PCa, which carries an intermediate risk of PCa recurrence. PMP levels were independent of PSA and significantly decreased after surgical resection of the prostate, demonstrating its prognostic potential for clinical follow-up. CTC subclasses did not decrease after prostatectomy and were not effective in distinguishing localized PCa patients from metastatic PCa patients. Conclusions PMP enumeration was able to identify patients with Gleason Score ≥8 PCa but not patients with Gleason Score 4+3 PCa, but offers greater confidence than CTC counts in identifying patients with metastatic prostate cancer. CTC Subclass analysis was also not effective for post-prostatectomy follow up and for distinguishing metastatic PCa and localized PCa patients. Nanoscale flow cytometry of PMPs presents an emerging biomarker platform for various stages of prostate cancer. PMID:26814433
Inflammation: an important parameter in the search of prostate cancer biomarkers
2014-01-01
Background A more specific and early diagnostics for prostate cancer (PCa) is highly desirable. In this study, being inflammation the focus of our effort, serum protein profiles were analyzed in order to investigate if this parameter could interfere with the search of discriminating proteins between PCa and benign prostatic hyperplasia (BPH). Methods Patients with clinical suspect of PCa and candidates for trans-rectal ultrasound guided prostate biopsy (TRUS) were enrolled. Histological specimens were examined in order to grade and classify the tumor, identify BPH and detect inflammation. Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (SELDI-ToF-MS) and two-dimensional gel electrophoresis (2-DE) coupled with Liquid Chromatography-MS/MS (LC-MS/MS) were used to analyze immuno-depleted serum samples from patients with PCa and BPH. Results The comparison between PCa (with and without inflammation) and BPH (with and without inflammation) serum samples by SELDI-ToF-MS analysis did not show differences in protein expression, while changes were only observed when the concomitant presence of inflammation was taken into consideration. In fact, when samples with histological sign of inflammation were excluded, 20 significantly different protein peaks were detected. Subsequent comparisons (PCa with inflammation vs PCa without inflammation, and BPH with inflammation vs BPH without inflammation) showed that 16 proteins appeared to be modified in the presence of inflammation, while 4 protein peaks were not modified. With 2-DE analysis, comparing PCa without inflammation vs PCa with inflammation, and BPH without inflammation vs the same condition in the presence of inflammation, were identified 29 and 25 differentially expressed protein spots, respectively. Excluding samples with inflammation the comparison between PCa vs BPH showed 9 unique PCa proteins, 4 of which overlapped with those previously identified in the presence of inflammation, while other 2 were new proteins, not identified in our previous comparisons. Conclusions The present study indicates that inflammation might be a confounding parameter during the proteomic research of candidate biomarkers of PCa. These results indicate that some possible biomarker-candidate proteins are strongly influenced by the presence of inflammation, hence only a well-selected protein pattern should be considered for potential marker of PCa. PMID:24944525
Xu, Ning; Wu, Yu-Peng; Chen, Dong-Ning; Ke, Zhi-Bin; Cai, Hai; Wei, Yong; Zheng, Qing-Shui; Huang, Jin-Bei; Li, Xiao-Dong; Xue, Xue-Yi
2018-05-01
To explore the value of Prostate Imaging Reporting and Data System Version 2 (PI-RADS v2) for predicting prostate biopsy results in patients with prostate specific antigen (PSA) levels of 4-10 ng/ml. We retrospectively reviewed multi-parameter magnetic resonance images from 528 patients with PSA levels of 4-10 ng/ml who underwent transrectal ultrasound-guided prostate biopsies between May 2015 and May 2017. Among them, 137 were diagnosed with prostate cancer (PCa), and we further subdivided them according to pathological results into the significant PCa (S-PCa) and insignificant significant PCa (Ins-PCa) groups (121 cases were defined by surgical pathological specimen and 16 by biopsy). Age, PSA, percent free PSA, PSA density (PSAD), prostate volume (PV), and PI-RADS score were collected. Logistic regression analysis was performed to determine predictors of pathological results. Receiver operating characteristic curves were constructed to analyze the diagnostic value of PI-RADS v2 in PCa. Multivariate analysis indicated that age, PV, percent free PSA, and PI-RADS score were independent predictors of biopsy findings, while only PI-RADS score was an independent predictor of S-PCa (P < 0.05). The areas under the receiver operating characteristic curve for diagnosing PCa with respect to age, PV, percent free PSA, and PI-RADS score were 0.570, 0.430, 0.589 and 0.836, respectively. The area under the curve for diagnosing S-PCa with respect to PI-RADS score was 0.732. A PI-RADS score of 3 was the best cutoff for predicting PCa, and 4 was the best cutoff for predicting S-PCa. Thus, 92.8% of patients with PI-RADS scores of 1-2 would have avoided biopsy, but at the cost of missing 2.2% of the potential PCa cases. Similarly, 83.82% of patients with a PI-RADS score ≤ 3 would have avoided biopsy, but at the cost of missing 3.3% of the potential S-PCa cases. PI-RADS v2 could be used to reduce unnecessary prostate biopsies in patients with PSA levels of 4-10 ng/ml.
Paller, C J; Kanaan, Y M; Beyene, D A; Naab, T J; Copeland, R L; Tsai, H L; Kanarek, N F; Hudson, T S
2015-09-01
African-American (AA) men experience higher rates of prostate cancer (PCa) and vitamin D (vitD) deficiency than white men. VitD is promoted for PCa prevention, but there is conflicting data on the association between vitD and PCa. We examined the association between serum vitD and dietary quercetin and their interaction with PCa risk in AA men. Participants included 90 AA men with PCa undergoing treatment at Howard University Hospital (HUH) and 62 controls participating in HUH's free PCa screening program. We measured serum 25-hydroxy vitD [25(OH)D] and used the 98.2 item Block Brief 2000 Food Frequency Questionnaires to measure dietary intake of quercetin and other nutrients. Case and control groups were compared using a two-sample t-test for continuous risk factors and a Fisher exact test for categorical factors. Associations between risk factors and PCa risk were examined via age-adjusted logistic regression models. Interaction effects of dietary quercetin and serum vitD on PCa status were observed. AA men (age 40-70) with normal levels of serum vitD (>30 ng/ml) had a 71% lower risk of PCa compared to AA men with vitD deficiency (OR = 0.29, 95%CI: 0.08-1.03; P = 0.055). In individuals with vitD deficiency, increased dietary quercetin showed a tendency toward lower risk of PCa (OR = 0.91, 95%CI: 0.82-1.00; P = 0.054, age-adjusted) while men with normal vitD were at elevated risk (OR = 1.23, 95%CI: 1.04-1.45). These findings suggest that AA men who are at a higher risk of PCa may benefit more from vitD intake, and supplementation with dietary quercetin may increase the risk of PCa in AA men with normal vitD levels. Further studies with larger populations are needed to better understand the impact of the interaction between sera vitD levels and supplementation with quercetin on PCa in AA men. © 2015 Wiley Periodicals, Inc.
Chapin, Jay W; Thomas, James S
2003-08-01
Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.
Toews, Michael D; Pearson, Tom C; Campbell, James F
2006-04-01
Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.
Relationship of source and sink in determining kernel composition of maize
Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.
2010-01-01
The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan
2016-11-01
In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.
Image quality of mixed convolution kernel in thoracic computed tomography.
Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar
2016-11-01
The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.
Lycopene and Risk of Prostate Cancer
Chen, Ping; Zhang, Wenhao; Wang, Xiao; Zhao, Keke; Negi, Devendra Singh; Zhuo, Li; Qi, Mao; Wang, Xinghuan; Zhang, Xinhua
2015-01-01
Abstract Prostate cancer (PCa) is a common illness for aging males. Lycopene has been identified as an antioxidant agent with potential anticancer properties. Studies investigating the relation between lycopene and PCa risk have produced inconsistent results. This study aims to determine dietary lycopene consumption/circulating concentration and any potential dose–response associations with the risk of PCa. Eligible studies published in English up to April 10, 2014, were searched and identified from Pubmed, Sciencedirect Online, Wiley online library databases and hand searching. The STATA (version 12.0) was applied to process the dose–response meta-analysis. Random effects models were used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs) and to incorporate variation between studies. The linear and nonlinear dose–response relations were evaluated with data from categories of lycopene consumption/circulating concentrations. Twenty-six studies were included with 17,517 cases of PCa reported from 563,299 participants. Although inverse association between lycopene consumption and PCa risk was not found in all studies, there was a trend that with higher lycopene intake, there was reduced incidence of PCa (P = 0.078). Removal of one Chinese study in sensitivity analysis, or recalculation using data from only high-quality studies for subgroup analysis, indicated that higher lycopene consumption significantly lowered PCa risk. Furthermore, our dose–response meta-analysis demonstrated that higher lycopene consumption was linearly associated with a reduced risk of PCa with a threshold between 9 and 21 mg/day. Consistently, higher circulating lycopene levels significantly reduced the risk of PCa. Interestingly, the concentration of circulating lycopene between 2.17 and 85 μg/dL was linearly inversed with PCa risk whereas there was no linear association >85 μg/dL. In addition, greater efficacy for the circulating lycopene concentration on preventing PCa was found for studies with high quality, follow-up >10 years and where results were adjusted by the age or the body mass index. In conclusion, our novel data demonstrates that higher lycopene consumption/circulating concentration is associated with a lower risk of PCa. However, further studies are required to determine the mechanism by which lycopene reduces the risk of PCa and if there are other factors in tomato products that might potentially decrease PCa risk and progression. PMID:26287411
Roudier, Martine P; Winters, Brian R; Coleman, Ilsa; Lam, Hung-Ming; Zhang, Xiaotun; Coleman, Roger; Chéry, Lisly; True, Lawrence D; Higano, Celestia S; Montgomery, Bruce; Lange, Paul H; Snyder, Linda A; Srivastava, Shiv; Corey, Eva; Vessella, Robert L; Nelson, Peter S; Üren, Aykut; Morrissey, Colm
2016-06-01
The TMPRSS2-ERG gene fusion is detected in approximately half of primary prostate cancers (PCa) yet the prognostic significance remains unclear. We hypothesized that ERG promotes the expression of common genes in primary PCa and metastatic castration-resistant PCa (CRPC), with the objective of identifying ERG-associated pathways, which may promote the transition from primary PCa to CRPC. We constructed tissue microarrays (TMA) from 127 radical prostatectomy specimens, 20 LuCaP patient-derived xenografts (PDX), and 152 CRPC metastases obtained immediately at time of death. Nuclear ERG was assessed by immunohistochemistry (IHC). To characterize the molecular features of ERG-expressing PCa, a subset of IHC confirmed ERG+ or ERG- specimens including 11 radical prostatectomies, 20 LuCaP PDXs, and 45 CRPC metastases underwent gene expression analysis. Genes were ranked based on expression in primary PCa and CRPC. Common genes of interest were targeted for IHC analysis and expression compared with biochemical recurrence (BCR) status. IHC revealed that 43% of primary PCa, 35% of the LuCaP PDXs, and 18% of the CRPC metastases were ERG+ (12 of 48 patients [25%] had at least one ERG+ metastasis). Based on gene expression data and previous literature, two proteins involved in calcium signaling (NCALD, CACNA1D), a protein involved in inflammation (HLA-DMB), CD3 positive immune cells, and a novel ERG-associated protein, DCLK1 were evaluated in primary PCa and CRPC metastases. In ERG+ primary PCa, a weak association was seen with NCALD and CACNA1D protein expression. HLA-DMB association with ERG was decreased and CD3 cell number association with ERG was changed from positive to negative in CRPC metastases compared to primary PCa. DCLK1 was upregulated at the protein level in unpaired ERG+ primary PCa and CRPC metastases (P = 0.0013 and P < 0.0001, respectively). In primary PCa, ERG status or expression of targeted proteins was not associated with BCR-free survival. However, for primary PCa, ERG+DCLK1+ patients exhibited shorter time to BCR (P = 0.06) compared with ERG+DCLK1- patients. This study examined ERG expression in primary PCa and CRPC. We have identified altered levels of inflammatory mediators associated with ERG expression. We determined expression of DCLK1 correlates with ERG expression and may play a role in primary PCa progression to metastatic CPRC. Prostate 76:810-822, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing, manufacturing, packing, processing, preparing, treating...
