Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat
USDA-ARS?s Scientific Manuscript database
Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...
Raihan, Mohammad Sharif; Liu, Jie; Huang, Juan; Guo, Huan; Pan, Qingchun; Yan, Jianbing
2016-08-01
Sixteen major QTLs regulating maize kernel traits were mapped in multiple environments and one of them, qKW - 9.2 , was restricted to 630 Kb, harboring 28 putative gene models. To elucidate the genetic basis of kernel traits, a quantitative trait locus (QTL) analysis was conducted in a maize recombinant inbred line population derived from a cross between two diverse parents Zheng58 and SK, evaluated across eight environments. Construction of a high-density linkage map was based on 13,703 single-nucleotide polymorphism markers, covering 1860.9 cM of the whole genome. In total, 18, 26, 23, and 19 QTLs for kernel length, width, thickness, and 100-kernel weight, respectively, were detected on the basis of a single-environment analysis, and each QTL explained 3.2-23.7 % of the phenotypic variance. Sixteen major QTLs, which could explain greater than 10 % of the phenotypic variation, were mapped in multiple environments, implying that kernel traits might be controlled by many minor and multiple major QTLs. The major QTL qKW-9.2 with physical confidence interval of 1.68 Mbp, affecting kernel width, was then selected for fine mapping using heterogeneous inbred families. At final, the location of the underlying gene was narrowed down to 630 Kb, harboring 28 putative candidate-gene models. This information will enhance molecular breeding for kernel traits and simultaneously assist the gene cloning underlying this QTL, helping to reveal the genetic basis of kernel development in maize.
Leimar, Olof; Doebeli, Michael; Dieckmann, Ulf
2008-04-01
We have analyzed the evolution of a quantitative trait in populations that are spatially extended along an environmental gradient, with gene flow between nearby locations. In the absence of competition, there is stabilizing selection toward a locally best-adapted trait that changes gradually along the gradient. According to traditional ideas, gradual spatial variation in environmental conditions is expected to lead to gradual variation in the evolved trait. A contrasting possibility is that the trait distribution instead breaks up into discrete clusters. Doebeli and Dieckmann (2003) argued that competition acting locally in trait space and geographical space can promote such clustering. We have investigated this possibility using deterministic population dynamics for asexual populations, analyzing our model numerically and through an analytical approximation. We examined how the evolution of clusters is affected by the shape of competition kernels, by the presence of Allee effects, and by the strength of gene flow along the gradient. For certain parameter ranges clustering was a robust outcome, and for other ranges there was no clustering. Our analysis shows that the shape of competition kernels is important for clustering: the sign structure of the Fourier transform of a competition kernel determines whether the kernel promotes clustering. Also, we found that Allee effects promote clustering, whereas gene flow can have a counteracting influence. In line with earlier findings, we could demonstrate that phenotypic clustering was favored by gradients of intermediate slope.
Kernel-based whole-genome prediction of complex traits: a review.
Morota, Gota; Gianola, Daniel
2014-01-01
Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.
Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.
Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369
USDA-ARS?s Scientific Manuscript database
Specific wheat protein fractions are known to have distinct associations with wheat quality traits. Research was conducted on 10 hard spring wheat cultivars grown at two North Dakota locations to identify protein fractions that affected wheat kernel characteristics and breadmaking quality. SDS ext...
Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.
Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang
2017-07-01
Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
Comparative analysis of genetic architectures for nine developmental traits of rye.
Masojć, Piotr; Milczarski, P; Kruszona, P
2017-08-01
Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.
Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.
2013-01-01
The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A
2016-08-09
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.
Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations
Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.
2016-01-01
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774
Fox, Glen; Manley, Marena
2014-01-30
Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.
Considering causal genes in the genetic dissection of kernel traits in common wheat.
Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz
2016-11-01
Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.
USDA-ARS?s Scientific Manuscript database
Single kernel moisture content (MC) is important in the measurement of other quality traits in single kernels since many traits are expressed on a dry weight basis, and MC affects viability, storage quality, and price. Also, if near-infrared (NIR) spectroscopy is used to measure grain traits, the in...
QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population
Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua
2014-01-01
Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932
Zhang, H M; Hui, G Q; Luo, Q; Sun, Y; Liu, X H
2014-01-21
Maize (Zea mays L.) is one of the most important crops in the world. In this study, 13 agronomic traits of a recombinant inbred line population that was derived from the cross between Mo17 and Huangzao4 were investigated in maize: ear diameter, ear length, ear axis diameter, ear weight, plant height, ear height, days to pollen shed (DPS), days to silking (DS), the interval between DPS and DS, 100-kernel weight, kernel test weight, ear kernel weight, and kernel rate. Furthermore, the descriptive statistics and correlation analysis of the 13 traits were performed using the SPSS 11.5 software. The results providing the phenotypic data here are needed for the quantitative trait locus mapping of these agronomic traits.
Guo, Jie; Shi, Weiping; Zhang, Zheng; Cheng, Jingye; Sun, Daizhen; Yu, Jin; Li, Xinlei; Guo, Pingyi; Hao, Chenyang
2018-02-20
Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP) loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH), spike length (SL), spikelet number per spike (SNPS), kernel number per spike (KNPS), kernel weight per spike (KWPS), and thousand kernel weight (TKW) in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ) ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106) and other cultivars (98) using the 76 associated SNPs, we found that the region 116.0-133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS), rarely found in other cultivars. The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.
Exploiting induced variation to dissect quantitative traits in barley.
Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie
2010-04-01
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.
ERIC Educational Resources Information Center
Da Silva, Helena Sofia Pereira
2009-01-01
Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…
Moore, S M; Stalder, K J; Beitz, D C; Stahl, C H; Fithian, W A; Bregendahl, K
2008-04-01
A study was conducted to determine the influence on broiler chicken growth and laying hen performance of chemical and physical traits of corn kernels from different hybrids. A total of 720 male 1-d-old Ross-308 broiler chicks were allotted to floor pens in 2 replicated experiments with a randomized complete block design. A total of 240 fifty-two-week-old Hy-Line W-36 laying hens were allotted to cages in a randomized complete block design. Corn-soybean meal diets were formulated for 3 broiler growth phases and one 14-wk-long laying hen phase to be marginally deficient in Lys and TSAA to allow for the detection of differences or correlations attributable to corn kernel chemical or physical traits. The broiler chicken diets were also marginally deficient in Ca and nonphytate P. Within a phase, corn- and soybean-based diets containing equal amounts of 1 of 6 different corn hybrids were formulated. The corn hybrids were selected to vary widely in chemical and physical traits. Feed consumption and BW were recorded for broiler chickens every 2 wk from 0 to 6 wk of age. Egg production was recorded daily, and feed consumption and egg weights were recorded weekly for laying hens between 53 and 67 wk of age. Physical and chemical composition of kernels was correlated with performance measures by multivariate ANOVA. Chemical and physical kernel traits were weakly correlated with performance in broiler chickens from 0 to 2 wk of age (P<0.05, | r |<0.42). However, from 4 to 6 wk of age and 0 to 6 wk of age, only kernel chemical traits were correlated with broiler chicken performance (P<0.05, | r |<0.29). From 53 to 67 wk of age, correlations were observed between both kernel physical and chemical traits and laying hen performance (P<0.05, | r |<0.34). In both experiments, the correlations of performance measures with individual kernel chemical and physical traits for any single kernel trait were not large enough to base corn hybrid selection on for feeding poultry.
QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin
2016-01-01
The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.
Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas
2014-08-01
Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kebede, Aida Z; Woldemariam, Tsegaye; Reid, Lana M; Harris, Linda J
2016-01-01
Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.
How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes
Cabrera-Bosquet, Llorenç; Sánchez, Ciro; Araus, José Luis
2009-01-01
Background and Aims Stable isotopes have proved a valuable phenotyping tool when breeding for yield potential and drought adaptation; however, the cost and technical skills involved in isotope analysis limit its large-scale application in breeding programmes. This is particularly so for Δ18O despite the potential relevance of this trait in C4 crops. The accumulation of minerals (measured as ash content) has been proposed as an inexpensive way to evaluate drought adaptation and yield in C3 cereals, but little is known of the usefulness of this measure in C4 cereals such as maize (Zea mays). The present study investigates how yield relates to ash content, Δ13C and Δ18O, and evaluates the use of ash content as an alternative or complementary criterion to stable isotopes in assessing yield potential and drought resistance in maize. Methods A set of tropical maize hybrids developed by CIMMYT were subjected to different water availabilities, in order to induce water stress during the reproductive stages under field conditions. Ash content and Δ13C were determined in leaves and kernels. In addition, Δ18O was measured in kernels. Key Results Water regime significantly affected yield, ash content and stable isotopes. The results revealed a close relationship between ash content in leaves and the traits informing about plant water status. Ash content in kernels appeared to reflect differences in sink–source balance. Genotypic variation in grain yield was mainly explained by the combination of ash content and Δ18O, whilst Δ13C did not explain a significant percentage of such variation. Conclusions Ash content in leaves and kernels proved a useful alternative or complementary criterion to Δ18O in kernels for assessing yield performance in maize grown under drought conditions. PMID:19773272
Cui, Fa; Fan, Xiaoli; Chen, Mei; Zhang, Na; Zhao, Chunhua; Zhang, Wei; Han, Jie; Ji, Jun; Zhao, Xueqiang; Yang, Lijuan; Zhao, Zongwu; Tong, Yiping; Wang, Tao; Li, Junming
2016-03-01
QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.
Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit
2018-02-13
Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M
2016-03-01
Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.
Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko
2008-03-26
In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav
2013-12-09
In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models.
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.
Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.
Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-01-04
Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.
USDA-ARS?s Scientific Manuscript database
Popped grain sorghum has developed a niche among specialty snack-food consumers. In contrast to popcorn, sorghum has not benefited from persistent selective breeding for popping efficiency and kernel expansion ratio. While recent studies have already demonstrated that popping characteristics are h...
Prioritizing individual genetic variants after kernel machine testing using variable selection.
He, Qianchuan; Cai, Tianxi; Liu, Yang; Zhao, Ni; Harmon, Quaker E; Almli, Lynn M; Binder, Elisabeth B; Engel, Stephanie M; Ressler, Kerry J; Conneely, Karen N; Lin, Xihong; Wu, Michael C
2016-12-01
Kernel machine learning methods, such as the SNP-set kernel association test (SKAT), have been widely used to test associations between traits and genetic polymorphisms. In contrast to traditional single-SNP analysis methods, these methods are designed to examine the joint effect of a set of related SNPs (such as a group of SNPs within a gene or a pathway) and are able to identify sets of SNPs that are associated with the trait of interest. However, as with many multi-SNP testing approaches, kernel machine testing can draw conclusion only at the SNP-set level, and does not directly inform on which one(s) of the identified SNP set is actually driving the associations. A recently proposed procedure, KerNel Iterative Feature Extraction (KNIFE), provides a general framework for incorporating variable selection into kernel machine methods. In this article, we focus on quantitative traits and relatively common SNPs, and adapt the KNIFE procedure to genetic association studies and propose an approach to identify driver SNPs after the application of SKAT to gene set analysis. Our approach accommodates several kernels that are widely used in SNP analysis, such as the linear kernel and the Identity by State (IBS) kernel. The proposed approach provides practically useful utilities to prioritize SNPs, and fills the gap between SNP set analysis and biological functional studies. Both simulation studies and real data application are used to demonstrate the proposed approach. © 2016 WILEY PERIODICALS, INC.
Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...
Enhanced gluten properties in soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...
Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav
2013-01-01
In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models. PMID:24082033
The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice1[OPEN
Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen
2017-01-01
Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. PMID:28811335
The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice.
Liu, Jie; Huang, Juan; Guo, Huan; Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Zhang, Xuehai; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhou, Yang; Li, Xiang; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen; Li, Qing; Yan, Jianbing
2017-10-01
Maize ( Zea mays ) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice ( Oryza sativa ) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1 , a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis ( Arabidopsis thaliana ) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1 ). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. © 2017 American Society of Plant Biologists. All Rights Reserved.
Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang
2016-09-13
Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class and culinary end-uses. Of interest to wheat breeders is to identify quantitative trait loci (QTL) for wheat kernel texture, milling performance, or end-use quality because it is imperative for wheat breeders to ascertain the genetic architecture ...
KRN4 Controls Quantitative Variation in Maize Kernel Row Number
Liu, Lei; Du, Yanfang; Shen, Xiaomeng; Li, Manfei; Sun, Wei; Huang, Juan; Liu, Zhijie; Tao, Yongsheng; Zheng, Yonglian; Yan, Jianbing; Zhang, Zuxin
2015-01-01
Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize. PMID:26575831
Genome-wide association analysis identifies loci governing mercury accumulation in maize.
Zhao, Zhan; Fu, Zhongjun; Lin, Yanan; Chen, Hao; Liu, Kun; Xing, Xiaolong; Liu, Zonghua; Li, Weihua; Tang, Jihua
2017-03-21
Owing to the rapid development of urbanisation and industrialisation, heavy metal pollution has become a widespread environmental problem. Maize planted on mercury (Hg)-polluted soil can absorb and accumulate Hg in its edible parts, posing a potential threat to human health. To understand the genetic mechanism of Hg accumulation in maize, we performed a genome-wide association study using a mixed linear model on an association population consisting of 230 maize inbred lines with abundant genetic variation. The order of relative Hg concentrations in different maize tissues was as follows: leaves > bracts > stems > axes > kernels. Combined two locations, a total of 37 significant single-nucleotide polymorphisms (SNPs) associated with kernels, 12 with axes, 13 with stems, 27 with bracts and 23 with leaves were detected with p < 0.0001. Each significant SNP was calculated and the SNPs significant associated with kernels, axes, stems, bracts and leaves explained 6.96%-10.56%, 7.19%-15.87%, 7.11%-10.19%, 7.16%-8.71% and 6.91%-9.17% of the phenotypic variation, respectively. Among the significant SNPs, nine co-localised with previously detected quantitative trait loci. This study will aid in the selection of Hg-accumulation inbred lines that satisfy the needs for pollution-safe cultivars and maintaining maize production.
Verheijen, Lieneke M; Aerts, Rien; Bönisch, Gerhard; Kattge, Jens; Van Bodegom, Peter M
2016-01-01
Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species' functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n-dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1-6 traits from a database with 18 different traits (total of 18 287 species) were tested. A variety of trait sets had approximately similar performance, and 4-5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
USDA-ARS?s Scientific Manuscript database
Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...
Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K
2015-01-01
The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Assanga, Silvano O; Fuentealba, Maria; Zhang, Guorong; Tan, ChorTee; Dhakal, Smit; Rudd, Jackie C; Ibrahim, Amir M H; Xue, Qingwu; Haley, Scott; Chen, Jianli; Chao, Shiaoman; Baker, Jason; Jessup, Kirk; Liu, Shuyu
2017-01-01
Stable quantitative trait loci (QTL) are important for deployment in marker assisted selection in wheat (Triticum aestivum L.) and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE) by the QTL on 2B.1 ranged from 3.3-25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading) and yield related traits (test weight, thousand kernel weight, harvest index). The QTL on 5B at 211 cM had PVE range of 1.8-9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8-8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6-12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7-19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive) at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4-244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1, and UDP-glucose 6-dehydrogenase 1-like isoform X1. The stable QTL could be important for further validation, high throughput SNP development, and marker-assisted selection (MAS) in wheat.
A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying
2015-09-01
Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.
The genetic architecture of maize (Zea mays L.) kernel weight determination.
Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas
2014-09-18
Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.
Yang, Jinliang; Jiang, Haiying; Yeh, Cheng-Ting; Yu, Jianming; Jeddeloh, Jeffrey A; Nettleton, Dan; Schnable, Patrick S
2015-11-01
Although approaches for performing genome-wide association studies (GWAS) are well developed, conventional GWAS requires high-density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP-GWAS (extreme-phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well-characterized kernel row number trait, which was selected to enable comparisons between the results of XP-GWAS and conventional GWAS. An exome-sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait-associated variants were significantly enriched in regions identified by conventional GWAS. XP-GWAS was able to resolve several linked QTL and detect trait-associated variants within a single gene under a QTL peak. XP-GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Genetic architecture of kernel composition in global sorghum germplasm.
Rhodes, Davina H; Hoffmann, Leo; Rooney, William L; Herald, Thomas J; Bean, Scott; Boyles, Richard; Brenton, Zachary W; Kresovich, Stephen
2017-01-05
Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland areas in the United States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and starch) between accessions can be used for crop improvement, but the genetic controls are still unresolved. The goals of this study were to quantify natural variation of sorghum grain composition and to identify single-nucleotide polymorphisms (SNPs) associated with variation in grain composition concentrations. In this study, we quantified protein, fat, and starch in a global sorghum diversity panel using near-infrared spectroscopy (NIRS). Protein content ranged from 8.1 to 18.8%, fat content ranged from 1.0 to 4.3%, and starch content ranged from 61.7 to 71.1%. Durra and bicolor-durra sorghum from Ethiopia and India had the highest protein and fat and the lowest starch content, while kafir sorghum from USA, India, and South Africa had the lowest protein and the highest starch content. Genome-wide association studies (GWAS) identified quantitative trait loci (QTL) for sorghum protein, fat, and starch. Previously published RNAseq data was used to identify candidate genes within a GWAS QTL region. A putative alpha-amylase 3 gene, which has previously been shown to be associated with grain composition traits, was identified as a strong candidate for protein and fat variation. We identified promising sources of genetic material for manipulation of grain composition traits, and several loci and candidate genes that may control sorghum grain composition. This survey of grain composition in sorghum germplasm and identification of protein, fat, and starch QTL contributes to our understanding of the genetic basis of natural variation in sorghum grain nutritional traits.
Li, Faji; Wen, Weie; He, Zhonghu; Liu, Jindong; Jin, Hui; Cao, Shuanghe; Geng, Hongwei; Yan, Jun; Zhang, Pingzhi; Wan, Yingxiu; Xia, Xianchun
2018-06-01
We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.
Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel
2016-02-03
Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations. A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We partitioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic and non-genic regions to genetic variation as well as their predictive power using all available quality-filtered SNPs. Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5' and 3' untranslated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel-based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each class of genomic regions to dominance variance was also considered. Variance component estimates indicated that all genomic regions contributed to marked additive genetic variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction mean-square error, the whole-genome approach showed the best predictive ability. All genic and non-genic regions contributed to phenotypic variation for the three traits studied. Overall, the contribution of additive genetic variance to the total genetic variance was much greater than that of dominance variance. Our results show that all genomic regions are important for the prediction of the targeted traits, and the whole-genome approach was reaffirmed as the best tool for genome-enabled prediction of quantitative traits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Markus; Hake, Sarah
2013-10-31
The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and ormore » biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.« less
USDA-ARS?s Scientific Manuscript database
Dark, hard, and vitreous kernel content is an important grading characteristic for hard red spring (HRS) wheat in the U.S. This research aimed to determine the associations of kernel vitreousness (KV) with protein molecular weight distribution (MWD) and quality traits that were not biased by quanti...
An alternative covariance estimator to investigate genetic heterogeneity in populations.
Heslot, Nicolas; Jannink, Jean-Luc
2015-11-26
For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges
2016-01-01
Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges
2016-03-01
The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.
Franks, Paul W; Christophi, Costas A; Jablonski, Kathleen A; Billings, Liana K; Delahanty, Linda M; Horton, Edward S; Knowler, William C; Florez, Jose C
2014-03-01
PPARGC1A and PPARGCB encode transcriptional coactivators that regulate numerous metabolic processes. We tested associations and treatment (i.e. metformin or lifestyle modification) interactions with metabolic traits in the Diabetes Prevention Program, a randomised controlled trial in persons at high risk of type 2 diabetes. We used Tagger software to select 75 PPARGCA1 and 94 PPARGC1B tag single-nucleotide polymorphisms (SNPs) for analysis. These SNPs were tested for associations with relevant cardiometabolic quantitative traits using generalised linear models. Aggregate genetic effects were tested using the sequence kernel association test. In aggregate, PPARGC1A variation was strongly associated with baseline triacylglycerol concentrations (p = 2.9 × 10(-30)), BMI (p = 2.0 × 10(-5)) and visceral adiposity (p = 1.9 × 10(-4)), as well as with changes in triacylglycerol concentrations (p = 1.7 × 10(-5)) and BMI (p = 9.9 × 10(-5)) from baseline to 1 year. PPARGC1B variation was only associated with baseline subcutaneous adiposity (p = 0.01). In individual SNP analyses, Gly482Ser (rs8192678, PPARGC1A) was associated with accumulation of subcutaneous adiposity and worsening insulin resistance at 1 year (both p < 0.05), while rs2970852 (PPARGC1A) modified the effects of metformin on triacylglycerol levels (p(interaction) = 0.04). These findings provide several novel and other confirmatory insights into the role of PPARGC1A variation with respect to diabetes-related metabolic traits. ClinicalTrials.gov NCT00004992.
USDA-ARS?s Scientific Manuscript database
Plant, ear and kernel traits directly or indirectly associated with grain yield in corn (Zea mays) were suggested as "secondary" traits to select for larger grain yield, especially in open-pollinated corn varieties (OPVs) and their hybrids (OPVhs). Thirty-four secondary traits, besides grain yield, ...
Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua
2016-01-01
Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395
Soft durum wheat - a paradigm shift
USDA-ARS?s Scientific Manuscript database
Two traits define most aspects of wheat quality and utilization: kernel texture (hardness) and gluten. The former is far simpler genetically and is controlled by two genes, Puroindoline a and Puroindoline b. Durum wheat lacks puroindolines and has very hard kernels. As such, durum wheat when milled ...
Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P
2017-01-01
Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Röder, Marion S.; van Eeuwijk, Fred
2014-01-01
Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements. PMID:25372869
Debebe, Abel; Singh, Harijat; Tefera, Hailu
2014-01-01
This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.
Genetic analysis of kernel traits in maize-teosinte introgression populations
USDA-ARS?s Scientific Manuscript database
Seed traits have been targeted by human selection during the domestication of crop species as a way to increase caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is mos...
Locally Dependent Latent Trait Model and the Dutch Identity Revisited.
ERIC Educational Resources Information Center
Ip, Edward H.
2002-01-01
Proposes a class of locally dependent latent trait models for responses to psychological and educational tests. Focuses on models based on a family of conditional distributions, or kernel, that describes joint multiple item responses as a function of student latent trait, not assuming conditional independence. Also proposes an EM algorithm for…
Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America.
Swarts, Kelly; Gutaker, Rafal M; Benz, Bruce; Blake, Michael; Bukowski, Robert; Holland, James; Kruse-Peeples, Melissa; Lepak, Nicholas; Prim, Lynda; Romay, M Cinta; Ross-Ibarra, Jeffrey; Sanchez-Gonzalez, Jose de Jesus; Schmidt, Chris; Schuenemann, Verena J; Krause, Johannes; Matson, R G; Weigel, Detlef; Buckler, Edward S; Burbano, Hernán A
2017-08-04
By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome
Asaro, Alexandra; Ziegler, Gregory; Ziyomo, Cathrine; Hoekenga, Owen A.; Dilkes, Brian P.; Baxter, Ivan
2016-01-01
Plants obtain soil-resident elements that support growth and metabolism from the water-flow facilitated by transpiration and active transport processes. The availability of elements in the environment interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 × Mo17 (IBM) recombinant inbred population grown in 10 different environments, spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment. PMID:27770027
The Interaction of Genotype and Environment Determines Variation in the Maize Kernel Ionome.
Asaro, Alexandra; Ziegler, Gregory; Ziyomo, Cathrine; Hoekenga, Owen A; Dilkes, Brian P; Baxter, Ivan
2016-12-07
Plants obtain soil-resident elements that support growth and metabolism from the water-flow facilitated by transpiration and active transport processes. The availability of elements in the environment interacts with the genetic capacity of organisms to modulate element uptake through plastic adaptive responses, such as homeostasis. These interactions should cause the elemental contents of plants to vary such that the effects of genetic polymorphisms will be dramatically dependent on the environment in which the plant is grown. To investigate genotype by environment interactions underlying elemental accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 × Mo17 (IBM) recombinant inbred population grown in 10 different environments, spanning a total of six locations and five different years. In analyses conducted separately for each environment, we identified a total of 79 quantitative trait loci (QTL) controlling seed elemental accumulation. While a set of these QTL was found in multiple environments, the majority were specific to a single environment, suggesting the presence of genetic by environment interactions. To specifically identify and quantify QTL by environment interactions (QEIs), we implemented two methods: linear modeling with environmental covariates, and QTL analysis on trait differences between growouts. With these approaches, we found several instances of QEI, indicating that elemental profiles are highly heritable, interrelated, and responsive to the environment. Copyright © 2016 Asaro et al.
Li, Jiming; Xiao, Jinhua; Grandillo, Silvana; Jiang, Longying; Wan, Yizhen; Deng, Qiyun; Yuan, Longping; McCouch, Susan R
2004-08-01
An interspecific advanced backcross population derived from a cross between Oryza sativa "V20A" (a popular male-sterile line used in Chinese rice hybrids) and Oryza glaberrima (accession IRGC No. 103544 from Mali) was used to identify quantitative trait loci (QTL) associated with grain quality and grain morphology. A total of 308 BC3F1 hybrid families were evaluated for 16 grain-related traits under field conditions in Changsha, China, and the same families were evaluated for RFLP and SSR marker segregation at Cornell University (Ithaca, N.Y.). Eleven QTL associated with seven traits were detected in six chromosomal regions, with the favorable allele coming from O. glaberrima at eight loci. Favorable O. glaberrima alleles were associated with improvements in grain shape and appearance, resulting in an increase in kernel length, transgressive variation for thinner grains, and increased length to width ratio. Oryza glaberrima alleles at other loci were associated with potential improvements in crude protein content and brown rice yield. These results suggested that genes from O. glaberrima may be useful in improving specific grain quality characteristics in high-yielding O. sativa hybrid cultivars.
Pressoir, G; Berthaud, J
2004-02-01
To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.
Su, Chengfu; Wang, Wei; Gong, Shunliang; Zuo, Jinghui; Li, Shujiang; Xu, Shizhong
2017-01-01
Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative trait loci (QTL) mapping can help us understand the molecular basis of phenotypic variation of yield and thus facilitate marker assisted breeding. The aim of this study is to use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of all F2 individuals from a cross between two varieties of maize that are in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were generated. This number of reads represents an approximately 0.36-fold coverage of the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of 68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering, led to a total of 29,927 high quality SNPs. Comparative analysis using these physically mapped marker loci revealed a higher degree of synteny with the reference genome. The SNP genotype data were utilized to construct an intra-specific genetic linkage map of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an average distance of 0.68 cM between consecutive markers. From this map, we identified 28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, corn grains per row, ear weight, and grain weight per plant) using the composite interval mapping (CIM) method and 29 QTLs using the least absolute shrinkage selection operator (LASSO) method. QTLs identified by the CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811, GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and one gene (GRMZM2G019183) encoding the UDP-Glycosyltransferase. The work will not only help to understand the mechanisms that control yield traits of maize, but also provide a basis for marker-assisted selection and map-based cloning in further studies. PMID:28533786
USDA-ARS?s Scientific Manuscript database
Rice (Oryza sativa L.) kernel fissuring increases breakage during milling and decreases the value of processed rice. This study employed molecular gene tagging methods to fine-map a fissure resistance (FR) locus in ‘Cybonnet’, a semidwarf tropical japonica cultivar, as well as transfer this trait to...
Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju
2018-02-16
Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.
Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods
NASA Astrophysics Data System (ADS)
Liu, Qinya; Tromp, Jeroen
2008-07-01
We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.
Desjardins, A E; Plattner, R D
2000-11-01
Fumonisins are polyketide mycotoxins produced by Fusarium verticillioides (synonym F. moniliforme), a major pathogen of maize (Zea mays) worldwide. Most field strains produce high levels of fumonisin B(1) (FB(1)) and low levels of the less-oxygenated homologues FB(2) and FB(3), but fumonisin B(1)-nonproducing field strains have been obtained by natural variation. To test the role of various fumonisins in pathogenesis on maize under field conditions, one strain producing FB(1), FB(2), and FB(3), one strain producing only FB(2), one strain producing only FB(3), and one fumonisin-nonproducing strain were applied to ears via the silk channel and on seeds at planting. Disease severity on the harvested ears was evaluated by visible symptoms and by weight percent symptomatic kernels. Fumonisin levels in kernels were determined by high-performance liquid chromatography. The presence of the applied FB(1)-nonproducing strains in kernels was determined by analysis of recovered strains for fumonisin production and other traits. All three FB(1)-nonproducing strains were able to infect ears following either silk-channel application or seed application at planting and were as effective as the FB(1)-producing strain in causing ear rot following silk-channel application. These results indicate that production of FB(1), FB(2), or FB(3) is not required for F. verticillioides to cause maize ear infection and ear rot.
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A.; del Pozo, Alejandro; Astudillo, Cesar A.; Lobos, Gustavo A.
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat (Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ13C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and kNN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ13C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection. PMID:28337210
Garriga, Miguel; Romero-Bravo, Sebastián; Estrada, Félix; Escobar, Alejandro; Matus, Iván A; Del Pozo, Alejandro; Astudillo, Cesar A; Lobos, Gustavo A
2017-01-01
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( Triticum aestivum L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (Δ 13 C), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and k NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and Δ 13 C. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.
Amiri, Reza; Sasani, Shahryar; Jalali-Honarmand, Saeid; Rasaei, Ali; Seifolahpour, Behnaz; Bahraminejad, Sohbat
2018-02-01
Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012-2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
Elouafi, I; Nachit, M M
2004-02-01
Durum wheat ( Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5 /Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites x years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTLxE interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.
Steckel, S; Stewart, S D
2015-06-01
Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Selecting good regions to deblur via relative total variation
NASA Astrophysics Data System (ADS)
Li, Lerenhan; Yan, Hao; Fan, Zhihua; Zheng, Hanqing; Gao, Changxin; Sang, Nong
2018-03-01
Image deblurring is to estimate the blur kernel and to restore the latent image. It is usually divided into two stage, including kernel estimation and image restoration. In kernel estimation, selecting a good region that contains structure information is helpful to the accuracy of estimated kernel. Good region to deblur is usually expert-chosen or in a trial-anderror way. In this paper, we apply a metric named relative total variation (RTV) to discriminate the structure regions from smooth and texture. Given a blurry image, we first calculate the RTV of each pixel to determine whether it is the pixel in structure region, after which, we sample the image in an overlapping way. At last, the sampled region that contains the most structure pixels is the best region to deblur. Both qualitative and quantitative experiments show that our proposed method can help to estimate the kernel accurately.
Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.
Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu
2016-04-12
Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.
Lara-Romero, Carlos; Robledo-Arnuncio, Juan J; García-Fernández, Alfredo; Iriondo, Jose M
2014-01-01
Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming. We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal. No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape. This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a case-by-case analysis in a wider range of plant taxa and environments to assess the prevalence and magnitude of intraspecific dispersal variation.
Ali, M Liakat; Taylor, Jeff H; Jie, Liu; Sun, Genlou; William, Manilal; Kasha, Ken J; Reid, Lana M; Pauls, K Peter
2005-06-01
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.
Kesarwani, Amit; Chiang, Po-Yuan; Chen, Shih-Shiung
2014-01-01
The phenolic and antioxidant activity of ethanolic extract of two Japonica rice cultivars, Taikeng no. 16 (medium and slender grain) and Kaohsiung no. 139 (short and round grain), grown under organic and conventional farming were examined. Analyses shows that Kaohsiung no. 139 contains the highest amount of secondary metabolites and continuous farming can increase its production. Results also suggest that phenolic content under different agronomic practices, has not shown significant differences but organically grown rice has proven to be better in higher accumulation of other secondary metabolites (2,2-diphenyl-1-picrylhydrazyl (DPPH), flavonoid content, and ferrous chelating capacity). In nutshell, genetic traits and environment have significant effect on phenolic compounds and the least variation reported under agronomic practices. PMID:25506072
Zhang, Junli; Gizaw, Shiferaw Abate; Bossolini, Eligio; Hegarty, Joshua; Howell, Tyson; Carter, Arron H; Akhunov, Eduard; Dubcovsky, Jorge
2018-05-16
Chromosome regions affecting grain yield, grain yield components and plant water status were identified and validated in fall-sown spring wheats grown under full and limited irrigation. Increases in wheat production are required to feed a growing human population. To understand the genetic basis of grain yield in fall-sown spring wheats, we performed a genome-wide association study (GWAS) including 262 photoperiod-insensitive spring wheat accessions grown under full and limited irrigation treatments. Analysis of molecular variance showed that 4.1% of the total variation in the panel was partitioned among accessions originally developed under fall-sowing or spring-sowing conditions, 11.7% among breeding programs within sowing times and 84.2% among accessions within breeding programs. We first identified QTL for grain yield, yield components and plant water status that were significant in at least three environments in the GWAS, and then selected those that were also significant in at least two environments in a panel of eight biparental mapping populations. We identified and validated 14 QTL for grain yield, 15 for number of spikelets per spike, one for kernel number per spike, 11 for kernel weight and 9 for water status, which were not associated with differences in plant height or heading date. We detected significant correlations among traits and colocated QTL that were consistent with those correlations. Among those, grain yield and plant water status were negatively correlated in all environments, and six QTL for these traits were colocated or tightly linked (< 1 cM). QTL identified and validated in this study provide useful information for the improvement of fall-sown spring wheats under full and limited irrigation.
