Sample records for kernel uo2 di

  1. Carbon monoxide formation in UO 2 kerneled HTR fuel particles containing oxygen getters

    NASA Astrophysics Data System (ADS)

    Proksch, E.; Strigl, A.; Nabielek, H.

    1986-06-01

    Mass spectrometric measurements of CO in irradiated UO 2 kerneled HTR fuel particles containing various oxygen getters are summarized and evaluated. Uranium carbide addition in the 3 to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, only somewhat ambiguous results have been obtained; most likely, ZrC results in CO reduction by a factor of about 40. Ce 2O 3 and La 2O 3 seem to be somewhat less effective than the three carbides; for Ce 2O 3, reduction factors between 3 and 15 have been found. However, these results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO 2 + Al 2O 3 has no influence on CO release at all.

  2. Carbothermic Synthesis of ~820- m UN Kernels. Investigation of Process Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Silva, Chinthaka M; Henry, Jr, John James

    2015-06-01

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urainia-carbon microspheres to ~820-μm-dia. UN fuel kernels in flow-through, vertical refractory-metal crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO 2:2UC in the same gases and vacuum, and its conversion in N 2 to in UC 1-xN x. The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UC kernel of ~96% theoretical densitymore » was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Decreasing the UC 1-xN x kernel carbide component via HCN evolution was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.« less

  3. Characterization of Oxygen Defect Clusters in UO2+ x Using Neutron Scattering and PDF Analysis.

    PubMed

    Ma, Yue; Garcia, Philippe; Lechelle, Jacques; Miard, Audrey; Desgranges, Lionel; Baldinozzi, Gianguido; Simeone, David; Fischer, Henry E

    2018-06-18

    In hyper-stoichiometric uranium oxide, both neutron diffraction work and, more recently, theoretical analyses report the existence of clusters such as the 2:2:2 cluster, comprising two anion vacancies and two types of anion interstitials. However, little is known about whether there exists a region of low deviation-from-stoichiometry in which defects remain isolated, or indeed whether at high deviation-from-stoichiometry defect clusters prevail that contain more excess oxygen atoms than the di-interstitial cluster. In this study, we report pair distribution function (PDF) analyses of UO 2 and UO 2+ x ( x ≈ 0.007 and x ≈ 0.16) samples obtained from high-temperature in situ neutron scattering experiments. PDF refinement for the lower deviation from stoichiometry sample suggests the system is too dilute to differentiate between isolated defects and di-interstitial clusters. For the UO 2.16 sample, several defect structures are tested, and it is found that the data are best represented assuming the presence of center-occupied cuboctahedra.

  4. Diffusion of oxygen interstitials in UO2+x using kinetic Monte Carlo simulations: Role of O/M ratio and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.

    2016-04-01

    Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.

  5. Unusual ion UO(4)(-) formed upon collision induced dissociation of [UO(2)(NO(3))(3)](-), [UO(2)(ClO(4))(3)](-), [UO(2)(CH(3)COO)(3)](-) ions.

    PubMed

    Sokalska, Marzena; Prussakowska, Małgorzata; Hoffmann, Marcin; Gierczyk, Błazej; Frański, Rafał

    2010-10-01

    The following ions [UO(2)(NO(3))(3)](-), [UO(2)(ClO(4))(3)](-), [UO(2)(CH(3)COO)(3)](-) were generated from respective salts (UO(2)(NO(3))(2), UO(2)(ClO(4))(3), UO(2)(CH(3)COO)(2)) by laser desorption/ionization (LDI). Collision induced dissociation of the ions has led, among others, to the formation of UO(4)(-) ion (m/z 302). The undertaken quantum mechanical calculations showed this ion is most likely to possess square planar geometry as suggested by MP2 results or strongly deformed geometry in between tetrahedral and square planar as indicated by DFT results. Interestingly, geometrical parameters and analysis of electron density suggest it is an U(VI) compound, in which oxygen atoms bear unpaired electron and negative charge. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  6. High resolution photoelectron imaging of UO(-) and UO2(-) and the low-lying electronic states and vibrational frequencies of UO and UO2.

    PubMed

    Czekner, Joseph; Lopez, Gary V; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO(-) and UO2(-). The spectra for UO2(-) are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  7. Average structure and local configuration of excess oxygen in UO(2+x).

    PubMed

    Wang, Jianwei; Ewing, Rodney C; Becker, Udo

    2014-03-19

    Determination of the local configuration of interacting defects in a crystalline, periodic solid is problematic because defects typically do not have a long-range periodicity. Uranium dioxide, the primary fuel for fission reactors, exists in hyperstoichiometric form, UO(2+x). Those excess oxygen atoms occur as interstitial defects, and these defects are not random but rather partially ordered. The widely-accepted model to date, the Willis cluster based on neutron diffraction, cannot be reconciled with the first-principles molecular dynamics simulations present here. We demonstrate that the Willis cluster is a fair representation of the numerical ratio of different interstitial O atoms; however, the model does not represent the actual local configuration. The simulations show that the average structure of UO(2+x) involves a combination of defect structures including split di-interstitial, di-interstitial, mono-interstitial, and the Willis cluster, and the latter is a transition state that provides for the fast diffusion of the defect cluster. The results provide new insights in differentiating the average structure from the local configuration of defects in a solid and the transport properties of UO(2+x).