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
Code of Federal Regulations, 2010 CFR
2010-01-01
... which have been broken to the extent that the kernel within is plainly visible without minute... discoloration beneath, but the peanut shall be judged as it appears with the talc. (c) Kernels which are rancid or decayed. (d) Moldy kernels. (e) Kernels showing sprouts extending more than one-eighth inch from...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...
Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat
USDA-ARS?s Scientific Manuscript database
Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...
7 CFR 999.400 - Regulation governing the importation of filberts.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Definitions. (1) Filberts means filberts or hazelnuts. (2) Inshell filberts means filberts, the kernels or edible portions of which are contained in the shell. (3) Shelled filberts means the kernels of filberts... Filbert kernels or portions of filbert kernels shall meet the following requirements: (1) Well dried and...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (2) For kernel defects, by count. (i) 12 percent for pecans with kernels which fail to meet the... kernels which are seriously damaged: Provided, That not more than six-sevenths of this amount, or 6 percent, shall be allowed for kernels which are rancid, moldy, decayed or injured by insects: And provided...
Enhanced gluten properties in soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...
End-use quality of soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...
Code of Federal Regulations, 2014 CFR
2014-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Code of Federal Regulations, 2013 CFR
2013-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
7 CFR 51.1416 - Optional determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... throughout the lot. (a) Edible kernel content. A minimum sample of at least 500 grams of in-shell pecans shall be used for determination of edible kernel content. After the sample is weighed and shelled... determine edible kernel content for the lot. (b) Poorly developed kernel content. A minimum sample of at...
NASA Technical Reports Server (NTRS)
Lickly, Ben
2005-01-01
Data from all current JPL missions are stored in files called SPICE kernels. At present, animators who want to use data from these kernels have to either read through the kernels looking for the desired data, or write programs themselves to retrieve information about all the needed objects for their animations. In this project, methods of automating the process of importing the data from the SPICE kernels were researched. In particular, tools were developed for creating basic scenes in Maya, a 3D computer graphics software package, from SPICE kernels.
Spinal anaesthesia for a caesarean section in a patient with paraneoplastic cerebellar ataxia
Tuna, Ayca Tas; Sahin, Fatih; Kotan, Dilcan; Erdem, Ali Fuat; Baykara, Meltem; Duzcan, Tuba
2017-01-01
Paraneoplastic cerebellar ataxia (PCA) is most frequently observed in gynaecological cancers, small cell lung cancer, breast cancer, Hodgkin's lymphoma, cancer testis or malignant thymoma. In the literature, there is no data related to the effects of PCA during pregnancy or reports on the effects of anaesthesia in patients with PCA. We present management of a pregnant woman with PCA who was suddenly unable to walk with PCA and for whom effective spinal anaesthesia was performed for an elective caesarean section with no complications. PMID:28515524
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Graph wavelet alignment kernels for drug virtual screening.
Smalter, Aaron; Huan, Jun; Lushington, Gerald
2009-06-01
In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.
Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K
2017-06-01
Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Small convolution kernels for high-fidelity image restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1991-01-01
An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.
Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests
Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit
2014-01-01
In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Petrasso, R. D.; Kane, S. R.
1976-01-01
The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...
Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.
2018-02-01
This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju
2018-02-16
Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Novel characterization method of impedance cardiography signals using time-frequency distributions.
Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M
2018-03-16
The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.
Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-06-21
We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Cid, Jaime A; von Davier, Alina A
2015-05-01
Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies
Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.
Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.
Yiğit, D; Yiğit, N; Mavi, A
2009-04-01
The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.
Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K
2017-10-17
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
NASA Astrophysics Data System (ADS)
Xing, Fuguo; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Zhu, Fengle; Brown, Robert L.; Bhatnagar, Deepak; Liu, Yang
2017-05-01
Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescence visible near-infrared (VNIR) hyperspectral images to assess the spectral difference between peanut kernels inoculated with toxigenic and atoxigenic inocula of A. flavus and healthy kernels. Peanut kernels were inoculated with NRRL3357, a toxigenic strain of A. flavus, and AF36, an atoxigenic strain of A. flavus, respectively. Fluorescence hyperspectral images under ultraviolet (UV) excitation were recorded on peanut kernels with and without skin. Contaminated kernels exhibited different fluorescence features compared with healthy kernels. For the kernels without skin, the inoculated kernels had a fluorescence peaks shifted to longer wavelengths with lower intensity than healthy kernels. In addition, the fluorescence intensity of peanuts without skin was higher than that of peanuts with skin (10 times). The fluorescence spectra of kernels with skin are significantly different from that of the control group (p<0.001). Furthermore, the fluorescence intensity of the toxigenic, AF3357 peanuts with skin was lower than that of the atoxigenic AF36 group. Discriminate analysis showed that the inoculation group can be separated from the controls with 100% accuracy. However, the two inoculation groups (AF3357 vis AF36) can be separated with only ∼80% accuracy. This study demonstrated the potential of fluorescence hyperspectral imaging techniques for screening of peanut kernels contaminated with A. flavus, which could potentially lead to the production of rapid and non-destructive scanning-based detection technology for the peanut industry.
Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad
2017-11-01
Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.
Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity.
Jung, Stephan; Hütsch, Birgit W; Schubert, Sven
2017-04-01
Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H + -ATPase. It was investigated whether the PM H + -ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H + -ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H + -ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon
1997-01-01
An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.
Dampier, Carlton D.; Smith, Wally R.; Kim, Hae-Young; Wager, Carrie Greene; Bell, Margaret C.; Minniti, Caterina P.; Keefer, Jeffrey; Hsu, Lewis; Krishnamurti, Lakshmanan; Mack, A. Kyle; McClish, Donna; McKinlay, Sonja M.; Miller, Scott T.; Osunkwo, Ifeyinwa; Seaman, Phillip; Telen, Marilyn J.; Weiner, Debra L.
2015-01-01
Opioid analgesics administered by patient-controlled analgesia (PCA) are frequently used for pain relief in children and adults with sickle cell disease (SCD) hospitalized for persistent vaso-occlusive pain, but optimum opioid dosing is not known. To better define PCA dosing recommendations, a multi-center phase III clinical trial was conducted comparing two alternative opioid PCA dosing strategies (HDLI-higher demand dose with low constant infusion or LDHI- lower demand dose and higher constant infusion) in 38 subjects who completed randomization prior to trial closure. Total opioid utilization (morphine equivalents, mg/kg) in 22 adults was 11.6 ± 2.6 and 4.7 ± 0.9 in the HDLI and in the LDHI arms, respectively, and in 12 children it was 3.7 ± 1.0 and 5.8 ± 2.2, respectively. Opioid-related symptoms were mild and similar in both PCA arms (mean daily opioid symptom intensity score: HDLI 0.9 ± 0.1, LDHI 0.9 ± 0.2). The slow enrollment and early study termination limited conclusions regarding superiority of either treatment regimen. This study adds to our understanding of opioid PCA usage in SCD. Future clinical trial protocol designs for opioid PCA may need to consider potential differences between adults and children in PCA usage. PMID:21953763
Lorah, M.M.; Olsen, L.D.
1999-01-01
Degradation reactions controlling the fate of 1,1,2,2-tetrachloroethane (PCA) in a freshwater tidal wetland that is a discharge area for a contaminated aquifer were investigated by a combined field and laboratory study. Samples from nested piezometers and porous-membrane sampling devices (peepers) showed that PCA concentrations decreased and that less chlorinated daughter products formed as the groundwater became increasingly reducing along upward flow paths through the wetland sediments. The cis and trans isomers of 1,2-dichloroethylene (12DCE) and vinyl chloride (VC) were the predominant daughter products detected from degradation of PCA in the field and in microcosms constructed under methanogenic conditions. Significantly lower ratios of cis-12DCE to trans-12DCE were produced by PCA degradation than by degradation of trichloroethylene, a common co-contaminant with PCA. 1,1,2-Trichloroethane (112TCA) and 1,2-dichloroethane (12DCA) occurred simultaneously with 12DCE, indicating simultaneous hydrogenolysis and dichloroelimination of PCA. From an initial PCA concentration of about 1.5 ??mol/L, concentrations of PCA and its daughter products decreased to below detection within a 1.0-m vertical distance in the wetland sediments and within 34 days in the microcosms. The results indicate that natural attenuation of PCA through complete anaerobic biodegradation can occur in wetlands before sensitive surface water receptors are reached.
NASA Astrophysics Data System (ADS)
Li, Jia; Ren, Shancheng; Piao, Hai-Long; Wang, Fubo; Yin, Peiyuan; Xu, Chuanliang; Lu, Xin; Ye, Guozhu; Shao, Yaping; Yan, Min; Zhao, Xinjie; Sun, Yinghao; Xu, Guowang
2016-02-01
In-depth delineation of lipid metabolism in prostate cancer (PCa) is significant to open new insights into prostate tumorigenesis and progression, and provide potential biomarkers with greater accuracy for improved diagnosis. Here, we performed lipidomics and transcriptomics in paired prostate cancer tumor (PCT) and adjacent nontumor (ANT) tissues, followed by external validation of biomarker candidates. We identified major dysregulated pathways involving lipogenesis, lipid uptake and phospholipids remodeling, correlated with widespread lipid accumulation and lipid compositional reprogramming in PCa. Specifically, cholesteryl esters (CEs) were most prominently accumulated in PCa, and significantly associated with cancer progression and metastasis. We showed that overexpressed scavenger receptor class B type I (SR-BI) may contribute to CEs accumulation. In discovery set, CEs robustly differentiated PCa from nontumor (area under curve (AUC) of receiver operating characteristics (ROC), 0.90-0.94). In validation set, CEs potently distinguished PCa and non-malignance (AUC, 0.84-0.91), and discriminated PCa and benign prostatic hyperplasia (BPH) (AUC, 0.90-0.96), superior to serum prostate-specific antigen (PSA) (AUC = 0.83). Cholesteryl oleate showed highest AUCs in distinguishing PCa from non-malignance or BPH (AUC = 0.91 and 0.96). Collectively, our results unravel the major lipid metabolic aberrations in PCa and imply the potential role of CEs, particularly, cholesteryl oleate, as molecular biomarker for PCa detection.
Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines.
Haddad, A Q; Venkateswaran, V; Viswanathan, L; Teahan, S J; Fleshner, N E; Klotz, L H
2006-01-01
Epidemiologic studies have demonstrated an inverse association between flavonoid intake and prostate cancer (PCa) risk. The East Asian diet is very high in flavonoids and, correspondingly, men in China and Japan have the lowest incidence of PCa worldwide. There are thousands of different naturally occurring and synthetic flavonoids. However, only a few have been studied in PCa. Our aim was to identify novel flavonoids with antiproliferative effect in PCa cell lines, as well as determine their effects on cell cycle. We have screened a representative subgroup of 26 flavonoids for antiproliferative effect on the human PCa (LNCaP and PC3), breast cancer (MCF-7), and normal prostate stromal cell lines (PrSC). Using a fluorescence-based cell proliferation assay (Cyquant), we have identified five flavonoids, including the novel compounds 2,2'-dihydroxychalcone and fisetin, with antiproliferative and cell cycle arresting properties in human PCa in vitro. Most of the flavonoids tested exerted antiproliferative effect at lower doses in the PCa cell lines compared to the non-PCa cells. Flow cytometry was used as a means to determine the effects on cell cycle. PC3 cells were arrested in G2/M phase by flavonoids. LNCaP cells demonstrated different cell cycle profiles. Further studies are warranted to determine the molecular mechanism of action of 2,2'-DHC and fisetin in PCa, and to establish their effectiveness in vivo.