USDA-ARS?s Scientific Manuscript database
Phytochemicals in red and purple bran rice have potential health benefit to humans. We determined the phytochemicals in brans of 32 red and purple global rice varieties. The description of the origin and physical traits of the whole grain (color, length, width, thickness and 100-kernel weight) of th...
Weng, Jianfeng; Li, Bo; Liu, Changlin; Yang, Xiaoyan; Wang, Hongwei; Hao, Zhuanfang; Li, Mingshun; Zhang, Degui; Ci, Xiaoke; Li, Xinhai; Zhang, Shihuang
2013-07-05
Kernel weight, controlled by quantitative trait loci (QTL), is an important component of grain yield in maize. Cytokinins (CKs) participate in determining grain morphology and final grain yield in crops. ZmIPT2, which is expressed mainly in the basal transfer cell layer, endosperm, and embryo during maize kernel development, encodes an isopentenyl transferase (IPT) that is involved in CK biosynthesis. The coding region of ZmIPT2 was sequenced across a panel of 175 maize inbred lines that are currently used in Chinese maize breeding programs. Only 16 single nucleotide polymorphisms (SNPs) and seven haplotypes were detected among these inbred lines. Nucleotide diversity (π) within the ZmIPT2 window and coding region were 0.347 and 0.0047, respectively, and they were significantly lower than the mean nucleotide diversity value of 0.372 for maize Chromosome 2 (P < 0.01). Association mapping revealed that a single nucleotide change from cytosine (C) to thymine (T) in the ZmIPT2 coding region, which converted a proline residue into a serine residue, was significantly associated with hundred kernel weight (HKW) in three environments (P <0.05), and explained 4.76% of the total phenotypic variation. In vitro characterization suggests that the dimethylallyl diphospate (DMAPP) IPT activity of ZmIPT2-T is higher than that of ZmIPT2-C, as the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) consumed by ZmIPT2-T were 5.48-, 2.70-, and 1.87-fold, respectively, greater than those consumed by ZmIPT2-C. The effects of artificial selection on the ZmIPT2 coding region were evaluated using Tajima's D tests across six subgroups of Chinese maize germplasm, with the most frequent favorable allele identified in subgroup PB (Partner B). These results showed that ZmIPT2, which is associated with kernel weight, was subjected to artificial selection during the maize breeding process. ZmIPT2-T had higher IPT activity than ZmIPT2-C, and this favorable allele for kernel weight could be used in molecular marker-assisted selection for improvement of grain yield components in Chinese maize breeding programs.
Lieb, Veronika M; Kerfers, Margarete R; Kronmüller, Amrei; Esquivel, Patricia; Alvarado, Amancio; Jiménez, Víctor M; Schmarr, Hans-Georg; Carle, Reinhold; Schweiggert, Ralf M; Steingass, Christof B
2017-05-10
Morphological traits, total lipid contents, and fatty acid profiles were assessed in fruits of several accessions of Elaeis oleifera [Kunth] Cortés, Elaeis guineensis Jacq., and their interspecific hybrids. The latter featured the highest mesocarp-to-fruit ratios (77.9-78.2%). The total lipid contents of both E. guineensis mesocarp and kernel were significantly higher than for E. oleifera accessions. Main fatty acids comprised C16:0, C18:1n9, and C18:2n6 in mesocarp and C12:0, C14:0, and C18:1n9 in kernels. E. oleifera samples were characterized by higher proportions of unsaturated long-chain fatty acids. Saturated medium-chain fatty acids supported the clustering of E. guineensis kernels in multivariate statistics. Hybrid mesocarp lipids had an intermediate fatty acid composition, whereas their kernel lipids resembled those of E. oleifera genotypes. Principal component analysis based on lipid contents and proportions of individual fatty acids permitted clear-cut distinction of E. oleifera, E. guineensis, and their hybrids.
Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey
2018-05-28
Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.
Liu, Hanmei; Wang, Xuewen; Wei, Bin; Wang, Yongbin; Liu, Yinghong; Zhang, Junjie; Hu, Yufeng; Yu, Guowu; Li, Jian; Xu, Zhanbin; Huang, Yubi
2016-01-01
In southwest China, some maize landraces have long been isolated geographically, and have phenotypes that differ from those of widely grown cultivars. These landraces may harbor rich genetic variation responsible for those phenotypes. Four-row Wax is one such landrace, with four rows of kernels on the cob. We resequenced the genome of Four-row Wax, obtaining 50.46 Gb sequence at 21.87× coverage, then identified and characterized 3,252,194 SNPs, 213,181 short InDels (1–5 bp) and 39,631 structural variations (greater than 5 bp). Of those, 312,511 (9.6%) SNPs were novel compared to the most detailed haplotype map (HapMap) SNP database of maize. Characterization of variations in reported kernel row number (KRN) related genes and KRN QTL regions revealed potential causal mutations in fea2, td1, kn1, and te1. Genome-wide comparisons revealed abundant genetic variations in Four-row Wax, which may be associated with environmental adaptation. The sequence and SNP variations described here enrich genetic resources of maize, and provide guidance into study of seed numbers for crop yield improvement. PMID:27242868
Curran, Kassie L; Festa, Adam R; Goddard, Scott D; Harrigan, George G; Taylor, Mary L
2015-03-25
Monsanto Co. has developed two sweet corn hybrids, MON 88017 and MON 89034, that contain biotechnology-derived (biotech) traits designed to enhance sustainability and improve agronomic practices. MON 88017 confers benefits of glyphosate tolerance and protection against corn rootworm. MON 89034 provides protection against European corn borer and other lepidopteran insect pests. The purpose of this assessment was to compare the kernel compositions of MON 88017 and MON 89034 sweet corn with that of a conventional control that has a genetic background similar to the biotech sweet corn but does not express the biotechnology-derived traits. The sweet corn samples were grown at five replicated sites in the United States during the 2010 growing season and the conventional hybrid and 17 reference hybrids were grown concurrently to provide an estimate of natural variability for all assessed components. The compositional analysis included proximates, fibers, amino acids, sugars, vitamins, minerals, and selected metabolites. Results highlighted that MON 88017 and MON 89034 sweet corns were compositionally equivalent to the conventional control and that levels of the components essential to the desired properties of sweet corn, such as sugars and vitamins, were more affected by growing environment than the biotech traits. In summary, the benefits of biotech traits can be incorporated into sweet corn with no adverse effects on nutritional quality.
Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q
2017-03-22
Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.
Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi
2017-01-18
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.
NASA Astrophysics Data System (ADS)
Anderegg, L. D.; Berner, L. T.; Badgley, G.; Hillerislambers, J.; Law, B. E.
2017-12-01
Functional traits could facilitate ecological prediction by provide scale-free tools for modeling ecosystem function. Yet much of their utility lies in three key assumptions: 1) that global patterns of trait covariation are the result of universal trade-offs independent of taxonomic scale, so empirical trait-trait relationships can be used to constrain vegetation models 2) that traits respond predictably to environmental gradients and can therefore be reliably quantified to parameterize models and 3) that well sampled traits influence productivity. We use an extensive dataset of within-species leaf trait variation in North American conifers combined with global leaf trait datasets to test these assumptions. We examine traits central to the `leaf economics spectrum', and quantify patterns of trait variation at multiple taxonomic scales. We also test whether site environment explains geographic trait variation within conifers, and ask whether foliar traits explain geographic variation in relative growth rates. We find that most leaf traits vary primarily between rather than within species globally, but that a large fraction of within-PFT trait variation is within-species. We also find that some leaf economics spectrum relationships differ in sign within versus between species, particularly the relationship between leaf lifespan and LMA. In conifers, we find weak and inconsistent relationships between site environment and leaf traits, making it difficult capture within-species leaf trait variation for regional model parameterization. Finally, we find limited relationships between tree relative growth rate and any foliar trait other than leaf lifespan, with leaf traits jointly explaining 42% of within-species growth variation but environmental factors explaining 77% of variation. We suggest that additional traits, particularly whole plant allometry/allocation traits may be better than leaf traits for improving vegetation model performance at smaller taxonomic and spatial scales.
Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials
NASA Astrophysics Data System (ADS)
Kalla, C.; Korotkin, D.
2014-11-01
In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.
Lesage, Véronique S; Merlino, Marielle; Chambon, Christophe; Bouchet, Brigitte; Marion, Didier; Branlard, Gérard
2012-01-01
Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.
Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance.
Ni, Xinzhi; Xu, Wenwei; Blanco, Michael H; Wilson, Jeffrey P
2012-08-01
Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.
KMgene: a unified R package for gene-based association analysis for complex traits.
Yan, Qi; Fang, Zhou; Chen, Wei; Stegle, Oliver
2018-02-09
In this report, we introduce an R package KMgene for performing gene-based association tests for familial, multivariate or longitudinal traits using kernel machine (KM) regression under a generalized linear mixed model (GLMM) framework. Extensive simulations were performed to evaluate the validity of the approaches implemented in KMgene. http://cran.r-project.org/web/packages/KMgene. qi.yan@chp.edu or wei.chen@chp.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.
A survey of kernel-type estimators for copula and their applications
NASA Astrophysics Data System (ADS)
Sumarjaya, I. W.
2017-10-01
Copulas have been widely used to model nonlinear dependence structure. Main applications of copulas include areas such as finance, insurance, hydrology, rainfall to name but a few. The flexibility of copula allows researchers to model dependence structure beyond Gaussian distribution. Basically, a copula is a function that couples multivariate distribution functions to their one-dimensional marginal distribution functions. In general, there are three methods to estimate copula. These are parametric, nonparametric, and semiparametric method. In this article we survey kernel-type estimators for copula such as mirror reflection kernel, beta kernel, transformation method and local likelihood transformation method. Then, we apply these kernel methods to three stock indexes in Asia. The results of our analysis suggest that, albeit variation in information criterion values, the local likelihood transformation method performs better than the other kernel methods.
del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.
2016-01-01
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470
Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L
2016-01-01
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.
NASA Astrophysics Data System (ADS)
Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.
Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.
Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C
2016-07-01
Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
NASA Astrophysics Data System (ADS)
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
USDA-ARS?s Scientific Manuscript database
Effect of moisture content variation on the accuracy of single kernel deoxynivalenol (DON) prediction by near-infrared (NIR) spectroscopy was investigated. Sample moisture content (MC) considerably affected accuracy of the current NIR DON calibration by underestimating or over estimating DON at high...
Genetic analysis of teosinte alleles for kernel composition traits in maize
USDA-ARS?s Scientific Manuscript database
Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared to maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic ...
Broken rice kernels and the kinetics of rice hydration and texture during cooking.
Saleh, Mohammed; Meullenet, Jean-Francois
2013-05-01
During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.
Pluck or Luck: Does Trait Variation or Chance Drive Variation in Lifetime Reproductive Success?
Snyder, Robin E; Ellner, Stephen P
2018-04-01
While there has been extensive interest in how intraspecific trait variation affects ecological processes, outcomes are highly variable even when individuals are identical: some are lucky, while others are not. Trait variation is therefore important only if it adds substantially to the variability produced by luck. We ask when trait variation has a substantial effect on variability in lifetime reproductive success (LRS), using two approaches: (1) we partition the variation in LRS into contributions from luck and trait variation and (2) we ask what can be inferred about an individual's traits and with what certainty, given their observed LRS. In theoretical stage- and size-structured models and two empirical case studies, we find that luck usually dominates the variance of LRS. Even when individuals differ substantially in ways that affect expected LRS, unless the effects of luck are substantially reduced (e.g., low variability in reproductive life span or annual fecundity), most variance in lifetime outcomes is due to luck, implying that departures from "null" models omitting trait variation will be hard to detect. Luck also obscures the relationship between realized LRS and individual traits. While trait variation may influence the fate of populations, luck often governs the lives of individuals.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
Morris, Craig F; Beecher, Brian S
2012-07-01
Kernel vitreosity is an important trait of wheat grain, but its developmental control is not completely known. We developed back-cross seven (BC(7)) near-isogenic lines in the soft white spring wheat cultivar Alpowa that lack the distal portion of chromosome 5D short arm. From the final back-cross, 46 BC(7)F(2) plants were isolated. These plants exhibited a complete and perfect association between kernel vitreosity (i.e. vitreous, non-vitreous or mixed) and Single Kernel Characterization System (SKCS) hardness. Observed segregation of 10:28:7 fit a 1:2:1 Chi-square. BC(7)F(2) plants classified as heterozygous for both SKCS hardness and kernel vitreosity (n = 29) were selected and a single vitreous and non-vitreous kernel were selected, and grown to maturity and subjected to SKCS analysis. The resultant phenotypic ratios were, from non-vitreous kernels, 23:6:0, and from vitreous kernels, 0:1:28, soft:heterozygous:hard, respectively. Three of these BC(7)F(2) heterozygous plants were selected and 40 kernels each drawn at random, grown to maturity and subjected to SKCS analysis. Phenotypic segregation ratios were 7:27:6, 11:20:9, and 3:28:9, soft:heterozygous:hard. Chi-square analysis supported a 1:2:1 segregation for one plant but not the other two, in which cases the two homozygous classes were under-represented. Twenty-two paired BC(7)F(2):F(3) full sibs were compared for kernel hardness, weight, size, density and protein content. SKCS hardness index differed markedly, 29.4 for the lines with a complete 5DS, and 88.6 for the lines possessing the deletion. The soft non-vitreous kernels were on average significantly heavier, by nearly 20%, and were slightly larger. Density and protein contents were similar, however. The results provide strong genetic evidence that gene(s) on distal 5DS control not only kernel hardness but also the manner in which the endosperm develops, viz. whether it is vitreous or non-vitreous.
Johnson, M T J; Agrawal, A A; Maron, J L; Salminen, J-P
2009-06-01
This study explored genetic variation and co-variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life-history traits and secondary chemistry together explained a large proportion of variation in herbivory (r(2) = 0.73). At the same time, selection acted on lifetime biomass, life-history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant-herbivore interactions.
USDA-ARS?s Scientific Manuscript database
1. Plant functional traits provide a mechanistic basis for understanding ecological variation among plant species and the implications of this variation for species distribution, community assembly and restoration. 2. The bulk of our functional trait understanding, however, is centered on traits rel...
USDA-ARS?s Scientific Manuscript database
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the genetic consequences of artificial (human) selection on agronomic traits that are relevant today. The major consequence is severe reduction in genetic diversity for genes unde...
ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed1[OPEN
Magallanes-Lundback, Maria; Lipka, Alexander E.; Angelovici, Ruthie; DellaPenna, Dean
2016-01-01
Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species. PMID:27208224
Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2017-05-01
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.
Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S.; Jha, Shailendra K.; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S.; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker
2015-01-01
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield. PMID:26406470
Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker
2015-01-01
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield.
Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
NASA Astrophysics Data System (ADS)
Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.
2018-06-01
Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.
Kernel analysis of partial least squares (PLS) regression models.
Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro
2011-05-01
An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.
Intraspecific variability and reaction norms of forest understory plant species traits
Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.
2017-01-01
Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species rankings and scale between community and ecosystem levels using trait-based models. Investigators may therefore focus on obtaining a sufficient sample size within a single set of conditions rather than characterizing trait variation across entire gradients in order to optimize sampling efforts.
TRY – a global database of plant traits
Kattge, J; Díaz, S; Lavorel, S; Prentice, I C; Leadley, P; Bönisch, G; Garnier, E; Westoby, M; Reich, P B; Wright, I J; Cornelissen, J H C; Violle, C; Harrison, S P; Van Bodegom, P M; Reichstein, M; Enquist, B J; Soudzilovskaia, N A; Ackerly, D D; Anand, M; Atkin, O; Bahn, M; Baker, T R; Baldocchi, D; Bekker, R; Blanco, C C; Blonder, B; Bond, W J; Bradstock, R; Bunker, D E; Casanoves, F; Cavender-Bares, J; Chambers, J Q; Chapin, F S; Chave, J; Coomes, D; Cornwell, W K; Craine, J M; Dobrin, B H; Duarte, L; Durka, W; Elser, J; Esser, G; Estiarte, M; Fagan, W F; Fang, J; Fernández-Méndez, F; Fidelis, A; Finegan, B; Flores, O; Ford, H; Frank, D; Freschet, G T; Fyllas, N M; Gallagher, R V; Green, W A; Gutierrez, A G; Hickler, T; Higgins, S I; Hodgson, J G; Jalili, A; Jansen, S; Joly, C A; Kerkhoff, A J; Kirkup, D; Kitajima, K; Kleyer, M; Klotz, S; Knops, J M H; Kramer, K; Kühn, I; Kurokawa, H; Laughlin, D; Lee, T D; Leishman, M; Lens, F; Lenz, T; Lewis, S L; Lloyd, J; Llusià, J; Louault, F; Ma, S; Mahecha, M D; Manning, P; Massad, T; Medlyn, B E; Messier, J; Moles, A T; Müller, S C; Nadrowski, K; Naeem, S; Niinemets, Ü; Nöllert, S; Nüske, A; Ogaya, R; Oleksyn, J; Onipchenko, V G; Onoda, Y; Ordoñez, J; Overbeck, G; Ozinga, W A; Patiño, S; Paula, S; Pausas, J G; Peñuelas, J; Phillips, O L; Pillar, V; Poorter, H; Poorter, L; Poschlod, P; Prinzing, A; Proulx, R; Rammig, A; Reinsch, S; Reu, B; Sack, L; Salgado-Negret, B; Sardans, J; Shiodera, S; Shipley, B; Siefert, A; Sosinski, E; Soussana, J-F; Swaine, E; Swenson, N; Thompson, K; Thornton, P; Waldram, M; Weiher, E; White, M; White, S; Wright, S J; Yguel, B; Zaehle, S; Zanne, A E; Wirth, C
2011-01-01
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
Fajardo, Alex; Piper, Frida I
2011-01-01
• The focus of the trait-based approach to study community ecology has mostly been on trait comparisons at the interspecific level. Here we quantified intraspecific variation and covariation of leaf mass per area (LMA) and wood density (WD) in monospecific forests of the widespread tree species Nothofagus pumilio to determine its magnitude and whether it is related to environmental conditions and ontogeny. We also discuss probable mechanisms controlling the trait variation found. • We collected leaf and stem woody tissues from 30-50 trees of different ages (ontogeny) from each of four populations at differing elevations (i.e. temperatures) and placed at each of three locations differing in soil moisture. • The total variation in LMA (coefficient of variation (CV) = 21.14%) was twice that of WD (CV = 10.52%). The total variation in traits was never less than 23% when compared with interspecific studies. Differences in elevation (temperature) for the most part explained variation in LMA, while differences in soil moisture and ontogeny explained the variation in WD. Traits covaried similarly in the altitudinal gradient only. • Functional traits of N. pumilio exhibited nonnegligible variation; LMA varied for the most part with temperature, while WD mostly varied with moisture and ontogeny. We demonstrate that environmental variation can cause important trait variation without species turnover. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Within-species patterns challenge our understanding of the leaf economics spectrum.
Anderegg, Leander D L; Berner, Logan T; Badgley, Grayson; Sethi, Meera L; Law, Beverly E; HilleRisLambers, Janneke
2018-05-01
The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait-trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy. © 2018 John Wiley & Sons Ltd/CNRS.
A self-calibrated angularly continuous 2D GRAPPA kernel for propeller trajectories
Skare, Stefan; Newbould, Rexford D; Nordell, Anders; Holdsworth, Samantha J; Bammer, Roland
2008-01-01
The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging (PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the angular variation of the weights is parameterized. This new angularly continuous kernel formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing the generation of fully sampled diagnostic quality images using only the undersampled propeller data. PMID:19025911
NASA Astrophysics Data System (ADS)
Mancinelli, N. J.; Fischer, K. M.
2018-03-01
We characterize the spatial sensitivity of Sp converted waves to improve constraints on lateral variations in uppermost-mantle velocity gradients, such as the lithosphere-asthenosphere boundary (LAB) and the mid-lithospheric discontinuities. We use SPECFEM2D to generate 2-D scattering kernels that relate perturbations from an elastic half-space to Sp waveforms. We then show that these kernels can be well approximated using ray theory, and develop an approach to calculating kernels for layered background models. As proof of concept, we show that lateral variations in uppermost-mantle discontinuity structure are retrieved by implementing these scattering kernels in the first iteration of a conjugate-directions inversion algorithm. We evaluate the performance of this technique on synthetic seismograms computed for 2-D models with undulations on the LAB of varying amplitude, wavelength and depth. The technique reliably images the position of discontinuities with dips <35° and horizontal wavelengths >100-200 km. In cases of mild topography on a shallow LAB, the relative brightness of the LAB and Moho converters approximately agrees with the ratio of velocity contrasts across the discontinuities. Amplitude retrieval degrades at deeper depths. For dominant periods of 4 s, the minimum station spacing required to produce unaliased results is 5 km, but the application of a Gaussian filter can improve discontinuity imaging where station spacing is greater.
Zou, Jun; Iqbal, Muhammad; Chen, Hua; Asif, Mohammad; N’Diaye, Amidou; Navabi, Alireza; Perez-Lara, Enid; Pozniak, Curtis; Yang, Rong-Cai; Randhawa, Harpinder; Spaner, Dean
2017-01-01
Recently, we investigated the effect of the wheat 90K single nucleotide polymorphic (SNP) array and three gene-specific (Ppd-D1, Vrn-A1 and Rht-B1) markers on quantitative trait loci (QTL) detection in a recombinant inbred lines (RILs) population derived from a cross between two spring wheat (Triticum aestivum L.) cultivars, ‘Attila’ and ‘CDC Go’, and evaluated for eight agronomic traits at three environments under organic management. The objectives of the present study were to investigate the effect of conventional management on QTL detection in the same mapping population using the same set of markers as the organic management and compare the results with organic management. Here, we evaluated 167 RILs for number of tillers (tillering), flowering time, maturity, plant height, test weight (grain volume weight), 1000 kernel weight, grain yield, and grain protein content at seven conventionally managed environments from 2008 to 2014. Using inclusive composite interval mapping (ICIM) on phenotypic data averaged across seven environments and a subset of 1203 informative markers (1200 SNPs and 3 gene specific markers), we identified a total of 14 QTLs associated with flowering time (1), maturity (2), plant height (1), grain yield (1), test weight (2), kernel weight (4), tillering (1) and grain protein content (2). Each QTL individually explained from 6.1 to 18.4% of the phenotypic variance. Overall, the QTLs associated with each trait explained from 9.7 to 35.4% of the phenotypic and from 22.1 to 90.8% of the genetic variance. Three chromosomal regions on chromosomes 2D (61–66 cM), 4B (80–82 cM) and 5A (296–297 cM) harbored clusters of QTLs associated with two to three traits. The coincidental region on chromosome 5A harbored QTL clusters for both flowering and maturity time, and mapped about 2 cM proximal to the Vrn-A1 gene, which was in high linkage disequilibrium (0.70 ≤ r2 ≤ 0.75) with SNP markers that mapped within the QTL confidence interval. Six of the 14 QTLs (one for flowering time and plant height each, and two for maturity and kernel weight each) were common between the conventional and organic management systems, which suggests issues in directly utilizing gene discovery results based on conventional management to make in detail selection (decision) for organic management. PMID:28158253
Inter- and intraspecific variation in leaf economic traits in wheat and maize.
Martin, Adam R; Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F
2018-02-01
Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates ( A max ) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on A max ; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in A max and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.
Relationship of source and sink in determining kernel composition of maize
Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.
2010-01-01
The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600
Mbunwen, Ndofor-Foleng Harriet; Ngongeh, Lucas Atehmengo; Okolie, Peter Nzeribe; Okoli, Emeka Linus
2015-08-01
One hundred fifty Anak and 120 Nigerian heavy local ecotype (NHLE) chickens were used to study the effects of feeding graded levels of mango seed kernel meal (MKM) replacing maize diet on growth traits and haematological parameters. A 2 × 5 factorial arrangement was employed: two breeds and five diets. The birds were randomly allocated to five finisher diets formulated such that MKM replaced maize at 0, 10, 20, 30 and 40% (T1, T2, T3, T4 and T5) inclusion levels, respectively. The effect of breed and dietary treatments on growth performance and blood characteristics were determined. The results showed a significant (P < 0.05) breed effect on body weight and gain, shank length, thigh length, body width and body length. The growth traits of Anak breed were found to be superior to NHLE chickens. Within treatments, chicks on T1, T2 and T3, grew heavier than those on T4 and T5. However, feed intake, feed conversion ratio (FCR) and haematological indices (RBC, Hb, MCV, MCH and MCHC count) were not significant (P > 0.05) when the breeds and treatments were compared. It was concluded that inclusion of dietary MKM below 30% could replace maize in the diets of Anak and NHLE growing chickens without adverse effect on growth performance and blood constituents. This work suggests that genetic differences exist in growth traits of these breeds of chickens. This advantage could be useful in breed improvement programmes and better feeding managements of the NHLE and Anak chickens.
Factor regression for interpreting genotype-environment interaction in bread-wheat trials.
Baril, C P
1992-05-01
The French INRA wheat (Triticum aestivum L. em Thell.) breeding program is based on multilocation trials to produce high-yielding, adapted lines for a wide range of environments. Differential genotypic responses to variable environment conditions limit the accuracy of yield estimations. Factor regression was used to partition the genotype-environment (GE) interaction into four biologically interpretable terms. Yield data were analyzed from 34 wheat genotypes grown in four environments using 12 auxiliary agronomic traits as genotypic and environmental covariates. Most of the GE interaction (91%) was explained by the combination of only three traits: 1,000-kernel weight, lodging susceptibility and spike length. These traits are easily measured in breeding programs, therefore factor regression model can provide a convenient and useful prediction method of yield.
Inter- and intraspecific variation in leaf economic traits in wheat and maize
Hale, Christine E; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph; Gough, William A; Kattge, Jens; Tirona, Cairan K F
2018-01-01
Abstract Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world’s most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait–environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species. PMID:29484152
Veltsos, P; Gregson, E; Morrissey, B; Slate, J; Hoikkala, A; Butlin, R K; Ritchie, M G
2015-01-01
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power. PMID:26198076
Facial recognition using multisensor images based on localized kernel eigen spaces.
Gundimada, Satyanadh; Asari, Vijayan K
2009-06-01
A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.
The capture of heritable variation for genetic quality through social competition.
Wolf, Jason B; Harris, W Edwin; Royle, Nick J
2008-09-01
In theory, females of many species choose mates based on traits that are indicators of male genetic quality. A fundamental question in evolutionary biology is why genetic variation for such indicator traits persists despite strong persistent selection imposed by female preference, which is known as the lek paradox. One potential solution to the lek paradox suggests that the traits that are targets of mate choice should evolve condition-dependent expression and that condition should have a large genetic variance. Condition is expected to exhibit high genetic variance because it is affected by a large number of physiological processes and hence, condition-dependent traits should 'capture' variation contributed by a large number of loci. We suggest that a potentially important cause of variation in condition is competition for limited resources. Here, we discuss a pair of models to analyze the evolutionary genetics of traits affected by success in social competition for resources. We show that competition can contribute to genetic variation of 'competition-dependent' traits that have fundamentally different evolutionary properties than other sources of variation. Competition dependence can make traits honest indicators of genetic quality by revealing the relative competitive ability of males, can provide a component of heritable variation that does not contribute to trait evolution, and can help maintain heritable variation under directional selection. Here we provide a general introduction to the concept of competition dependence and briefly introduce two models to demonstrate the potential evolutionary consequences of competition-dependent trait expression.
NASA Astrophysics Data System (ADS)
Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong
2017-08-01
Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction.
Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong
2017-08-01
Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction. Copyright © 2017. Published by Elsevier Inc.
Liu, Guozheng; Zhao, Yusheng; Gowda, Manje; Longin, C. Friedrich H.; Reif, Jochen C.; Mette, Michael F.
2016-01-01
Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the training population on the accuracy of prediction of hybrid performance. In total 135 inbred lines of Central European bread wheat (Triticum aestivum L.) and 1,604 hybrids derived from them were evaluated for seven quality traits in up to six environments. The 135 parental lines were genotyped using a 90k single-nucleotide polymorphism array. Genome-wide association mapping initially suggested presence of several quantitative trait loci (QTLs), but cross-validation rather indicated the absence of major effect QTLs for all quality traits except of 1000-kernel weight. Genomic selection substantially outperformed marker-assisted selection in predicting hybrid performance. A resampling study revealed that increasing the effective population size in the estimation set of hybrids is relevant to boost the accuracy of prediction for an unrelated test population. PMID:27383841
ERIC Educational Resources Information Center
MacIntyre, Peter D.
2007-01-01
Previous research has devoted a great deal of attention to describing the long-term patterns and relationships among trait-level or situation-specific variables. The present discussion extracts kernels of wisdom, based on the literatures on language anxiety and language learning motivation, that are used to frame the argument that choosing to…
Decomposing functional trait associations in a Chinese subtropical forest
Pei, Kequan; Kéry, Marc; Niklaus, Pascal A.; Schmid, Bernhard
2017-01-01
Functional traits, properties of organisms correlated with ecological performance, play a central role in plant community assembly and functioning. To some extents, functional traits vary in concert, reflecting fundamental ecological strategies. While “trait syndromes” characteristic of e.g. fast-growing, early-successional vs. competitive, late-successional species are recognized in principle, less is known about the environmental and genetic factors at the source of trait variation and covariation within plant communities. We studied the three leaf traits leaf half-life (LHL), leaf mass per area (LMA) and nitrogen concentration in green leaves (Ngreen) and the wood trait wood density (WD) in 294 individuals belonging to 45 tree or shrub species in a Chinese subtropical forest from September 2006 to January 2009. Using multilevel ANOVA and decomposition of sums of products, we estimated the amount of trait variation and covariation among species (mainly genetic causes), i.e. plant functional type (deciduous vs. evergreen species), growth form (tree vs. shrub species), family/genus/species differences, and within species (mainly environmental causes), i.e. individual and season. For single traits, the variation between functional types and among species within functional types was large, but only LMA and Ngreen varied significantly among families and thus showed phylogenetic signal. Trait variation among individuals within species was small, but large temporal variation due to seasonal effects was found within individuals. We did not find any trait variation related to soil conditions underneath the measured individuals. For pairs of traits, variation between functional types and among species within functional types was large, reflecting a strong evolutionary coordination of the traits, with LMA, LHL and WD being positively correlated among each other and negatively with Ngreen. This integration of traits was consistent with a putative stem-leaf economics spectrum ranging from deciduous species with thin, high-nitrogen leaves and low-density wood to evergreen species with thick, low-nitrogen leaves and dense wood and was not influenced by phylogenetic history. Trait coordination within species was weak, allowing individual trees to deviate from the interspecific trait coordination and thus respond flexibly to environmental heterogeneity. Our findings suggest that within a single woody plant community variation and covariation in functional traits allows a large number of species to co-exist and cover a broad spectrum of multivariate niche space, which in turn may increase total resource extraction by the community and community functioning. PMID:28419169
Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities
Kembel, Steven W.; Cahill, James F.
2011-01-01
In this study, we used data from temperate grassland plant communities in Alberta, Canada to test two longstanding hypotheses in ecology: 1) that there has been correlated evolution of the leaves and roots of plants due to selection for an integrated whole-plant resource uptake strategy, and 2) that trait diversity in ecological communities is generated by adaptations to the conditions in different habitats. We tested the first hypothesis using phylogenetic comparative methods to test for evidence of correlated evolution of suites of leaf and root functional traits in these grasslands. There were consistent evolutionary correlations among traits related to plant resource uptake strategies within leaf tissues, and within root tissues. In contrast, there were inconsistent correlations between the traits of leaves and the traits of roots, suggesting different evolutionary pressures on the above and belowground components of plant morphology. To test the second hypothesis, we evaluated the relative importance of two components of trait diversity: within-community variation (species trait values relative to co-occurring species; α traits) and among-community variation (the average trait value in communities where species occur; β traits). Trait diversity was mostly explained by variation among co-occurring species, not among-communities. Additionally, there was a phylogenetic signal in the within-community trait values of species relative to co-occurring taxa, but not in their habitat associations or among-community trait variation. These results suggest that sorting of pre-existing trait variation into local communities can explain the leaf and root trait diversity in these grasslands. PMID:21687704
Kernel machine methods for integrative analysis of genome-wide methylation and genotyping studies.
Zhao, Ni; Zhan, Xiang; Huang, Yen-Tsung; Almli, Lynn M; Smith, Alicia; Epstein, Michael P; Conneely, Karen; Wu, Michael C
2018-03-01
Many large GWAS consortia are expanding to simultaneously examine the joint role of DNA methylation in addition to genotype in the same subjects. However, integrating information from both data types is challenging. In this paper, we propose a composite kernel machine regression model to test the joint epigenetic and genetic effect. Our approach works at the gene level, which allows for a common unit of analysis across different data types. The model compares the pairwise similarities in the phenotype to the pairwise similarities in the genotype and methylation values; and high correspondence is suggestive of association. A composite kernel is constructed to measure the similarities in the genotype and methylation values between pairs of samples. We demonstrate through simulations and real data applications that the proposed approach can correctly control type I error, and is more robust and powerful than using only the genotype or methylation data in detecting trait-associated genes. We applied our method to investigate the genetic and epigenetic regulation of gene expression in response to stressful life events using data that are collected from the Grady Trauma Project. Within the kernel machine testing framework, our methods allow for heterogeneity in effect sizes, nonlinear, and interactive effects, as well as rapid P-value computation. © 2017 WILEY PERIODICALS, INC.
Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts
NASA Astrophysics Data System (ADS)
Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.
2015-09-01
Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.
Riparian plant litter quality increases with latitude.
Boyero, Luz; Graça, Manuel A S; Tonin, Alan M; Pérez, Javier; J Swafford, Andrew; Ferreira, Verónica; Landeira-Dabarca, Andrea; A Alexandrou, Markos; Gessner, Mark O; McKie, Brendan G; Albariño, Ricardo J; Barmuta, Leon A; Callisto, Marcos; Chará, Julián; Chauvet, Eric; Colón-Gaud, Checo; Dudgeon, David; Encalada, Andrea C; Figueroa, Ricardo; Flecker, Alexander S; Fleituch, Tadeusz; Frainer, André; Gonçalves, José F; Helson, Julie E; Iwata, Tomoya; Mathooko, Jude; M'Erimba, Charles; Pringle, Catherine M; Ramírez, Alonso; Swan, Christopher M; Yule, Catherine M; Pearson, Richard G
2017-09-05
Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.
2009-01-01
Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenihan, Elizabeth M
The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch wasmore » representative of typical corn starch. The values for each ratio within a mutant type were unique (α < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T oG), narrower range of gelatinization (R G), and greater enthalpy of gelatinization (ΔH G). The coolest location, Illinois, generally resulted in starch with lower T oG, wider R G, and lower ΔH G. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC. The T oG tended to decrease during maturation of the kernel, whereas theΔH G tended not to change. Retrogradation parameters did not vary greatly among days after pollination (DAP) and between locations. Genotypes were affected differently by environments and significant interactions were found between genotype, environment,and DAP.« less
National Character Does Not Reflect Mean Personality Trait Levels in 49 Cultures
Abdel-Khalek, A. M.; Ádám, N.; Adamovová, L.; Ahn, C.-k.; Ahn, H.-n.; Alansari, B. M.; Alcalay, L.; Allik, J.; Angleitner, A.; Avia, A.; Ayearst, L. E.; Barbaranelli, C.; Beer, A.; Borg-Cunen, M. A.; Bratko, D.; Brunner-Sciarra, M.; Budzinski, L.; Camart, N.; Dahourou, D.; De Fruyt, F.; de Lima, M. P.; del Pilar, G. E. H.; Diener, E.; Falzon, R.; Fernando, K.; Ficková, E.; Fischer, R.; Flores-Mendoza, C.; Ghayur, M. A.; Gülgöz, S.; Hagberg, B.; Halberstadt, J.; Halim, M. S.; Hřebíčková, M.; Humrichouse, J.; Jensen, H. H.; Jocic, D. D.; Jónsson, F. H.; Khoury, B.; Klinkosz, W.; Knežević, G.; Lauri, M. A.; Leibovich, N.; Martin, T. A.; Marušić, I.; Mastor, K. A.; Matsumoto, D.; McRorie, M.; Meshcheriakov, B.; Mortensen, E. L.; Munyae, M.; Nagy, J.; Nakazato, K.; Nansubuga, F.; Oishi, S.; Ojedokun, A. O.; Ostendorf, F.; Paulhus, D. L.; Pelevin, S.; Petot, J.-M.; Podobnik, N.; Porrata, J. L.; Pramila, V. S.; Prentice, G.; Realo, A.; Reátegui, N.; Rolland, J.-P.; Rossier, J.; Ruch, W.; Rus, V. S.; Sánchez-Bernardos, M. L.; Schmidt, V.; Sciculna-Calleja, S.; Sekowski, A.; Shakespeare-Finch, J.; Shimonaka, Y.; Simonetti, F.; Sineshaw, T.; Siuta, J.; Smith, P. B.; Trapnell, P. D.; Trobst, K. K.; Wang, L.; Yik, M.; Zupančič, A.
2009-01-01
Most people hold beliefs about personality characteristics typical of members of their own and others' cultures. These perceptions of national character may be generalizations from personal experience, stereotypes with a “kernel of truth,” or inaccurate stereotypes. We obtained national character ratings (N = 3,989) from 49 cultures and compared them to the average personality scores of culture members assessed by observer ratings and self-reports. National character ratings were reliable, but did not converge with assessed traits (Mdn r = .04). Perceptions of national character thus appear to be unfounded stereotypes that may serve the function of maintaining a national identity. PMID:16210536
Framework for analyzing ecological trait-based models in multidimensional niche spaces
NASA Astrophysics Data System (ADS)
Biancalani, Tommaso; DeVille, Lee; Goldenfeld, Nigel
2015-05-01
We develop a theoretical framework for analyzing ecological models with a multidimensional niche space. Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community interaction matrix of these models, making it possible to predict the conditions for niche differentiation and, close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our method using the Lotka-Volterra equations with an exponential competition kernel.
Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel
NASA Astrophysics Data System (ADS)
Pai, Akshay; Sommer, Stefan; Sørensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads
2015-03-01
Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (p<0.05 in amygdala) and B-Spline freeform deformation (p<0.05 in amygdala and cortical gray matter).
Half-blind remote sensing image restoration with partly unknown degradation
NASA Astrophysics Data System (ADS)
Xie, Meihua; Yan, Fengxia
2017-01-01
The problem of image restoration has been extensively studied for its practical importance and theoretical interest. This paper mainly discusses the problem of image restoration with partly unknown kernel. In this model, the degraded kernel function is known but its parameters are unknown. With this model, we should estimate the parameters in Gaussian kernel and the real image simultaneity. For this new problem, a total variation restoration model is put out and an intersect direction iteration algorithm is designed. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measurement (SSIM) are used to measure the performance of the method. Numerical results show that we can estimate the parameters in kernel accurately, and the new method has both much higher PSNR and much higher SSIM than the expectation maximization (EM) method in many cases. In addition, the accuracy of estimation is not sensitive to noise. Furthermore, even though the support of the kernel is unknown, we can also use this method to get accurate estimation.
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction
Bandeira e Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose
2017-01-01
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. PMID:28455415
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose
2017-06-07
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.
Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala
2011-11-01
Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.
NASA Astrophysics Data System (ADS)
Hsieh, M.; Zhao, L.; Ma, K.
2010-12-01
Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.
Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.
Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang
2016-02-01
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.
NASA Astrophysics Data System (ADS)
Li, Y.; Flanner, M.
2017-12-01
Accelerating surface melt on the Greenland Ice Sheet (GrIS) has led to a doubling of Greenland's contribution to global sea level rise during recent decades. The darkening effect due to black carbon (BC), dust, and other light absorbing impurities (LAI) enhances snow melt by boosting its absorption of solar energy. It is therefore important for coupled aerosol-climate and ice sheet models to include snow darkening effects from LAI, and yet most do not. In this study, we develop an aerosol deposition—snow melt kernel based on the Community Earth System Model (CESM) to investigate changes in melt flux due to variations in the amount and timing of aerosol deposition on the GrIS. The Community Land Model (CLM) component of CESM is driven with a large range of aerosol deposition fluxes to determine non-linear relationships between melt perturbation and deposition amount occurring in different months and location (thereby capturing variations in base state associated with elevation and latitude). The kernel product will include climatological-mean effects and standard deviations associated with interannual variability. Finally, the kernel will allow aerosol deposition fluxes from any global or regional aerosol model to be translated into surface melt perturbations of the GrIS, thus extending the utility of state-of-the-art aerosol models.
Nutritional composition of shea products and chemical properties of shea butter: a review.
Honfo, Fernande G; Akissoe, Noel; Linnemann, Anita R; Soumanou, Mohamed; Van Boekel, Martinus A J S
2014-01-01
Increasing demand of shea products (kernels and butter) has led to the assessment of the state-of-the-art of these products. In this review, attention has been focused on macronutrients and micronutrients of pulp, kernels, and butter of shea tree and also the physicochemical properties of shea butter. Surveying the literature revealed that the pulp is rich in vitamin C (196.1 mg/100 g); consumption of 50 g covers 332% and 98% of the recommended daily intake (RDI) of children (4-8 years old) and pregnant women, respectively. The kernels contain a high level of fat (17.4-59.1 g/100 g dry weight). Fat extraction is mainly done by traditional methods that involve roasting and pressing of the kernels, churning the obtained liquid with water, boiling, sieving, and cooling. The fat (butter) is used in food preparation and medicinal and cosmetics industries. Its biochemical properties indicate some antioxidant and anti-inflammatory activities. Large variations are observed in the reported values for the composition of shea products. Recommendations for future research are presented to improve the quality and the shelf-life of the butter. In addition, more attention should be given to the accuracy and precision in experimental analyses to obtain more reliable information about biological variation.
Picot, Adeline; Barreau, Christian; Pinson-Gadais, Laëtitia; Piraux, François; Caron, Daniel; Lannou, Christian; Richard-Forget, Florence
2011-01-01
The fungal pathogen Fusarium verticillioides infects maize ears and produces fumonisins, known for their adverse effects on human and animal health. Basic questions remain unanswered regarding the kernel stage(s) associated with fumonisin biosynthesis and the kernel components involved in fumonisin regulation during F. verticillioides-maize interaction under field conditions. In this 2-year field study, the time course of F. verticillioides growth and fumonisin accumulation in developing maize kernels, along with the variations in kernel pH and amylopectin content, were monitored using relevant and accurate analytical tools. In all experiments, the most significant increase in fumonisin accumulation or in fumonisin productivity (i.e., fumonisin production per unit of fungus) was shown to occur within a very short period of time, between 22/32 and 42 days after inoculation and corresponding to the dent stage. This stage was also characterized by acidification in the kernel pH and a maximum level of amylopectin content. Our data clearly support published results based on in vitro experiments suggesting that the physiological stages of the maize kernel play a major role in regulating fumonisin production. Here we have validated this result for in planta and field conditions, and we demonstrate that under such conditions the dent stage is the most conducive for fumonisin accumulation. PMID:21984235
Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.
2013-01-01
Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041
Environment-dependent variation in selection on life history across small spatial scales.
Lange, Rolanda; Monro, Keyne; J Marshall, Dustin
2016-10-01
Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402
An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain
Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng
2011-01-01
The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818
Takahashi, Kazuo H
2015-11-01
Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist. © 2015 John Wiley & Sons Ltd.
On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits
NASA Astrophysics Data System (ADS)
Nunes, Matheus H.; Davey, Matthew P.; Coomes, David A.
2017-07-01
Understanding the causes of variation in functional plant traits is a central issue in ecology, particularly in the context of global change. Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar traits, but few studies have evaluated its accuracy when assessing phenotypic variation in multiple traits. Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is greater between tree species or soil type, and (ii) whether field spectroscopy is effective at predicting intraspecific variation in leaf traits as well as interspecific differences. Analysis of variance showed that interspecific differences in traits were generally much stronger than intraspecific differences related to soil type, accounting for 25 % versus 5 % of total trait variation, respectively. Structural traits, phenolic defences and pigments were barely affected by soil type. In contrast, foliar concentrations of rock-derived nutrients did vary: P and K concentrations were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations were all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 400 to 2500 nm reflectance spectra collected by field spectroscopy using partial least square regression, a method that is commonly employed in chemometrics. Pigments were best modelled using reflectance data from the visible region (400-700 nm), while all other traits were best modelled using reflectance data from the shortwave infrared region (1100-2500 nm). Spectroscopy delivered accurate predictions of species-level variation in traits. However, it was ineffective at detecting intraspecific variation in rock-derived nutrients (with the notable exception of P). The explanation for this failure is that rock-derived elements do not have absorption features in the 400-2500 nm region, and their estimation is indirect, relying on elemental concentrations covarying with structural traits that do have absorption features in that spectral region (constellation effects
). Since the structural traits did not vary with soil type, it was impossible for our regression models to predict intraspecific variation in rock-derived nutrients via constellation effects. This study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar traits across species, but highlights problems with predicting intraspecific variation indirectly. We discuss the implications of these findings for mapping functional traits by airborne imaging spectroscopy.
Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid
2015-01-01
Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231
Niinemets, Ulo
2015-01-01
The leaf economics spectrum is a general concept describing coordinated variation in foliage structural, chemical and physiological traits across resource gradients. Yet, within this concept,the role of within-species variation, including ecotypic and plastic variation components, has been largely neglected. This study hypothesized that there is a within-species economics spectrum within the general spectrum in the evergreen sclerophyll Quercus ilex which dominates low resource ecosystems over an exceptionally wide range. An extensive database of foliage traits covering the full species range was constructed, and improved filtering algorithms were developed. Standardized data filtering was deemed absolutely essential as additional variation sources can result in trait variation of 10–300%,blurring the broad relationships. Strong trait variation, c. two-fold for most traits to up to almost an order of magnitude, was uncovered.Although the Q. ilex spectrum is part of the general spectrum, within-species trait and climatic relationships in this species partly differed from the overall spectrum. Contrary to world-wide trends, Q. ilex does not necessarily have a low nitrogen content per mass and can increase photosynthetic capacity with increasing foliage robustness. This study argues that the within-species economics spectrum needs to be considered in regional- to biome-level analyses.
There is more to pollinator-mediated selection than pollen limitation.
Sletvold, Nina; Agren, Jon
2014-07-01
Spatial variation in pollinator-mediated selection (Δβpoll ) is a major driver of floral diversification, but we lack a quantitative understanding of its link to pollen limitation (PL) and net selection on floral traits. For 2-5 years, we quantified Δβpoll on floral traits in two populations each of two orchid species differing in PL. In both species, spatiotemporal variation in Δβpoll explained much of the variation in net selection. Selection was consistently stronger and the proportion that was pollinator-mediated was higher in the severely pollen-limited deceptive species than in the rewarding species. Within species, variation in PL could not explain variation in Δβpoll for any trait, indicating that factors influencing the functional relationship between trait variation and pollination success govern a major part of the observed variation in Δβpoll . Separating the effects of variation in mean interaction intensity and in the functional significance of traits will be necessary to understand spatiotemporal variation in selection exerted by the biotic environment. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Robert J. Warren; Jeffrey K. Lake
2012-01-01
Aims: The clustering of plants with similar leaf traits along environmental gradients may arise from adaptation as well as acclimation to heterogeneous habitat conditions. Determining the forces that shape plant leaf traits requires both linking variation in trait morphology with abiotic gradients and linking that trait variation with plant performance under varying...
Zhang, Shujun
2018-01-01
Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896
NASA Astrophysics Data System (ADS)
Kimuli, Daniel; Wang, Wei; Wang, Wei; Jiang, Hongzhe; Zhao, Xin; Chu, Xuan
2018-03-01
A short-wave infrared (SWIR) hyperspectral imaging system (1000-2500 nm) combined with chemometric data analysis was used to detect aflatoxin B1 (AFB1) on surfaces of 600 kernels of four yellow maize varieties from different States of the USA (Georgia, Illinois, Indiana and Nebraska). For each variety, four AFB1 solutions (10, 20, 100 and 500 ppb) were artificially deposited on kernels and a control group was generated from kernels treated with methanol solution. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA) and factorial discriminant analysis (FDA) were applied to explore and classify maize kernels according to AFB1 contamination. PCA results revealed partial separation of control kernels from AFB1 contaminated kernels for each variety while no pattern of separation was observed among pooled samples. A combination of standard normal variate and first derivative pre-treatments produced the best PLSDA classification model with accuracy of 100% and 96% in calibration and validation, respectively, from Illinois variety. The best AFB1 classification results came from FDA on raw spectra with accuracy of 100% in calibration and validation for Illinois and Nebraska varieties. However, for both PLSDA and FDA models, poor AFB1 classification results were obtained for pooled samples relative to individual varieties. SWIR spectra combined with chemometrics and spectra pre-treatments showed the possibility of detecting maize kernels of different varieties coated with AFB1. The study further suggests that increase of maize kernel constituents like water, protein, starch and lipid in a pooled sample may have influence on detection accuracy of AFB1 contamination.
Yan, Kang K; Zhao, Hongyu; Pang, Herbert
2017-12-06
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
Plastic flies: the regulation and evolution of trait variability in Drosophila.
Shingleton, Alexander W; Tang, Hui Yuan
2012-01-01
Individuals within species and populations vary. Such variation arises through environmental and genetic factors and ensures that no two individuals are identical. However, it is clear that not all traits show the same degree of intraspecific variation. Some traits, in particular secondary sexual characteristics used by males to compete for and attract females, are extremely variable among individuals in a population. Other traits, for example brain size in mammals, are not. Recent research has begun to explore the possibility that the extent of phenotypic variation (here referred to as "variability") may be a character itself and subject to natural selection. While these studies support the concept of variability as an evolvable trait, controversy remains over what precisely the trait is. At the heart of this controversy is the fact that there are very few examples of developmental mechanisms that regulate trait variability in response to any source of variation, be it environmental or genetic. Here, we describe a recent study from our laboratory that identifies such a mechanism. We then place the study in the context of current research on the regulation of trait variability, and discuss the implications for our understanding of the developmental regulation and evolution of phenotypic variation.
Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster
Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José
2016-01-01
Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710
Madjidian, Josefin A; Andersson, Stefan; Lankinen, Asa
2012-07-01
Heritable genetic variation is crucial for selection to operate, yet there is a paucity of studies quantifying such variation in interactive male/female sexual traits, especially those of plants. Previous work on the annual plant Collinsia heterophylla, a mixed-mating species, suggests that delayed stigma receptivity is involved in a sexual conflict: pollen from certain donors fertilize ovules earlier than others at the expense of reduced maternal seed set and lower levels of pollen competition. Parent-offspring regressions and sib analyses were performed to test for heritable genetic variation and co-variation in male and female interactive traits related to the sexual conflict. SOME heritable variation and evolvability were found for the female trait (delayed stigma receptivity in presence of pollen), but no evidence was found for genetic variation in the male trait (ability to fertilize ovules early). The results further indicated a marginally significant correlation between a male's ability to fertilize early and early stigma receptivity in offspring. However, despite potential indirect selection of these traits, antagonistic co-evolution may not occur given the lack of heritability of the male trait. To our knowledge, this is the first study of a plant or any hermaphrodite that examines patterns of genetic correlation between two interactive sexual traits, and also the first to assess heritabilities of plant traits putatively involved in a sexual conflict. It is concluded that the ability to delay fertilization in presence of pollen can respond to selection, while the pollen trait has lower evolutionary potential.
Marjanovic, Jovana; Mulder, Han A; Khaw, Hooi L; Bijma, Piter
2016-06-10
Animal breeding programs have been very successful in improving the mean levels of traits through selection. However, in recent decades, reducing the variability of trait levels between individuals has become a highly desirable objective. Reaching this objective through genetic selection requires that there is genetic variation in the variability of trait levels, a phenomenon known as genetic heterogeneity of environmental (residual) variance. The aim of our study was to investigate the potential for genetic improvement of uniformity of harvest weight and body size traits (length, depth, and width) in the genetically improved farmed tilapia (GIFT) strain. In order to quantify the genetic variation in uniformity of traits and estimate the genetic correlations between level and variance of the traits, double hierarchical generalized linear models were applied to individual trait values. Our results showed substantial genetic variation in uniformity of all analyzed traits, with genetic coefficients of variation for residual variance ranging from 39 to 58 %. Genetic correlation between trait level and variance was strongly positive for harvest weight (0.60 ± 0.09), moderate and positive for body depth (0.37 ± 0.13), but not significantly different from 0 for body length and width. Our results on the genetic variation in uniformity of harvest weight and body size traits show good prospects for the genetic improvement of uniformity in the GIFT strain. A high and positive genetic correlation was estimated between level and variance of harvest weight, which suggests that selection for heavier fish will also result in more variation in harvest weight. Simultaneous improvement of harvest weight and its uniformity will thus require index selection.
USDA-ARS?s Scientific Manuscript database
Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such trait is the response of rai...
Blankers, T; Lübke, A K; Hennig, R M
2015-09-01
Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive-dominance variation was estimated. Finally, phenotypic variance-covariance (P) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X-linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences. © 2015 European Society For Evolutionary Biology.
Lanubile, Alessandra; Maschietto, Valentina; De Leonardis, Silvana; Battilani, Paola; Paciolla, Costantino; Marocco, Adriano
2015-05-01
Developing kernels of resistant and susceptible maize genotypes were inoculated with Fusarium proliferatum, F. subglutinans, and Aspergillus flavus. Selected defense systems were investigated using real-time reverse transcription-polymerase chain reaction to monitor the expression of pathogenesis-related (PR) genes (PR1, PR5, PRm3, PRm6) and genes protective from oxidative stress (peroxidase, catalase, superoxide dismutase and ascorbate peroxidase) at 72 h postinoculation. The study was also extended to the analysis of the ascorbate-glutathione cycle and catalase, superoxide dismutase, and cytosolic and wall peroxidases enzymes. Furthermore, the hydrogen peroxide and malondialdehyde contents were studied to evaluate the oxidation level. Higher gene expression and enzymatic activities were observed in uninoculated kernels of resistant line, conferring a major readiness to the pathogen attack. Moreover expression values of PR genes remained higher in the resistant line after inoculation, demonstrating a potentiated response to the pathogen invasions. In contrast, reactive oxygen species-scavenging genes were strongly induced in the susceptible line only after pathogen inoculation, although their enzymatic activity was higher in the resistant line. Our data provide an important basis for further investigation of defense gene functions in developing kernels in order to improve resistance to fungal pathogens. Maize genotypes with overexpressed resistance traits could be profitably utilized in breeding programs focused on resistance to pathogens and grain safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
2014-06-01
Purpose: To implement a new method that integrates deconvolution with segmentation under the variational framework for PET tumor delineation. Methods: Deconvolution and segmentation are both challenging problems in image processing. The partial volume effect (PVE) makes tumor boundaries in PET image blurred which affects the accuracy of tumor segmentation. Deconvolution aims to obtain a PVE-free image, which can help to improve the segmentation accuracy. Conversely, a correct localization of the object boundaries is helpful to estimate the blur kernel, and thus assist in the deconvolution. In this study, we proposed to solve the two problems simultaneously using a variational methodmore » so that they can benefit each other. The energy functional consists of a fidelity term and a regularization term, and the blur kernel was limited to be the isotropic Gaussian kernel. We minimized the energy functional by solving the associated Euler-Lagrange equations and taking the derivative with respect to the parameters of the kernel function. An alternate minimization method was used to iterate between segmentation, deconvolution and blur-kernel recovery. The performance of the proposed method was tested on clinic PET images of patients with non-Hodgkin's lymphoma, and compared with seven other segmentation methods using the dice similarity index (DSI) and volume error (VE). Results: Among all segmentation methods, the proposed one (DSI=0.81, VE=0.05) has the highest accuracy, followed by the active contours without edges (DSI=0.81, VE=0.25), while other methods including the Graph Cut and the Mumford-Shah (MS) method have lower accuracy. A visual inspection shows that the proposed method localizes the real tumor contour very well. Conclusion: The result showed that deconvolution and segmentation can contribute to each other. The proposed variational method solve the two problems simultaneously, and leads to a high performance for tumor segmentation in PET. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET
NASA Astrophysics Data System (ADS)
Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan
2013-06-01
TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.
Buck, Christoph; Kneib, Thomas; Tkaczick, Tobias; Konstabel, Kenn; Pigeot, Iris
2015-12-22
Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA. We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers. Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection. We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment.
Consumer trait variation influences tritrophic interactions in salt marsh communities.
Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A
2015-07-01
The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.
Robust kernel representation with statistical local features for face recognition.
Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David
2013-06-01
Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of themore » electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.« less
Mohammadi Moghaddam, Toktam; Razavi, Seyed M A; Taghizadeh, Masoud; Sazgarnia, Ameneh
2016-01-01
Roasting is an important step in the processing of pistachio nuts. The effect of hot air roasting temperature (90, 120 and 150 °C), time (20, 35 and 50 min) and air velocity (0.5, 1.5 and 2.5 m/s) on textural and sensory characteristics of pistachio nuts and kernels were investigated. The results showed that increasing the roasting temperature decreased the fracture force (82-25.54 N), instrumental hardness (82.76-37.59 N), apparent modulus of elasticity (47-21.22 N/s), compressive energy (280.73-101.18 N.s) and increased amount of bitterness (1-2.5) and the hardness score (6-8.40) of pistachio kernels. Higher roasting time improved the flavor of samples. The results of the consumer test showed that the roasted pistachio kernels have good acceptability for flavor (score 5.83-8.40), color (score 7.20-8.40) and hardness (score 6-8.40) acceptance. Moreover, Partial Least Square (PLS) analysis of instrumental and sensory data provided important information for the correlation of objective and subjective properties. The univariate analysis showed that over 93.87 % of the variation in sensory hardness and almost 87 % of the variation in sensory acceptability could be explained by instrumental texture properties.
ERIC Educational Resources Information Center
Sueiro, Manuel J.; Abad, Francisco J.
2011-01-01
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Zhang, Qinbin; Wang, Long; Zhang, Xiaoxiang; Song, Guiliang; Fu, Zhiyuan; Ding, Dong; Liu, Zonghua; Tang, Jihua
2014-01-01
To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs). PMID:25210737
The impact of nectar chemical features on phenotypic variation in two related nectar yeasts.
Pozo, María I; Herrera, Carlos M; Van den Ende, Wim; Verstrepen, Kevin; Lievens, Bart; Jacquemyn, Hans
2015-06-01
Floral nectars become easily colonized by microbes, most often species of the ascomycetous yeast genus Metschnikowia. Although it is known that nectar composition can vary tremendously among plant species, most probably corresponding to the nutritional requirements of their main pollinators, far less is known about how variation in nectar chemistry affects intraspecific variation in nectarivorous yeasts. Because variation in nectar traits probably affects growth and abundance of nectar yeasts, nectar yeasts can be expected to display large phenotypic variation in order to cope with varying nectar conditions. To test this hypothesis, we related variation in the phenotypic landscape of a vast collection of nectar-living yeast isolates from two Metschnikowia species (M. reukaufii and M. gruessii) to nectar chemical traits using non-linear redundancy analyses. Nectar yeasts were collected from 19 plant species from different plant families to include as much variation in nectar chemical traits as possible. As expected, nectar yeasts displayed large variation in phenotypic traits, particularly in traits related to growth performance in carbon sources and inhibitors, which was significantly related to the host plant from which they were isolated. Total sugar concentration and relative fructose content significantly explained the observed variation in the phenotypic profile of the investigated yeast species, indicating that sugar concentration and composition are the key traits that affect phenotypic variation in nectarivorous yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.
Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C
2015-05-06
Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.
Fyllas, Nikolaos M; Bentley, Lisa Patrick; Shenkin, Alexander; Asner, Gregory P; Atkin, Owen K; Díaz, Sandra; Enquist, Brian J; Farfan-Rios, William; Gloor, Emanuel; Guerrieri, Rossella; Huasco, Walter Huaraca; Ishida, Yoko; Martin, Roberta E; Meir, Patrick; Phillips, Oliver; Salinas, Norma; Silman, Miles; Weerasinghe, Lasantha K; Zaragoza-Castells, Joana; Malhi, Yadvinder
2017-06-01
One of the major challenges in ecology is to understand how ecosystems respond to changes in environmental conditions, and how taxonomic and functional diversity mediate these changes. In this study, we use a trait-spectra and individual-based model, to analyse variation in forest primary productivity along a 3.3 km elevation gradient in the Amazon-Andes. The model accurately predicted the magnitude and trends in forest productivity with elevation, with solar radiation and plant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, and wood density) collectively accounting for productivity variation. Remarkably, explicit representation of temperature variation with elevation was not required to achieve accurate predictions of forest productivity, as trait variation driven by species turnover appears to capture the effect of temperature. Our semi-mechanistic model suggests that spatial variation in traits can potentially be used to estimate spatial variation in productivity at the landscape scale. © 2017 John Wiley & Sons Ltd/CNRS.
Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R
2018-01-10
A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.
Bridging Inter- and Intraspecific Trait Evolution with a Hierarchical Bayesian Approach.
Kostikova, Anna; Silvestro, Daniele; Pearman, Peter B; Salamin, Nicolas
2016-05-01
The evolution of organisms is crucially dependent on the evolution of intraspecific variation. Its interactions with selective agents in the biotic and abiotic environments underlie many processes, such as intraspecific competition, resource partitioning and, eventually, species formation. Nevertheless, comparative models of trait evolution neither allow explicit testing of hypotheses related to the evolution of intraspecific variation nor do they simultaneously estimate rates of trait evolution by accounting for both trait mean and variance. Here, we present a model of phenotypic trait evolution using a hierarchical Bayesian approach that simultaneously incorporates interspecific and intraspecific variation. We assume that species-specific trait means evolve under a simple Brownian motion process, whereas species-specific trait variances are modeled with Brownian or Ornstein-Uhlenbeck processes. After evaluating the power of the method through simulations, we examine whether life-history traits impact evolution of intraspecific variation in the Eriogonoideae (buckwheat family, Polygonaceae). Our model is readily extendible to more complex scenarios of the evolution of inter- and intraspecific variation and presents a step toward more comprehensive comparative models for macroevolutionary studies. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Molecular genetic basis of pod corn (Tunicate maize)
Wingen, Luzie U.; Münster, Thomas; Faigl, Wolfram; Deleu, Wim; Sommer, Hans; Saedler, Heinz; Theißen, Günter
2012-01-01
Pod corn is a classic morphological mutant of maize in which the mature kernels of the cob are covered by glumes, in contrast to generally grown maize varieties in which kernels are naked. Pod corn, known since pre-Columbian times, is the result of a dominant gain-of-function mutation at the Tunicate (Tu) locus. Some classic articles of 20th century maize genetics reported that the mutant Tu locus is complex, but molecular details remained elusive. Here, we show that pod corn is caused by a cis-regulatory mutation and duplication of the ZMM19 MADS-box gene. Although the WT locus contains a single-copy gene that is expressed in vegetative organs only, mutation and duplication of ZMM19 in Tu lead to ectopic expression of the gene in the inflorescences, thus conferring vegetative traits to reproductive organs. PMID:22517751
NASA Astrophysics Data System (ADS)
Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.
2013-03-01
Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.