Narizhneva, Natalia V.; Tararova, Natalia D.; Ryabokon, Petro; Shyshynova, Inna; Prokvolit, Anatoly; Komarov, Pavel G.; Purmal, Andrei A.; Gudkov, Andrei V.; Gurova, Katerina V.
2010-01-01
In prostate cancer (PCa) patients, initial responsiveness to androgen deprivation therapy is frequently followed by relapse due to development of treatment-resistant androgen-independent PCa. This is typically associated with acquisition of mutations in AR that allow activity as a transcription factor in the absence of ligand, indicating that androgen-independent PCa remains dependent on AR function. Our strategy to effectively target AR in androgen-independent PCa involved using a cell-based readout to isolate small molecules that inhibit AR transactivation function through mechanisms other than modulation of ligand binding. A number of the identified inhibitors were toxic to AR-expressing PCa cells regardless of their androgen dependence. Among these, some only suppressed PCa cell growth (ARTIS), while others induced cell death (ARTIK). ARTIK, but not ARTIS, compounds caused disappearance of AR protein from treated cells. siRNA against AR behaved like ARTIK compounds, while a dominant negative AR mutant that prevents AR-mediated transactivation but does not eliminate the protein showed only a growth suppressive effect. These observations reveal a transcription-independent function of AR that is essential for PCa cell viability and, therefore, is an ideal target for anti-PCa treatment. Indeed, several of the identified AR inhibitors demonstrated in vivo efficacy in mouse models of PCa and are candidates for pharmacologic optimization. PMID:19946220
Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.
Considering causal genes in the genetic dissection of kernel traits in common wheat.
Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz
2016-11-01
Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.
Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran
2014-01-01
Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F. proliferatum or F. poae-colonized ones suggesting that T. molitor can tolerate or metabolize those toxins. PMID:24932485
Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl
2016-01-01
Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; p<0.001) or the circumference method (1.13 ± 0.02 versus 1.21 ± 0.02 mm, respectively; p = 0.001). The edge-enhancing kernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; p<0.001) and the circumference (1.06 ± 0.26 versus 1.13 ± 0.31 mm, respectively; p = 0.005) methods. The edge-enhancing kernel was associated with lower SNR and CNR, as well as higher background noise (all p < 0.001), in comparison to the medium-smooth kernel. Stent visual scores were higher with the edge-enhancing kernel (p<0.001). In vivo 256-slice CT assessment of coronary stents shows that the edge-enhancing CT reconstruction kernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality scores than the standard kernel.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew
1996-01-01
An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.
Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare).
Singh, Manjit; Burson, Byron L; Finlayson, Scott A
2007-08-01
Asexual reproduction through seeds, or apomixis, is a process that holds much promise for agricultural advances. However, the molecular mechanisms underlying apomixis are currently poorly understood. To identify genes related to female gametophyte development in apomictic ovaries of buffelgrass (Pennisetum ciliare (L.) Link), Suppression Subtractive Hybridization of ovary cDNA with leaf cDNA was performed. Through macroarray screening of subtracted cDNAs two genes were identified, Pca21 and Pca24, that showed differential expression between apomictic and sexual ovaries. Sequence analysis showed that both Pca21 and Pca24 are novel genes not previously characterized in plants. Pca21 shows homology to two wheat genes that are also expressed during reproductive development. Pca24 has similarity to coiled-coil-helix-coiled-coil-helix (CHCH) domain containing proteins from maize and sugarcane. Northern blot analysis revealed that both of these genes are expressed throughout female gametophyte development in apomictic ovaries. In situ hybridizations localized the transcript of these two genes to the developing embryo sacs in the apomictic ovaries. Based on the expression patterns it was concluded that Pca21 and Pca24 likely play a role during apomictic development in buffelgrass.
Personal and couple level risk factors: Maternal and paternal parent-child aggression risk.
Tucker, Meagan C; Rodriguez, Christina M; Baker, Levi R
2017-07-01
Previous literature examining parent-child aggression (PCA) risk has relied heavily upon mothers, limiting our understanding of paternal risk factors. Moreover, the extent to which factors in the couple relationship work in tandem with personal vulnerabilities to impact PCA risk is unclear. The current study examined whether personal stress and distress predicted PCA risk (child abuse potential, over-reactive discipline style, harsh discipline practices) for fathers as well as mothers and whether couple functioning mediated versus moderated the relation between personal stress and PCA risk in a sample of 81 couples. Additionally, the potential for risk factors in one partner to cross over and affect their partner's PCA risk was considered. Findings indicated higher personal stress predicted elevated maternal and paternal PCA risk. Better couple functioning did not moderate this relationship but partially mediated stress and PCA risk for both mothers and fathers. In addition, maternal stress evidenced a cross-over effect, wherein mothers' personal stress linked to fathers' couple functioning. Findings support the role of stress and couple functioning in maternal and paternal PCA risk, including potential cross-over effects that warrant further inquiry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Motor features in posterior cortical atrophy and their imaging correlates.
Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J
2014-12-01
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Sun, Chenxia; Wen, Fuping; Wang, Haifeng; Guo, Huaizu; Gao, Xu; Xu, Chuanliang; Xu, Chuanliang; Yang, Chenghua; Sun, Yinghao
2017-01-01
The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa. PMID:29100363
Jia, Gaozhen; Dong, Zhenyang; Sun, Chenxia; Wen, Fuping; Wang, Haifeng; Guo, Huaizu; Gao, Xu; Xu, Chuanliang; Xu, Chuanliang; Yang, Chenghua; Sun, Yinghao
2017-09-29
The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa.
Tesini, Brenda L; Wright, Terry W; Malone, Jane E; Haidaris, Constantine G; Harber, Martha; Sant, Andrea J; Nayak, Jennifer L; Gigliotti, Francis
2017-04-01
Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4 + T cells were depleted, and the mice were exposed to Pneumocystis murina Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii Potential orthologs of Pca1 have been identified in P. jirovecii Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation. Copyright © 2017 American Society for Microbiology.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2017-01-01
Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2017-01-01
Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points. PMID:28966606
Comparison of water extraction methods in Tibet based on GF-1 data
NASA Astrophysics Data System (ADS)
Jia, Lingjun; Shang, Kun; Liu, Jing; Sun, Zhongqing
2018-03-01
In this study, we compared four different water extraction methods with GF-1 data according to different water types in Tibet, including Support Vector Machine (SVM), Principal Component Analysis (PCA), Decision Tree Classifier based on False Normalized Difference Water Index (FNDWI-DTC), and PCA-SVM. The results show that all of the four methods can extract large area water body, but only SVM and PCA-SVM can obtain satisfying extraction results for small size water body. The methods were evaluated by both overall accuracy (OAA) and Kappa coefficient (KC). The OAA of PCA-SVM, SVM, FNDWI-DTC, PCA are 96.68%, 94.23%, 93.99%, 93.01%, and the KCs are 0.9308, 0.8995, 0.8962, 0.8842, respectively, in consistent with visual inspection. In summary, SVM is better for narrow rivers extraction and PCA-SVM is suitable for water extraction of various types. As for dark blue lakes, the methods using PCA can extract more quickly and accurately.
Hemispheric Asymmetry of Visual Cortical Response by Means of Functional Transcranial Doppler
Roje-Bedeković, Marina; Lovrenčić-Huzjan, Arijana; Bosnar-Puretić, Marijana; Šerić, Vesna; Demarin, Vida
2012-01-01
We assessed the visual evoked response and investigated side-to-side differences in mean blood flow velocities (MBFVs) by means of functional transcranial Doppler (fTCD) in 49 right-handed patients with severe internal carotid artery (ICA) stenosis and 30 healthy volunteers, simultaneously in both posterior cerebral arteries (PCAs) using 2 MHz probes, successively in the dark and during the white light stimulation. Statistically significant correlation (P = 0.001) was shown in healthy and in patients (P < 0.05) between MBFV in right PCA in physiological conditions and MBFV in right PCA during the white light stimulation and in the dark. The correlation between MBVF in right PCA and contralateral left PCA was not statistically significant (P > 0.05). The correlation between ipsilateral left PCA was significantly higher than the one with contralateral right PCA (P < 0.05). There is a clear trend towards the lateralisation of the visual evoked response in the right PCA. PMID:22135771
[Patient-controlled Analgesia (PCA): an Overview About Methods, Handling and New Modalities].
Abrolat, Marie; Eberhart, Leopold H J; Kalmus, Gerald; Koch, Tilo; Nardi-Hiebl, Stefan
2018-04-01
Patient-controlled analgesia (PCA) is one of the well established methods for the treatment of postoperative pain. A cochrane-review concluded that PCA is associated with better postoperative pain ratings and improved patient-satifaction compared to traditional way of administering opioids. Some prerequisites concerning patient selection, education of the patient and the medical staff, and supervision during PCA therapy are mandatory for a safe use of PCA. Current PCA modalities (intravenous and epidural routes of application) are expanded by newer, less invasive routes of drug administration, e.g. by the iontophoretic transdermal and the sublingual route. Their role in improving safety and the quality of pain therapy on the one hand side, and costs on the other hand side are discussion. Georg Thieme Verlag KG Stuttgart · New York.
Trencsényi, György; Dénes, Noémi; Nagy, Gábor; Kis, Adrienn; Vida, András; Farkas, Flóra; Szabó, Judit P; Kovács, Tünde; Berényi, Ervin; Garai, Ildikó; Bai, Péter; Hunyadi, János; Kertész, István
2017-05-30
Malignant melanoma is the most aggressive form of skin cancer. The early detection of primary melanoma tumors and metastases using non-invasive PET imaging determines the outcome of this disease. Previous studies have shown that benzamide derivatives (e.g. procainamide) conjugated with PET radionuclides specifically bind to melanin pigment of melanoma tumors. 68 Ga chelating agents can have high influence on physiological properties of 68 Ga labeled bioactive molecules, as was experienced during the application of HBED-CC on PSMA ligand. The aim of this study was to assess this concept in the case of the melanin specific procaindamide (PCA) and to compare the melanin specificity of 68 Ga-labeled PCA using HBED-CC and NODAGA chelators under in vitro and in vivo conditions. Procainamide (PCA) was conjugated with HBED-CC and NODAGA chelators and was labeled with Ga-68. The melanin specificity of 68 Ga-HBED-CC-PCA and 68 Ga-NODAGA-PCA was investigated in vitro and in vivo using amelanotic (MELUR and A375) and melanin containing (B16-F10) melanoma cell lines. Tumor-bearing mice were prepared by subcutaneous injection of B16-F10, MELUR and A375 melanoma cells into C57BL/6 and SCID mice. 21±2days after tumor cell inoculation and 90min after intravenous injection of the 68 Ga-labelledlabeled radiopharmacons whole body PET/MRI scans were performed. 68 Ga-NODAGA-PCA and 68 Ga-HBED-CC-PCA were produced with excellent radiochemical purity (98%). In vitro experiments demonstrated that after 30 and 90min incubation time 68 Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p≤0.01) higher than the 68 Ga-HBED-CC-conjugated PCA accumulation in the same cell line. Furthermore, significant difference (p≤0.01 and 0.05) was found between the uptake of melanin negative and positive cell lines using 68 Ga-NODAGA-PCA and 68 Ga-HBED-CC-PCA. In vivo PET/MRI studies using tumor models revealed significantly (p≤0.01) higher 68 Ga-NODAGA-PCA uptake (SUVmean: 0.46±0.05, SUVmax: 1.96±0.25,T/M ratio: 40.7±4.23) in B16-F10 tumors in contrast to 68 Ga-HBED-CC-PCA where the SUVmean, SUVmax and T/M ratio were 0.13±0.01, 0.56±0.11 and 11.43±1.24, respectively. Melanin specific PCA conjugated with NODAGA chelator showed higher specific binding properties than conjugated with HBED-CC. The chemical properties of the bifunctional chelators used for 68 Ga-labeling of PCA determine the biological behaviour of the probes. Due to the high specificity and sensitivity 68 Ga-labeled PCA molecules are promising radiotracers in melanoma imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Xing-Hui; Xu, Yong; Yang, Kuo; Shi, Jian-Jian; Zhang, Xiao; Yang, Fang; Yuan, Huiping; Zhu, Xiaoquan; Zhang, Yu-Hong; Wang, Jian-Ye; Yang, Ze
2015-01-01
Prostate cancer (PCa) is one of the most common malignancies in males, and multiple genetic studies have confirmed association with susceptibility to PCa. However, the risk conferred in men living in China is unkown. We selected 6 previously identified variants as candidates to define their association with PCa in Chinese men. We genotyped 6 single nucleotide polymorphisms (SNPs) (rs1465618, rs1983891, rs339331, rs16901966, rs1447295 and rs10090154) using high resolution melting (HRM) analysis and assessed their association with PCa risk in a case-control study of 481 patients and 480 controls in a Chinese population. In addition, the individual and cumulative contribution for the risk of PCa and clinical covariates were analysed. We found that 5 of the 6 genetic variants were associated with PCa risk. The T allele of rs339331 and the G allele of rs16901966 showed a significant association with PCa susceptibility: OR (95%CI)= 0.78 (0.64-0.94), p<0.009 and OR (95%CI)= 0.66 (0.54-0.81), p<0.0001, as well as A allele of rs1447295 (OR [95%CI]=1.46 (1.17-1.84), p<0.001) and T allele of rs10090154 (OR [95%CI]= 0.58 (0.46-0.74), p<0.0001). rs339331(T) was associated with a 0.71-fold and 1.42-fold increase of PCa risk by dominant model (p=0.007) and recessive model (p=0.007). rs16901966 (G) was associated with a 0.51-fold and 1.98-fold increase of PCa risk by dominant model (p=0.006) and recessive model (p=0.0058). rs10090154 (T) was associated with a 1.89-fold and 0.53-fold increase of PCa risk by dominant model (p=0.000006) and recessive model (p=0.000006). And, rs1983891(C) was associated with a 0.77-fold increase of PCa risk by recessive model (p=0.045). rs1447295 was associated with a 1.57-fold increase of PCa risk by dominant model (p=0.008). rs1465618 showed no significant association with PCa. The cumulative effects test of risk alleles (rs rs1983891, rs339331, rs16901966, rs1447295 and rs10090154) showed an increasing risk to PCa in a frequency-dependent manner (ptrend=0.001), and men with more than 3 risk alleles had the most significant susceptibility to PCa (OR=1.99, p=0.001), compared with those who had one risk allele (OR=1.17, p=0.486). Our results provide further support for association of the THADA, FOXP4, GPRC6A/RFX6 and 8q24 genes with Pca in Asian populations. Further work is still required to determine the functional variations and finally clarify the underlying biological mechanisms.
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Code of Federal Regulations, 2014 CFR
2014-04-01
... the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed Cydonia oblonga Miller. [42 FR 14640, Mar...
7 CFR 51.2954 - Tolerances for grade defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... chart. Tolerances for Grade Defects Grade External (shell) defects Internal (kernel) defects Color of kernel U.S. No. 1. 10 pct, by count for splits. 5 pct. by count, for other shell defects, including not... tolerance to reduce the required 70 pct of “light amber” kernels or the required 40 pct of “light” kernels...
7 CFR 51.2284 - Size classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: “Halves”, “Pieces and Halves”, “Pieces” or “Small Pieces”. The size of portions of kernels in the lot... consists of 85 percent or more, by weight, half kernels, and the remainder three-fourths half kernels. (See § 51.2285.) (b) Pieces and halves. Lot consists of 20 percent or more, by weight, half kernels, and the...
USDA-ARS?s Scientific Manuscript database
Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or kernels not meeting threshold could be immature a...
THERMOS. 30-Group ENDF/B Scattered Kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrosson, F.J.; Finch, D.R.
1973-12-01
These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code. To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tapemore » library from which they may be retrieved easily for use in any 30-group THERMOS library.« less
Vedder, Moniek M; de Bekker-Grob, Esther W; Lilja, Hans G; Vickers, Andrew J; van Leenders, Geert J L H; Steyerberg, Ewout W; Roobol, Monique J
2014-12-01
Prostate-specific antigen (PSA) testing has limited accuracy for the early detection of prostate cancer (PCa). To assess the value added by percentage of free to total PSA (%fPSA), prostate cancer antigen 3 (PCA3), and a kallikrein panel (4k-panel) to the European Randomised Study of Screening for Prostate Cancer (ERSPC) multivariable prediction models: risk calculator (RC) 4, including transrectal ultrasound, and RC 4 plus digital rectal examination (4+DRE) for prescreened men. Participants were invited for rescreening between October 2007 and February 2009 within the Dutch part of the ERSPC study. Biopsies were taken in men with a PSA level ≥3.0 ng/ml or a PCA3 score ≥10. Additional analyses of the 4k-panel were done on serum samples. Outcome was defined as PCa detectable by sextant biopsy. Receiver operating characteristic curve and decision curve analyses were performed to compare the predictive capabilities of %fPSA, PCA3, 4k-panel, the ERSPC RCs, and their combinations in logistic regression models. PCa was detected in 119 of 708 men. The %fPSA did not perform better univariately or added to the RCs compared with the RCs alone. In 202 men with an elevated PSA, the 4k-panel discriminated better than PCA3 when modelled univariately (area under the curve [AUC]: 0.78 vs. 0.62; p=0.01). The multivariable models with PCA3 or the 4k-panel were equivalent (AUC: 0.80 for RC 4+DRE). In the total population, PCA3 discriminated better than the 4k-panel (univariate AUC: 0.63 vs. 0.56; p=0.05). There was no statistically significant difference between the multivariable model with PCA3 (AUC: 0.73) versus the model with the 4k-panel (AUC: 0.71; p=0.18). The multivariable model with PCA3 performed better than the reference model (0.73 vs. 0.70; p=0.02). Decision curves confirmed these patterns, although numbers were small. Both PCA3 and, to a lesser extent, a 4k-panel have added value to the DRE-based ERSPC RC in detecting PCa in prescreened men. We studied the added value of novel biomarkers to previously developed risk prediction models for prostate cancer. We found that inclusion of these biomarkers resulted in an increase in predictive ability. Copyright © 2014. Published by Elsevier B.V.
External validation of urinary PCA3-based nomograms to individually predict prostate biopsy outcome.
Auprich, Marco; Haese, Alexander; Walz, Jochen; Pummer, Karl; de la Taille, Alexandre; Graefen, Markus; de Reijke, Theo; Fisch, Margit; Kil, Paul; Gontero, Paolo; Irani, Jacques; Chun, Felix K-H
2010-11-01
Prior to safely adopting risk stratification tools, their performance must be tested in an external patient cohort. To assess accuracy and generalizability of previously reported, internally validated, prebiopsy prostate cancer antigen 3 (PCA3) gene-based nomograms when applied to a large, external, European cohort of men at risk of prostate cancer (PCa). Biopsy data, including urinary PCA3 score, were available for 621 men at risk of PCa who were participating in a European multi-institutional study. All patients underwent a ≥10-core prostate biopsy. Biopsy indication was based on suspicious digital rectal examination, persistently elevated prostate-specific antigen level (2.5-10 ng/ml) and/or suspicious histology (atypical small acinar proliferation of the prostate, >/= two cores affected by high-grade prostatic intraepithelial neoplasia in first set of biopsies). PCA3 scores were assessed using the Progensa assay (Gen-Probe Inc, San Diego, CA, USA). According to the previously reported nomograms, different PCA3 score codings were used. The probability of a positive biopsy was calculated using previously published logistic regression coefficients. Predicted outcomes were compared to the actual biopsy results. Accuracy was calculated using the area under the curve as a measure of discrimination; calibration was explored graphically. Biopsy-confirmed PCa was detected in 255 (41.1%) men. Median PCA3 score of biopsy-negative versus biopsy-positive men was 20 versus 48 in the total cohort, 17 versus 47 at initial biopsy, and 37 versus 53 at repeat biopsy (all p≤0.002). External validation of all four previously reported PCA3-based nomograms demonstrated equally high accuracy (0.73-0.75) and excellent calibration. The main limitations of the study reside in its early detection setting, referral scenario, and participation of only tertiary-care centers. In accordance with the original publication, previously developed PCA3-based nomograms achieved high accuracy and sufficient calibration. These novel nomograms represent robust tools and are thus generalizable to European men at risk of harboring PCa. Consequently, in presence of a PCA3 score, these nomograms may be safely used to assist clinicians when prostate biopsy is contemplated. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Porpiglia, Francesco; Manfredi, Matteo; Mele, Fabrizio; Cossu, Marco; Bollito, Enrico; Veltri, Andrea; Cirillo, Stefano; Regge, Daniele; Faletti, Riccardo; Passera, Roberto; Fiori, Cristian; De Luca, Stefano
2017-08-01
An approach based on multiparametric magnetic resonance imaging (mpMRI) might increase the detection rate (DR) of clinically significant prostate cancer (csPCa). To compare an mpMRI-based pathway with the standard approach for the detection of prostate cancer (PCa) and csPCa. Between November 2014 and April 2016, 212 biopsy-naïve patients with suspected PCa (prostate specific antigen level ≤15 ng/ml and negative digital rectal examination results) were included in this randomized clinical trial. Patients were randomized into a prebiopsy mpMRI group (arm A, n=107) or a standard biopsy (SB) group (arm B, n=105). In arm A, patients with mpMRI evidence of lesions suspected for PCa underwent mpMRI/transrectal ultrasound fusion software-guided targeted biopsy (TB) (n=81). The remaining patients in arm A (n=26) with negative mpMRI results and patients in arm B underwent 12-core SB. The primary end point was comparison of the DR of PCa and csPCa between the two arms of the study; the secondary end point was comparison of the DR between TB and SB. The overall DRs were higher in arm A versus arm B for PCa (50.5% vs 29.5%, respectively; p=0.002) and csPCa (43.9% vs 18.1%, respectively; p<0.001). Concerning the biopsy approach, that is, TB in arm A, SB in arm A, and SB in arm B, the overall DRs were significantly different for PCa (60.5% vs 19.2% vs 29.5%, respectively; p<0.001) and for csPCa (56.8% vs 3.8% vs 18.1%, respectively; p<0.001). The reproducibility of the study could have been affected by the single-center nature. A diagnostic pathway based on mpMRI had a higher DR than the standard pathway in both PCa and csPCa. In this randomized trial, a pathway for the diagnosis of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) was compared with the standard pathway based on random biopsy. The mpMRI-based pathway had better performance than the standard pathway. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
De Luca, Stefano; Passera, Roberto; Fiori, Cristian; Bollito, Enrico; Cappia, Susanna; Mario Scarpa, Roberto; Sottile, Antonino; Franco Randone, Donato; Porpiglia, Francesco
2015-10-01
To determine if prostate health index (PHI), prostate cancer antigen gene 3 (PCA3) score, and percentage of free prostate-specific antigen (%fPSA) may be used to differentiate asymptomatic acute and chronic prostatitis from prostate cancer (PCa), benign prostatic hyperplasia (BPH), and high-grade prostate intraepithelial neoplasia (HG-PIN) in patients with elevated PSA levels and negative findings on digital rectal examination at repeat biopsy (re-Bx). In this prospective study, 252 patients were enrolled, undergoing PHI, PCA3 score, and %fPSA assessments before re-Bx. We used 3 multivariate logistic regression models to test the PHI, PCA3 score, and %fPSA as risk factors for prostatitis vs. PCa, vs. BPH, and vs. HG-PIN. All the analyses were performed for the whole patient cohort and for the "gray zone" of PSA (4-10ng/ml) cohort (171 individuals). Of the 252 patients, 43 (17.1%) had diagnosis of PCa. The median PHI was significantly different between men with a negative biopsy and those with a positive biopsy (34.9 vs. 48.1, P<0.001), as for the PCA3 score (24 vs. 54, P<0.001) and %fPSA (11.8% vs. 15.8%, P = 0.012). The net benefit of using PCA3 and PHI to differentiate prostatitis and PCa was moderate, although it extended to a good range of threshold probabilities (40%-100%), whereas that from using %fPSA was negligible: this pattern was reported for the whole population as for the "gray zone" PSA cohort. In front of a good diagnostic performance of all the 3 biomarkers in distinguishing negative biopsy vs. positive biopsy, the clinical benefit of using the PCA3 score and PHI to estimate prostatitis vs. PCa was comparable. PHI was the only determinant for prostatitis vs. BPH, whereas no biomarkers could differentiate prostate inflammation from HG-PIN. Copyright © 2015 Elsevier Inc. All rights reserved.