Chapurlat, Elodie; Ågren, Jon; Sletvold, Nina
2015-12-01
Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Space use of wintering waterbirds in India: Influence of trophic ecology on home-range size
Namgail, Tsewang; Takekawa, John Y.; Balachandran, Sivananinthaperumal; Sathiyaselvam, Ponnusamy; Mundkur, Taej; Newman, Scott H.
2014-01-01
Relationship between species' home range and their other biological traits remains poorly understood, especially in migratory birds due to the difficulty associated with tracking them. Advances in satellite telemetry and remote sensing techniques have proved instrumental in overcoming such challenges. We studied the space use of migratory ducks through satellite telemetry with an objective of understanding the influence of body mass and feeding habits on their home-range sizes. We marked 26 individuals, representing five species of migratory ducks, with satellite transmitters during two consecutive winters in three Indian states. We used kernel methods to estimate home ranges and core use areas of these waterfowl, and assessed the influence of body mass and feeding habits on home-range size. Feeding habits influenced the home-range size of the migratory ducks. Carnivorous ducks had the largest home ranges, herbivorous ducks the smallest, while omnivorous species had intermediate home-ranges. Body mass did not explain variation in home-range size. To our knowledge, this is the first study of its kind on migratory ducks, and it has important implications for their conservation and management.
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Christianini, Alexander V.; Galetti, Mauro
2007-11-01
Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.
USDA-ARS?s Scientific Manuscript database
Despite large variation in root traits among species, we have limited understanding of how traits are related to diverse soil resource acquisition strategies. We examined root trait variation among 33 species co-existing in Northeastern US forests that form the two most common mutualisms with mycorr...
Variation of agronomic traits of ravenna grass and its potential as a biomass crop
USDA-ARS?s Scientific Manuscript database
Ravenna grass (Tripidium ravennae) is a tall robust bunchgrass with potential as an energy crop. The aim was to investigate the variation of agronomic traits of Ravenna grass. Univariate analyses of traits were conducted on 95 plants from 2013 to 2017. The traits were: biomass yield per plant, C, N,...
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.
Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.
2016-01-01
Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268
Functional acclimation across microgeographic scales in Dodonaea viscosa
Baruch, Zdravko; Jones, Alice R; Hill, Kathryn E; McInerney, Francesca A; Blyth, Colette; Caddy-Retalic, Stefan; Christmas, Matthew J; Gellie, Nicholas J C; Lowe, Andrew J; Martin-Fores, Irene; Nielson, Kristine E
2018-01-01
Abstract Intraspecific plant functional trait variation provides mechanistic insight into persistence and can infer population adaptive capacity. However, most studies explore intraspecific trait variation in systems where geographic and environmental distances co-vary. Such a design reduces the certainty of trait–environment associations, and it is imperative for studies that make trait–environment associations be conducted in systems where environmental distance varies independently of geographic distance. Here we explored trait variation in such a system, and aimed to: (i) quantify trait variation of parent and offspring generations, and associate this variation to parental environments; (ii) determine the traits which best explain population differences; (iii) compare parent and offspring trait–trait relationships. We characterized 15 plant functional traits in eight populations of a shrub with a maximum separation ca. 100 km. Populations differed markedly in aridity and elevation, and environmental distance varied independently of geographic distance. We measured traits in parent populations collected in the field, as well as their offspring reared in greenhouse conditions. Parent traits regularly associated with their environment. These associations were largely lost in the offspring generation, indicating considerable phenotypic plasticity. An ordination of parent traits showed clear structure with strong influence of leaf area, specific leaf area, stomatal traits, isotope δ13C and δ15N ratios, and Narea, whereas the offspring ordination was less structured. Parent trait–trait correlations were in line with expectations from the leaf economic spectrum. We show considerable trait plasticity in the woody shrub over microgeographic scales (<100 km), indicating it has the adaptive potential within a generation to functionally acclimate to a range of abiotic conditions. Since our study shrub is commonly used for restoration in southern Australia and local populations do not show strong genetic differentiation in functional traits, the potential risks of transferring seed across the broad environmental conditions are not likely to be a significant issue.
Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart
2015-01-01
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats. PMID:25862244
Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette
2013-01-01
Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.
Friberg, Urban; Lew, Timothy A; Byrne, Phillip G; Rice, William R
2005-07-01
In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.
Kwong, Qi Bin; Ong, Ai Ling; Teh, Chee Keng; Chew, Fook Tim; Tammi, Martti; Mayes, Sean; Kulaveerasingam, Harikrishna; Yeoh, Suat Hui; Harikrishna, Jennifer Ann; Appleton, David Ross
2017-06-06
Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shell-to-fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch (F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A (BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental palm selection.
Identifying genes affectng stress response in rainbow trout
USDA-ARS?s Scientific Manuscript database
Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such set of traits are the respon...
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J
2016-05-01
We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.
A simple genetic architecture underlies morphological variation in dogs.
Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A
2010-08-10
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.
A Simple Genetic Architecture Underlies Morphological Variation in Dogs
Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.
2010-01-01
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490
Leicht, Katja; Seppälä, Katri; Seppälä, Otto
2017-06-15
On-going global climate change poses a serious threat for natural populations unless they are able to evolutionarily adapt to changing environmental conditions (e.g. increasing average temperatures, occurrence of extreme weather events). A prerequisite for evolutionary change is within-population heritable genetic variation in traits subject to selection. In relation to climate change, mainly phenological traits as well as heat and desiccation resistance have been examined for such variation. Therefore, it is important to investigate adaptive potential under climate change conditions across a broader range of traits. This is especially true for life-history traits and defences against natural enemies (e.g. parasites) since they influence organisms' fitness both directly and through species interactions. We examined the adaptive potential of fitness-related traits and their responses to heat waves in a population of a freshwater snail, Lymnaea stagnalis. We estimated family-level variation and covariation in life history (size, reproduction) and constitutive immune defence traits [haemocyte concentration, phenoloxidase (PO)-like activity, antibacterial activity of haemolymph] in snails experimentally exposed to typical (15 °C) and heat wave (25 °C) temperatures. We also assessed variation in the reaction norms of these traits between the treatments. We found that at the heat wave temperature, snails were larger and reproduced more, while their immune defence was reduced. Snails showed high family-level variation in all examined traits within both temperature treatments. The only negative genetic correlation (between reproduction and antibacterial activity) appeared at the high temperature. However, we found no family-level variation in the responses of most examined traits to the experimental heat wave (i.e. largely parallel reaction norms between the treatments). Only the reduction of PO-like activity when exposed to the high temperature showed family-level variation, suggesting that the cost of heat waves may be lower for some families and could evolve under selection. Our results suggest that there is genetic potential for adaptation within both thermal environments and that trait evolution may not be strongly affected by trade-offs between them. However, rare differences in thermal reaction norms across families indicate limited evolutionary potential in the responses of snails to changing temperatures during extreme weather events.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster
Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.
2015-01-01
Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032
High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software
Fabregat-Traver, Diego; Sharapov, Sodbo Zh.; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo
2014-01-01
To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the ’omics’ context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363
High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software.
Fabregat-Traver, Diego; Sharapov, Sodbo Zh; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo
2014-01-01
To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the 'omics' context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Isaac, Marney E.; Martin, Adam R.; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel
2017-01-01
Hypotheses on the existence of a universal “Root Economics Spectrum” (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world’s most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another. PMID:28747919
Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel
2017-01-01
Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.
Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models
Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong
2015-01-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong
2015-05-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.
Fajardo, Alex; Siefert, Andrew
2018-05-01
Understanding patterns of functional trait variation across environmental gradients offers an opportunity to increase inference in the mechanistic causes of plant community assembly. The leaf economics spectrum (LES) predicts global tradeoffs in leaf traits and trait-environment relationships, but few studies have examined whether these predictions hold across different levels of organization, particularly within species. Here, we asked (1) whether the main assumptions of the LES (expected trait relationships and shifts in trait values across resource gradients) hold at the intraspecific level, and (2) how within-species trait correlations scale up to interspecific or among-community levels. We worked with leaf traits of saplings of woody species growing across light and soil N and P availability gradients in temperate rainforests of southern Chile. We found that ITV accounted for a large proportion of community-level variation in leaf traits (e.g., LMA and leaf P) and played an important role in driving community-level shifts in leaf traits across environmental gradients. Additionally, intraspecific leaf trait relationships were generally consistent with interspecific and community-level trait relationships and with LES predictions-e.g., a strong negative intraspecific LMA-leaf N correlation-although, most trait relationships varied significantly among species, suggesting idiosyncrasies in the LES at the intraspecific level. © 2018 by the Ecological Society of America.
Robust kernel collaborative representation for face recognition
NASA Astrophysics Data System (ADS)
Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong
2015-05-01
One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.
Biochemical and molecular characterization of Avena indolines and their role in kernel texture.
Gazza, Laura; Taddei, Federica; Conti, Salvatore; Gazzelloni, Gloria; Muccilli, Vera; Janni, Michela; D'Ovidio, Renato; Alfieri, Michela; Redaelli, Rita; Pogna, Norberto E
2015-02-01
Among cereals, Avena sativa is characterized by an extremely soft endosperm texture, which leads to some negative agronomic and technological traits. On the basis of the well-known softening effect of puroindolines in wheat kernel texture, in this study, indolines and their encoding genes are investigated in Avena species at different ploidy levels. Three novel 14 kDa proteins, showing a central hydrophobic domain with four tryptophan residues and here named vromindoline (VIN)-1,2 and 3, were identified. Each VIN protein in diploid oat species was found to be synthesized by a single Vin gene whereas, in hexaploid A. sativa, three Vin-1, three Vin-2 and two Vin-3 genes coding for VIN-1, VIN-2 and VIN-3, respectively, were described and assigned to the A, C or D genomes based on similarity to their counterparts in diploid species. Expression of oat vromindoline transgenes in the extra-hard durum wheat led to accumulation of vromindolines in the endosperm and caused an approximate 50 % reduction of grain hardness, suggesting a central role for vromindolines in causing the extra-soft texture of oat grain. Further, hexaploid oats showed three orthologous genes coding for avenoindolines A and B, with five or three tryptophan residues, respectively, but very low amounts of avenoindolines were found in mature kernels. The present results identify a novel protein family affecting cereal kernel texture and would further elucidate the phylogenetic evolution of Avena genus.
Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand
2016-11-01
Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Intraspecific variability in functional traits matters: case study of Scots pine.
Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier
2014-08-01
Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.
Johnson, R C; Vance-Borland, Ken
2016-01-01
Few studies have assessed how ploidy type within a species affects genetic variation among populations in relation to source climates. Basin wildrye (Leymus cinereus (Scribn. & Merr.) A. Love) is a large bunchgrass common in the intermountain Western U.S. found in both octoploid and tetraploid types. In common gardens at two sites over two years differences in both ploidy type and genetic variation within ploidy were observed in phenology, morphology, and production traits on 57 octoploid and 52 tetraploid basin wildrye from the intermountain Western U.S. (P<0.01). Octoploids had larger leaves, longer culms, and greater crown circumference than tetraploids but the numerical ranges of plant traits and their source climates overlapped between ploidy types. Still, among populations octoploids often had greater genetic variation for traits and occupied more diverse climates than tetraploids. Genetic variation for both ploidy types was linked to source climates in canonical correlation analysis, with the first two variates explaining 70% of the variation. Regression of those canonical variates with seed source climate variables produced models that explained 64% and 38% of the variation, respectively, and were used to map 15 seed zones covering 673,258 km2. Utilization of these seed zones will help ensure restoration with adaptive seed sources for both ploidy types. The link between genetic traits and seed source climates suggests climate driven natural selection and adaptive evolution in basin wildrye. The more diverse climates occupied by octoploids and higher trait variation suggests a higher capacity for ecological differentiation than tetraploids in the intermountain Western U.S.
Franco-Pedroso, Javier; Ramos, Daniel; Gonzalez-Rodriguez, Joaquin
2016-01-01
In forensic science, trace evidence found at a crime scene and on suspect has to be evaluated from the measurements performed on them, usually in the form of multivariate data (for example, several chemical compound or physical characteristics). In order to assess the strength of that evidence, the likelihood ratio framework is being increasingly adopted. Several methods have been derived in order to obtain likelihood ratios directly from univariate or multivariate data by modelling both the variation appearing between observations (or features) coming from the same source (within-source variation) and that appearing between observations coming from different sources (between-source variation). In the widely used multivariate kernel likelihood-ratio, the within-source distribution is assumed to be normally distributed and constant among different sources and the between-source variation is modelled through a kernel density function (KDF). In order to better fit the observed distribution of the between-source variation, this paper presents a different approach in which a Gaussian mixture model (GMM) is used instead of a KDF. As it will be shown, this approach provides better-calibrated likelihood ratios as measured by the log-likelihood ratio cost (Cllr) in experiments performed on freely available forensic datasets involving different trace evidences: inks, glass fragments and car paints. PMID:26901680
Towards a universal trait-based model of terrestrial primary production
NASA Astrophysics Data System (ADS)
Wang, H.; Prentice, I. C.; Cornwell, W.; Keenan, T. F.; Davis, T.; Wright, I. J.; Evans, B. J.; Peng, C.
2015-12-01
Systematic variations of plant traits along environmental gradients have been observed for decades. For example, the tendencies of leaf nitrogen per unit area to increase, and of the leaf-internal to ambient CO2 concentration ratio (ci:ca) to decrease, with aridity are well established. But ecosystem models typically represent trait variation based purely on empirical relationships, or on untested conjectures, or not at all. Neglect of quantitative trait variation and its adapative significance probably contributes to the persistent large uncertainties among models in predicting the response of the carbon cycle to environmental change. However, advances in ecological theory and the accumulation of extensive data sets during recent decades suggest that theoretically based and testable predictions of trait variation could be achieved. Based on well-established ecophysiological principles and consideration of the adaptive significance of traits, we propose universal relationships between photosynthetic traits (ci:ca, carbon fixation capacity, and the ratio of electron transport capacity to carbon fixation capacity) and primary environmental variables, which capture observed trait variations both within and between plant functional types. Moreover, incorporating these traits into the standard model of C3photosynthesis allows gross primary production (GPP) of natural vegetation to be predicted by a single equation with just two free parameters, which can be estimated from independent observations. The resulting model performs as well as much more complex models. Our results provide a fresh perspective with potentially high reward: the possibility of a deeper understanding of the relationships between plant traits and environment, simpler and more robust and reliable representation of land processes in Earth system models, and thus improved predictability for biosphere-atmosphere interactions and climate feedbacks.
Miaskowski, Christine; Cataldo, Janine K.; Baggott, Christina R.; West, Claudia; Dunn, Laura B.; Dhruva, Anand; Merriman, John D.; Langford, Dale J.; Kober, Kord M.; Paul, Steven M.; Cooper, Bruce A.; Aouizerat, Bradley E.
2017-01-01
Purpose Anxiety is common among cancer patients and their family caregivers (FCs) and is associated with poorer outcomes. Recently, associations between inflammation and anxiety were identified. However, the relationship between variations in cytokine genes and anxiety warrants investigation. Therefore, phenotypic and genotypic characteristics associated with trait and state anxiety were evaluated in a sample of 167 oncology patients with breast, prostate, lung, or brain cancer and 85 of their FCs. Methods Using multiple regression analyses, the associations between participants’ demographic and clinical characteristics, as well as variations in cytokine genes and trait and state anxiety were evaluated. Results In the bivariate analyses, a number of phenotypic characteristics were associated with both trait and state anxiety (e.g., age, functional status). However, some associations were specific only to trait anxiety (e.g., number of comorbid conditions) or state anxiety (e.g., participation with a FC). Variations in three cytokine genes (i.e., interleukin (IL) 1 beta, IL1 receptor 2 (IL1R2), nuclear factor kappa beta 2 (NFKB2)) were associated with trait anxiety and variations in two genes (i.e., IL1R2, tumor necrosis factor alpha (TNFA)) were associated with state anxiety. Conclusions These findings suggest that both trait and state anxiety need to be assessed in oncology patients and their FCs. Furthermore, variations in cytokine genes may contribute to higher levels of anxiety in oncology patients and their FCs. PMID:25249351
Armbruster, W S; Di Stilio, V S; Tuxill, J D; Flores, T C; Velásquez Runk, J L
1999-01-01
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.
Climate, soil and plant functional types as drivers of global fine-root trait variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Climate, soil and plant functional types as drivers of global fine-root trait variation
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...
2017-03-08
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Modeling utilization distributions in space and time
Keating, K.A.; Cherry, S.
2009-01-01
W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.
Blind motion image deblurring using nonconvex higher-order total variation model
NASA Astrophysics Data System (ADS)
Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo
2016-09-01
We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.
A variational Bayes discrete mixture test for rare variant association
Logsdon, Benjamin A.; Dai, James Y.; Auer, Paul L.; Johnsen, Jill M.; Ganesh, Santhi K.; Smith, Nicholas L.; Wilson, James G.; Tracy, Russell P.; Lange, Leslie A.; Jiao, Shuo; Rich, Stephen S.; Lettre, Guillaume; Carlson, Christopher S.; Jackson, Rebecca D.; O’Donnell, Christopher J.; Wurfel, Mark M.; Nickerson, Deborah A.; Tang, Hua; Reiner, Alexander P.; Kooperberg, Charles
2014-01-01
Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that “aggregate” tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute’s Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans. PMID:24482836
A variational Bayes discrete mixture test for rare variant association.
Logsdon, Benjamin A; Dai, James Y; Auer, Paul L; Johnsen, Jill M; Ganesh, Santhi K; Smith, Nicholas L; Wilson, James G; Tracy, Russell P; Lange, Leslie A; Jiao, Shuo; Rich, Stephen S; Lettre, Guillaume; Carlson, Christopher S; Jackson, Rebecca D; O'Donnell, Christopher J; Wurfel, Mark M; Nickerson, Deborah A; Tang, Hua; Reiner, Alexander P; Kooperberg, Charles
2014-01-01
Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that "aggregate" tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.
Lizard thermal trait variation at multiple scales: a review.
Clusella-Trullas, Susana; Chown, Steven L
2014-01-01
Thermal trait variation is of fundamental importance to forecasting the impacts of environmental change on lizard diversity. Here, we review the literature for patterns of variation in traits of upper and lower sub-lethal temperature limits, temperature preference and active body temperature in the field, in relation to space, time and phylogeny. Through time, we focus on the direction and magnitude of trait change within days, among seasons and as a consequence of acclimation. Across space, we examine altitudinal and latitudinal patterns, incorporating inter-specific analyses at regional and global scales. This synthesis highlights the consistency or lack thereof, of thermal trait responses, the relative magnitude of change among traits and several knowledge gaps identified in the relationships examined. We suggest that physiological information is becoming essential for forecasting environmental change sensitivity of lizards by providing estimates of plasticity and evolutionary scope.
Verweij, Karin J.H.; Yang, Jian; Lahti, Jari; Veijola, Juha; Hintsanen, Mirka; Pulkki-Råback, Laura; Heinonen, Kati; Pouta, Anneli; Pesonen, Anu-Katriina; Widen, Elisabeth; Taanila, Anja; Isohanni, Matti; Miettunen, Jouko; Palotie, Aarno; Penke, Lars; Service, Susan K.; Heath, Andrew C.; Montgomery, Grant W.; Raitakari, Olli; Kähönen, Mika; Viikari, Jorma; Räikkönen, Katri; Eriksson, Johan G; Keltikangas-Järvinen, Liisa; Lehtimäki, Terho; Martin, Nicholas G.; Järvelin, Marjo-Riitta; Visscher, Peter M.; Keller, Matthew C.; Zietsch, Brendan P.
2012-01-01
Personality traits are basic dimensions of behavioural variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly-growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide SNP data from >8,000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially-desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance. PMID:23025612
A fully traits-based approach to modeling global vegetation distribution.
van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M
2014-09-23
Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials.
Hori, Tomoaki; Montcho, David; Agbangla, Clement; Ebana, Kaworu; Futakuchi, Koichi; Iwata, Hiroyoshi
2016-11-01
A method based on a multi-task Gaussian process using self-measuring similarity gave increased accuracy for imputing missing phenotypic data in multi-trait and multi-environment trials. Multi-environmental trial (MET) data often encounter the problem of missing data. Accurate imputation of missing data makes subsequent analysis more effective and the results easier to understand. Moreover, accurate imputation may help to reduce the cost of phenotyping for thinned-out lines tested in METs. METs are generally performed for multiple traits that are correlated to each other. Correlation among traits can be useful information for imputation, but single-trait-based methods cannot utilize information shared by traits that are correlated. In this paper, we propose imputation methods based on a multi-task Gaussian process (MTGP) using self-measuring similarity kernels reflecting relationships among traits, genotypes, and environments. This framework allows us to use genetic correlation among multi-trait multi-environment data and also to combine MET data and marker genotype data. We compared the accuracy of three MTGP methods and iterative regularized PCA using rice MET data. Two scenarios for the generation of missing data at various missing rates were considered. The MTGP performed a better imputation accuracy than regularized PCA, especially at high missing rates. Under the 'uniform' scenario, in which missing data arise randomly, inclusion of marker genotype data in the imputation increased the imputation accuracy at high missing rates. Under the 'fiber' scenario, in which missing data arise in all traits for some combinations between genotypes and environments, the inclusion of marker genotype data decreased the imputation accuracy for most traits while increasing the accuracy in a few traits remarkably. The proposed methods will be useful for solving the missing data problem in MET data.
Krishnappa, Gopalareddy; Chaudhary, Swati; Ahlawat, Arvind Kumar; Singh, Santosh Kumar; Shukla, Ram Bihari; Jaiswal, Jai Prakash; Singh, Gyanendra Pratap; Solanki, Ishwar Singh
2017-01-01
Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in six environments and evaluated for Fe, Zn, PC, and TKW. The population showed the continuous distribution for all the four traits, that for pooled Fe and PC was near normal, whereas, for pooled Zn, RILs exhibited positively skewed distribution. A genetic map spanning 2155.3cM was constructed using microsatellite markers covering the 21 chromosomes and used for QTL analysis. 16 quantitative trait loci (QTL) were identified in this study. Four QTLs (QGFe.iari-2A, QGFe.iari-5A, QGFe.iari-7A and QGFe.iari-7B) for Fe, five QTLs (QGZn.iari-2A, QGZn.iari-4A, QGZn.iari-5A, QGZn.iari-7A and QGZn.iari-7B) for Zn, two QTLs (QGpc.iari-2A and QGpc.iari-3A) for PC, and five QTLs (QTkw.iari-1A, QTkw.iari-2A, QTkw.iari-2B, QTkw.iari-5B and QTkw.iari-7A) for TKW were identified. The QTLs together explained 20.0%, 32.0%, 24.1% and 32.3% phenotypic variation, respectively, for Fe, Zn, PC and TKW. QGpc.iari-2A was consistently expressed in all the six environments, whereas, QGFe.iari-7B and QGZn.iari-2A were identified in two environments each apart from pooled mean. QTkw.iari-2A and QTkw.iari-7A, respectively, were identified in four and three environments apart from pooled mean. A common region in the interval of Xgwm359-Xwmc407 on chromosome 2A was associated with Fe, Zn, and PC. One more QTL for TKW was identified on chromosome 2A but in a different chromosomal region (Xgwm382-Xgwm359). Two more regions on 5A (Xgwm126-Xgwm595) and 7A (Xbarc49-Xwmc525) were found to be associated with both Fe and Zn. A QTL for TKW was identified (Xwmc525-Xbarc222) in a different chromosomal region on the same chromosome (7A). This reflects at least a partly common genetic basis for the four traits. It is concluded that fine mapping of the regions of the three chromosomes of A genome involved in determining the accumulation of Fe, Zn, PC, and TKW in this mapping population may be rewarding. PMID:28384292
Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M
2014-11-01
We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The trait contribution to wood decomposition rates of 15 Neotropical tree species.
van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C
2010-12-01
The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.
Rodríguez, Rafael L; Al-Wathiqui, Nooria
2011-07-01
Theory predicts that selection acting across environments should erode genetic variation in reaction norms; i.e., selection should weaken genotype × environment interaction (G × E). In spite of this expectation, G × E is often detected in fitness-related traits. It thus appears that G × E is at least sometimes sustained under selection, a possibility that highlights the need for theory that can account for variation in the presence and strength of G × E. We tested the hypothesis that trait differences in developmental architecture contribute to variation in the expression of G × E. Specifically, we assessed the influence of canalization (robustness to genetic or environmental perturbations) and condition-dependence (association between trait expression and prior resource acquisition or vital cellular processes). We compared G × E across three trait types expected to differ in canalization and condition-dependence: mating signals, body size-related traits, and genitalia. Because genitalia are expected to show the least condition-dependence and the most canalization, they should express weaker G × E than the other trait types. Our study species was a member of the Enchenopa binotata species complex of treehoppers. We found significant G × E in most traits; G × E was strongest in signals and body traits, and weakest in genitalia. These results support the hypothesis that trait differences in developmental architecture (canalization and condition-dependence) contribute to variation in the expression of G × E. We discuss implications for the dynamics of sexual selection on different trait types.
Seppälä, Otto; Langeloh, Laura
2016-01-01
Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822
Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne
2016-05-01
Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.
Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B
2016-04-01
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.
Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S
2014-02-01
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.
Evaluation of between-line variation for within-line selection against ascites in broilers.
de Greef, K H; Kwakernaak, C; Ducro, B J; Pit, R; Gerritsen, C L
2001-01-01
Within-line opportunities for selection against ascites were studied in a data set comprising a 10-line comparison. The study attempted to reveal whether contrasts between lines provide reliable candidate traits for within-line selection. Mortality was chosen as the reference trait. As no pedigree information was available, a trait was required that related mortality to the nonmortality data. By principal component analysis, such a trait (ASC_INDIC = ascites indicator) was developed from pathology data. The composite trait ASC_INDIC ranked lines well for their mortality figures (r = 0.96), from which it was concluded that ASC_INDIC represents an underlying continuous ascites trait. Between lines, blood gas traits seemed to be the most promising traits. Within lines, performance traits appeared to be highly correlated to ascites. Comparison of within-line variation to between-line contrasts revealed considerable differences. The high correlation of the blood gas traits with mortality was not present within lines. However, although the magnitude was considerably reduced, the nature of the blood gas traits in their relationship to ascites was similar within and between lines. The study primarily demonstrates that contrasts between lines carry systematic but limited information for within-line coherence. Therefore, line contrasts must be interpreted with care when aiming to study genetic variation and coherence within lines.
Genetic architecture of spring and autumn phenology in Salix
2014-01-01
Background In woody plants from temperate regions, adaptation to the local climate results in annual cycles of growth and dormancy, and optimal regulation of these cycles are critical for growth, long-term survival, and competitive success. In this study we have investigated the genetic background to growth phenology in a Salix pedigree by assessing genetic and phenotypic variation in growth cessation, leaf senescence and bud burst in different years and environments. A previously constructed linkage map using the same pedigree and anchored to the annotated genome of P. trichocarpa was improved in target regions and used for QTL analysis of the traits. The major aims in this study were to map QTLs for phenology traits in Salix, and to identify candidate genes in QTL hot spots through comparative mapping with the closely related Populus trichocarpa. Results All traits varied significantly among genotypes and the broad-sense heritabilities ranged between 0.5 and 0.9, with the highest for leaf senescence. In total across experiment and years, 80 QTLs were detected. For individual traits, the QTLs explained together from 21.5 to 56.5% of the variation. Generally each individual QTL explained a low amount of the variation but three QTLs explained above 15% of the variation with one QTL for leaf senescence explaining 34% of the variation. The majority of the QTLs were recurrently identified across traits, years and environments. Two hotspots were identified on linkage group (LG) II and X where narrow QTLs for all traits co-localized. Conclusions This study provides the most detailed analysis of QTL detection for phenology in Salix conducted so far. Several hotspot regions were found where QTLs for different traits and QTLs for the same trait but identified during different years co-localised. Many QTLs co-localised with QTLs found in poplar for similar traits that could indicate common pathways for these traits in Salicaceae. This study is an important first step in identifying QTLs and candidate genes for phenology traits in Salix. PMID:24438179
Lorenz, Kim; Cohen, Barak A.
2012-01-01
Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125
Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R
2006-03-01
Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.
Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña
2011-01-01
Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development. PMID:21447490
Chauvin, K McManus; Asner, G P; Martin, R E; Kress, W J; Wright, S J; Field, C B
2018-03-01
Trade-offs among plant functional traits indicate diversity in plant strategies of growth and survival. The leaf economics spectrum (LES) reflects a trade-off between short-term carbon gain and long-term leaf persistence. A related trade-off, between foliar growth and anti-herbivore defense, occurs among plants growing in contrasting resource regimes, but it is unclear whether this trade-off is maintained within plant communities, where resource gradients are minimized. The LES and the growth-defense trade-off involve related traits, but the extent to which these trade-off dimensions are correlated is poorly understood. We assessed the relationship between leaf economic and anti-herbivore defense traits among sunlit foliage of 345 canopy trees in 83 species on Barro Colorado Island, Panama. We quantified ten traits related to resource allocation and defense, and identified patterns of trait co-variation using multivariate ordination. We tested whether traits and ordination axes were correlated with patterns of phylogenetic relatedness, juvenile demographic trade-offs, or topo-edaphic variation. Two independent axes described ~ 60% of the variation among canopy trees. Axis 1 revealed a trade-off between leaf nutritional and structural investment, consistent with the LES. Physical defense traits were largely oriented along this axis. Axis 2 revealed a trade-off between investments in phenolic defenses versus other foliar defenses, which we term the leaf defense spectrum. Phylogenetic relationships and topo-edaphic variation largely did not explain trait co-variation. Our results suggest that some trade-offs among the growth and defense traits of outer-canopy trees may be captured by the LES, while others may occur along additional resource allocation dimensions.
Knoll, A T; Jiang, K; Levitt, P
2018-06-01
Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests
NASA Astrophysics Data System (ADS)
Catorci, Andrea; Vitanzi, Alessandra; Tardella, Federico Maria; Hršak, Vladimir
2012-08-01
The aim of this paper is to assess the functional shifts of the herb layer in the submediterranean Ostrya carpinifolia coppiced forests (central Italy) along a coppicing rotation cycle. More specifically, the following questions were addressed: i) is there a pattern in functional trait composition of the herb layer along a regeneration chronosequence?; ii) which traits states differentiate each regeneration stage?; iii) are patterns of trait state variation related to the change of the environmental conditions? Species cover percentage was recorded in 54 plots (20 m × 20 m) with homogeneous ecological conditions. Relevés, ordered on the basis of the time since the last coppicing event and grouped into three age classes, were analysed with regard to trait variation, based on species absolute and relative abundance. Differences in light, temperature, soil moisture, and nutrients bioindicator values between consecutive regeneration stages were tested using the non-parametric Mann-Whitney U-test. Multi-response permutation procedures (MRPP) revealed statistically significant separation between young and intermediate-aged stands with regard to most traits. Indicator species analysis (ISA) highlighted indicator trait states, which were filtered, along the chronosequence, by changes in environmental conditions. Redundancy analysis (RDA) revealed that light intensity had the greatest effect on traits states variation from the first to the second regeneration stage, while variation from the second to the third age classes was affected by temperature. Young stands were differentiated by short cycle species with acquisitive strategies that only propagated by sexual reproduction, with light seeds, summer green and overwintering green leaves, and a long flowering duration. Intermediate-aged and mature stands were characterized by traits associated with early leaf and flower production, high persistence in time, and showing retentive strategies aimed at resource storage (e.g., geophytes, spring green leaves, rhizomes, and mesomorphic/hygromorphic leaves).
Trait Variation in Yeast Is Defined by Population History
Warringer, Jonas; Zörgö, Enikö; Cubillos, Francisco A.; Zia, Amin; Gjuvsland, Arne; Simpson, Jared T.; Forsmark, Annabelle; Durbin, Richard; Omholt, Stig W.; Louis, Edward J.; Liti, Gianni; Moses, Alan; Blomberg, Anders
2011-01-01
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism. PMID:21698134
Trait variation in yeast is defined by population history.
Warringer, Jonas; Zörgö, Enikö; Cubillos, Francisco A; Zia, Amin; Gjuvsland, Arne; Simpson, Jared T; Forsmark, Annabelle; Durbin, Richard; Omholt, Stig W; Louis, Edward J; Liti, Gianni; Moses, Alan; Blomberg, Anders
2011-06-01
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.
Bresson, Caroline C; Vitasse, Yann; Kremer, Antoine; Delzon, Sylvain
2011-11-01
The phenotypic responses of functional traits in natural populations are driven by genetic diversity and phenotypic plasticity. These two mechanisms enable trees to cope with rapid climate change. We studied two European temperate tree species (sessile oak and European beech), focusing on (i) in situ variations of leaf functional traits (morphological and physiological) along two altitudinal gradients and (ii) the extent to which these variations were under environmental and/or genetic control using a common garden experiment. For all traits, altitudinal trends tended to be highly consistent between species and transects. For both species, leaf mass per area displayed a positive linear correlation with altitude, whereas leaf size was negatively correlated with altitude. We also observed a significant increase in leaf physiological performance with increasing altitude: populations at high altitudes had higher maximum rates of assimilation, stomatal conductance and leaf nitrogen content than those at low altitudes. In the common garden experiment, genetic differentiation between populations accounted for 0-28% of total phenotypic variation. However, only two traits (leaf mass per area and nitrogen content) exhibited a significant cline. The combination of in situ and common garden experiments used here made it possible to demonstrate, for both species, a weaker effect of genetic variation than of variations in natural conditions, suggesting a strong effect of the environment on leaf functional traits. Finally, we demonstrated that intrapopulation variability was systematically higher than interpopulation variability, whatever the functional trait considered, indicating a high potential capacity to adapt to climate change.
Revisiting the Holy Grail: using plant functional traits to understand ecological processes.
Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin
2017-05-01
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.
Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B
2017-09-01
Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan
2017-10-17
Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Chen, Lin; An, Yixin; Li, Yong-xiang; Li, Chunhui; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Wang, Tianyu; Li, Yu
2017-01-01
Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci. PMID:29312420
How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology
2016-01-01
An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753
Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
Lima, Clodoaldo A M; Coelho, André L V
2011-10-01
We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...
2017-02-28
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Carter, Campbell D.; Stöhr, Michael; Meier, Wolfgang
2013-05-01
An image-processing routine was developed to autonomously identify and statistically characterize flame-kernel events, wherein OH (from a planar laser-induced fluorescence, PLIF, measurement) appears in the probe region away from the contiguous OH layer. This routine was applied to datasets from two gas turbine model combustors that consist of thousands of joint OH-velocity images from kHz framerate OH-PLIF and particle image velocimetry (PIV). Phase sorting of the kernel centroids with respect to the dominant fluid-dynamic structure of the combustors (a helical precessing vortex core, PVC) indicates through-plane transport of reacting fluid best explains their sudden appearance in the PLIF images. The concentration of flame-kernel events around the periphery of the mean location of the PVC indicates they are likely the result of wrinkling and/or breakup of the primary flame sheet associated with the passage of the PVC as it circumscribes the burner centerline. The prevailing through-plane velocity of the swirling flow-field transports these fragments into the imaging plane of the OH-PLIF system. The lack of flame-kernel events near the center of the PVC (in which there is lower strain and longer fluid-dynamic residence times) indicates that auto-ignition is not a likely explanation for these flame kernels in a majority of cases. The lack of flame-kernel centroid variation in one flame in which there is no PVC further supports this explanation.
Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane
2015-03-27
Functional traits are often used as species-specific mean trait values in comparative plant ecology or trait-based predictions of ecosystem processes, assuming that interspecific differences are greater than intraspecific trait variation and that trait-based ranking of species is consistent across environments. Although this assumption is increasingly challenged, there is a lack of knowledge regarding to what degree the extent of intraspecific trait variation in response to varying environmental conditions depends on the considered traits and the characteristics of the studied species to evaluate the consequences for trait-based species ranking. We studied functional traits of eight perennial grassland species classified into different functional groups (forbs vs. grasses) and varying in their inherent growth stature (tall vs. small) in a common garden experiment with different environments crossing three levels of nutrient availability and three levels of light availability over 4 months of treatment applications. Grasses and forbs differed in almost all above- and belowground traits, while trait differences related to growth stature were generally small. The traits showing the strongest responses to resource availability were similarly for grasses and forbs those associated with allocation and resource uptake. The strength of trait variation in response to varying resource availability differed among functional groups (grasses > forbs) and species of varying growth stature (small-statured > tall-statured species) in many aboveground traits, but only to a lower extent in belowground traits. These differential responses altered trait-based species ranking in many aboveground traits, such as specific leaf area, tissue nitrogen and carbon concentrations and above-belowground allocation (leaf area ratio and root : shoot ratio) at varying resource supply, while trait-based species ranking was more consistent in belowground traits. Our study shows that species grouping according to functional traits is valid, but trait-based species ranking depends on environmental conditions, thus limiting the applicability of species-specific mean trait values in ecological studies. Published by Oxford University Press on behalf of the Annals of Botany Company.
Bergman, Juraj; Mitrikeski, Petar T.
2015-01-01
Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371
Integrating Affect and Impulsivity: The Role of Positive and Negative Urgency in Substance Use Risk
Smith, Gregory T.; Cyders, Melissa A.
2016-01-01
Background The personality traits of positive and negative urgency refer to the tendencies to act rashly when experiencing unusually positive or negative emotions, respectively. Methods The authors review recent empirical work testing urgency theory (Cyders and Smith, 2008a) and consider advances in theory related to these traits. Results Empirical findings indicate that (a) the urgency traits are particularly important predictors of the onset of, and increases in, substance use in both children and young adults; (b) they appear to operate in part by biasing psychosocial learning; (c) pubertal onset is associated with increases in negative urgency, which in turn predict increases in adolescent drinking behavior; (d) variation in negative urgency trait levels are associated with variations in the functioning of an identified brain system; and (e) variations in the serotonin transporter gene, known to influence the relevant brain system, relate to variations in the urgency traits. Conclusion A recent model (Carver, et al., 2008) proposes the urgency traits to be markers of a tendency to respond reflexively to emotion, whether through impulsive action or ill-advised inaction (the latter leading to depressive symptoms); this model has received empirical support. The authors discuss new directions for research on the urgency traits. PMID:27306729
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Integrating affect and impulsivity: The role of positive and negative urgency in substance use risk.
Smith, Gregory T; Cyders, Melissa A
2016-06-01
The personality traits of positive and negative urgency refer to the tendencies to act rashly when experiencing unusually positive or negative emotions, respectively. The authors review recent empirical work testing urgency theory (Cyders and Smith, 2008a) and consider advances in theory related to these traits. Empirical findings indicate that (a) the urgency traits are particularly important predictors of the onset of, and increases in, substance use in both children and young adults; (b) they appear to operate in part by biasing psychosocial learning; (c) pubertal onset is associated with increases in negative urgency, which in turn predict increases in adolescent drinking behavior; (d) variation in negative urgency trait levels are associated with variations in the functioning of an identified brain system; and (e) variations in the serotonin transporter gene, known to influence the relevant brain system, relate to variations in the urgency traits. A recent model (Carver et al., 2008) proposes the urgency traits to be markers of a tendency to respond reflexively to emotion, whether through impulsive action or ill-advised inaction (the latter leading to depressive symptoms); this model has received empirical support. The authors discuss new directions for research on the urgency traits. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Larson, Julie E; Sheley, Roger L; Hardegree, Stuart P; Doescher, Paul S; James, Jeremy J
2016-05-01
Seedling recruitment is a critical driver of population dynamics and community assembly, yet we know little about functional traits that define different recruitment strategies. For the first time, we examined whether trait relatedness across germination and seedling stages allows the identification of general recruitment strategies which share core functional attributes and also correspond to recruitment outcomes in applied settings. We measured six seed and eight seedling traits (lab- and field-collected, respectively) for 47 varieties of dryland grasses and used principal component analysis (PCA) and cluster analysis to identify major dimensions of trait variation and to isolate trait-based recruitment groups, respectively. PCA highlighted some links between seed and seedling traits, suggesting that relative growth rate and root elongation rate are simultaneously but independently associated with seed mass and initial root mass (first axis), and with leaf dry matter content, specific leaf area, coleoptile tissue density and germination rate (second axis). Third and fourth axes captured separate tradeoffs between hydrothermal time and base water potential for germination, and between specific root length and root mass ratio, respectively. Cluster analysis separated six recruitment types along dimensions of germination and growth rates, but classifications did not correspond to patterns of germination, emergence or recruitment in the field under either of two watering treatments. Thus, while we have begun to identify major threads of functional variation across seed and seedling stages, our understanding of how this variation influences demographic processes-particularly germination and emergence-remains a key gap in functional ecology.
Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques
2014-11-01
Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.
Spatial and phylogenetic variation in plant defense in a tropical moist forest canopy community
NASA Astrophysics Data System (ADS)
McManus, K. M.; Asner, G. P.; Martin, R.
2013-12-01
Plants employ physical and chemical defenses to mitigate damage caused by herbivory. Spatial patterns of plant defense may provide insight into the role of plant-herbivore interactions in the assembly of plant communities. Within plant communities, the spatial overdispersion of anti-herbivore defenses by individuals may reflect a strategy to avoid host shifts from herbivore assemblages of neighboring plants. However, variation in plant defense may also result from trade-offs between foliar investment into defense and growth, mediated by variations in abiotic nutrient availability, or constrained by phylogeny. We measured four defensive traits (leaf toughness, total phenols, condensed tannins, and hydrolysable tannins) and three growth traits (LMA, C:N, total protein) of outer canopy foliage for 345 canopy trees representing 78 species, 65 genera, and 34 families in a moist tropical rainforest on Barro Colorado Island, Panama. The outer canopy provides an important, but rarely evaluated, cross-sectional image of the tropical forest ecosystem, and observations at this scale may provide an important link between field and remote sensing based studies. We used existing data on edaphic and geological properties to investigate the relationships of abiotic nutrient variation on variation in defense. Using regression and nested random-effects variance modeling, we found strong phylogenetic association with defensive traits at the family and species level, and little evidence for a trade-off between defensive traits. Greater understanding of phylogenetic structure in trait variation may yield improved characterizations of tropical biodiversity, from functional traits to risk assessments.
Dissection of complex adult traits in a mouse synthetic population.
Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T
2012-08-01
Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.
Evaluating intra- and inter-individual variation in the human placental transcriptome.
Hughes, David A; Kircher, Martin; He, Zhisong; Guo, Song; Fairbrother, Genevieve L; Moreno, Carlos S; Khaitovich, Philipp; Stoneking, Mark
2015-03-19
Gene expression variation is a phenotypic trait of particular interest as it represents the initial link between genotype and other phenotypes. Analyzing how such variation apportions among and within groups allows for the evaluation of how genetic and environmental factors influence such traits. It also provides opportunities to identify genes and pathways that may have been influenced by non-neutral processes. Here we use a population genetics framework and next generation sequencing to evaluate how gene expression variation is apportioned among four human groups in a natural biological tissue, the placenta. We estimate that on average, 33.2%, 58.9%, and 7.8% of the placental transcriptome is explained by variation within individuals, among individuals, and among human groups, respectively. Additionally, when technical and biological traits are included in models of gene expression they each account for roughly 2% of total gene expression variation. Notably, the variation that is significantly different among groups is enriched in biological pathways associated with immune response, cell signaling, and metabolism. Many biological traits demonstrate correlated changes in expression in numerous pathways of potential interest to clinicians and evolutionary biologists. Finally, we estimate that the majority of the human placental transcriptome exhibits expression profiles consistent with neutrality; the remainder are consistent with stabilizing selection, directional selection, or diversifying selection. We apportion placental gene expression variation into individual, population, and biological trait factors and identify how each influence the transcriptome. Additionally, we advance methods to associate expression profiles with different forms of selection.
Experimental study of turbulent flame kernel propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve
2008-07-15
Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{submore » j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)« less
Studer, A; Poulin, R
2014-05-01
The potential of species for evolutionary adaptation in the context of global climate change has recently come under scrutiny. Estimates of phenotypic variation in biological traits may prove valuable for identifying species, or groups of species, with greater or lower potential for evolutionary adaptation, as this variation, when heritable, represents the basis for natural selection. Assuming that measures of trait variability reflect the evolutionary potential of these traits, we conducted an analysis across trematode species to determine the potential of these parasites as a group to adapt to increasing temperatures. Firstly, we assessed how the mean number of infective stages (cercariae) emerging from infected snail hosts as well as the survival and infectivity of cercariae are related to temperature. Secondly and importantly in the context of evolutionary potential, we assessed how coefficients of variation for these traits are related to temperature, in both cases controlling for other factors such as habitat, acclimatisation, latitude and type of target host. With increasing temperature, an optimum curve was found for mean output and mean infectivity, and a linear decrease for survival of cercariae. For coefficients of variation, temperature was only an important predictor in the case of cercarial output, where results indicated that there is, however, no evidence for limited trait variation at the higher temperature range. No directional trend was found for either variation of survival or infectivity. These results, characterising general patterns among trematodes, suggest that all three traits considered may have potential to change through adaptive evolution. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Hrvoje Rukavina; Harrison Hughes
2008-01-01
Development of a new turfgrass cultivar requires an evaluation of numerous traits as well as an understanding of environmental factors influencing those traits. Growth or ability to fill in gaps and time of fall dormancy (fall color retention) that indicates cold hardiness are important traits for turfgrasses. This study was initiated to characterize variation in...
Variation in cooking and eating quality traits in Japanese rice germplasm accessions
Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu
2016-01-01
The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan. PMID:27162502
Variation in cooking and eating quality traits in Japanese rice germplasm accessions.
Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu
2016-03-01
The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan.
Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah
2018-03-13
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.
Full-wave effects on shear wave splitting
NASA Astrophysics Data System (ADS)
Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei
2014-02-01
Seismic anisotropy in the mantle plays an important role in our understanding of the Earth's internal dynamics, and shear wave splitting has always been a key observable in the investigation of seismic anisotropy. To date the interpretation of shear wave splitting in terms of anisotropy has been largely based on ray-theoretical modeling of a single vertically incident plane SKS or SKKS wave. In this study, we use sensitivity kernels of shear wave splitting to anisotropic parameters calculated by the normal-mode theory to demonstrate that the interference of SKS with other phases of similar arrival times, near-field effect, and multiple reflections in the crust lead to significant variations of SKS splitting with epicentral distance. The full-wave kernels not only widen the possibilities in the source-receiver geometry in making shear wave splitting measurements but also provide the capability for tomographic inversion to resolve vertical and lateral variations in the anisotropic structures.
Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny
Mendes-Moreira, Pedro; Alves, Mara L.; Satovic, Zlatko; dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E.; Hallauer, Arnel R.; Vaz Patto, Maria Carlota
2015-01-01
Maize ear fasciation Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Material and Methods Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Results and Discussion Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Conclusions Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning. PMID:25923975
Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny.
Mendes-Moreira, Pedro; Alves, Mara L; Satovic, Zlatko; Dos Santos, João Pacheco; Santos, João Nina; Souza, João Cândido; Pêgo, Silas E; Hallauer, Arnel R; Vaz Patto, Maria Carlota
2015-01-01
Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.
Fitness consequences of avian personalities in a fluctuating environment.
Dingemanse, Niels J.; Both, Christiaan; Drent, Piet J.; Tinbergen, Joost M.
2004-01-01
Individual animals differ in the way they cope with challenges in their environment, comparable with variation in human personalities. The proximate basis of variation in personality traits has received considerable attention, and one general finding is that personality traits have a substantial genetic basis. This poses the question of how variation in personality is maintained in natural populations. We show that selection on a personality trait with high heritability fluctuates across years within a natural bird population. Annual adult survival was related to this personality trait (behaviour in novel environments) but the effects were always opposite for males and females, and reversed between years. The number of offspring surviving to breeding was also related to their parents' personalities, and again selection changed between years. The observed annual changes in selection pressures coincided with changes in environmental conditions (masting of beeches) that affect the competitive regimes of the birds. We expect that the observed fluctuations in environmental factors lead to fluctuations in competition for space and food, and these, in association with variations in population density, lead to a variation in selection pressure, which maintains genetic variation in personalities. PMID:15255104
Brousseau, Louise; Bonal, Damien; Cigna, Jeremy; Scotti, Ivan
2013-10-01
In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.
Brousseau, Louise; Bonal, Damien; Cigna, Jeremy; Scotti, Ivan
2013-01-01
Background and Aims In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. Methods Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. Key Results In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. PMID:24023042
Ensslin, Andreas; Fischer, Markus
2015-08-01
• Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.
Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S
2016-02-01
Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.
Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants
Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.
2013-01-01
Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297
Trait variation and genetic diversity in a banana genomic selection training population
Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim
2017-01-01
Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31–35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents. PMID:28586365
Trait variation and genetic diversity in a banana genomic selection training population.
Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim; Doležel, Jaroslav
2017-01-01
Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.
Bueso, Francisco; Sosa, Italo; Chun, Roldan; Pineda, Renan
2016-01-01
Jatropha curcas L. (Jatropha) is believed to have originated from Mexico and Central America. So far, characterization efforts have focused on Asia, Africa and Mexico. Non-toxic, low phorbol ester (PE) varieties have been found only in Mexico. Differences in PE content in seeds and its structural components, crude oil and cake from Jatropha provenances cultivated in Central and South America were evaluated. Seeds were dehulled, and kernels were separated into tegmen, cotyledons and embryo for PE quantitation by RP-HPLC. Crude oil and cake PE content was also measured. No phenotypic departures in seed size and structure were observed among Jatropha cultivated in Central and South America compared to provenances from Mexico, Asia and Africa. Cotyledons comprised 96.2-97.5 %, tegmen 1.6-2.4 % and embryo represented 0.9-1.4 % of dehulled kernel. Total PE content of all nine provenances categorized them as toxic. Significant differences in kernel PE content were observed among provenances from Mexico, Central and South America (P < 0.01), being Mexican the highest (7.6 mg/g) and Cabo Verde the lowest (2.57 mg/g). All accessions had >95 % of PEs concentrated in cotyledons, 0.5-3 % in the tegmen and 0.5-1 % in the embryo. Over 60 % of total PE in dehulled kernels accumulated in the crude oil, while 35-40 % remained in the cake after extraction. Low phenotypic variability in seed physical, structural traits and PE content was observed among provenances from Latin America. Very high-PE provenances with potential as biopesticide were found in Central America. No PE-free, edible Jatropha was found among provenances currently cultivated in Central America and Brazil that could be used for human consumption and feedstock. Furthermore, dehulled kernel structural parts as well as its crude oil and cake contained toxic PE levels.
Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.
2014-01-01
Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335
Variation and inheritance of some physiological and morphological traits in Douglas-fir
Oscar Sziklai
1966-01-01
Forest genetics is the study of variation and heritability in forest trees. It is concerned with similarities and differences of various traits between related trees and their transmittance to the next generation.
Kashyap, Kanchan L; Bajpai, Manish K; Khanna, Pritee; Giakos, George
2018-01-01
Automatic segmentation of abnormal region is a crucial task in computer-aided detection system using mammograms. In this work, an automatic abnormality detection algorithm using mammographic images is proposed. In the preprocessing step, partial differential equation-based variational level set method is used for breast region extraction. The evolution of the level set method is done by applying mesh-free-based radial basis function (RBF). The limitation of mesh-based approach is removed by using mesh-free-based RBF method. The evolution of variational level set function is also done by mesh-based finite difference method for comparison purpose. Unsharp masking and median filtering is used for mammogram enhancement. Suspicious abnormal regions are segmented by applying fuzzy c-means clustering. Texture features are extracted from the segmented suspicious regions by computing local binary pattern and dominated rotated local binary pattern (DRLBP). Finally, suspicious regions are classified as normal or abnormal regions by means of support vector machine with linear, multilayer perceptron, radial basis, and polynomial kernel function. The algorithm is validated on 322 sample mammograms of mammographic image analysis society (MIAS) and 500 mammograms from digital database for screening mammography (DDSM) datasets. Proficiency of the algorithm is quantified by using sensitivity, specificity, and accuracy. The highest sensitivity, specificity, and accuracy of 93.96%, 95.01%, and 94.48%, respectively, are obtained on MIAS dataset using DRLBP feature with RBF kernel function. Whereas, the highest 92.31% sensitivity, 98.45% specificity, and 96.21% accuracy are achieved on DDSM dataset using DRLBP feature with RBF kernel function. Copyright © 2017 John Wiley & Sons, Ltd.
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.
Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille
2017-07-01
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Land-use intensification effects on functional properties in tropical plant communities.
Carreño-Rocabado, Geovana; Peña-Claros, Marielos; Bongers, Frans; Díaz, Sandra; Quetier, Fabien; Chuviña, José; Poorter, Lourens
2016-01-01
There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive trait values or with less functional variation. Instead of the widely expected negative impacts of LUI on plant diversity, we found varying responses of functional variation, with possible repercussions on many ecosystem services. These findings provide a background for actively mitigating negative effects of LUI while meeting the needs of local communities that rely mainly on provisioning ecosystem services for their livelihoods.
Semenov, Georgy A; Scordato, Elizabeth S C; Khaydarov, David R; Smith, Chris C R; Kane, Nolan C; Safran, Rebecca J
2017-11-01
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome-wide divergence. Variation in only one trait-head plumage patterning-was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome-wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution. © 2017 John Wiley & Sons Ltd.
Adu, Michael O; Chatot, Antoine; Wiesel, Lea; Bennett, Malcolm J; Broadley, Martin R; White, Philip J; Dupuy, Lionel X
2014-05-01
The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipment and adaptable to most laboratory and glasshouse environments, and its application to quantify environmental and temporal variation in root traits between genotypes of Brassica rapa L. Plants were supplied with a complete nutrient solution through the wick of a germination paper. Images of root systems were acquired without manual intervention, over extended periods, using multiple scanners controlled by customized software. Mixed-effects models were used to describe the sources of variation in root traits contributing to root system architecture estimated from digital images. It was calculated that between one and 43 replicates would be required to detect a significant difference (95% CI 50% difference between traits). Broad-sense heritability was highest for shoot biomass traits (>0.60), intermediate (0.25-0.60) for the length and diameter of primary roots and lateral root branching density on the primary root, and lower (<0.25) for other root traits. Models demonstrate that root traits show temporal variations of various types. The phenotyping platform described here can be used to quantify environmental and temporal variation in traits contributing to root system architecture in B. rapa and can be extended to screen the large populations required for breeding for efficient resource acquisition.
Legume species differ in the responses of their functional traits to plant diversity.
Roscher, Christiane; Schmid, Bernhard; Buchmann, Nina; Weigelt, Alexandra; Schulze, Ernst-Detlef
2011-02-01
Plants can respond to environmental impacts by variation in functional traits, thereby increasing their performance relative to neighbors. We hypothesized that trait adjustment should also occur in response to influences of the biotic environment, in particular different plant diversity of the community. We used 12 legume species as a model and assessed their variation in morphological, physiological, life-history and performance traits in experimental grasslands of different plant species (1, 2, 4, 8, 16 and 60) and functional group (1-4) numbers. Mean trait values and their variation in response to plant diversity varied among legume species and from trait to trait. The tall-growing Onobrychis viciifolia showed little trait variation in response to increasing plant diversity, whereas the species with shorter statures responded in apparently adaptive ways. The formation of longer shoots with elongated internodes, increased biomass allocation to supporting tissue at the cost of leaf mass, reduced branching, higher specific leaf areas and lower foliar δ(13)C values indicated increasing efforts for light acquisition in more diverse communities. Although leaf nitrogen concentrations and shoot biomass:nitrogen ratios were not affected by increasing plant diversity, foliar δ(15)N values of most legumes decreased and the application of the (15)N natural abundance method suggested that they became more reliant on symbiotic N(2) fixation. Some species formed fewer inflorescences and delayed flowering with increasing community diversity. The observed variation in functional traits generally indicated strategies of legumes to optimize light and nutrient capturing, but they were largely species-dependent and only partly attributable to increasing canopy height and community biomass with increasing plant diversity. Thus, the analysis of individual plant species and their adjustment to growth conditions in communities of increasing plant diversity is essential to get a deeper insight into the mechanisms behind biodiversity-ecosystem functioning relationships.
Verheijen, Lieneke M; Aerts, Rien; Brovkin, Victor; Cavender-Bares, Jeannine; Cornelissen, Johannes H C; Kattge, Jens; van Bodegom, Peter M
2015-08-01
Earth system models demonstrate large uncertainty in projected changes in terrestrial carbon budgets. The lack of inclusion of adaptive responses of vegetation communities to the environment has been suggested to hamper the ability of modeled vegetation to adequately respond to environmental change. In this study, variation in functional responses of vegetation has been added to an earth system model (ESM) based on ecological principles. The restriction of viable mean trait values of vegetation communities by the environment, called 'habitat filtering', is an important ecological assembly rule and allows for determination of global scale trait-environment relationships. These relationships were applied to model trait variation for different plant functional types (PFTs). For three leaf traits (specific leaf area, maximum carboxylation rate at 25 °C, and maximum electron transport rate at 25 °C), relationships with multiple environmental drivers, such as precipitation, temperature, radiation, and CO2 , were determined for the PFTs within the Max Planck Institute ESM. With these relationships, spatiotemporal variation in these formerly fixed traits in PFTs was modeled in global change projections (IPCC RCP8.5 scenario). Inclusion of this environment-driven trait variation resulted in a strong reduction of the global carbon sink by at least 33% (2.1 Pg C yr(-1) ) from the 2nd quarter of the 21st century onward compared to the default model with fixed traits. In addition, the mid- and high latitudes became a stronger carbon sink and the tropics a stronger carbon source, caused by trait-induced differences in productivity and relative respirational costs. These results point toward a reduction of the global carbon sink when including a more realistic representation of functional vegetation responses, implying more carbon will stay airborne, which could fuel further climate change. © 2015 John Wiley & Sons Ltd.
Grethe Robertsen; John D. Armstrong; Keith H. Nislow; Ivar Herfindal; Simon McKelvey; Sigurd Einum; Martin Genner
2014-01-01
Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental...
2010-01-01
Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889
Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan
2010-05-20
Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.
Wong, Mark K L; Woodman, James D; Rowell, David M
2017-07-01
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.
Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-10-01
Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abbas, Hamed K; Zablotowicz, Robert M; Weaver, Mark A; Shier, W Thomas; Bruns, H Arnold; Bellaloui, Nacer; Accinelli, Cesare; Abel, Craig A
2013-12-04
Mycotoxin contamination levels in maize kernels are controlled by a complex set of factors including insect pressure, fungal inoculum potential, and environmental conditions that are difficult to predict. Methods are becoming available to control mycotoxin-producing fungi in preharvest crops, including Bt expression, biocontrol, and host plant resistance. Initial reports in the United States and other countries have associated Bt expression with reduced fumonisin, deoxynivalenol, and zearalenone contamination and, to a lesser extent, reduced aflatoxin contamination in harvested maize kernels. However, subsequent field results have been inconsistent, confirming that fumonisin contamination can be reduced by Bt expression, but the effect on aflatoxin is, at present, inconclusive. New maize hybrids have been introduced with increased spectra of insect control and higher levels of Bt expression that may provide important tools for mycotoxin reduction and increased yield due to reduced insect feeding, particularly if used together with biocontrol and host plant resistance.
Improved scatter correction using adaptive scatter kernel superposition
NASA Astrophysics Data System (ADS)
Sun, M.; Star-Lack, J. M.
2010-11-01
Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.
Microscopic analysis of irradiated AGR-1 coated particle fuel compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott A. Ploger; Paul A. Demkowicz; John D. Hunn
The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplanemore » on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.« less
A shock-capturing SPH scheme based on adaptive kernel estimation
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Donoso, Arnaldo; Sira, Eloy; Klapp, Jaime
2006-02-01
Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations, the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel summation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities, as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular, for the two-dimensional cylindrical Noh's shock implosion and Sedov point explosion problems the present scheme produces much better results than those obtained with conventional SPH codes.
Grattapaglia, D.; Bertolucci, FLG.; Penchel, R.; Sederoff, R. R.
1996-01-01
Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding. PMID:8913761
Judge, Timothy A; Simon, Lauren S; Hurst, Charlice; Kelley, Ken
2014-03-01
Historically, organizational and personality psychologists have ignored within-individual variation in personality across situations or have treated it as measurement error. However, we conducted a 10-day experience sampling study consistent with whole trait theory (Fleeson, 2012), which conceptualizes personality as a system of stable tendencies and patterns of intraindividual variation along the dimensions of the Big Five personality traits (Costa & McCrae, 1992). The study examined whether (a) internal events (i.e., motivation), performance episodes, and interpersonal experiences at work predict deviations from central tendencies in trait-relevant behavior, affect, and cognition (i.e., state personality), and (b) there are individual differences in responsiveness to work experiences. Results revealed that personality at work exhibited both stability and variation within individuals. Trait measures predicted average levels of trait manifestation in daily behavior at work, whereas daily work experiences (i.e., organizational citizenship, interpersonal conflict, and motivation) predicted deviations from baseline tendencies. Additionally, correlations of neuroticism with standard deviations in the daily personality variables suggest that, although work experiences influence state personality, people higher in neuroticism exhibit higher levels of intraindividual variation in personality than do those who are more emotionally stable.
Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed
2016-06-01
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed
2016-01-01
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020
NASA Astrophysics Data System (ADS)
Christoffersen, B. O.; Xu, C.; Koven, C.; Fisher, R.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; McDowell, N.
2017-12-01
Recent syntheses of variation in woody plant traits have emphasized how hydraulic traits - those related to the acquisition, transport and retention of water across roots, stems and leaves - are coordinated along a limited set of dimensions or sequence of responses (Reich 2014, Bartlett et al. 2016). However, in many hydraulic trait-trait relationships, there is considerable residual variation, despite the fact that many bivariate relationships are statistically significant. In other instances, such as the relationship between root-stem-leaf vulnerability to embolism, data are so limited that testing the trait coordination hypothesis is not yet possible. The impacts on plant hydraulic function of competing hypotheses regarding trait coordination (or the lack thereof) and residual trait variation have not yet been comprehensively tested and thus remain unknown. We addressed this knowledge gap with a parameter sensitivity analysis using a plant hydraulics model in which all parameters are biologically-interpretable and measurable plant hydraulic traits, as embedded within a size- and demographically-structured ecosystem model, the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES). We focused on tropical forests, where co-existing species have been observed to possess large variability in their hydraulic traits. Assembling 10 distinct datasets of hydraulic traits of stomata, leaves, stems, and roots, we determined the best-fit theoretical distribution for each trait and quantified interspecific (between-species) trait-trait coordination in tropical forests as a rank correlation matrix. We imputed missing correlations with values based on competing hypotheses of trait coordination, such as coordinated shifts in embolism vulnerability from roots to shoots (the hydraulic fuse hypothesis). Based on the Fourier Amplitude Sensitivity Test and our correlation matrix, we generated thousands of parameter sets for an ensemble of hydraulics model simulations at a tropical forest site in central Amazonia. We explore the sensitivity of simulated leaf water potential and stem sap flux in the context of hypotheses of trait-trait coordination and their associated uncertainties.
Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; ...
2016-07-11
Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho-physiological traits was explored and showed chlorogenic and shikimic acid to be associated with photosynthesis, early plant growth and final biomass measures in sorghum. In conclusion, taken together, this study demonstrates the integration of metabolomics with morpho-physiological datasets to elucidate links between plant metabolism, growth, and architecture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.
Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho-physiological traits was explored and showed chlorogenic and shikimic acid to be associated with photosynthesis, early plant growth and final biomass measures in sorghum. In conclusion, taken together, this study demonstrates the integration of metabolomics with morpho-physiological datasets to elucidate links between plant metabolism, growth, and architecture.« less
Leaf traits within communities: context may affect the mapping of traits to function.
Funk, Jennifer L; Cornwell, William K
2013-09-01
The leaf economics spectrum (LES) has revolutionized the way many ecologists think about quantifying plant ecological trade-offs. In particular, the LES has connected a clear functional trade-off (long-lived leaves with slow carbon capture vs. short-lived leaves with fast carbon capture) to a handful of easily measured leaf traits. Building on this work, community ecologists are now able to quickly assess species carbon-capture strategies, which may have implications for community-level patterns such as competition or succession. However, there are a number of steps in this logic that require careful examination, and a potential danger arises when interpreting leaf-trait variation among species within communities where trait relationships are weak. Using data from 22 diverse communities, we show that relationships among three common functional traits (photosynthetic rate, leaf nitrogen concentration per mass, leaf mass per area) are weak in communities with low variation in leaf life span (LLS), especially communities dominated by herbaceous or deciduous woody species. However, globally there are few LLS data sets for communities dominated by herbaceous or deciduous species, and more data are needed to confirm this pattern. The context-dependent nature of trait relationships at the community level suggests that leaf-trait variation within communities, especially those dominated by herbaceous and deciduous woody species, should be interpreted with caution.