Kong, D; Heath, E; Chen, W; Cher, M; Powell, I; Heilbrun, L; Li, Y; Ali, S; Sethi, S; Hassan, O; Hwang, C; Gupta, N; Chitale, D; Sakr, Wa; Menon, M; Sarkar, Fh
2013-01-01
Androgen Receptor (AR) signaling is critically important during the development and progression of prostate cancer (PCa). The AR signaling is also important in the development of castrate resistant prostate cancer (CRPC) where AR is functional even after androgen deprivation therapy (ADT); however, little is known regarding the transcriptional and functional regulation of AR in PCa. Moreover, treatment options for primary PCa for preventing the occurrence of CRPC is limited; therefore, novel strategy for direct inactivation of AR is urgently needed. In this study, we found loss of miR-34a, which targets AR, in PCa tissue specimens, especially in patients with higher Gleason grade tumors, consistent with increased expression of AR. Forced over-expression of miR-34a in PCa cell lines led to decreased expression of AR and prostate specific antigen (PSA) as well as the expression of Notch-1, another important target of miR-34a. Most importantly, BR-DIM intervention in PCa patients prior to radical prostatectomy showed reexpression of miR-34a, which was consistent with decreased expression of AR, PSA and Notch-1 in PCa tissue specimens. Moreover, BR-DIM intervention led to nuclear exclusion both in PCa cell lines and in tumor tissues. PCa cells treated with BR-DIM and 5-aza-dC resulted in the demethylation of miR-34a promoter concomitant with inhibition of AR and PSA expression in LNCaP and C4-2B cells. These results suggest, for the first time, epigenetic silencing of miR-34a in PCa, which could be reversed by BR-DIM treatment and, thus BR-DIM could be useful for the inactivation of AR in the treatment of PCa.[This corrects the article on p. 14 in vol. 4.].
Liddy, Whitney; Barber, Samuel R; Lin, Brian M; Kamani, Dipti; Kyriazidis, Natalia; Lawson, Bradley; Randolph, Gregory W
2018-01-01
Intraoperative neural monitoring (IONM) of laryngeal nerves using electromyography (EMG) is routinely performed using endotracheal tube surface electrodes adjacent to the vocalis muscles. Other laryngeal muscles such as the posterior cricoarytenoid muscle (PCA) are indirectly monitored. The PCA may be directly and reliably monitored through an electrode placed in the postcricoid region. Herein, we describe the method and normative data for IONM using PCA EMG. Retrospective review. Data were reviewed retrospectively for thyroid and parathyroid surgery patients with IONM of laryngeal nerves from January to August 2016. Recordings of vocalis and PCA EMG amplitudes and latencies with stimulation of laryngeal nerves were obtained using endotracheal (ET) tube-based and postcricoid surface electrodes. Data comprised EMG responses in vocalis and PCA recording channels with stimulation of the vagus, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve from 20 subjects (11 left, 9 right), as well as PCA EMG threshold data with RLN stimulation from 17 subjects. Mean EMG amplitude was 725.69 ± 108.58 microvolts (µV) for the ipsilateral vocalis and 329.44 ± 34.12 µV for the PCA with vagal stimulation, and 1,059.75 ± 140.40 µV for the ipsilateral vocalis and 563.88 ± 116.08 µV for the PCA with RLN stimulation. There were no statistically significant differences in mean latency. For threshold cutoffs of the PCA with RLN stimulation, mean minimum and maximum threshold intensities were 0.37 milliamperes (mA) and 0.84 mA, respectively. This study shows robust and reliable PCA EMG waveforms with direct nerve stimulation. Further studies will evaluate feasibility and application of the PCA electrode as a complementary quantitative tool in IONM. 4. Laryngoscope, 128:283-289, 2018. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Liu, Chang; Liu, Shi-Liang; Wang, Zhi-Xian; Yu, Kai; Feng, Chun-Xiang; Ke, Zan; Wang, Liang; Zeng, Xiao-Yong
2018-04-13
Prostate cancer (PCa) is one of the most common cancers among men globally. The authors aimed to evaluate the ability of the Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) to classify men with PCa, clinically significant PCa (CSPCa), or no PCa, especially among those with serum total prostate-specific antigen (tPSA) levels in the "gray zone" (4-10 ng ml -1 ). A total of 308 patients (355 lesions) were enrolled in this study. Diagnostic efficiency was determined. Univariate and multivariate analyses, receiver operating characteristic curve analysis, and decision curve analysis were performed to determine and compare the predictors of PCa and CSPCa. The results suggested that PI-RADS v2, tPSA, and prostate-specific antigen density (PSAD) were independent predictors of PCa and CSPCa. A PI-RADS v2 score ≥4 provided high negative predictive values (91.39% for PCa and 95.69% for CSPCa). A model of PI-RADS combined with PSA and PSAD helped to define a high-risk group (PI-RADS score = 5 and PSAD ≥0.15 ng ml -1 cm -3 , with tPSA in the gray zone, or PI-RADS score ≥4 with high tPSA level) with a detection rate of 96.1% for PCa and 93.0% for CSPCa while a low-risk group with a detection rate of 6.1% for PCa and 2.2% for CSPCa. It was concluded that the PI-RADS v2 could be used as a reliable and independent predictor of PCa and CSPCa. The combination of PI-RADS v2 score with PSA and PSAD could be helpful in the prediction and diagnosis of PCa and CSPCa and, thus, may help in preventing unnecessary invasive procedures.
Kavitha, Chandagirikoppal V; Deep, Gagan; Gangar, Subhash C; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh
2014-03-01
Currently, there are limited therapeutic options against bone metastatic prostate cancer (PCA), which is primarily responsible for high mortality and morbidity in PCA patients. Enhanced osteoclastogenesis is an essential feature associated with metastatic PCA in the bone microenvironment. Silibinin, an effective chemopreventive agent, is in phase II clinical trials in PCA patients but its efficacy against PCA cells-induced osteoclastogenesis is largely unknown. Accordingly, here we examined silibinin effect on PCA cells-induced osteoclastogenesis employing human PCA (PC3MM2, PC3, and C4-2B) and murine macrophage RAW264.7 cells. We also assessed silibinin effect on receptor activator of nuclear factor κB ligand (RANKL)-induced signaling associated with osteoclast differentiation in RAW264.7 cells. Further, we analyzed silibinin effect on osteomimicry biomarkers in PCA cells. Results revealed that silibinin (30-90 μM) inhibits PCA cells-induced osteoclast activity and differentiation in RAW264.7 cells via modulating expression of several cytokines (IGF-1, TGF-β, TNF-α, I-TAC, M-CSF, G-CSF, GM-CSF, etc.) that are important in osteoclastogenesis. Additionally, in RAW264.7 cells, silibinin decreased the RANKL-induced expression and nuclear localization of NFATc1, which is considered the master regulator of osteoclastogenesis. Furthermore, silibinin decreased the RANKL-induced DNA binding activity of NFATc1 and its regulators NF-κB and AP1, and the protein expression of osteoclast specific markers (TRAP, OSCAR, and cathepsin K). Importantly, silibinin also decreased the expression of osteomimicry biomarkers (RANKL, Runx2, osteocalcin, and PTHrP) in cell culture (PC3 and C4-2B cells) and/or in PC3 tumors. Together, our findings showing that silibinin inhibits PCA cells-induced osteoclastogenesis, suggest that silibinin could be useful clinically against bone metastatic PCA. © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetvertkov, M; Henry Ford Health System, Detroit, MI; Siddiqui, F
2016-06-15
Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularizedmore » and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in the treatment course. This work is supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less
Neupane, Subas; Bray, Freddie; Auvinen, Anssi
2017-06-01
Macroeconomic indicators are likely associated with prostate cancer (PCa) incidence and mortality globally, but have rarely been assessed. Data on PCa incidence in 2003-2007 for 49 countries with either nationwide cancer registry or at least two regional registries were obtained from Cancer Incidence in Five Continents Vol X and national PCa mortality for 2012 from GLOBOCAN 2012. We compared PCa incidence and mortality rates with various population-level indicators of health, economy and development in 2000. Poisson and linear regression methods were used to quantify the associations. PCa incidence varied more than 15-fold, being highest in high-income countries. PCa mortality exhibited less variation, with higher rates in many low- and middle-income countries. Healthcare expenditure (rate ratio, RR 1.46, 95 % CI 1.45-1.47) and population growth (RR 1.15, 95 % CI 1.14-1.16), as well as computer and mobile phone density, were associated with a higher PCa incidence, while gross domestic product, GDP (RR 0.94, 95 % CI 0.93-0.95) and overall mortality (RR 0.72, 95 % CI 0.71-0.73) were associated with a low incidence. GDP (RR 0.55, 95 % CI 0.46-0.66) was also associated with a low PCa mortality, while life expectancy (RR 3.93, 95 % CI 3.22-4.79) and healthcare expenditure (RR 1.20, 95 % CI 1.09-1.32) were associated with an elevated mortality. Our results show that healthcare expenditure and, thus, the availability of medical resources are an important contributor to the patterns of international variation in PCa incidence. This suggests that there is an iatrogenic component in the current global epidemic of PCa. On the other hand, higher healthcare expenditure is associated with lower PCa death rates.
Shaikhibrahim, Zaki; Lindstrot, Andreas; Ochsenfahrt, Jacqueline; Fuchs, Kerstin; Wernert, Nicolas
2013-01-01
Epigenetic changes have been suggested to drive prostate cancer (PCa) development and progression. Therefore, in this study, we aimed to identify novel epigenetics-related genes in PCa tissues, and to examine their expression in metastatic PCa cell lines. We analyzed the expression of epigenetics-related genes via a clustering analysis based on gene function in moderately and poorly differentiated PCa glands compared to normal glands of the peripheral zone (prostate proper) from PCa patients using Whole Human Genome Oligo Microarrays. Our analysis identified 12 epigenetics-related genes with a more than 2-fold increase or decrease in expression and a p-value <0.01. In modera-tely differentiated tumors compared to normal glands of the peripheral zone, we found the genes, TDRD1, IGF2, DICER1, ADARB1, HILS1, GLMN and TRIM27, to be upregulated, whereas TNRC6A and DGCR8 were found to be downregulated. In poorly differentiated tumors, we found TDRD1, ADARB and RBM3 to be upregulated, whereas DGCR8, PIWIL2 and BC069781 were downregulated. Our analysis of the expression level for each gene in the metastatic androgen-sensitive VCaP and LNCaP, and -insensitive PC3 and DU-145 PCa cell lines revealed differences in expression among the cell lines which may reflect the different biological properties of each cell line, and the potential role of each gene at different metastatic sites. The novel epigenetics-related genes that we identified in primary PCa tissues may provide further insight into the role that epigenetic changes play in PCa. Moreover, some of the genes that we identified may play important roles in primary PCa and metastasis, in primary PCa only, or in metastasis only. Follow-up studies are required to investigate the functional role and the role that the expression of these genes play in the outcome and progression of PCa using tissue microarrays.
Testosterone therapy for men at risk for or with history of prostate cancer.
Morgentaler, Abraham
2006-09-01
Since the early 1940s when Huggins showed that severe reductions in serum testosterone by castration or estrogen therapy caused regression of prostate cancer (PCa), it has been assumed that higher testosterone levels cause enhanced growth of PCa. For this reason, it has been considered taboo to offer testosterone replacement therapy (TRT) to any man with a prior history of PCa, even if all objective evidence suggests he has been cured. The fear has been that higher testosterone levels would "awaken" dormant cells and cause a recurrence. Thus, US Food and Drug Administration-mandated language in all testosterone package inserts states that testosterone is contraindicated in men with a history of, or suspected of having, PCa. Although there is little modern experience with administration of testosterone in men with known history of PCa, there is a varied and extensive literature indicating that TRT does not pose any increased risk of PCa growth in men with or without prior treatment. For instance, the cancer rate in TRT trials is only approximately 1%, similar to detection rates in screening programs, yet biopsy-detectable PCa is found in one of seven hypogonadal men. Moreover, PCa is almost never seen in the peak testosterone years of the early 20s, despite autopsy evidence that men in this age group already harbor microfoci of PCa in substantial numbers. The growing number of PCa survivors who happen to be hypogonadal and request treatment has spurred a change in attitude toward this topic, with increasing numbers of physicians now offering TRT to men who appear cured of their disease. Publications have now reported no prostate-specific antigen (PSA) recurrence with TRT in small numbers of men who had undetectable PSA values after radical prostatectomy. Although still controversial, there appears to be little reason to withhold TRT from men with favorable outcomes after definitive treatment for PCa. Monitoring with PSA and digital rectal examination at regular intervals is recommended.
7 CFR 810.2003 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Basis of determination. Each determination of heat-damaged kernels, damaged kernels, material other than... shrunken and broken kernels. Other determinations not specifically provided for under the general...
Low-resolution ship detection from high-altitude aerial images
NASA Astrophysics Data System (ADS)
Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang
2018-02-01
Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amico, Anthony V., E-mail: adamico@partners.or; Braccioforte, Michelle H.; Moran, Brian J.
2010-08-01
Purpose: To determine whether prevalent diabetes mellitus (pDM) affects the presentation, extent of radiotherapy, or prostate cancer (PCa)-specific mortality (PCSM) and whether PCa aggressiveness affects the risk of non-PCSM, DM-related mortality, and all-cause mortality in men with pDM. Methods: Between October 1997 and July 2907, 5,279 men treated at the Chicago Prostate Cancer Center with radiotherapy for PCa were included in the study. Logistic and competing risk regression analyses were performed to assess whether pDM was associated with high-grade PCa, less aggressive radiotherapy, and an increased risk of PCSM. Competing risks and Cox regression analyses were performed to assess whethermore » PCa aggressiveness described by risk group in men with pDM was associated with the risk of non-PCSM, DM-related mortality, and all-cause mortality. Analyses were adjusted for predictors of high-grade PCa and factors that could affect treatment extent and mortality. Results: Men with pDM were more likely (adjusted hazard ratio [AHR], 1.9; 95% confidence interval [CI], 1.3-2.7; p = .002) to present with high-grade PCa but were not treated less aggressively (p = .33) and did not have an increased risk of PCSM (p = .58) compared to men without pDM. Among the men with pDM, high-risk PCa was associated with a greater risk of non-PCSM (AHR, 2.2; 95% CI, 1.1-4.5; p = .035), DM-related mortality (AHR, 5.2; 95% CI, 2.0-14.0; p = .001), and all-cause mortality (AHR, 2.4; 95% CI, 1.2-4.7; p = .01) compared to favorable-risk PCa. Conclusion: Aggressive management of pDM is warranted in men with high-risk PCa.« less
Cantiello, Francesco; Russo, Giorgio Ivan; Cicione, Antonio; Ferro, Matteo; Cimino, Sebastiano; Favilla, Vincenzo; Perdonà, Sisto; De Cobelli, Ottavio; Magno, Carlo; Morgia, Giuseppe; Damiano, Rocco
2016-04-01
To assess the performance of prostate health index (PHI) and prostate cancer antigen 3 (PCA3) when added to the PRIAS or Epstein criteria in predicting the presence of pathologically insignificant prostate cancer (IPCa) in patients who underwent radical prostatectomy (RP) but eligible for active surveillance (AS). An observational retrospective study was performed in 188 PCa patients treated with laparoscopic or robot-assisted RP but eligible for AS according to Epstein or PRIAS criteria. Blood and urinary specimens were collected before initial prostate biopsy for PHI and PCA3 measurements. Multivariate logistic regression analyses and decision curve analysis were carried out to identify predictors of IPCa using the updated ERSPC definition. At the multivariate analyses, the inclusion of both PCA3 and PHI significantly increased the accuracy of the Epstein multivariate model in predicting IPCa with an increase of 17 % (AUC = 0.77) and of 32 % (AUC = 0.92), respectively. The inclusion of both PCA3 and PHI also increased the predictive accuracy of the PRIAS multivariate model with an increase of 29 % (AUC = 0.87) and of 39 % (AUC = 0.97), respectively. DCA revealed that the multivariable models with the addition of PHI or PCA3 showed a greater net benefit and performed better than the reference models. In a direct comparison, PHI outperformed PCA3 performance resulting in higher net benefit. In a same cohort of patients eligible for AS, the addition of PHI and PCA3 to Epstein or PRIAS models improved their prognostic performance. PHI resulted in greater net benefit in predicting IPCa compared to PCA3.
Yang, Lei; Wei, Ran; Shen, Henggen
2017-01-01
New principal component analysis (PCA) respirator fit test panels had been developed for current American and Chinese civilian workers based on anthropometric surveys. The PCA panels used the first two principal components (PCs) obtained from a set of 10 facial dimensions. Although the PCA panels for American and Chinese subjects adopted the bivairate framework with two PCs, the number of the PCs retained in the PCA analysis was different between Chinese subjects and Americans. For the Chinese youth group, the third PC should be retained in the PCA analysis for developing new fit test panels. In this article, an additional number label (ANL) is used to explain the third PC in PCA analysis when the first two PCs are used to construct the PCA half-facepiece respirator fit test panel for Chinese group. The three-dimensional box-counting method is proposed to estimate the ANLs by calculating fractal dimensions of the facial anthropometric data of the Chinese youth. The linear regression coefficients of scale-free range R 2 are all over 0.960, which demonstrates that the facial anthropometric data of the Chinese youth has fractal characteristic. The youth subjects born in Henan province has an ANL of 2.002, which is lower than the composite facial anthropometric data of Chinese subjects born in many provinces. Hence, Henan youth subjects have the self-similar facial anthropometric characteristic and should use the particular ANL (2.002) as the important tool along with using the PCA panel. The ANL method proposed in this article not only provides a new methodology in quantifying the characteristics of facial anthropometric dimensions for any ethnic/racial group, but also extends the scope of PCA panel studies to higher dimensions.
Giri, Veda N.; Ruth, Karen; Hughes, Lucinda; Uzzo, Robert G.; Chen, David Y.T.; Boorjian, Stephen A.; Viterbo, Rosalia; Rebbeck, Timothy R.
2011-01-01
Introduction The TMPRSS2-ERG gene fusion occurs in >50% of prostate tumors and has been associated with poor outcomes. The T-allele (Valine) of the Met160Val (rs12329760) in TMPRSS2 has been associated with this fusion. We evaluated this polymorphism with respect to self-identified race or ethnicity (SIRE), time to prostate cancer (PCA) diagnosis, and screening parameters in the Prostate Cancer Risk Assessment Program, a prospective screening program for high-risk men. Patients and Methods 631 men ages 35-69 years were studied. “High-risk” was defined as ≥ one first degree or two second degree relatives with PCA, any African American (AA) man regardless of familial PCA, and men with BRCA1/2 mutations. Men with elevated PSA or other indications for PCA underwent biopsy. Men were followed from time of study entry to PCA diagnosis. Cox models were used to evaluate time to PCA diagnosis by genotype. Results Genotype distribution differed significantly by SIRE (CT/TT vs. CC, p<0.0001). Among 183 Caucasian men with at least one follow-up visit, PCA was more than doubled in men carrying CT/TT vs CC genotypes (HR= 2.55, 95% CI=1.14-5.70) after controlling for age and PSA. No association was seen among AA men by TMPRSS2 genotype. Conclusions The T-allele of the Met160Val variant in TMPRSS2, which has been associated with the TMPRSS2-ERG fusion, may be informative of time to PCA diagnosis for a subset of high-risk Caucasian men who are undergoing regular PCA screening. This variant along with other genetic markers warrant further study for personalizing PCA screening. PMID:20735386
Reese, Sarah E; Archer, Kellie J; Therneau, Terry M; Atkinson, Elizabeth J; Vachon, Celine M; de Andrade, Mariza; Kocher, Jean-Pierre A; Eckel-Passow, Jeanette E
2013-11-15
Batch effects are due to probe-specific systematic variation between groups of samples (batches) resulting from experimental features that are not of biological interest. Principal component analysis (PCA) is commonly used as a visual tool to determine whether batch effects exist after applying a global normalization method. However, PCA yields linear combinations of the variables that contribute maximum variance and thus will not necessarily detect batch effects if they are not the largest source of variability in the data. We present an extension of PCA to quantify the existence of batch effects, called guided PCA (gPCA). We describe a test statistic that uses gPCA to test whether a batch effect exists. We apply our proposed test statistic derived using gPCA to simulated data and to two copy number variation case studies: the first study consisted of 614 samples from a breast cancer family study using Illumina Human 660 bead-chip arrays, whereas the second case study consisted of 703 samples from a family blood pressure study that used Affymetrix SNP Array 6.0. We demonstrate that our statistic has good statistical properties and is able to identify significant batch effects in two copy number variation case studies. We developed a new statistic that uses gPCA to identify whether batch effects exist in high-throughput genomic data. Although our examples pertain to copy number data, gPCA is general and can be used on other data types as well. The gPCA R package (Available via CRAN) provides functionality and data to perform the methods in this article. reesese@vcu.edu
NASA Astrophysics Data System (ADS)
Lipovsky, B.; Funning, G. J.
2009-12-01
We compare several techniques for the analysis of geodetic time series with the ultimate aim to characterize the physical processes which are represented therein. We compare three methods for the analysis of these data: Principal Component Analysis (PCA), Non-Linear PCA (NLPCA), and Rotated PCA (RPCA). We evaluate each method by its ability to isolate signals which may be any combination of low amplitude (near noise level), temporally transient, unaccompanied by seismic emissions, and small scale with respect to the spatial domain. PCA is a powerful tool for extracting structure from large datasets which is traditionally realized through either the solution of an eigenvalue problem or through iterative methods. PCA is an transformation of the coordinate system of our data such that the new "principal" data axes retain maximal variance and minimal reconstruction error (Pearson, 1901; Hotelling, 1933). RPCA is achieved by an orthogonal transformation of the principal axes determined in PCA. In the analysis of meteorological data sets, RPCA has been seen to overcome domain shape dependencies, correct for sampling errors, and to determine principal axes which more closely represent physical processes (e.g., Richman, 1986). NLPCA generalizes PCA such that principal axes are replaced by principal curves (e.g., Hsieh 2004). We achieve NLPCA through an auto-associative feed-forward neural network (Scholz, 2005). We show the geophysical relevance of these techniques by application of each to a synthetic data set. Results are compared by inverting principal axes to determine deformation source parameters. Temporal variability in source parameters, estimated by each method, are also compared.