Accuracies of univariate and multivariate genomic prediction models in African cassava.
Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2017-12-04
Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.
Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar
2017-08-16
Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations. © 2017 Botanical Society of America.
Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, Francine Joyce; Stempien, John Dennis
2016-09-01
Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less
Intraspecific variation shapes community-level behavioral responses to urbanization in spiders.
Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries
2017-09-01
Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.
Altered trait variability in response to size-selective mortality.
Uusi-Heikkilä, Silva; Lindström, Kai; Parre, Noora; Arlinghaus, Robert; Alós, Josep; Kuparinen, Anna
2016-09-01
Changes in trait variability owing to size-selective harvesting have received little attention in comparison with changes in mean trait values, perhaps because of the expectation that phenotypic variability should generally be eroded by directional selection typical for fishing and hunting. We show, however, that directional selection, in particular for large body size, leads to increased body-size variation in experimentally harvested zebrafish (Danio rerio) populations exposed to two alternative feeding environments: ad libitum and temporarily restricted food availability. Trait variation may influence population adaptivity, stability and resilience. Therefore, rather than exerting selection pressures that favour small individuals, our results stress the importance of protecting large ones, as they can harbour a great amount of variation within a population, to manage fish stocks sustainably. © 2016 The Author(s).
Dworkin, Ian; Wagner, Aaron P.
2014-01-01
Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847
Evolutionary response when selection and genetic variation covary across environments.
Wood, Corlett W; Brodie, Edmund D
2016-10-01
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.
He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin
2018-02-03
How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species' niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick
2016-11-01
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (A
Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu
2011-01-01
A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.
Risk Classification with an Adaptive Naive Bayes Kernel Machine Model.
Minnier, Jessica; Yuan, Ming; Liu, Jun S; Cai, Tianxi
2015-04-22
Genetic studies of complex traits have uncovered only a small number of risk markers explaining a small fraction of heritability and adding little improvement to disease risk prediction. Standard single marker methods may lack power in selecting informative markers or estimating effects. Most existing methods also typically do not account for non-linearity. Identifying markers with weak signals and estimating their joint effects among many non-informative markers remains challenging. One potential approach is to group markers based on biological knowledge such as gene structure. If markers in a group tend to have similar effects, proper usage of the group structure could improve power and efficiency in estimation. We propose a two-stage method relating markers to disease risk by taking advantage of known gene-set structures. Imposing a naive bayes kernel machine (KM) model, we estimate gene-set specific risk models that relate each gene-set to the outcome in stage I. The KM framework efficiently models potentially non-linear effects of predictors without requiring explicit specification of functional forms. In stage II, we aggregate information across gene-sets via a regularization procedure. Estimation and computational efficiency is further improved with kernel principle component analysis. Asymptotic results for model estimation and gene set selection are derived and numerical studies suggest that the proposed procedure could outperform existing procedures for constructing genetic risk models.
Roche, Dominique G; Careau, Vincent; Binning, Sandra A
2016-12-15
Animal 'personality', defined as repeatable inter-individual differences in behaviour, is a concept in biology that faces intense controversy. Critics argue that the field is riddled with terminological and methodological inconsistencies and lacks a sound theoretical framework. Nevertheless, experimental biologists are increasingly studying individual differences in physiology and relating these to differences in behaviour, which can lead to fascinating insights. We encourage this trend, and in this Commentary we highlight some of the benefits of estimating variation in (and covariation among) phenotypic traits at the inter- and intra-individual levels. We focus on behaviour while drawing parallels with physiological and performance-related traits. First, we outline some of the confusion surrounding the terminology used to describe repeatable inter-individual differences in behaviour. Second, we argue that acknowledging individual behavioural differences can help researchers avoid sampling and experimental bias, increase explanatory power and, ultimately, understand how selection acts on physiological traits. Third, we summarize the latest methods to collect, analyse and present data on individual trait variation. We note that, while measuring the repeatability of phenotypic traits is informative in its own right, it is only the first step towards understanding how natural selection and genetic architecture shape intra-specific variation in complex, labile traits. Thus, understanding how and why behavioural traits evolve requires linking repeatable inter-individual behavioural differences with core aspects of physiology (e.g. neurophysiology, endocrinology, energy metabolism) and evolutionary biology (e.g. selection gradients, heritability). © 2016. Published by The Company of Biologists Ltd.
GlobAl Distribution of GEnetic Traits (GADGET) web server: polygenic trait scores worldwide.
Chande, Aroon T; Wang, Lu; Rishishwar, Lavanya; Conley, Andrew B; Norris, Emily T; Valderrama-Aguirre, Augusto; Jordan, I King
2018-05-18
Human populations from around the world show striking phenotypic variation across a wide variety of traits. Genome-wide association studies (GWAS) are used to uncover genetic variants that influence the expression of heritable human traits; accordingly, population-specific distributions of GWAS-implicated variants may shed light on the genetic basis of human phenotypic diversity. With this in mind, we developed the GlobAl Distribution of GEnetic Traits web server (GADGET http://gadget.biosci.gatech.edu). The GADGET web server provides users with a dynamic visual platform for exploring the relationship between worldwide genetic diversity and the genetic architecture underlying numerous human phenotypes. GADGET integrates trait-implicated single nucleotide polymorphisms (SNPs) from GWAS, with population genetic data from the 1000 Genomes Project, to calculate genome-wide polygenic trait scores (PTS) for 818 phenotypes in 2504 individual genomes. Population-specific distributions of PTS are shown for 26 human populations across 5 continental population groups, with traits ordered based on the extent of variation observed among populations. Users of GADGET can also upload custom trait SNP sets to visualize global PTS distributions for their own traits of interest.
Lv, Weihua; Zheng, Xianhu; Kuang, Youyi; Cao, Dingchen; Yan, Yunqin; Sun, Xiaowen
2016-05-05
Comparing QTL analyses of multiple pair-mating families can provide a better understanding of important allelic variations and distributions. However, most QTL mapping studies in common carp have been based on analyses of individual families. In order to improve our understanding of heredity and variation of QTLs in different families and identify important QTLs, we performed QTL analysis of growth-related traits in multiple segregating families. We completed a genome scan for QTLs that affect body weight (BW), total length (TL), and body thickness (BT) of 522 individuals from eight full-sib families using 250 microsatellites evenly distributed across 50 chromosomes. Sib-pair and half-sib model mapping identified 165 QTLs on 30 linkage groups. Among them, 10 (genome-wide P <0.01 or P < 0.05) and 28 (chromosome-wide P < 0.01) QTLs exhibited significant evidence of linkage, while the remaining 127 exhibited a suggestive effect on the above three traits at a chromosome-wide (P < 0.05) level. Multiple QTLs obtained from different families affect BW, TL, and BT and locate at close or identical positions. It suggests that same genetic factors may control variability in these traits. Furthermore, the results of the comparative QTL analysis of multiple families showed that one QTL was common in four of the eight families, nine QTLs were detected in three of the eight families, and 26 QTLs were found common to two of the eight families. These common QTLs are valuable candidates in marker-assisted selection. A large number of QTLs were detected in the common carp genome and associated with growth-related traits. Some of the QTLs of different growth-related traits were identified at similar chromosomal regions, suggesting a role for pleiotropy and/or tight linkage and demonstrating a common genetic basis of growth trait variations. The results have set up an example for comparing QTLs in common carp and provided insights into variations in the identified QTLs affecting body growth. Discovery of these common QTLs between families and growth-related traits represents an important step towards understanding of quantitative genetic variation in common carp.
Variation for seed phytosterols in sunflower germplasm
USDA-ARS?s Scientific Manuscript database
Sunflower (Helianthus annuus L.) seeds and oils are rich sources of phytosterols, which are important compounds for human nutrition. There is limited information on variability for seed phytosterols in sunflower germplasm. The objective of the present research was to evaluate kernel phytosterol cont...
Evolution in plant populations as a driver of ecological changes in arthropod communities
Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.
2009-01-01
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution. PMID:19414473
Environmental variability and acoustic signals: a multi-level approach in songbirds.
Medina, Iliana; Francis, Clinton D
2012-12-23
Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.
Widespread covariation of early environmental exposures and trait-associated polygenic variation.
Krapohl, E; Hannigan, L J; Pingault, J-B; Patel, H; Kadeva, N; Curtis, C; Breen, G; Newhouse, S J; Eley, T C; O'Reilly, P F; Plomin, R
2017-10-31
Although gene-environment correlation is recognized and investigated by family studies and recently by SNP-heritability studies, the possibility that genetic effects on traits capture environmental risk factors or protective factors has been neglected by polygenic prediction models. We investigated covariation between trait-associated polygenic variation identified by genome-wide association studies (GWASs) and specific environmental exposures, controlling for overall genetic relatedness using a genomic relatedness matrix restricted maximum-likelihood model. In a UK-representative sample ( n = 6,710), we find widespread covariation between offspring trait-associated polygenic variation and parental behavior and characteristics relevant to children's developmental outcomes-independently of population stratification. For instance, offspring genetic risk for schizophrenia was associated with paternal age ( R 2 = 0.002; P = 1e-04), and offspring education-associated variation was associated with variance in breastfeeding ( R 2 = 0.021; P = 7e-30), maternal smoking during pregnancy ( R 2 = 0.008; P = 5e-13), parental smacking ( R 2 = 0.01; P = 4e-15), household income ( R 2 = 0.032; P = 1e-22), watching television ( R 2 = 0.034; P = 5e-47), and maternal education ( R 2 = 0.065; P = 3e-96). Education-associated polygenic variation also captured covariation between environmental exposures and children's inattention/hyperactivity, conduct problems, and educational achievement. The finding that genetic variation identified by trait GWASs partially captures environmental risk factors or protective factors has direct implications for risk prediction models and the interpretation of GWAS findings.
Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly
Barton, Madeleine; Sunnucks, Paul; Norgate, Melanie; Murray, Neil; Kearney, Michael
2014-01-01
Widespread species often show geographic variation in thermally-sensitive traits, providing insight into how species respond to shifts in temperature through time. Such patterns may arise from phenotypic plasticity, genetic adaptation, or their interaction. In some cases, the effects of genotype and temperature may act together to reduce, or to exacerbate, phenotypic variation in fitness-related traits across varying thermal environments. We find evidence for such interactions in life-history traits of Heteronympha merope, a butterfly distributed across a broad latitudinal gradient in south-eastern Australia. We show that body size in this butterfly is negatively related to developmental temperature in the laboratory, in accordance with the temperature-size rule, but not in the field, despite very strong temperature gradients. A common garden experiment on larval thermal responses, spanning the environmental extremes of H. merope's distribution, revealed that butterflies from low latitude (warmer climate) populations have relatively fast intrinsic growth and development rates compared to those from cooler climates. These synergistic effects of genotype and temperature across the landscape (co-gradient variation) are likely to accentuate phenotypic variation in these traits, and this interaction must be accounted for when predicting how H. merope will respond to temperature change through time. These results highlight the importance of understanding how variation in life-history traits may arise in response to environmental change. Without this knowledge, we may fail to detect whether organisms are tracking environmental change, and if they are, whether it is by plasticity, adaptation or both. PMID:24743771
Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar
2017-06-01
We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.
Environmental predictors of dispersal traits across a species' geographic range.
LaRue, Elizabeth A; Holland, Jeffrey D; Emery, Nancy C
2018-05-30
Variation in habitat quality and quantity drive selection on dispersal traits in heterogeneous environments, but the extent to which environmental conditions predict geographic variation in dispersal is rarely evaluated. We assessed dispersal trait variation across the range of Cakile edentula var. lacustris, an annual herb that occupies beaches of the Great Lakes. Cakile edentula has dimorphic fruits that each contain one dispersive and one non-dispersive seed. Previous work showed that plant height, branching density, and dispersive fruit wing-loading can determine the distance that seeds disperse locally by wind, while pericarp thickness influences the distance they disperse by water. We tested if these traits vary predictably with latitude across the species' geographic range, and if variation in dispersal characteristics can be predicted by the quality and quantity of habitat available at a site. We observed that the dispersive fruits from northern and southern populations had thinner pericarps than those from the interior of the species' range, reflecting reduced long-distance dispersal by water at both range limits. Plants at the northern range limit were shorter with less dense branching and lower wing-loading than populations elsewhere in the range, suggesting that these populations have enhanced local wind dispersal. In contrast, southern populations exhibited traits with inconsistent effects on wind dispersal: plants tended to be short, which facilitates wind dispersal in C. edentula, but also had relatively higher branching density and distal segment wing-loading that reduce wind dispersal. Geographic variation in maternal plant height and branching density was partially explained by variation in habitat quality, which declined at the species' range limits. In addition, population differences in branching density, fruit wing-loading, and pericarp thickness were predicted by the abundance and distribution of beach habitat. Finally, a common garden analysis recovered latitudinal patterns for the dispersal traits associated with fruits, but not those associated with maternal architecture. Thus, the geographic patterns of dispersal trait variation that we observed likely reflect responses to past selection by the distribution, abundance, and quality of habitat, strong plasticity in dispersal traits, and the effects dispersal itself has in shaping local adaptation by driving gene flow among populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532
Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M
2013-01-01
Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly considering the roles of different elements to properly interpret fertility-trait relationships.
Fujita, Yuki; van Bodegom, Peter M.; Witte, Jan-Philip M.
2013-01-01
Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility–trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility–trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly considering the roles of different elements to properly interpret fertility–trait relationships. PMID:24391815
Reevaluating geographic variation in life-history traits of a widespread Nearctic amphibian
Davenport, Jon M.; Hossack, Blake R.
2016-01-01
Animals from cold environments are usually larger than animals from warm environments, which often produce clines in body size. Because variation in body size can lead to trade-offs between growth and reproduction, life-history traits should also vary across climatic gradients. To determine if life-history traits of wood frogs Rana sylvatica vary with climate, we examined female and male body length, clutch size, and ovum size from 37 locations across an unprecedented 32° of latitude. In conflict with recent research, body size, and ovum size decreased in cold climates and at higher latitudes. Clutch size did not vary with climate or latitude, but reproductive effort (clutch size:female size) did, suggesting selection for a life-history traits that favors maximizing propagule number over propagule size in cold climates. With accelerating climate change that will expose populations to novel environmental conditions, it is important to identify the limits of adaptation, which can be informed by greater understanding of variation in life-history traits.
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.
van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem
2015-10-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.
Classifying Measures of Biological Variation
Gregorius, Hans-Rolf; Gillet, Elizabeth M.
2015-01-01
Biological variation is commonly measured at two basic levels: variation within individual communities, and the distribution of variation over communities or within a metacommunity. We develop a classification for the measurement of biological variation on both levels: Within communities into the categories of dispersion and diversity, and within metacommunities into the categories of compositional differentiation and partitioning of variation. There are essentially two approaches to characterizing the distribution of trait variation over communities in that individuals with the same trait state or type tend to occur in the same community (describes differentiation tendencies), and individuals with different types tend to occur in different communities (describes apportionment tendencies). Both approaches can be viewed from the dual perspectives of trait variation distributed over communities (CT perspective) and community membership distributed over trait states (TC perspective). This classification covers most of the relevant descriptors (qualified measures) of biological variation, as is demonstrated with the help of major families of descriptors. Moreover, the classification is shown to open ways to develop new descriptors that meet current needs. Yet the classification also reveals the misclassification of some prominent and widely applied descriptors: Dispersion is often misclassified as diversity, particularly in cases where dispersion descriptor allow for the computation of effective numbers; the descriptor GST of population genetics is commonly misclassified as compositional differentiation and confused with partitioning-oriented differentiation, whereas it actually measures partitioning-oriented apportionment; descriptors of β-diversity are ambiguous about the differentiation effects they are supposed to represent and therefore require conceptual reconsideration. PMID:25807558
The Ecohydrological Context of Drought and Classification of Plant Responses
NASA Astrophysics Data System (ADS)
Feng, X.; Ackerly, D.; Dawson, T. E.; Manzoni, S.; Skelton, R. P.; Vico, G.; Thompson, S. E.
2017-12-01
Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, e.g., isohydry - anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, concerns are growing about the consistency and predictive value of such classifications. Here, we outline the basis for a systematic classification of drought strategies that accounts for both environmental conditions and functional traits. We (1) identify drawbacks of exiting isohydricity and trait-based metrics, (2) identify major axes of trait and environmental variation that determine drought mortality pathways (hydraulic failure and carbon starvation) using non-dimensional trait groups, and (3) demonstrate that these trait groupings predict physiological drought outcomes using both measured and synthetic data. In doing so we untangle some confounding effects of environment and trait variations that undermine current classification schemes, outline a pathway to progress towards a general classification of drought vulnerability, and advocate for more careful treatment of the environmental conditions within which plant drought responses occur.
The spatial sensitivity of Sp converted waves-kernels and their applications
NASA Astrophysics Data System (ADS)
Mancinelli, N. J.; Fischer, K. M.
2017-12-01
We have developed a framework for improved imaging of strong lateral variations in crust and upper mantle seismic discontinuity structure using teleseismic S-to-P (Sp) scattered waves. In our framework, we rapidly compute scattered wave sensitivities to velocity perturbations in a one-dimensional background model using ray-theoretical methods to account for timing, scattering, and geometrical spreading effects. The kernels accurately describe the amplitude and phase information of a scattered waveform, which we confirm by benchmarking against kernels derived from numerical solutions of the wave equation. The kernels demonstrate that the amplitude of an Sp converted wave at a given time is sensitive to structure along a quasi-hyperbolic curve, such that structure far from the direct ray path can influence the measurements. We use synthetic datasets to explore two potential applications of the scattered wave sensitivity kernels. First, we back-project scattered energy back to its origin using the kernel adjoint operator. This approach successfully images mantle interfaces at depths of 120-180 km with up to 20 km of vertical relief over lateral distances of 100 km (i.e., undulations with a maximal 20% grade) when station spacing is 10 km. Adjacent measurements sum coherently at nodes where gradients in seismic properties occur, and destructively interfere at nodes lacking gradients. In cases where the station spacing is greater than 10 km, the destructive interference can be incomplete, and smearing along the isochrons can occur. We demonstrate, however, that model smoothing can dampen these artifacts. This method is relatively fast, and accurately retrieves the positions of the interfaces, but it generally does not retrieve the strength of the velocity perturbations. Therefore, in our second approach, we attempt to invert directly for velocity perturbations from our reference model using an iterative conjugate-directions scheme.
Finite-frequency sensitivity kernels for head waves
NASA Astrophysics Data System (ADS)
Zhang, Zhigang; Shen, Yang; Zhao, Li
2007-11-01
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.
Turan, Semra; Topcu, Ali; Karabulut, Ihsan; Vural, Halil; Hayaloglu, Ali Adnan
2007-12-26
The fatty acid, sn-2 fatty acid, triacyglycerol (TAG), tocopherol, and phytosterol compositions of kernel oils obtained from nine apricot varieties grown in the Malatya region of Turkey were determined ( P<0.05). The names of the apricot varieties were Alyanak (ALY), Cataloglu (CAT), Cöloglu (COL), Hacihaliloglu (HAC), Hacikiz (HKI), Hasanbey (HSB), Kabaasi (KAB), Soganci (SOG), and Tokaloglu (TOK). The total oil contents of apricot kernels ranged from 40.23 to 53.19%. Oleic acid contributed 70.83% to the total fatty acids, followed by linoleic (21.96%), palmitic (4.92%), and stearic (1.21%) acids. The s n-2 position is mainly occupied with oleic acid (63.54%), linoleic acid (35.0%), and palmitic acid (0.96%). Eight TAG species were identified: LLL, OLL, PLL, OOL+POL, OOO+POO, and SOO (where P, palmitoyl; S, stearoyl; O, oleoyl; and L, linoleoyl), among which mainly OOO+POO contributed to 48.64% of the total, followed by OOL+POL at 32.63% and OLL at 14.33%. Four tocopherol and six phytosterol isomers were identified and quantified; among these, gamma-tocopherol (475.11 mg/kg of oil) and beta-sitosterol (273.67 mg/100 g of oil) were predominant. Principal component analysis (PCA) was applied to the data from lipid components of apricot kernel oil in order to explore the distribution of the apricot variety according to their kernel's lipid components. PCA separated some varieties including ALY, COL, KAB, CAT, SOG, and HSB in one group and varieties TOK, HAC, and HKI in another group based on their lipid components of apricot kernel oil. So, in the present study, PCA was found to be a powerful tool for classification of the samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKown, Athena; Klapste, Jaroslav; Guy, Robert
2014-01-01
To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).
Genetic approaches in comparative and evolutionary physiology
Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore
2015-01-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111
Genetic approaches in comparative and evolutionary physiology.
Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore
2015-08-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.
Xia, Yinhong
2018-01-01
Suppose that the kernel K satisfies a certain Hörmander type condition. Let b be a function satisfying [Formula: see text] for [Formula: see text], and let [Formula: see text] be a family of multilinear singular integral operators, i.e., [Formula: see text] The main purpose of this paper is to establish the weighted [Formula: see text]-boundedness of the variation operator and the oscillation operator for [Formula: see text].
Development and analysis of composite flour bread.
Menon, Lakshmi; Majumdar, Swarnali Dutta; Ravi, Usha
2015-07-01
The study elucidates the effect of utilizing cereal-pulse-fruit seed composite flour in the development and quality analysis of leavened bread. The composite flour was prepared using refined wheat flour (WF), high protein soy flour (SF), sprouted mung bean flour (MF) and mango kernel flour (MKF). Three variations were formulated such as V-I (WF: SF: MF: MKF = 85:5:5:5), V-II (WF: SF: MF: MKF = 70:10:10:10), and V-III (WF: SF: MF: MKF = 60:14:13:13). Pertinent functional, physico-chemical and organoleptic attributes were studied in composite flour variations and their bread preparations. Physical characteristics of the bread variations revealed a percentage decrease in loaf height (14 %) and volume (25 %) and 20 % increase in loaf weight with increased substitution of composite flour. The sensory evaluation of experimental breads on a nine-point hedonic scale revealed that V-I score was 5 % higher than the standard bread. Hence, the present study highlighted the nutrient enrichment of bread on incorporation of a potential waste material mango kernel, soy and sprouted legume. Relevant statistical tests were done to analyze the significance of means for all tested parameters.
Blind image fusion for hyperspectral imaging with the directional total variation
NASA Astrophysics Data System (ADS)
Bungert, Leon; Coomes, David A.; Ehrhardt, Matthias J.; Rasch, Jennifer; Reisenhofer, Rafael; Schönlieb, Carola-Bibiane
2018-04-01
Hyperspectral imaging is a cutting-edge type of remote sensing used for mapping vegetation properties, rock minerals and other materials. A major drawback of hyperspectral imaging devices is their intrinsic low spatial resolution. In this paper, we propose a method for increasing the spatial resolution of a hyperspectral image by fusing it with an image of higher spatial resolution that was obtained with a different imaging modality. This is accomplished by solving a variational problem in which the regularization functional is the directional total variation. To accommodate for possible mis-registrations between the two images, we consider a non-convex blind super-resolution problem where both a fused image and the corresponding convolution kernel are estimated. Using this approach, our model can realign the given images if needed. Our experimental results indicate that the non-convexity is negligible in practice and that reliable solutions can be computed using a variety of different optimization algorithms. Numerical results on real remote sensing data from plant sciences and urban monitoring show the potential of the proposed method and suggests that it is robust with respect to the regularization parameters, mis-registration and the shape of the kernel.
Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits.
Pawar, Samraat; Dell, Anthony I; Savage, Van M; Knies, Jennifer L
2016-02-01
Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.
Light-dependent leaf trait variation in 43 tropical dry forest tree species.
Markesteijn, Lars; Poorter, Lourens; Bongers, Frans
2007-04-01
Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.
NASA Astrophysics Data System (ADS)
Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Tupayachi, Raul; Knapp, David E.; Sinca, Felipe
2015-07-01
Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400-2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.
Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.; ...
2016-02-10
In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less
Genome-wide association mapping and agronomic impact of cowpea root architecture.
Burridge, James D; Schneider, Hannah M; Huynh, Bao-Lam; Roberts, Philip A; Bucksch, Alexander; Lynch, Jonathan P
2017-02-01
Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance. Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.
In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less
Intraspecific variation in reproductive traits of burrowing owls
Conway, Meaghan; Nadeau, Christopher P.; Conway, Courtney J.
2012-01-01
Reviews of hatching asynchrony in birds recommended more studies on intraspecific variation in the extent of hatching asynchrony. We examined intraspecific variation in clutch size, laying chronology, onset of incubation, incubation period, and hatching asynchrony in burrowing owls (Athene cunicularia) in the Imperial Valley of California. Mean clutch size was 7.4 eggs and owls averaged 0.5 eggs laid per day. Females varied considerably in laying interval and onset of incubation (range = 1st to 9th egg in the clutch). The mean incubation period was 21.9 days. Hatching interval also varied greatly among females (x = 0.8, range 0.1-2.0 days between successively hatched eggs). Past burrowing owl studies have largely overlooked the substantial intraspecific variation in these traits or have reported estimates that differ from ours. Future studies designed to identify the environmental factors that explain the large intraspecific variation in these traits will likely provide insights into the constraints on local abundance.
Zalay, Osbert C; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg(2+)/high-K(+)) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg(2+)/high-K(+) solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg(2+)/high-K(+) solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg2+/high-K+) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg2+/high-K+ solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg2+/high-K+ solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
Turuspekov, Yerlan; Baibulatova, Aida; Yermekbayev, Kanat; Tokhetova, Laura; Chudinov, Vladimir; Sereda, Grigoriy; Ganal, Martin; Griffiths, Simon; Abugalieva, Saule
2017-11-14
Spring wheat is the largest agricultural crop grown in Kazakhstan with an annual sowing area of 12 million hectares in 2016. Annually, the country harvests around 15 million tons of high quality grain. Despite environmental stress factors it is predicted that the use of new technologies may lead to increases in productivity from current levels of 1.5 to up to 3 tons per hectare. One way of improving wheat productivity is by the application of new genomic oriented approaches in plant breeding projects. Genome wide association studies (GWAS) are emerging as powerful tools for the understanding of the inheritance of complex traits via utilization of high throughput genotyping technologies and phenotypic assessments of plant collections. In this study, phenotyping and genotyping data on 194 spring wheat accessions from Kazakhstan, Russia, Europe, and CIMMYT were assessed for the identification of marker-trait associations (MTA) of agronomic traits by using GWAS. Field trials in Northern, Central and Southern regions of Kazakhstan using 194 spring wheat accessions revealed strong correlations of yield with booting date, plant height, biomass, number of spikes per plant, and number of kernels per spike. The accessions from Europe and CIMMYT showed high breeding potential for Southern and Central regions of the country in comparison with the performance of the local varieties. The GGE biplot method, using average yield per plant, suggested a clear separation of accessions into their three breeding origins in relationship to the three environments in which they were evaluated. The genetic variation in the three groups of accessions was further studied using 3245 polymorphic SNP (single nucleotide polymorphism) markers. The application of Principal Coordinate analysis clearly grouped the 194 accessions into three clades according to their breeding origins. GWAS on data from nine field trials allowed the identification of 114 MTAs for 12 different agronomic traits. Field evaluation of foreign germplasm revealed its poor yield performance in Northern Kazakhstan, which is the main wheat growing region in the country. However, it was found that EU and CIMMYT germplasm has high breeding potential to improve yield performance in Central and Southern regions. The use of Principal Coordinate analysis clearly separated the panel into three distinct groups according to their breeding origin. GWAS based on use of the TASSEL 5.0 package allowed the identification of 114 MTAs for twelve agronomic traits. The study identifies a network of key genes for improvement of yield productivity in wheat growing regions of Kazakhstan.
NASA Astrophysics Data System (ADS)
He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang
2017-03-01
Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.
Legay, N.; Baxendale, C.; Grigulis, K.; Krainer, U.; Kastl, E.; Schloter, M.; Bardgett, R. D.; Arnoldi, C.; Bahn, M.; Dumont, M.; Poly, F.; Pommier, T.; Clément, J. C.; Lavorel, S.
2014-01-01
Background and Aims Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. Methods In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Key Results Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. Conclusions The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. PMID:25122656
The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.
Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne
2014-01-01
Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.
Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio
2015-10-01
Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.
Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea
2018-01-01
Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596
Moore, Timothy E; Schlichting, Carl D; Aiello-Lammens, Matthew E; Mocko, Kerri; Jones, Cynthia S
2018-05-11
Functional traits in closely related lineages are expected to vary similarly along common environmental gradients as a result of shared evolutionary and biogeographic history, or legacy effects, and as a result of biophysical tradeoffs in construction. We test these predictions in Pelargonium, a relatively recent evolutionary radiation. Bayesian phylogenetic mixed effects models assessed, at the subclade level, associations between plant height, leaf area, leaf nitrogen content and leaf mass per area (LMA), and five environmental variables capturing temperature and rainfall gradients across the Greater Cape Floristic Region of South Africa. Trait-trait integration was assessed via pairwise correlations within subclades. Of 20 trait-environment associations, 17 differed among subclades. Signs of regression coefficients diverged for height, leaf area and leaf nitrogen content, but not for LMA. Subclades also differed in trait-trait relationships and these differences were modulated by rainfall seasonality. Leave-one-out cross-validation revealed that whether trait variation was better predicted by environmental predictors or trait-trait integration depended on the clade and trait in question. Legacy signals in trait-environment and trait-trait relationships were apparently lost during the earliest diversification of Pelargonium, but then retained during subsequent subclade evolution. Overall, we demonstrate that global-scale patterns are poor predictors of patterns of trait variation at finer geographic and taxonomic scales. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
The causes of variation in the presence of genetic covariance between sexual traits and preferences.
Fowler-Finn, Kasey D; Rodríguez, Rafael L
2016-05-01
Mating traits and mate preferences often show patterns of tight correspondence across populations and species. These patterns of apparent coevolution may result from a genetic association between traits and preferences (i.e. trait-preference genetic covariance). We review the literature on trait-preference covariance to determine its prevalence and potential biological relevance. Of the 43 studies we identified, a surprising 63% detected covariance. We test multiple hypotheses for factors that may influence the likelihood of detecting this covariance. The main predictor was the presence of genetic variation in mate preferences, which is one of the three main conditions required for the establishment of covariance. In fact, 89% of the nine studies where heritability of preference was high detected covariance. Variables pertaining to the experimental methods and type of traits involved in different studies did not greatly influence the detection of trait-preference covariance. Trait-preference genetic covariance appears to be widespread and therefore represents an important and currently underappreciated factor in the coevolution of traits and preferences. © 2015 Cambridge Philosophical Society.
USDA-ARS?s Scientific Manuscript database
Wheat genotypes that efficiently capture and convert available soil nitrogen into harvested grain protein are key to sustainably meeting the rising global demand for grain protein. The purposes of this study were to characterize the genetic variation for nitrogen use efficiency (NUE) traits within ...
Griswold, Cortland K
2015-12-21
Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Conspicuous plumage colours are highly variable
Szecsenyi, Beatrice; Nakagawa, Shinichi; Peters, Anne
2017-01-01
Elaborate ornamental traits are often under directional selection for greater elaboration, which in theory should deplete underlying genetic variation. Despite this, many ornamental traits appear to remain highly variable and how this essential variation is maintained is a key question in evolutionary biology. One way to address this question is to compare differences in intraspecific variability across different types of traits to determine whether high levels of variation are associated with specific trait characteristics. Here we assess intraspecific variation in more than 100 plumage colours across 55 bird species to test whether colour variability is linked to their level of elaboration (indicated by degree of sexual dichromatism and conspicuousness) or their condition dependence (indicated by mechanism of colour production). Conspicuous colours had the highest levels of variation and conspicuousness was the strongest predictor of variability, with high explanatory power. After accounting for this, there were no significant effects of sexual dichromatism or mechanisms of colour production. Conspicuous colours may entail higher production costs or may be more sensitive to disruptions during production. Alternatively, high variability could also be related to increased perceptual difficulties inherent to discriminating highly elaborate colours. Such psychophysical effects may constrain the exaggeration of animal colours. PMID:28100823
Conspicuous plumage colours are highly variable.