Gershman, Boris; Shui, Irene M; Stampfer, Meir; Platz, Elizabeth A; Gann, Peter H; Sesso, Howard L; DuPre, Natalie; Giovannucci, Edward; Mucci, Lorelei A
2014-04-01
Sex hormones play an important role in the growth and development of the prostate, and low androgen levels have been suggested to carry an adverse prognosis for men with prostate cancer (PCa). To examine the association between prediagnostic circulating sex hormones and lethal PCa in two prospective cohort studies, the Physicians' Health Study (PHS) and the Health Professionals Follow-up Study (HPFS). We included 963 PCa cases (700 HPFS; 263 PHS) that provided prediagnostic blood samples, in 1982 for PHS and in 1993-1995 for HPFS, in which circulating sex hormone levels were assayed. The primary end point was lethal PCa (defined as cancer-specific mortality or development of metastases), and we also assessed total mortality through March 2011. We used Cox proportional hazards models to evaluate the association of prediagnostic sex hormone levels with time from diagnosis to development of lethal PCa or total mortality. PCa cases were followed for a mean of 12.0±4.9 yr after diagnosis. We confirmed 148 cases of lethal PCa and 421 deaths overall. Using Cox proportional hazard models, we found no significant association between quartile of total testosterone, sex hormone binding globulin (SHBG), SHBG-adjusted testosterone, free testosterone, dihydrotestosterone, androstanediol glucuronide, or estradiol and lethal PCa or total mortality. In subset analyses stratified by Gleason score, TNM stage, age, and interval between blood draw and diagnosis, there was also no consistent association between lethal PCa and sex hormone quartile. We found no overall association between prediagnostic circulating sex hormones and lethal PCa or total mortality. Our null results suggest that reverse causation may be responsible in prior studies that noted adverse outcomes for men with low circulating androgens. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Patient-controlled analgesia versus intramuscular analgesic therapy.
Smythe, M; Loughlin, K; Schad, R F; Lucarroti, R L
1994-06-01
The pharmacy and nursing time requirements, quality of postoperative pain control, and cost of patient-controlled analgesia (PCA) and intramuscular (i.m.) analgesic therapy were studied. All timings were conducted with a stopwatch on a single nursing unit that primarily receives gynecologic surgery patients. The various work elements involved in each type of therapy were timed individually. Both quality of analgesia and cost were evaluated in a prospective, randomized study in hysterectomy patients. I.M. patients received meperidine hydrochloride 75-100 mg every three to four hours as needed. PCA patients had access to morphine sulfate 1 mg or meperidine hydrochloride 10 mg, with a six-minute lockout period. The patients scored their pain every four hours. Direct costs for PCA were calculated as drug cost plus tubing cost plus form cost plus maintenance cost plus depreciation cost. Direct costs for i.m. therapy consisted of the cost of drugs. The total mean nursing time per patient was 16.9 minutes for PCA and 10.7 minutes for i.m. therapy. Pharmacy time per patient was 5.1 minutes longer for PCA than for i.m. therapy. Thirty-six hysterectomy patients (17 i.m. and 19 PCA) were enrolled in the study of pain control and cost. Among i.m. patients, 64% of the pain scores were mild or worse, compared with 40% for PCA patients. The median pain scores were moderate for i.m. patients and mild for PCA patients. Scores tended to be lower for PCA patients at 16 and 20 hours. Although equal numbers of patients in the two groups experienced nausea, i.m. patients needed more doses of antiemetics than PCA patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Loeb, Stacy; Drevin, Linda; Robinson, David; Holmberg, Erik; Carlsson, Sigrid; Lambe, Mats; Stattin, Pär
2016-01-01
Purpose Prostate cancer (PCa) incidence and prognosis vary geographically. We examined possible differences in PCa risk by clinical risk category between native-born and immigrant populations in Sweden. Our hypothesis was that lower PSA-testing uptake among foreign-born men would result in lower rates of localized disease, and similar or higher risk of metastatic disease. Methods Using the Prostate Cancer database Sweden (PCBaSe), we identified 117,328 men with PCa diagnosed from 1991–2008, of which 8,332 were foreign-born. For each case, 5 cancer-free matched controls were randomly selected from the population register. Conditional logistic regression was used to compare low-risk, intermediate-risk, high-risk, regionally metastatic, and distant metastatic PCa based upon region of origin. Results Across all risk categories, immigrants had significantly lower PCa risk than native-born Swedish men, except North Americans and Northern Europeans. The lowest PCa risk was observed in men from the Middle East, Southern Europe and Asia. Multivariable adjustment for socioeconomic factors and comorbidities did not materially change risk estimates. Older age at immigration and more recent arrival in Sweden were associated with lower PCa risk. Non-native men were less likely to be diagnosed with PCa through PSA-testing during a health check-up. Conclusions The risk for all stages of PCa was lower among first-generation immigrants to Sweden compared to native-born men. Older age at immigration and more recent immigration were associated with particularly low risks. Patterns of PSA testing appeared to only partly explain the differences in PCa risk, since immigrant men also had a lower risk of metastatic disease. PMID:23266834
[The role of a single PCA3 test before a first negative prostate biopsy: 5-year follow-up].
Bernardeau, S; Charles, T; Fromont-Hankard, G; Irani, J
2017-04-01
We report a 5-year follow-up of a cohort of patients who underwent a first prostate biopsy following a prostate cancer antigen 3 (PCA3) test. We reviewed consecutive patients who had in 2008 a single urinary PCA3 test using the Gen-Probe ® assay before a first prostate biopsy for a prostate-specific antigen (PSA) between 3 and 20ng/mL and/or a suspicious digital rectal examination. PCA3 performances were analyzed in 2008 and then in 2013 after taking into account the results of repeat biopsies. At initial biopsy in 2008, among the 125 patients study cohort, prostate cancer was diagnosed in 47 patients (37.6%). Abnormal digital rectal exam, PSA density, prostate volume and PCA3 score were significantly associated with prostate cancer diagnosis. PCA3 area under the curve of the receiver operating curve was 0.67 [95%CI: 0.57-0.76] with an optimal threshold of PCA3 in this sample of 24 units. During the 5-year follow-up, among the 78 patients with a negative prostate biopsy in 2008, 23 (29.5%) had a repeat prostate biopsy of whom 14 were diagnosed with prostate cancer. PCA3 score measured in 2008 was associated with prostate cancer diagnosis (P=0.002). All 9 patients with a negative repeat prostate biopsy had a PCA3 score below the cut-off while this was the case in only 2 patients among the 14 with a positive repeat prostate biopsy. The results of a single PCA3 test before a first prostate biopsy seems to be a useful aid in deciding whether to perform a repeat biopsy. 4. Copyright © 2017. Published by Elsevier Masson SAS.
Huang, Wei; Eickhoff, Jens C; Mehraein-Ghomi, Farideh; Church, Dawn R; Wilding, George; Basu, Hirak S
2015-08-01
Prostate cancer (PCa) in many patients remains indolent for the rest of their lives, but in some patients, it progresses to lethal metastatic disease. Gleason score is the current clinical method for PCa prognosis. It cannot reliably identify aggressive PCa, when GS is ≤ 7. It is shown that oxidative stress plays a key role in PCa progression. We have shown that in cultured human PCa cells, an activation of spermidine/spermine N(1) -acetyl transferase (SSAT; EC 2.3.1.57) enzyme initiates a polyamine oxidation pathway and generates copious amounts of reactive oxygen species in polyamine-rich PCa cells. We used RNA in situ hybridization and immunohistochemistry methods to detect SSAT mRNA and protein expression in two tissue microarrays (TMA) created from patient's prostate tissues. We analyzed 423 patient's prostate tissues in the two TMAs. Our data show that there is a significant increase in both SSAT mRNA and the enzyme protein in the PCa cells as compared to their benign counterpart. This increase is even more pronounced in metastatic PCa tissues as compared to the PCa localized in the prostate. In the prostatectomy tissues from early-stage patients, the SSAT protein level is also high in the tissues obtained from the patients who ultimately progress to advanced metastatic disease. Based on these results combined with published data from our and other laboratories, we propose an activation of an autocrine feed-forward loop of PCa cell proliferation in the absence of androgen as a possible mechanism of castrate-resistant prostate cancer growth. © 2015 Wiley Periodicals, Inc.
DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford
2017-10-01
Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439
Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.
Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu
2016-04-12
Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.
Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.
2013-01-01
The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.
USDA-ARS?s Scientific Manuscript database
The ionome, or elemental profile, of a maize kernel represents at least two distinct ideas. First, the collection of elements within the kernel are food, feed and feedstocks for people, animals and industrial processes. Second, the ionome of the kernel represents a developmental end point that can s...
USDA-ARS?s Scientific Manuscript database
Short wave infrared hyperspectral imaging (SWIR) (1000-2500 nm) was used to detect aflatoxin B1 (AFB1) in individual maize kernels. A total of 120 kernels of four varieties (or 30 kernels per variety) that had been artificially inoculated with a toxigenic strain of Aspergillus flavus and harvested f...
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...
Chemical components of cold pressed kernel oils from different Torreya grandis cultivars.
He, Zhiyong; Zhu, Haidong; Li, Wangling; Zeng, Maomao; Wu, Shengfang; Chen, Shangwei; Qin, Fang; Chen, Jie
2016-10-15
The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Bin; Gao, Ge; Wang, Zhixin; Sun, Daju; Wei, Xin; Ma, Yanan; Ding, Youpeng
2018-06-08
Long non-coding RNAs (lncRNAs) are a class of ncRNAs with > 200 nucleotides in length that regulate gene expression. The HOXA transcript at the distal tip (HOTTIP) lncRNA plays an important role in carcinogenesis, however, the underlying role of HOTTIP in prostate cancer (PCa) remain unknown. The aim of the present study was to evaluate the expression and function of HOTTIP in PCa. In the present study, we analyzed HOTTIP expression levels of 86 PCa patients in tumor and adjacent normal tissue by real-time quantitative PCR. Knockdown or overexpression of HOTTIP was performed to explore its roles in cell proliferation, migration, invasion, and cell cycle. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOTTIP and miR-216a-5p in PCa cells. Our results found that HOTTIP was up-regulated in human primary PCa tissues with lymph node metastasis. Knockdown of HOTTIP inhibited PCa cell proliferation, migration and invasion. Overexpression of HOTTIP promoted cell proliferation, migration and invasion of PCa cells. Bioinformatics online programs predicted that HOTTIP sponge miR-216a-5p at 3'-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOTTIP could negatively regulate the expression of miR-216a-5p in PCa cells. Above all, knockdown of HOTTIP could represent a rational therapeutic strategy for PCa. ©2018 The Author(s).
The willingness of patients to pay for intravenous patient-controlled analgesia in Korea.
Lim, Hyungsun; Lee, Duck-Hyoung; Lee, Jeongwoo; Han, Young Jin; Choe, Huhn; Son, Ji-Seon
2012-06-01
The use of intravenous patient-controlled analgesia (IV-PCA) has been increasing because it has advantages such as improved pain relief, greater patient satisfaction, and fewer postoperative complications. However, current research has not considered the patients' thoughts about IV-PCA's cost-effectiveness. The purpose of this study was to investigate the willingness to pay (WTP) for IV-PCA and the relationship between patients' characteristics and WTP in Korea. We enrolled 400 adult patients who were scheduled for elective surgery. The patient was requested to indicate a series of predefined amounts of money (Korean won; 30,000/50,000/100,000/150,000/200,000/300,000/500,000). We also recorded patient characteristics, such as age, sex, type of surgery, IV-PCA history, education level, the person responsible for medical expenses, type of insurance, net annual income, and residential area. Three days after surgery, we asked about the degree of satisfaction and the WTP for IV-PCA. For IV-PCA, the median WTP was 100,000 won (25-75%; 50,000-200,000 won: US$1 = W1078.04; July 19, 2011) before surgery. All patients' characteristics were not related to preoperative WTP for IV-PCA, whereas the increase in WTP after surgery showed a tendency correlated to higher IV-PCA satisfaction. The median WTP was 100,000 won. The satisfaction of IV-PCA increased patients' WTP after surgery, but the WTP may be independent of patient characteristics in Korea.
Russell, Beth; Garmo, Hans; Beckmann, Kerri; Stattin, Pär; Adolfsson, Jan; Van Hemelrijck, Mieke
2018-01-01
To investigate the association between lower urinary-tract infections, their associated antibiotics and the subsequent risk of developing PCa. Using data from the Swedish PCBaSe 3.0, we performed a matched case-control study (8762 cases and 43806 controls). Conditional logistic regression analysis was used to assess the association between lower urinary-tract infections, related antibiotics and PCa, whilst adjusting for civil status, education, Charlson Comorbidity Index and time between lower urinary-tract infection and PCa diagnosis. It was found that lower urinary-tract infections did not affect PCa risk, however, having a lower urinary-tract infection or a first antibiotic prescription 6-12 months before PCa were both associated with an increased risk of PCa (OR: 1.50, 95% CI: 1.23-1.82 and 1.96, 1.71-2.25, respectively), as compared to men without lower urinary-tract infections. Compared to men with no prescriptions for antibiotics, men who were prescribed ≥10 antibiotics, were 15% less likely to develop PCa (OR: 0.85, 95% CI: 0.78-0.91). PCa was not found to be associated with diagnosis of a urinary-tract infection or frequency, but was positively associated with short time since diagnoses of lower urinary-tract infection or receiving prescriptions for antibiotics. These observations can likely be explained by detection bias, which highlights the importance of data on the diagnostic work-up when studying potential risk factors for PCa.
Li, Xuejian; Wang, Youqing
2016-12-01
Offline general-type models are widely used for patients' monitoring in intensive care units (ICUs), which are developed by using past collected datasets consisting of thousands of patients. However, these models may fail to adapt to the changing states of ICU patients. Thus, to be more robust and effective, the monitoring models should be adaptable to individual patients. A novel combination of just-in-time learning (JITL) and principal component analysis (PCA), referred to learning-type PCA (L-PCA), was proposed for adaptive online monitoring of patients in ICUs. JITL was used to gather the most relevant data samples for adaptive modeling of complex physiological processes. PCA was used to build an online individual-type model and calculate monitoring statistics, and then to judge whether the patient's status is normal or not. The adaptability of L-PCA lies in the usage of individual data and the continuous updating of the training dataset. Twelve subjects were selected from the Physiobank's Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database, and five vital signs of each subject were chosen. The proposed method was compared with the traditional PCA and fast moving-window PCA (Fast MWPCA). The experimental results demonstrated that the fault detection rates respectively increased by 20 % and 47 % compared with PCA and Fast MWPCA. L-PCA is first introduced into ICU patients monitoring and achieves the best monitoring performance in terms of adaptability to changes in patient status and sensitivity for abnormality detection.
Mutational Landscape of Candidate Genes in Familial Prostate Cancer
Johnson, Anna M.; Zuhlke, Kimberly A.; Plotts, Chris; McDonnell, Shannon K.; Middha, Sumit; Riska, Shaun M.; Thibodeau, Stephen N.; Douglas, Julie A.; Cooney, Kathleen A.
2014-01-01
Background Family history is a major risk factor for prostate cancer (PCa), suggesting a genetic component to the disease. However, traditional linkage and association studies have failed to fully elucidate the underlying genetic basis of familial PCa. Methods Here we use a candidate gene approach to identify potential PCa susceptibility variants in whole exome sequencing data from familial PCa cases. Six hundred ninety-seven candidate genes were identified based on function, location near a known chromosome 17 linkage signal, and/or previous association with prostate or other cancers. Single nucleotide variants (SNVs) in these candidate genes were identified in whole exome sequence data from 33 PCa cases from 11 multiplex PCa families (3 cases/family). Results Overall, 4856 candidate gene SNVs were identified, including 1052 missense and 10 nonsense variants. Twenty missense variants were shared by all 3 family members in each family in which they were observed. Additionally, 15 missense variants were shared by 2 of 3 family members and predicted to be deleterious by 5 different algorithms. Four missense variants, BLM Gln123Arg, PARP2 Arg283Gln, LRCC46 Ala295Thr and KIF2B Pro91Leu, and 1 nonsense variant, CYP3A43 Arg441Ter, showed complete co-segregation with PCa status. Twelve additional variants displayed partial co-segregation with PCa. Conclusions Forty-three nonsense and shared, missense variants were identified in our candidate genes. Further research is needed to determine the contribution of these variants to PCa susceptibility. PMID:25111073
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge
Wagner, Florian
2015-01-01
Method Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. Results I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets. PMID:26575370
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge.
Wagner, Florian
2015-01-01
Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets.
Marous, Miguelle; Huang, Wen-Yi; Rabkin, Charles S; Hayes, Richard B; Alderete, John F; Rosner, Bernard; Grubb, Robert L; Winter, Anke C; Sutcliffe, Siobhan
2017-08-01
Results from previous sero-epidemiologic studies of Trichomonas vaginalis infection and prostate cancer (PCa) support a positive association between this sexually transmitted infection and aggressive PCa. However, findings from previous studies are not entirely consistent, and only one has investigated the possible relation between T. vaginalis seropositivity and PCa in African-American men who are at highest risk of both infection and PCa. Therefore, we examined this possible relation in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, including separate analyses for aggressive PCa and African-American men. We included a sample of participants from a previous nested case-control study of PCa, as well as all additional Caucasian, aggressive, and African-American cases diagnosed since the previous study (total n = 438 Gleason 7 Caucasian cases, 487 more advanced Caucasian cases (≥Gleason 8 or stage III/IV), 201 African-American cases, and 1216 controls). We tested baseline sera for T. vaginalis antibodies. No associations were observed for risk of Gleason 7 (odds ratio (OR) = 0.87, 95% confidence interval (CI) 0.55-1.37) or more advanced (OR = 0.90, 95% CI 0.58-1.38) PCa in Caucasian men, or for risk of any PCa (OR = 1.06, 95% CI 0.67-1.68) in African-American men. Our findings do not support an association between T. vaginalis infection and PCa.
Chen, Hsiu-Pin; Shen, Shih-Jyun; Tsai, Hsin-I; Kao, Sheng-Chin; Yu, Huang-Ping
2015-01-01
Shoulder surgery can produce severe postoperative pain and movement limitations. Evidence has shown that regional nerve block is an effective management for postoperative shoulder pain. The purpose of this study was to investigate the postoperative analgesic effect of intravenous patient-controlled analgesia (PCA) combined with interscalene nerve block in comparison to PCA alone after shoulder surgery. In this study, 103 patients receiving PCA combined with interscalene nerve block (PCAIB) and 48 patients receiving PCA alone after shoulder surgery were included. Patients' characteristics, preoperative shoulder score and range of motion, surgical and anesthetic condition in addition to visual analog scale (VAS) pain score, postoperative PCA consumption, and adverse outcomes were evaluated. The results showed that PCA combined with interscalene nerve block (PCAIB) group required less volume of analgesics than PCA alone group in 24 hours (57.76 ± 23.29 mL versus 87.29 ± 33.73 mL, p < 0.001) and 48 hours (114.86 ± 40.97 mL versus 183.63 ± 44.83 mL, p < 0.001) postoperatively. The incidence of dizziness in PCAIB group was significantly lower than PCA group (resp., 1.9% and 14.6%, p = 0.005). VAS, nausea, and vomiting were less in group PCAIB, but in the absence of significant statistical correlation. Interscalene nerve block is effective postoperatively in reducing the demand for PCA analgesics and decreasing opioids-induced adverse events following shoulder surgery.
Thomsen, C T; Benros, M E; Maltesen, T; Hastrup, L H; Andersen, P K; Giacco, D; Nordentoft, M
2018-04-01
To assess whether implementing patient-controlled admission (PCA) can reduce coercion and improve other clinical outcomes for psychiatric in-patients. During 2013-2016, 422 patients in the PCA group were propensity score matched 1:5 with a control group (n = 2110) that received treatment as usual (TAU). Patients were followed up for at least one year using the intention to treat principle utilising nationwide registers. In a paired design, the outcomes of PCA patients during the year after signing a contract were compared with the year before. No reduction in coercion (risk difference = 0.001; 95% CI: -0.038; 0.040) or self-harming behaviour (risk difference = 0.005; 95% CI: -0.008; 0.018) was observed in the PCA group compared with the TAU group. The PCA group had more in-patient bed days (mean difference = 28.4; 95% CI: 21.3; 35.5) and more medication use (P < 0.0001) than the TAU group. Before and after analyses showed reduction in coercion (P = 0.0001) and in-patient bed days (P = 0.0003). Implementing PCA did not reduce coercion, service use or self-harm behaviour when compared with TAU. Beneficial effects of PCA were observed only in the before and after PCA comparisons. Further research should investigate whether PCA affects other outcomes to better establish its clinical value. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Singh, Bimala; Kale, R K; Rao, A R
2004-04-01
Cashew nut shell oil has been reported to possess tumour promoting property. Therefore an attempt has been made to study the modulatory effect of cashew nut (Anlacardium occidentale) kernel oil on antioxidant potential in liver of Swiss albino mice and also to see whether it has tumour promoting ability like the shell oil. The animals were treated orally with two doses (50 and 100 microl/animal/day) of kernel oil of cashew nut for 10 days. The kernel oil was found to enhance the specific activities of SOD, catalase, GST, methylglyoxalase I and levels of GSH. These results suggested that cashew nut kernel oil had an ability to increase the antioxidant status of animals. The decreased level of lipid peroxidation supported this possibility. The tumour promoting property of the kernel oil was also examined and found that cashew nut kernel oil did not exhibit any solitary carcinogenic activity.
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
NASA Astrophysics Data System (ADS)
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
Searching for efficient Markov chain Monte Carlo proposal kernels
Yang, Ziheng; Rodríguez, Carlos E.
2013-01-01
Markov chain Monte Carlo (MCMC) or the Metropolis–Hastings algorithm is a simulation algorithm that has made modern Bayesian statistical inference possible. Nevertheless, the efficiency of different Metropolis–Hastings proposal kernels has rarely been studied except for the Gaussian proposal. Here we propose a unique class of Bactrian kernels, which avoid proposing values that are very close to the current value, and compare their efficiency with a number of proposals for simulating different target distributions, with efficiency measured by the asymptotic variance of a parameter estimate. The uniform kernel is found to be more efficient than the Gaussian kernel, whereas the Bactrian kernel is even better. When optimal scales are used for both, the Bactrian kernel is at least 50% more efficient than the Gaussian. Implementation in a Bayesian program for molecular clock dating confirms the general applicability of our results to generic MCMC algorithms. Our results refute a previous claim that all proposals had nearly identical performance and will prompt further research into efficient MCMC proposals. PMID:24218600
NASA Astrophysics Data System (ADS)
Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid
2018-06-01
This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.
Khodadadi, Bahar; Bordbar, Maryam; Nasrollahzadeh, Mahmoud
2017-05-01
In this paper, silver nanoparticles (Ag NPs) are synthesized using Achillea millefolium L. extract as reducing and stabilizing agents and peach kernel shell as an environmentally benign support. FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Thermo gravimetric-differential thermal analysis (TG-DTA) and Transmission Electron Microscopy (TEM) were used to characterize peach kernel shell, Ag NPs, and Ag NPs/peach kernel shell. The catalytic activity of the Ag NPs/peach kernel shell was investigated for the reduction of 4-nitrophenol (4-NP), Methyl Orange (MO), and Methylene Blue (MB) at room temperature. Ag NPs/peach kernel shell was found to be a highly active catalyst. In addition, Ag NPs/peach kernel shell can be recovered and reused several times with no significant loss of its catalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.