Delhey, Kaspar; Szecsenyi, Beatrice; Nakagawa, Shinichi; Peters, Anne
2017-01-25
Elaborate ornamental traits are often under directional selection for greater elaboration, which in theory should deplete underlying genetic variation. Despite this, many ornamental traits appear to remain highly variable and how this essential variation is maintained is a key question in evolutionary biology. One way to address this question is to compare differences in intraspecific variability across different types of traits to determine whether high levels of variation are associated with specific trait characteristics. Here we assess intraspecific variation in more than 100 plumage colours across 55 bird species to test whether colour variability is linked to their level of elaboration (indicated by degree of sexual dichromatism and conspicuousness) or their condition dependence (indicated by mechanism of colour production). Conspicuous colours had the highest levels of variation and conspicuousness was the strongest predictor of variability, with high explanatory power. After accounting for this, there were no significant effects of sexual dichromatism or mechanisms of colour production. Conspicuous colours may entail higher production costs or may be more sensitive to disruptions during production. Alternatively, high variability could also be related to increased perceptual difficulties inherent to discriminating highly elaborate colours. Such psychophysical effects may constrain the exaggeration of animal colours. © 2017 The Author(s).
A global exploration of fine-root trait variation: opening the black box
USDA-ARS?s Scientific Manuscript database
A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...
Zas, R; Sampedro, L
2015-01-01
Quantitative seed provisioning is an important life-history trait with strong effects on offspring phenotype and fitness. As for any other trait, heritability estimates are vital for understanding its evolutionary dynamics. However, being a trait in between two generations, estimating additive genetic variation of seed provisioning requires complex quantitative genetic approaches for distinguishing between true genetic and environmental maternal effects. Here, using Maritime pine as a long-lived plant model, we quantified additive genetic variation of cone and seed weight (SW) mean and SW within-individual variation. We used a powerful approach combining both half-sib analysis and parent–offspring regression using several common garden tests established in contrasting environments to separate G, E and G × E effects. Both cone weight and SW mean showed significant genetic variation but were also influenced by the maternal environment. Most of the large variation in SW mean was attributable to additive genetic effects (h2=0.55–0.74). SW showed no apparent G × E interaction, particularly when accounting for cone weight covariation, suggesting that the maternal genotypes actively control the SW mean irrespective of the amount of resources allocated to cones. Within-individual variation in SW was low (12%) relative to between-individual variation (88%), and showed no genetic variation but was largely affected by the maternal environment, with greater variation in the less favourable sites for pine growth. In summary, results were very consistent between the parental and the offspring common garden tests, and clearly indicated heritable genetic variation for SW mean but not for within-individual variation in SW. PMID:25160045
Asynchrony of senescence among phenotypic traits in a wild mammal population
Hayward, Adam D.; Moorad, Jacob; Regan, Charlotte E.; Berenos, Camillo; Pilkington, Jill G.; Pemberton, Josephine M.; Nussey, Daniel H.
2015-01-01
The degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions. Here, we examine the patterns of age-related variation in late adulthood in a wild population of Soay sheep (Ovis aries) that have been the subject of individual-based monitoring for thirty years. We examined twenty different phenotypic traits in both males and females, encompassing vital rates (survival and fecundity), maternal reproductive performance (offspring birth weight, birth date and survival), male rutting behaviour, home range measures, parasite burdens, and body mass. We initially quantified age-related variation in each trait having controlled for annual variation in the environment, among-individual variation and selective disappearance effects. We then standardised our age-specific trait means and tested whether age trajectories could be meaningfully grouped according to sex or the type of trait. Whilst most traits showed age-related declines in later life, we found striking levels of asynchrony both within and between the sexes. Of particular note, female fecundity and reproductive performance declined with age, but male annual reproductive success did not. We also discovered that whilst home range size and quality decline with age in females, home range size increases with age in males. Our findings highlight the complexity of phenotypic ageing under natural conditions and, along with emerging data from other wild populations and laboratory models, suggest that the long-standing hypothesis within evolutionary biology that fitness-related traits should senesce in a synchronous manner is seriously flawed. PMID:26277618
McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.; ...
2017-03-13
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less
Estimation and Partitioning of Heritability in Human Populations using Whole Genome Analysis Methods
Vinkhuyzen, Anna AE; Wray, Naomi R; Yang, Jian; Goddard, Michael E; Visscher, Peter M
2014-01-01
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. But major questions remain unanswered: how much phenotypic variation is genetic, how much of the genetic variation is additive and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLM) to estimate genetic variation, using the relationship between close or distant relatives based on pedigree or SNPs. We discuss theory, estimation procedures, bias and precision of each method and review recent advances in the dissection of additive genetic variation of complex traits in human populations that are based upon the application of MLM. Using genome wide data, SNPs account for far more of the genetic variation than the highly significant SNPs associated with a trait, but they do not account for all of the genetic variance estimated by pedigree based methods. We explain possible reasons for this ‘missing’ heritability. PMID:23988118
Libberton, Ben; Coates, Rosanna E.
2014-01-01
Nasal carriage of Staphylococcus aureus is a risk factor for infection, yet the bacterial determinants required for carriage are poorly defined. Interactions between S. aureus and other members of the bacterial flora may determine colonization and have been inferred in previous studies by using correlated species distributions. However, traits mediating species interactions are often polymorphic, suggesting that understanding how interactions structure communities requires a trait-based approach. We characterized S. aureus growth inhibition by the culturable bacterial aerobe consortia of 60 nasal microbiomes, and this revealed intraspecific variation in growth inhibition and that inhibitory isolates clustered within communities that were culture negative for S. aureus. Across microbiomes, the cumulative community-level growth inhibition was negatively associated with S. aureus incidence. To fully understand the ecological processes structuring microbiomes, it will be crucial to account for intraspecific variation in the traits that mediate species interactions. PMID:24980973
A spatial scan statistic for nonisotropic two-level risk cluster.
Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie
2012-01-30
Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
2018-01-01
Background Past findings support a relationship between abnormalities in the amygdala and the presence of psychopathic traits. Among other genes and biomarkers relevant to the amygdala, norepinephrine and mineralocorticoid receptors might both play a role in psychopathy due to their association with traits peripheral to psychopathy. The purpose is to examine if allelic variations in single nucleotide polymorphisms related to norepinephrine and mineralocorticoid receptors play a role in the display of psychopathic traits and executive functions. Methods Fifty-seven healthy participants from the community provided a saliva sample for SNP sampling of rs5522 and rs5569. Participants then completed the Psychopathic Personality Inventory–Short Form (PPI-SF) and the Tower of Hanoi. Results Allelic variations of both rs5522 and rs5569 were significant when compared to PPI-SF total score and the fearless dominance component of the PPI-SF. A significant result was also obtained between rs5522 and the number of moves needed to complete the 5-disk Tower of Hanoi. Conclusion This pilot study offers preliminary results regarding the effect of allelic variations in SNPs related to norepinephrine and mineralocorticoid receptors on the presence of psychopathic traits. Suggestions are provided to enhance the reliability and validity of a larger-scale study. PMID:29576985
Oromi, Neus; Sanuy, Delfi; Sinsch, Ulrich
2012-02-01
In anuran amphibians, age- and size-related life-history traits vary along latitudinal and altiudinal gradients. In the present study, we tested the hypothesis that altitudinal and latitudinal effects cause similar responses by assessing demographic life-history traits in nine Bufo calamita populations inhabiting elevations from sea level to 2270 m. Skeletochronologically determined age at maturity and longevity increased at elevations exceeding 2000 m, but female potential reproductive lifespan (PRLS) did not increase with altitude, as it did with latitude. Integrating the available evidence, it was found that lifetime fecundity of natterjacks decreased at the upper altitudinal range because PRLS was about the same as in lowland populations but females were smaller. In contrast, small size of northern females was compensated for by increased PRLS which minimised latitudinal variation of lifetime fecundity. Thus, this study provides evidence that altitudinal effects on life-history traits do not mimic latitudinal effects. Life-history trait variation along the altitudinal gradient seems to respond directly to the shortening of the annual activity period. As there is no evidence for increasing mortality in highland populations, reduced lifetime fecundity may be the ultimate reason for the natterjacks' inability to colonise elevations exceeding 2500 m. Copyright © 2011 Elsevier GmbH. All rights reserved.
Seasonal variation of leaf traits in two woody species of an urban park
NASA Astrophysics Data System (ADS)
Kim, H.; Ryu, Y.
2013-12-01
Leaf traits are important for understanding physiology of woody plants. Some leaf traits such as maximum carboxylation rate (Vcamx) and maximum electron transport rate (Jmax) are especially crucial parameters for photosynthesis modelling. In this study, we report leaf traits (leaf mass per unit area, leaf carbon and nitrogen contents and C:N, Vcmax, Jmax) of two species (Zelkova serrata and Prunus yedoensis) in the Seoul Forest Park in 2013. From May to July, Vcmax and Jmax show gradual increase. In contrast, N concentration and C:N show the opposite pattern. Also we find that the ratio of Jmax to Vcmax was 1.05, which is substantially lower than many previous studies. We discuss main factors that control seasonal variation of leaf traits and correlation between Vcmax and Jmax.
A Trait-Based Approach to Advance Coral Reef Science.
Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H
2016-06-01
Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thuiller, Wilfried; Albert, Cécile H.; Dubuis, Anne; Randin, Christophe; Guisan, Antoine
2010-01-01
Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others. PMID:19793738
Genetic basis of between-individual and within-individual variance of docility.
Martin, J G A; Pirotta, E; Petelle, M B; Blumstein, D T
2017-04-01
Between-individual variation in phenotypes within a population is the basis of evolution. However, evolutionary and behavioural ecologists have mainly focused on estimating between-individual variance in mean trait and neglected variation in within-individual variance, or predictability of a trait. In fact, an important assumption of mixed-effects models used to estimate between-individual variance in mean traits is that within-individual residual variance (predictability) is identical across individuals. Individual heterogeneity in the predictability of behaviours is a potentially important effect but rarely estimated and accounted for. We used 11 389 measures of docility behaviour from 1576 yellow-bellied marmots (Marmota flaviventris) to estimate between-individual variation in both mean docility and its predictability. We then implemented a double hierarchical animal model to decompose the variances of both mean trait and predictability into their environmental and genetic components. We found that individuals differed both in their docility and in their predictability of docility with a negative phenotypic covariance. We also found significant genetic variance for both mean docility and its predictability but no genetic covariance between the two. This analysis is one of the first to estimate the genetic basis of both mean trait and within-individual variance in a wild population. Our results indicate that equal within-individual variance should not be assumed. We demonstrate the evolutionary importance of the variation in the predictability of docility and illustrate potential bias in models ignoring variation in predictability. We conclude that the variability in the predictability of a trait should not be ignored, and present a coherent approach for its quantification. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
USDA-ARS?s Scientific Manuscript database
Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...
USDA-ARS?s Scientific Manuscript database
Our previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for ...
Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping
2015-01-01
To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303
Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E
2018-04-01
Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.
Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier
2014-01-01
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Can traits predict individual growth performance? A test in a hyperdiverse tropical forest.
Poorter, Lourens; Castilho, Carolina V; Schietti, Juliana; Oliveira, Rafael S; Costa, Flávia R C
2018-07-01
The functional trait approach has, as a central tenet, that plant traits are functional and shape individual performance, but this has rarely been tested in the field. Here, we tested the individual-based trait approach in a hyperdiverse Amazonian tropical rainforest and evaluated intraspecific variation in trait values, plant strategies at the individual level, and whether traits are functional and predict individual performance. We evaluated > 1300 tree saplings belonging to > 383 species, measured 25 traits related to growth and defense, and evaluated the effects of environmental conditions, plant size, and traits on stem growth. A total of 44% of the trait variation was observed within species, indicating a strong potential for acclimation. Individuals showed two strategy spectra, related to tissue toughness and organ size vs leaf display. In this nutrient- and light-limited forest, traits measured at the individual level were surprisingly poor predictors of individual growth performance because of convergence of traits and growth rates. Functional trait approaches based on individuals or species are conceptually fundamentally different: the species-based approach focuses on the potential and the individual-based approach on the realized traits and growth rates. Counterintuitively, the individual approach leads to a poor prediction of individual performance, although it provides a more realistic view on community dynamics. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Zhao, Jiaojiao; Huang, Li; Ren, Xiaoping; Pandey, Manish K; Wu, Bei; Chen, Yuning; Zhou, Xiaojing; Chen, Weigang; Xia, Youlin; Li, Zeqing; Luo, Huaiyong; Lei, Yong; Varshney, Rajeev K; Liao, Boshou; Jiang, Huifang
2017-01-01
Cultivated peanut ( Arachis hypogaea L.) is an allotetraploid (AABB, 2 n = 4 x = 40), valued for its edible oil and digestible protein. Seed size and weight are important agronomical traits significantly influence the yield and nutritional composition of peanut. However, the genetic basis of seed-related traits remains ambiguous. Association mapping is a powerful approach for quickly and efficiently exploring the genetic basis of important traits in plants. In this study, a total of 104 peanut accessions were used to identify molecular markers associated with seed-related traits using 554 single-locus simple sequence repeat (SSR) markers. Most of the accessions had no or weak relationship in the peanut panel. The linkage disequilibrium (LD) decayed with the genetic distance of 1cM at the genome level and the LD of B subgenome decayed faster than that of the A subgenome. Large phenotypic variation was observed for four seed-related traits in the association panel. Using mixed linear model with population structure and kinship, a total of 30 significant SSR markers were detected to be associated with four seed-related traits ( P < 1.81 × 10 -3 ) in different environments, which explained 11.22-32.30% of the phenotypic variation for each trait. The marker AHGA44686 was simultaneously and repeatedly associated with seed length and hundred-seed weight in multiple environments with large phenotypic variance (26.23 ∼ 32.30%). The favorable alleles of associated markers for each seed-related trait and the optimal combination of favorable alleles of associated markers were identified to significantly enhance trait performance, revealing a potential of utilization of these associated markers in peanut breeding program.
Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.
Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi
2015-11-01
How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits
van Zanten, Martijn
2015-01-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492
Plant traits and decomposition: are the relationships for roots comparable to those for leaves?
Birouste, Marine; Kazakou, Elena; Blanchard, Alain; Roumet, Catherine
2012-01-01
Background and Aims Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. Methods We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. Key Results Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. Conclusions The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level. PMID:22143881
Sabiel, Salih A I; Huang, Sisi; Hu, Xin; Ren, Xifeng; Fu, Chunjie; Peng, Junhua; Sun, Dongfa
2017-03-01
In the present study, 150 accessions of worldwide originated durum wheat germplasm ( Triticum turgidum spp. durum ) were observed for major seedling traits and their growth. The accessions were evaluated for major seedling traits under controlled conditions of hydroponics at the 13 th , 20 th , 27 th and 34 th day-after germination. Biomass traits were measured at the 34 th day-after germination. Correlation analysis was conducted among the seedling traits and three field traits at maturity, plant height, grain weight and 1000-grain weight observed in four consecutive years. Associations of the measured seedling traits and SNP markers were analyzed based on the mixed linear model (MLM). The results indicated that highly significant genetic variation and robust heritability were found for the seedling and field mature traits. In total, 259 significant associations were detected for all the traits and four growth stages. The phenotypic variation explained (R2) by a single SNP marker is higher than 10% for most (84%) of the significant SNP markers. Forty-six SNP markers associated with multiple traits, indicating non-neglectable pleiotropy in seedling stage. The associated SNP markers could be helpful for genetic analysis of seedling traits, and marker-assisted breeding of new wheat varieties with strong seedling vigor.
Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M
2008-09-01
In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less
Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...
2016-11-24
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less
Genetic architecture of kernel composition in global sorghum germplasm
USDA-ARS?s Scientific Manuscript database
Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland areas in the United States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and starch) between accessions can be used for crop improvement, but the genetic controls are...
NASA Astrophysics Data System (ADS)
Still, C. J.; Griffith, D.; Edwards, E.; Forrestel, E.; Lehmann, C.; Anderson, M.; Craine, J.; Pau, S.; Osborne, C.
2014-12-01
Variation in plant species traits, such as photosynthetic and hydraulic properties, can indicate vulnerability or resilience to climate change, and feed back to broad-scale spatial and temporal patterns in biogeochemistry, demographics, and biogeography. Yet, predicting how vegetation will respond to future environmental changes is severely limited by the inability of our models to represent species-level trait variation in processes and properties, as current generation process-based models are mostly based on the generalized and abstracted concept of plant functional types (PFTs) which were originally developed for hydrological modeling. For example, there are close to 11,000 grass species, but most vegetation models have only a single C4 grass and one or two C3 grass PFTs. However, while species trait databases are expanding rapidly, they have been produced mostly from unstructured research, with a focus on easily researched traits that are not necessarily the most important for determining plant function. Additionally, implementing realistic species-level trait variation in models is challenging. Combining related and ecologically similar species in these models might ameliorate this limitation. Here we argue for an intermediate, lineage-based approach to PFTs, which draws upon recent advances in gene sequencing and phylogenetic modeling, and where trait complex variations and anatomical features are constrained by a shared evolutionary history. We provide an example of this approach with grass lineages that vary in photosynthetic pathway (C3 or C4) and other functional and structural traits. We use machine learning approaches and geospatial databases to infer the most important environmental controls and climate niche variation for the distribution of grass lineages, and utilize a rapidly expanding grass trait database to demonstrate examples of lineage-based grass PFTs. For example, grasses in the Andropogoneae are typically tall species that dominate wet and seasonally burned ecosystems, whereas Chloridoideae grasses are associated with semi-arid regions. These two C4 lineages are expected to respond quite differently to climate change, but are often modelled as a single PFT.
Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea
2015-02-01
Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Heritability of metabolic syndrome traits in a large population-based sample[S
van Dongen, Jenny; Willemsen, Gonneke; Chen, Wei-Min; de Geus, Eco J. C.; Boomsma, Dorret I.
2013-01-01
Heritability estimates of metabolic syndrome traits vary widely across studies. Some studies have suggested that the contribution of genes may vary with age or sex. We estimated the heritability of 11 metabolic syndrome-related traits and height as a function of age and sex in a large population-based sample of twin families (N = 2,792–27,021, for different traits). A moderate-to-high heritability was found for all traits [from H2 = 0.47 (insulin) to H2 = 0.78 (BMI)]. The broad-sense heritability (H2) showed little variation between age groups in women; it differed somewhat more in men (e.g., for glucose, H2 = 0.61 in young females, H2 = 0.56 in older females, H2 = 0.64 in young males, and H2= 0.27 in older males). While nonadditive genetic effects explained little variation in the younger subjects, nonadditive genetic effects became more important at a greater age. Our findings show that in an unselected sample (age range, ∼18–98 years), the genetic contribution to individual differences in metabolic syndrome traits is moderate to large in both sexes and across age. Although the prevalence of the metabolic syndrome has greatly increased in the past decades due to lifestyle changes, our study indicates that most of the variation in metabolic syndrome traits between individuals is due to genetic differences. PMID:23918046
Few, Lauren R.; Grant, Julia D; Trull, Timothy J.; Statham, Dixie J.; Martin, Nicholas G.; Lynskey, Michael T.; Agrawal, Arpana
2014-01-01
Aims To examine the genetic overlap between borderline personality features (BPF) and substance use disorders (SUDs) and the extent to which variation in personality traits contributes to this covariance. Design Genetic structural equation modelling was used to partition the variance in and covariance between personality traits, BPF, and SUDs into additive genetic, shared, and individual-specific environmental factors. Setting All participants were registered with the Australian Twin Registry. Participants A total of 3,127 Australian adult twins participated in the study. Measurements Diagnoses of DSM-IV alcohol and cannabis abuse/dependence (AAD; CAD), and nicotine dependence (ND) were derived via computer-assisted telephone interview. BPF and five-factor model personality traits were derived via self-report questionnaires. Findings Genetic factors were responsible for 49% (95%CI: 42%–55%) of the variance in BPF, 38–42% (95%CI range: 32%–49%) for personality traits and 47% (95%CI: 17%–77%), 54% (95%CI: 43%–64%), and 78% (67%–86%) for ND, AAD and CAD, respectively. Genetic and individual-specific environmental correlations between BPF and SUDs ranged from .33–.56 (95%CI range: .19–.74) and .19–.32 (95%CI range: .06–.43), respectively. Overall, there was substantial support for genetic influences that were specific to AAD, ND and CAD (31%–69%). Finally, genetic variation in personality traits was responsible for 11% (Extraversion for CAD) to 59% (Neuroticism for AAD) of the correlation between BPF and SUDs. Conclusions Both genetic and individual-specific environmental factors contribute to comorbidity between borderline personality features and substance use disorders. A substantial proportion of this comorbidity can be attributed to variation in normal personality traits, particularly Neuroticism. PMID:25041562
Few, Lauren R; Grant, Julia D; Trull, Timothy J; Statham, Dixie J; Martin, Nicholas G; Lynskey, Michael T; Agrawal, Arpana
2014-12-01
To examine the genetic overlap between borderline personality features (BPF) and substance use disorders (SUDs) and the extent to which variation in personality traits contributes to this covariance. Genetic structural equation modelling was used to partition the variance in and covariance between personality traits, BPF and SUDs into additive genetic, shared and individual-specific environmental factors. All participants were registered with the Australian Twin Registry. A total of 3127 Australian adult twins participated in the study. Diagnoses of DSM-IV alcohol and cannabis abuse/dependence (AAD; CAD) and nicotine dependence (ND) were derived via computer-assisted telephone interview. BPF and five-factor model personality traits were derived via self-report questionnaires. Personality traits, BPF and substance use disorders were partially influenced by genetic factors with heritability estimates ranging from 0.38 (neuroticism; 95% confidence interval: 0.30-0.45) to 0.78 (CAD; 95% confidence interval: 0.67-0.86). Genetic and individual-specific environmental correlations between BPF and SUDs ranged from 0.33 to 0.56 (95% CI = 0.19-0.74) and 0.19-0.32 (95% CI = 0.06-0.43), respectively. Overall, there was substantial support for genetic influences that were specific to AAD, ND and CAD (30.76-68.60%). Finally, genetic variation in personality traits was responsible for 11.46% (extraversion for CAD) to 59.30% (neuroticism for AAD) of the correlation between BPF and SUDs. Both genetic and individual-specific environmental factors contribute to comorbidity between borderline personality features and substance use disorders. A substantial proportion of this comorbidity can be attributed to variation in normal personality traits, particularly neuroticism. © 2014 Society for the Study of Addiction.
Pascoal, Sonia; Mendrok, Magdalena; Wilson, Alastair J; Hunt, John; Bailey, Nathan W
2017-06-01
Sexual selection can target many different types of traits. However, the relative influence of different sexually selected traits during evolutionary divergence is poorly understood. We used the field cricket Teleogryllus oceanicus to quantify and compare how five traits from each of three sexual signal modalities and components diverge among allopatric populations: male advertisement song, cuticular hydrocarbon (CHC) profiles and forewing morphology. Population divergence was unexpectedly consistent: we estimated the among-population (genetic) variance-covariance matrix, D, for all 15 traits, and D max explained nearly two-thirds of its variation. CHC and wing traits were most tightly integrated, whereas song varied more independently. We modeled the dependence of among-population trait divergence on genetic distance estimated from neutral markers to test for signatures of selection versus neutral divergence. For all three sexual trait types, phenotypic variation among populations was largely explained by a neutral model of divergence. Our findings illustrate how phenotypic integration across different types of sexual traits might impose constraints on the evolution of mating isolation and divergence via sexual selection. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Resolvability of regional density structure
NASA Astrophysics Data System (ADS)
Plonka, A.; Fichtner, A.
2016-12-01
Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convectivemotion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravityprovide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling,making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assessif 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within thecrust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we performprincipal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish theextent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrainedindependently. Since the density imprint we observe is not exclusively linked to travel times and amplitudes of specific phases,we consider waveform differences between complete seismograms. We test the method using a known smooth model of the crust and seismograms with clear Love and Rayleigh waves, showing that - as expected - the first principal kernel maximizes sensitivity to SH and SV velocity structure, respectively, and that the leakage between S velocity, P velocity and density parameter spaces is minimal in the chosen setup. Next, we apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for independent density resolution, and, as the final goal, for direct density inversion.
Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan
2016-01-01
Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407
Wang, He-ling; Zhang, Qiang; Wang, Run-yuan; Gan, Yan-tai; Niu, Jun-yi; Zhang, Kai; Zhao, Fu-nian; Zhao, Hong
2015-01-01
In order to predict effects of climate changing on growth, quality and grain yields of spring wheat, a field experiment was conducted to investigate the effects of air temperature increases (0 °C, 1.0 °C, 2.0° C and 3.0°) and precipitation variations (decrease 20%, unchanging and increase 20%) on grain yields, quality, diseases and insect pests of spring wheat at the Dingxi Arid Meteorology and Ecological Environment Experimental Station of the Institute of Arid Meteorology of China Meteorological Administration (35°35' N ,104°37' E). The results showed that effects of precipitation variations on kernel numbers of spring wheat were not significant when temperature increased by less than 2.0° C , but was significant when temperature increased by 3.0° C. Temperature increase enhanced kernel numbers, while temperature decrease reduced kernel numbers. The negative effect of temperature on thousand-kernel mass of spring wheat increased with increasing air temperature. The sterile spikelet of spring wheat response to air temperature was quadratic under all precipitation regimes. Compared with control ( no temperature increase), the decreases of grain yield of spring wheat when air temperature increased by 1.0°C, 2.0°C and 3.0°C under each of the three precipitation conditions (decrease 20%, no changing and increase 20%) were 12.1%, 24.7% and 42.7%, 8.4%, 15.1% and 21.8%, and 9.0%, 15.5% and 22.2%, respectively. The starch content of spring wheat decreased and the protein content increased with increasing air temperature. The number of aphids increased when air temperature increased by 2.0°C , but decreased when air temperature increased by 3.0°CT. The infection rates of rust disease increased with increasing air temperature.
Ortiz, Darwin; Rocheford, Torbert; Ferruzzi, Mario G
2016-04-06
Maize is a staple crop that has been the subject of biofortification efforts to increase the natural content of provitamin A carotenoids. Although significant progress toward increasing provitamin A carotenoid content in maize varieties has been made, postharvest handling factors that influence carotenoid stability during storage have not been fully established. The objectives of this study were to determine carotenoid profiles of six selected provitamin A biofortified maize genotypes at various developmental stages and assess the stability of carotenoids in maize kernels during controlled storage conditions (12 month period), including elevated temperature and relative humidity. There were no significant changes in the content of individual carotenoids within genotypes during kernel development from 45 days after pollination through the time of harvest. Carotenoid losses through traditional grain drying were also minimal (<9%). However, the stability of carotenoids in maize kernels over storage time after harvest was found to be dependent on both temperature and humidity, with variation observed among genotypes. Different forms of provitamin A carotenoids follow similar degradation rates. The genotype C17xDE3 had a degradation rate 2 times faster than those of the other genotypes evaluated (P < 0.001). These differences in carotenoid stability under controlled storage were attributed, in part, to observed differences in the physical properties of the kernels (surface area and porosity). These results support the notion that effective control of moisture content and temperature of the kernels during storage conditions is essential to reduce the speed of degradative reactions.
Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili
2018-06-05
Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tol...
Artacho, Paulina; Jouanneau, Isabelle; Le Galliard, Jean-François
2013-01-01
Studies of the relationship of performance and behavioral traits with environmental factors have tended to neglect interindividual variation even though quantification of this variation is fundamental to understanding how phenotypic traits can evolve. In ectotherms, functional integration of locomotor performance, thermal behavior, and energy metabolism is of special interest because of the potential for coadaptation among these traits. For this reason, we analyzed interindividual variation, covariation, and repeatability of the thermal sensitivity of maximal sprint speed, preferred body temperature, thermal precision, and resting metabolic rate measured in ca. 200 common lizards (Zootoca vivipara) that varied by sex, age, and body size. We found significant interindividual variation in selected body temperatures and in the thermal performance curve of maximal sprint speed for both the intercept (expected trait value at the average temperature) and the slope (measure of thermal sensitivity). Interindividual differences in maximal sprint speed across temperatures, preferred body temperature, and thermal precision were significantly repeatable. A positive relationship existed between preferred body temperature and thermal precision, implying that individuals selecting higher temperatures were more precise. The resting metabolic rate was highly variable but was not related to thermal sensitivity of maximal sprint speed or thermal behavior. Thus, locomotor performance, thermal behavior, and energy metabolism were not directly functionally linked in the common lizard.
What Explains Patterns of Diversification and Richness among Animal Phyla?
Jezkova, Tereza; Wiens, John J.
2016-01-01
Animal phyla vary dramatically in species richness (from 1 species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g. sponges), parasitic worms (e.g. nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ~74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, non-marine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (~67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g. head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species. PMID:28221832
What Explains Patterns of Diversification and Richness among Animal Phyla?
Jezkova, Tereza; Wiens, John J
2017-03-01
Animal phyla vary dramatically in species richness (from one species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g., sponges), parasitic worms (e.g., nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ∼74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, nonmarine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (∼67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g., head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species.
Xue, Angli; Wang, Hongcheng; Zhu, Jun
2017-09-28
Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.
Natural selection on immune defense: A field experiment.
Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto
2017-02-01
Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Mapping Variation in Vegetation Functioning with Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Couture, J. J.; Kruger, E. L.; Serbin, S.; Singh, A.
2015-12-01
Imaging spectroscopy (otherwise known as hyperspectral remote sensing) offers the potential to characterize the spatial and temporal variation in biophysical and biochemical properties of vegetation that can be costly or logistically difficult to measure comprehensively using traditional methods. A number of recent studies have illustrated the capacity for imaging spectroscopy data, such as from NASA's AVIRIS sensor, to empirically estimate functional traits related to foliar chemistry and physiology (Singh et al. 2015, Serbin et al. 2015). Here, we present analyses that illustrate the implications of those studies to characterize within-field or -stand variability in ecosystem functioning. In agricultural ecosystems, within-field photosynthetic capacity can vary by 30-50%, likely due to within-field variations in water availability and soil fertility. In general, the variability of foliar traits is lower in forests than agriculture, but can still be significant. Finally, we demonstrate that functional trait variability at the stand scale is strongly related to vegetation diversity. These results have two significant implications: 1) reliance on a small number of field samples to broadly estimate functional traits likely underestimates variability in those traits, and 2) if trait estimations from imaging spectroscopy are reliable, such data offer the opportunity to greatly increase the density of measurements we can use to predict ecosystem function.
Sasson, Daniel A; Munoz, Patricio R; Gezan, Salvador A; Miller, Christine W
2016-04-01
The size of weapons and testes can be central to male reproductive success. Yet, the expression of these traits is often extremely variable. Studies are needed that take a more complete organism perspective, investigating the sources of variation in both traits simultaneously and using developmental conditions that mimic those in nature. In this study, we investigated the components of variation in weapon and testis sizes using the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae) on three natural developmental diets. We show that the developmental diet has profound effects on both weapon and testis expression and scaling. Intriguingly, males in the medium-quality diet express large weapons but have relatively tiny testes, suggesting complex allocation decisions. We also find that heritability, evolvability, and additive genetic variation are highest in the high-quality diet for testis and body mass. This result suggests that these traits may have an enhanced ability to respond to selection during a small window of time each year when this diet is available. Taken together, these results illustrate that normal, seasonal fluctuations in the nutritional environment may play a large role in the expression of sexually selected traits and the ability of these traits to respond to selection.
Anderegg, William R L
2015-02-01
Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.
Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem.
Dahlin, Kyla M; Asner, Gregory P; Field, Christopher B
2013-04-23
Understanding how and why plant communities vary across space has long been a goal of ecology, yet parsing the relative importance of different influences has remained a challenge. Species-specific models are not generalizable, whereas broad plant functional type models lack important detail. Here we consider plant trait patterns at the local scale and ask whether plant chemical traits are more closely linked to environmental gradients or to changes in species composition. We used the visible-to-shortwave infrared (VSWIR) spectrometer of the Carnegie Airborne Observatory to develop maps of four plant chemical traits--leaf nitrogen per mass, leaf carbon per mass, leaf water concentration, and canopy water content--across a diverse Mediterranean-type ecosystem (Jasper Ridge Biological Preserve, CA). For all four traits, plant community alone was the strongest predictor of trait variation (explaining 46-61% of the heterogeneity), whereas environmental gradients accounted for just one fourth of the variation in the traits. This result emphasizes the critical role that species composition plays in mediating nutrient and carbon cycling within and among different communities. Environmental filtering and limits to similarity can act strongly, simultaneously, in a spatially heterogeneous environment, but the local-scale environmental gradients alone cannot account for the variation across this landscape.
Demographic responses to weather fluctuations are context dependent in a long-lived amphibian.
Cayuela, Hugo; Arsovski, Dragan; Thirion, Jean-Marc; Bonnaire, Eric; Pichenot, Julian; Boitaud, Sylvain; Miaud, Claude; Joly, Pierre; Besnard, Aurélien
2016-08-01
Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes. © 2016 John Wiley & Sons Ltd.
What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?
Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten
2009-01-01
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434
2014-01-01
Background The main bottleneck to elevate jatropha (Jatropha curcas L.) from a wild species to a profitable biodiesel crop is the low genetic and phenotypic variation found in different regions of the world, hampering efficient plant breeding for productivity traits. In this study, 182 accessions from Asia (91), Africa (35), South America (9) and Central America (47) were evaluated at genetic and phenotypic level to find genetic variation and important traits for oilseed production. Results Genetic variation was assessed with SSR (Simple Sequence Repeat), TRAP (Target Region Amplification Polymorphism) and AFLP (Amplified fragment length polymorphism) techniques. Phenotypic variation included seed morphological characteristics, seed oil content and fatty acid composition and early growth traits. Jaccard’s similarity and cluster analysis by UPGM (Unweighted Paired Group Method) with arithmetic mean and PCA (Principle Component Analysis) indicated higher variability in Central American accessions compared to Asian, African and South American accessions. Polymorphism Information Content (PIC) values ranged from 0 to 0.65. In the set of Central American accessions. PIC values were higher than in other regions. Accessions from the Central American population contain alleles that were not found in the accessions from other populations. Analysis of Molecular Variance (AMOVA; P < 0.0001) indicated high genetic variation within regions (81.7%) and low variation across regions (18.3%). A high level of genetic variation was found on early growth traits and on components of the relative growth rate (specific leaf area, leaf weight, leaf weight ratio and net assimilation rate) as indicated by significant differences between accessions and by the high heritability values (50–88%). The fatty acid composition of jatropha oil significantly differed (P < 0.05) between regions. Conclusions The pool of Central American accessions showed very large genetic variation as assessed by DNA-marker variation compared to accessions from other regions. Central American accessions also showed the highest phenotypic variation and should be considered as the most important source for plant breeding. Some variation in early growth traits was found within a group of accessions from Asia and Africa, while these accessions did not differ in a single DNA-marker, possibly indicating epigenetic variation. PMID:24666927
Özenç, Nedim; Özenç, Damla Bender
2015-07-01
Zinc is an essential element for plants and its deficiency is a widespread problem throughout the world, causing decreased yields and nutritional quality. In this study the effect of zinc fertilization on some nut traits and the nutritional composition of 'Tombul' hazelnut (Corylus avellana L.) variety cultivated in the Black Sea region of Turkey was investigated and the contribution of this nut to human nutrition determined. Trials were carried out at 'Tombul' hazelnut orchards, and zinc fertilizers were applied at 0, 0.2, 0.4, 0.8 and 1.6 kg Zn ha(-1) in three consecutive years. Significant differences in some nut traits and mineral composition (protein, total oil, ash, kernel percentage, empty and wrinkled nuts, copper, boron, manganese and molybdenum) were observed with zinc fertilizer applications. In terms of daily nutritional element requirements, 100 g of hazelnut provided about 44.74% phosphorus, 13.39% potassium, 19.32% calcium, 37.49% magnesium, 0.19% sodium, 51.63% iron, 25.73% zinc and 14.05% boron of the recommended daily amounts (RDAs), while copper, manganese and molybdenum contents exceeded their RDAs. In order to improve some nut traits and the mineral composition of hazelnut, 0.8 and 1.6 kg Zn ha(-1) fertilizations could be recommended in practice. © 2014 Society of Chemical Industry.
Crepieux, Sebastien; Lebreton, Claude; Flament, Pascal; Charmet, Gilles
2005-11-01
Mapping quantitative trait loci (QTL) in plants is usually conducted using a population derived from a cross between two inbred lines. The power of such QTL detection and the estimation of the effects highly depend on the choice of the two parental lines. Thus, the QTL found represent only a small part of the genetic architecture and can be of limited economical interest in marker-assisted selection. On the other hand, applied breeding programmes evaluate large numbers of progeny derived from multiple-related crosses for a wide range of agronomic traits. It is assumed that the development of statistical techniques to deal with pedigrees in existing plant populations would increase the relevance and cost effectiveness of QTL mapping in a breeding context. In this study, we applied a two-step IBD-based-variance component method to a real wheat breeding population, composed of 374 F6 lines derived from 80 different parents. Two bread wheat quality related traits were analysed by the method. Results obtained show very close agreement with major genes and QTL already known for those two traits. With this new QTL mapping strategy, inferences about QTL can be drawn across the breeding programme rather than being limited to the sample of progeny from a single cross and thus the use of the detected QTL in assisting breeding would be facilitated.
Pacheco-Villalobos, David; Hardtke, Christian S
2012-06-05
Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.
Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters
Zhang, Sirou; Qiao, Xiaoya
2017-01-01
In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311
Bonobo personality traits are heritable and associated with vasopressin receptor gene 1a variation
Staes, Nicky; Weiss, Alexander; Helsen, Philippe; Korody, Marisa; Eens, Marcel; Stevens, Jeroen M.G.
2016-01-01
Despite being closely related, bonobos and chimpanzees show remarkable behavioral differences, the proximate origins of which remain unknown. This study examined the link between behavioral variation and variation in the vasopressin 1a receptor gene (Avpr1a) in bonobos. Chimpanzees are polymorphic for a ~360 bp deletion (DupB), which includes a microsatellite (RS3) in the 5′ promoter region of Avpr1a. In chimpanzees, the DupB deletion has been linked to lower sociability, lower social sensitivity, and higher anxiety. Chimpanzees and bonobos differ on these traits, leading some to believe that the absence of the DupB deletion in bonobos may be partly responsible for these differences, and to the prediction that similar associations between Avpr1a genotypes and personality traits should be present in bonobos. We identified bonobo personality dimensions using behavioral measures (SociabilityB, BoldnessB, OpennessB, ActivityB) and trait ratings (AssertivenessR, ConscientiousnessR, OpennessR, AgreeablenessR, AttentivenessR, ExtraversionR). In the present study we found that all 10 dimensions have nonzero heritabilities, indicating there is a genetic basis to personality, and that bonobos homozygous for shorter RS3 alleles were lower in AttentivenessR and higher in OpennessB. These results suggest that variations in Avpr1a genotypes explain both within and between species differences in personality traits of bonobos and chimpanzees. PMID:27910885
Krause, E Tobias; Krüger, Oliver; Hoffman, Joseph I
2017-01-01
Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches.
Krüger, Oliver
2017-01-01
Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches. PMID:29190647
Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi
2010-02-01
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.
NASA Astrophysics Data System (ADS)
Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.
2017-12-01
Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast with individual species-level trait, community-aggregated root traits could be used to improve our ability to predict how the distribution of vegetation will change in response to a changing climate.
Ma, Xiaoling; Sajjad, Muhammad; Wang, Jing; Yang, Wenlong; Sun, Jiazhu; Li, Xin; Zhang, Aimin; Liu, Dongcheng
2017-09-20
Kernel hardness, which has great influence on the end-use properties of common wheat, is mainly controlled by Puroindoline genes, Pina and Pinb. Using EcoTILLING platform, we herein investigated the allelic variations of Pina and Pinb genes and their association with the Single Kernel Characterization System (SKCS) hardness index in a diverse panel of wheat germplasm. The kernel hardness varied from 1.4 to 102.7, displaying a wide range of hardness index. In total, six Pina and nine Pinb alleles resulting in 15 genotypes were detected in 1787 accessions. The most common alleles are the wild type Pina-D1a (90.4%) and Pina-D1b (7.4%) for Pina, and Pinb-D1b (43.6%), Pinb-D1a (41.1%) and Pinb-D1p (12.8%) for Pinb. All the genotypes have hard type kernel hardness of SKCS index (>60.0), except the wild types of Pina and Pinb combination (Pina-D1a/Pinb-D1a). The most frequent genotypes in Chinese and foreign cultivars was Pina-D1a/Pinb-D1b (46.3 and 39.0%, respectively) and in Chinese landraces was Pina-D1a/Pinb-D1a (54.2%). The frequencies of hard type accessions are increasing from 35.5% in the region IV, to 40.6 and 61.4% in the regions III and II, and then to 77.0% in the region I, while those of soft type are accordingly decreasing along with the increase of latitude. Varieties released after 2000 in Beijing, Hebei, Shandong and Henan have higher average kernel hardness index than that released before 2000. The kernel hardness in a diverse panel of Chinese wheat germplasm revealed an increasing of kernel hardness generally along with the latitude across China. The wild type Pina-D1a and Pinb-D1a, and one Pinb mutant (Pinb-D1b) are the most common alleles of six Pina and nine Pinb alleles, and a new double null genotype (Pina-D1x/Pinb-D1ah) possessed relatively high SKCS hardness index. More hard type varieties were released in recent years with different prevalence of Pin-D1 combinations in different regions. This work would benefit the understanding of the selection and molecular processes of kernel hardness across China and different breeding stages, and provide useful information for the improvement of wheat quality in China.
Cousins, Elsa A; Murren, Courtney J
2017-12-01
Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.
Behavioral Variation in Gorillas: Evidence of Potential Cultural Traits
Robbins, Martha M.; Ando, Chieko; Fawcett, Katherine A.; Grueter, Cyril C.; Hedwig, Daniela; Iwata, Yuji; Lodwick, Jessica L.; Masi, Shelly; Salmi, Roberta; Stoinski, Tara S.; Todd, Angelique; Vercellio, Veronica; Yamagiwa, Juichi
2016-01-01
The question of whether any species except humans exhibits culture has generated much debate, partially due to the difficulty of providing conclusive evidence from observational studies in the wild. A starting point for demonstrating the existence of culture that has been used for many species including chimpanzees and orangutans is to show that there is geographic variation in the occurrence of particular behavioral traits inferred to be a result of social learning and not ecological or genetic influences. Gorillas live in a wide variety of habitats across Africa and they exhibit flexibility in diet, behavior, and social structure. Here we apply the ‘method of exclusion’ to look for the presence/absence of behaviors that could be considered potential cultural traits in well-habituated groups from five study sites of the two species of gorillas. Of the 41 behaviors considered, 23 met the criteria of potential cultural traits, of which one was foraging related, nine were environment related, seven involved social interactions, five were gestures, and one was communication related. There was a strong positive correlation between behavioral dissimilarity and geographic distance among gorilla study sites. Roughly half of all variation in potential cultural traits was intraspecific differences (i.e. variability among sites within a species) and the other 50% of potential cultural traits were differences between western and eastern gorillas. Further research is needed to investigate if the occurrence of these traits is influenced by social learning. These findings emphasize the importance of investigating cultural traits in African apes and other species to shed light on the origin of human culture. PMID:27603668
Behavioral Variation in Gorillas: Evidence of Potential Cultural Traits.
Robbins, Martha M; Ando, Chieko; Fawcett, Katherine A; Grueter, Cyril C; Hedwig, Daniela; Iwata, Yuji; Lodwick, Jessica L; Masi, Shelly; Salmi, Roberta; Stoinski, Tara S; Todd, Angelique; Vercellio, Veronica; Yamagiwa, Juichi
2016-01-01
The question of whether any species except humans exhibits culture has generated much debate, partially due to the difficulty of providing conclusive evidence from observational studies in the wild. A starting point for demonstrating the existence of culture that has been used for many species including chimpanzees and orangutans is to show that there is geographic variation in the occurrence of particular behavioral traits inferred to be a result of social learning and not ecological or genetic influences. Gorillas live in a wide variety of habitats across Africa and they exhibit flexibility in diet, behavior, and social structure. Here we apply the 'method of exclusion' to look for the presence/absence of behaviors that could be considered potential cultural traits in well-habituated groups from five study sites of the two species of gorillas. Of the 41 behaviors considered, 23 met the criteria of potential cultural traits, of which one was foraging related, nine were environment related, seven involved social interactions, five were gestures, and one was communication related. There was a strong positive correlation between behavioral dissimilarity and geographic distance among gorilla study sites. Roughly half of all variation in potential cultural traits was intraspecific differences (i.e. variability among sites within a species) and the other 50% of potential cultural traits were differences between western and eastern gorillas. Further research is needed to investigate if the occurrence of these traits is influenced by social learning. These findings emphasize the importance of investigating cultural traits in African apes and other species to shed light on the origin of human culture.
Butterfield, Bradley J.; Wood, Troy E.
2015-01-01
Efforts to improve the diversity of seed 18 resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.
A major locus controls local adaptation and adaptive life history variation in a perennial plant.
Wang, Jing; Ding, Jihua; Tan, Biyue; Robinson, Kathryn M; Michelson, Ingrid H; Johansson, Anna; Nystedt, Björn; Scofield, Douglas G; Nilsson, Ove; Jansson, Stefan; Street, Nathaniel R; Ingvarsson, Pär K
2018-06-04
The initiation of growth cessation and dormancy represent critical life-history trade-offs between survival and growth and have important fitness effects in perennial plants. Such adaptive life-history traits often show strong local adaptation along environmental gradients but, despite their importance, the genetic architecture of these traits remains poorly understood. We integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). A single genomic region containing the PtFT2 gene mediates local adaptation in the timing of bud set and explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affects the phenotypic variation in bud set that we observe in wild natural populations. Our results reveal a major effect locus that determines the timing of bud set and that has facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life-history trait is remarkable, given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.
Abdala-Roberts, Luis; Rasmann, Sergio; Berny-Mier Y Terán, Jorge C; Covelo, Felisa; Glauser, Gaétan; Moreira, Xoaquín
2016-12-01
It is generally thought that herbivore pressure is higher at lower elevations where climate is warmer and less seasonal, and that this has led to higher levels of plant defense investment at low elevations. However, the generality of this expectation has been called into question by recent studies. We tested for altitudinal gradients in insect leaf damage, plant defenses (phenolic compounds), and nutritional traits (phosphorus and nitrogen) in leaves of the long-lived tree Quercus robur, and further investigated the abiotic factors associated with such gradients. We sampled 20 populations of Q. robur distributed along an altitudinal gradient spanning 35-869 m above sea level, which covered most of the altitudinal range of this species and varied substantially in abiotic conditions, plant traits, and herbivory. Univariate regressions showed that leaf herbivory, phenolics, and phosphorus increased toward higher elevations, whereas leaf nitrogen did not vary with altitude. Multiple regression analyses indicated that temperature was the single most important factor associated with herbivory and appears to be strongly associated with altitudinal variation in damage. Leaf phenolics were also correlated with herbivory, but in a manner that suggests these chemical defenses do not underlie altitudinal variation in damage. In addition, we found that variation in leaf traits (phenolics and nutrients) was in turn associated with both climatic and soil variables. Overall, these findings suggest that altitudinal gradients in herbivory and defenses in Q. robur are uncoupled and that elevational variation in herbivory and plant traits responds mainly to abiotic factors. © 2016 Botanical Society of America.
Lin, J. Z.; Ritland, K.
1997-01-01
Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912
Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D
2001-01-01
Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.
Weevil x Insecticide: Does 'Personality' Matter?
Morales, Juliana A; Cardoso, Danúbia G; Della Lucia, Terezinha Maria C; Guedes, Raul Narciso C
2013-01-01
An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By extension, insect 'personality' (i.e., an individual's integrated set of behavioral tendencies that is inferred from multiple empirical measures) may also be an important determinant of insecticide exposure and activity. This has yet to be considered because the behavioral studies involving insects and insecticides focus on populations rather than on individuals. Even among studies of animal 'personality', the relative contributions of individual and population variation are usually neglected. Here, we assessed behavioral traits (within the categories: activity, boldness/shyness, and exploration/avoidance) of individuals from 15 populations of the maize weevil (Sitophilus zeamais), an important stored-grain pest with serious problems of insecticide resistance, and correlated the behavioral responses with the activity of the insecticide deltamethrin. This analysis was performed at both the population and individual levels. There was significant variation in weevil 'personality' among individuals and populations, but variation among individuals within populations accounted for most of the observed variation (92.57%). This result emphasizes the importance of individual variation in behavioral and 'personality' studies. When the behavioral traits assessed were correlated with median lethal time (LT50) at the population level and with the survival time under insecticide exposure, activity traits, particularly the distance walked, significantly increased survival time. Therefore, behavioral traits are important components of insecticide efficacy, and individual variation should be considered in such studies. This is so because population differences provided only crude approximation of the individual personality in a restrained experimental setting likely to restrict individual behavior favoring the transposition of the individual variation to the population.
The mean and variability of a floral trait have opposing effects on fitness traits
Dai, Can; Liang, Xijian; Ren, Jie; Liao, Minglin; Li, Jiyang; Galloway, Laura F.
2016-01-01
Background and Aims Floral traits are essential for ensuring successful pollination and reproduction in flowering plants. In particular, style and anther positions are key for pollination accuracy and efficiency. Variation in these traits among individuals has been well studied, but less is known about variation within flowers and plants and its effect on pollination and reproductive success. Methods Style deflexion is responsible for herkogamy and important for pollen deposition in Passiflora incarnata. The degree of deflexion may vary among stigmas within flowers as well as among flowers. We measured the variability of style deflexion at both the flower and the plant level. The fitness consequences of the mean and variation of style deflexion were then evaluated under natural pollination by determining their relationship to pollen deposition, seed production and average seed weight using structural equation modelling. In addition, the relationship between style deflexion and self-pollen deposition was estimated in a greenhouse experiment. Key Results We found greater variation in style deflexion within flowers and plants than among plants. Variation of style deflexion at the flower and plant level was positively correlated, suggesting that variability in style deflexion may be a distinct trait in P. incarnata. Lower deflexion and reduced variation in that deflexion increased pollen deposition, which in turn increased seed number. However, lower styles also increased self-pollen deposition. In contrast, higher deflexion and greater variability of that deflexion increased variation in pollen deposition, which resulted in heavier seeds. Conclusions Variability of style deflexion and therefore stigma placement, independent from the mean, appears to be a property of individual P. incarnata plants. The mean and variability of style deflexion in P. incarnata affected seed number and seed weight in contrasting ways, through the quantity and potentially quality of pollen deposition. This antagonistic selection via different fitness components may maintain diverse style phenotypes. PMID:26749589
Estimation of the Proportion of Variation Accounted for by DNA Tests. I: Genetic Variance
USDA-ARS?s Scientific Manuscript database
The proportion of genetic variation accounted for (Rg2) is an important characteristic of a DNA test. For each of 3 levels of narrow sense heritability of the observed trait (h2gy) and 4 levels of Rg2, 500 independent replicates of an observed trait and a molecular breeding value (MBV) for 1000 offs...
John Bradley St. Clair; Francis F. Kilkenny; Richard C. Johnson; Nancy L. Shaw; George Weaver
2013-01-01
A genecological approach was used to explore genetic variation in adaptive traits in Pseudoroegneria spicata, a key restoration grass, in the intermountain western United States. Common garden experiments were established at three contrasting sites with seedlings from two maternal parents from each of 114 populations along with five commercial...
Genetic variation and seed transfer guidelines for ponderosa pine in central Oregon.
Frank C. Sorensen
1994-01-01
Adaptive genetic variation in seed and seedling traits for ponderosa pine from the east slopes of the Cascade Range in Oregon was analyzed by using 307 families from 227 locations. Factor scores from three principal components based on seed and seedling traits were related by multiple regression to latitude, distance from the Cascade crest, elevation, slope, and...
USDA-ARS?s Scientific Manuscript database
Feed efficiency (FE), characterized as the ability to convert feed nutrients into saleable milk or meat directly affects the profitability of dairy production, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or pa...
Gray and white matter correlates of the Big Five personality traits.
Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto
2017-05-04
Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Repeatability of circadian behavioural variation revealed in free-ranging marine fish.
Alós, Josep; Martorell-Barceló, Martina; Campos-Candela, Andrea
2017-02-01
Repeatable between-individual differences in the behavioural manifestation of underlying circadian rhythms determine chronotypes in humans and terrestrial animals. Here, we have repeatedly measured three circadian behaviours, awakening time, rest onset and rest duration, in the free-ranging pearly razorfish, Xyrithchys novacula , facilitated by acoustic tracking technology and hidden Markov models. In addition, daily travelled distance, a standard measure of daily activity as fish personality trait, was repeatedly assessed using a State-Space Model. We have decomposed the variance of these four behavioural traits using linear mixed models and estimated repeatability scores ( R ) while controlling for environmental co-variates: year of experimentation, spatial location of the activity, fish size and gender and their interactions. Between- and within-individual variance decomposition revealed significant R s in all traits suggesting high predictability of individual circadian behavioural variation and the existence of chronotypes. The decomposition of the correlations among chronotypes and the personality trait studied here into between- and within-individual correlations did not reveal any significant correlation at between-individual level. We therefore propose circadian behavioural variation as an independent axis of the fish personality, and the study of chronotypes and their consequences as a novel dimension in understanding within-species fish behavioural diversity.
Genotypic richness predicts phenotypic variation in an endangered clonal plant
Sinclair, Elizabeth A.; Poore, Alistair G.B.; Bain, Keryn F.; Vergés, Adriana
2016-01-01
Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrass Posidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individual Posidonia plants suggests that plasticity within genotypes has played an important role in the longevity of the species. However, the strong link between genotypic and phenotypic variation suggests that a range of genotypes is still the best case scenario for adaptation to and recovery from predicted environmental change. PMID:26925313
Evolutionary rates for multivariate traits: the role of selection and genetic variation
Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-01-01
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697
Interactions between genetic variation and cellular environment in skeletal muscle gene expression.
Taylor, D Leland; Knowles, David A; Scott, Laura J; Ramirez, Andrea H; Casale, Francesco Paolo; Wolford, Brooke N; Guan, Li; Varshney, Arushi; Albanus, Ricardo D'Oliveira; Parker, Stephen C J; Narisu, Narisu; Chines, Peter S; Erdos, Michael R; Welch, Ryan P; Kinnunen, Leena; Saramies, Jouko; Sundvall, Jouko; Lakka, Timo A; Laakso, Markku; Tuomilehto, Jaakko; Koistinen, Heikki A; Stegle, Oliver; Boehnke, Michael; Birney, Ewan; Collins, Francis S
2018-01-01
From whole organisms to individual cells, responses to environmental conditions are influenced by genetic makeup, where the effect of genetic variation on a trait depends on the environmental context. RNA-sequencing quantifies gene expression as a molecular trait, and is capable of capturing both genetic and environmental effects. In this study, we explore opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-environment interactions (GxE)-genetic effects on gene expression that depend on an environmental condition. Treating 17 common, clinical traits as approximations of the cellular environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect GxE effects, replication of such signals can be challenging as validation requires harmonization of environmental traits across cohorts and a sufficient sampling of heterozygotes for a transcribed SNP. Comprehensive discovery and replication will require large human transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with standardized clinical phenotyping.
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2012 CFR
2012-01-01
... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2014 CFR
2014-01-01
... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2011 CFR
2011-01-01
... weight of half-kernels after all pieces, particles and dust, shell, center wall, and foreign material..., particles, and dust. In order to allow for variations incident to proper sizing and handling, not more than 15 percent, by weight, of any lot may consist of pieces, particles, and dust: Provided, That not more...
7 CFR 51.1437 - Size classifications for halves.
Code of Federal Regulations, 2013 CFR
2013-01-01
... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...
THE MORPHO-SYNTACTIC TYPOLOGY OF THE SLAVIC LANGUAGES.
ERIC Educational Resources Information Center
BIDWELL, CHARLES E.
THIS PAPER STATES THE COMMON GRAMMATICAL FEATURES OF SLAVIC LANGUAGES AND MENTIONS MINOR VARIATIONS FROM THE PATTERN, AS THEY EXIST IN THE SEPARATE LANGUAGES AND DIALECTS. THE AUTHOR DESCRIBES BOTH COMPONENTS OF SENTENCES AND THE ORDERING OF THESE COMPONENTS. THE BASIC KERNEL SENTENCES ARE LISTED WITH THE TYPES OF CONSTITUENTS OCCURRING IN THEM,…
Oliveira, D G; Rocha, M M; Damasceno-Silva, K J; Sá, F V; Lima, L R L; Resende, M D V
2017-08-17
The aim of this study was to estimate the genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses and to compare different selection indexes. Eleven cowpea populations were evaluated in a randomized complete block design with four replications. Fourteen traits were evaluated, and the following parameters were estimated: genotypic variation coefficient, genotypic determination coefficient, experimental quality indicator and selection reliability, estimated genotypic values - BLUE, genotypic correlation coefficient among traits, and genotypic gain with simultaneous selection of all traits. The genotypic gain was estimated based on tree selection indexes: classical, multiplicative, and the sum of ranks. The genotypic variation coefficient was higher than the environmental variation coefficient for the number of days to start flowering, plant type, the weight of one hundred grains, grain index, and protein concentration. The majority of the traits presented genotypic determination coefficient from medium to high magnitude. The identification of increases in the production components is associated with decreases in protein concentration, and the increase in precocity leads to decreases in protein concentration and cooking time. The index based on the sum of ranks was the best alternative for simultaneous selection of traits in the cowpea segregating populations resulting from the crosses and backcrosses evaluated, with emphasis on the F 4 BC 12 , F 4 C 21 , and F 4 C 12 populations, which had the highest genotypic gains.
Kinetic study of nickel laterite reduction roasting by palm kernel shell charcoal
NASA Astrophysics Data System (ADS)
Sugiarto, E.; Putera, A. D. P.; Petrus, H. T. B. M.
2017-05-01
Demand to process nickel-bearing laterite ore increase as continuous depletion of high-grade nickel-bearing sulfide ore takes place. Due to its common nickel association with iron, processing nickel laterite ore into nickel pig iron (NPI) has been developed by some industries. However, to achieve satisfying nickel recoveries, the process needs massive high-grade metallurgical coke consumption. Concerning on the sustainability of coke supply and positive carbon emission, reduction of nickel laterite ore using biomass-based reductor was being studied.In this study, saprolitic nickel laterite ore was being reduced by palm kernel shell charcoal at several temperatures (800-1000 °C). Variation of biomass-laterite composition was also conducted to study the reduction mechanism. X-ray diffraction and gravimetry analysis were applied to justify the phenomenon and predict kinetic model of the reduction. Results of this study provide information that palm kernel shell charcoal has similar reducing result compared with the conventional method. Reduction, however, was carried out by carbon monoxide rather than solid carbon. Regarding kinetics, Ginstling-Brouhnstein kinetic model provides satisfying results to predict the reduction phenomenon.
Manley, Marena; du Toit, Gerida; Geladi, Paul
2011-02-07
The combination of near infrared (NIR) hyperspectral imaging and chemometrics was used to follow the diffusion of conditioning water over time in wheat kernels of different hardnesses. Conditioning was attempted with deionised water (dH(2)O) and deuterium oxide (D(2)O). The images were recorded at different conditioning times (0-36 h) from 1000 to 2498 nm with a line scan imaging system. After multivariate cleaning and spectral pre-processing (either multiplicative scatter correction or standard normal variate and Savitzky-Golay smoothing) six principal components (PCs) were calculated. These were studied visually interactively as score images and score plots. As no clear clusters were present in the score plots, changes in the score plots were investigated by means of classification gradients made within the respective PCs. Classes were selected in the direction of a PC (from positive to negative or negative to positive score values) in almost equal segments. Subsequently loading line plots were used to provide a spectroscopic explanation of the classification gradients. It was shown that the first PC explained kernel curvature. PC3 was shown to be related to a moisture-starch contrast and could explain the progress of water uptake. The positive influence of protein was also observed. The behaviour of soft, hard and very hard kernels was different in this respect, with the uptake of water observed much earlier in the soft kernels than in the harder ones. The harder kernels also showed a stronger influence of protein in the loading line plots. Difference spectra showed interpretable changes over time for water but not for D(2)O which had a too low signal in the wavelength range used. NIR hyperspectral imaging together with exploratory chemometrics, as detailed in this paper, may have wider applications than merely conditioning studies. Copyright © 2010 Elsevier B.V. All rights reserved.
Evolutionary genomics of animal personality.
van Oers, Kees; Mueller, Jakob C
2010-12-27
Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future.
Morphometricity as a measure of the neuroanatomical signature of a trait.
Sabuncu, Mert R; Ge, Tian; Holmes, Avram J; Smoller, Jordan W; Buckner, Randy L; Fischl, Bruce
2016-09-27
Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer's disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.
Morphometricity as a measure of the neuroanatomical signature of a trait
Sabuncu, Mert R.; Ge, Tian; Holmes, Avram J.; Smoller, Jordan W.; Buckner, Randy L.; Fischl, Bruce
2016-01-01
Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques. PMID:27613854
Representation matters: quantitative behavioral variation in wild worm strains
NASA Astrophysics Data System (ADS)
Brown, Andre
Natural genetic variation in populations is the basis of genome-wide association studies, an approach that has been applied in large studies of humans to study the genetic architecture of complex traits including disease risk. Of course, the traits you choose to measure determine which associated genes you discover (or miss). In large-scale human studies, the measured traits are usually taken as a given during the association step because they are expensive to collect and standardize. Working with the nematode worm C. elegans, we do not have the same constraints. In this talk I will describe how large-scale imaging of worm behavior allows us to develop alternative representations of behavior that vary differently across wild populations. The alternative representations yield novel traits that can be used for genome-wide association studies and may reveal basic properties of the genotype-phenotype map that are obscured if only a small set of fixed traits are used.
Plant-microbe genomic systems optimization for energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazen, Samuel P.
The overall objective of this project was to identify genetic variation within grasses that results in increased biomass yield and biofuel conversion efficiency. Improving energy crops hinges on identifying the genetic mechanisms underlying traits that benefit energy production. The exploitation of natural variation in plant species is an ideal approach to identify both the traits and the genes of interest in the production of biofuels. The specific goals of this project were to (1) quantify relevant genetic diversity for biofuel feedstock bioconversion efficiency and biomass accumulation, (2) identify genetic loci that control these traits, and (3) characterize genes for improvedmore » energy crop systems. Determining the key genetic contributors influencing biofuel traits is required in order to determine the viability of these traits as targets for improvement; only then will we be able to apply modern breeding practices and genetic engineering for the rapid improvement of feedstocks.« less
The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.
Perry, Jennifer C; Garroway, Colin J; Rowe, Locke
2017-09-01
Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859
Cornillon, P A; Pontier, D; Rochet, M J
2000-02-21
Comparative methods are used to investigate the attributes of present species or higher taxa. Difficulties arise from the phylogenetic heritage: taxa are not independent and neglecting phylogenetic inertia can lead to inaccurate results. Within-species variations in life-history traits are also not negligible, but most comparative methods are not designed to take them into account. Taxa are generally described by a single value for each trait. We have developed a new model which permits the incorporation of both the phylogenetic relationships among populations and within-species variations. This is an extension of classical autoregressive models. This family of models was used to study the effect of fishing on six demographic traits measured on 77 populations of teleost fishes. Copyright 2000 Academic Press.
Assessing the complex architecture of polygenic traits in diverged yeast populations.
Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni
2011-04-01
Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.
Predicting ecosystem vulnerability to biodiversity loss from community composition.
Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid
2018-05-01
Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.
Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S
2018-02-01
Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to detect the dynamic muscle fatigue conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing Predictive Properties of Genome-Wide Selection in Soybeans
Xavier, Alencar; Muir, William M.; Rainey, Katy Martin
2016-01-01
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. PMID:27317786
Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice
2009-11-01
The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.