  8. Hydrogen suppresses UO 2 corrosion

    NASA Astrophysics Data System (ADS)

    Carbol, Paul; Fors, Patrik; Gouder, Thomas; Spahiu, Kastriot

    2009-08-01

    Release of long-lived radionuclides such as plutonium and caesium from spent nuclear fuel in deep geological repositories will depend mainly on the dissolution rate of the UO 2 fuel matrix. This dissolution rate will, in turn, depend on the redox conditions at the fuel surface. Under oxidative conditions UO 2 will be oxidised to the 1000 times more soluble UO 2.67. This may occur in a repository as the reducing deep groundwater becomes locally oxidative at the fuel surface under the effect of α-radiolysis, the process by which α-particles emitted from the fuel split water molecules. On the other hand, the groundwater corrodes canister iron generating large amounts of hydrogen. The role of molecular hydrogen as reductant in a deep bedrock repository is questioned. Here we show evidence of a surface-catalysed reaction, taking place in the H 2-UO 2-H 2O system where molecular hydrogen is able to reduce oxidants originating from α-radiolysis. In our experiment the UO 2 surface remained stoichiometric proving that the expected oxidation of UO 2.00 to UO 2.67 due to radiolytic oxidants was absent. As a consequence, the dissolution of UO 2 stopped when equilibrium was reached between the solid phase and U 4+ species in the aqueous phase. The steady-state concentration of uranium in solution was determined to be 9 × 10 -12 M, about 30 times lower than previously reported for reducing conditions. Our findings show that fuel dissolution is suppressed by H 2. Consequently, radiotoxic nuclides in spent nuclear fuel will remain immobilised in the UO 2 matrix. A mechanism for the surface-catalysed reaction between molecular hydrogen and radiolytic oxidants is proposed.

  9. Structure and cation ordering in La 2UO 6, Ce 2UO 6, LaUO 4, and CeUO 4 by first principles calculations

    DOE PAGES

    Casillas-Trujillo, Luis; Xu, H.; McMurray, Jake W.; ...

    2016-07-06

    In the present work, we have used density functional theory (DFT) and DFT+U to investigate the crystal structure and phase stability of four model compounds in the Ln 2O 3-UO 2-UO 3 ternary oxide system: La2UO 6, Ce 2UO 6, LaUO 4, CeUO 4, due to the highly-correlated nature of the f-electrons in uranium. We have considered both hypothetical ordered compounds and compounds in which the cations randomly occupy atomic sites in a fluorite-like lattice. We determined that ordered compounds are stable and are energetically favored compared to disordered configurations, though the ordering tendencies are weak. To model and analyzemore » the structures of these complex oxides, we have used supercells based on a layered atomic model. In the layer model, the supercell is composed of alternating planes of anions and cations. We have considered two different ordering motifs for the cations, namely single species (isoatomic) cation layers versus mixed species cation layers. Energy differences between various ordered cationic arrangements were found to be small. This may have implications regarding radiation stability, since cationic arrangements should be able to change under irradiation with little cost in energy.« less

  10. High resolution photoelectron imaging of UO{sup −} and UO{sub 2}{sup −} and the low-lying electronic states and vibrational frequencies of UO and UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO{sup −} and UO{sub 2}{sup −}. The spectra for UO{sub 2}{sup −} are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO{sub 2} as 1.1688(6) eV. The symmetricmore » stretching modes for the neutral and anionic ground states, and two neutral excited states for UO{sub 2} are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO{sub 2} are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.« less

  11. Triso coating development progress for uranium nitride kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-08-01

    In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less

  12. Stability and migration of large oxygen clusters in UO(2+x): density functional theory calculations.

    PubMed

    Andersson, D A; Espinosa-Faller, F J; Uberuaga, B P; Conradson, S D

    2012-06-21

    Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.

  13. METHOD FOR PREPARATION OF UO$sub 2$ PARTICLES

    DOEpatents

    Johnson, J.R.; Taylor, A.J.

    1959-09-22

    A method is described for the preparation of highdensity UO/sub 2/ particles within the size range of 40 to 100 microns. In accordance with the invention UO/sub 2/ particles are autoclaved with an aqueous solution of uranyl ions. The resulting crystals are reduced to UO/sub 2/ and the UO/sub 2/ is heated to at least 1000 deg C to effect densification. The resulting UO/sub 2/ particles are screened, and oversize particles are crushed and screened to recover the particles within the desired size range.

  14. Carbon monoxide formation in UO2 kerneled HTR fuel particles containing oxygen getters

    NASA Astrophysics Data System (ADS)

    Proksch, E.; Strigl, A.; Nabielek, H.

    1986-01-01

    Mass spectrometric measurements of CO in irradiated UO2 fuel particles containing oxygen getters are summarized. Uranium carbide addition in the 3% to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, ambiguous results are obtained; ZrC probably results in CO reduction by a factor of 40; Ce2O3 and La2O3 seem less effective than the carbides; for Ce2O3, reduction factors between 3 and 15 are found. However, the results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO2 + Al2O3 has no influence on CO release.

  15. Hydrothermal syntheses, structures, and properties of the new uranyl selenites Ag(2)(UO(2))(SeO(3))(2), M[(UO(2))(HSeO(3))(SeO(3))] (M = K, Rb, Cs, Tl), and Pb(UO(2))(SeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-03-11

    The transition metal, alkali metal, and main group uranyl selenites, Ag(2)(UO(2))(SeO(3))(2) (1), K[(UO(2))(HSeO(3))(SeO(3))] (2), Rb[(UO(2))(HSeO(3))(SeO(3))] (3), Cs[(UO(2))(HSeO(3))(SeO(3))] (4), Tl[(UO(2))(HSeO(3))(SeO(3))] (5), and Pb(UO(2))(SeO(3))(2) (6), have been prepared from the hydrothermal reactions of AgNO(3), KCl, RbCl, CsCl, TlCl, or Pb(NO(3))(2) with UO(3) and SeO(2) at 180 degrees C for 3 d. The structures of 1-5 contain similar [(UO(2))(SeO(3))(2)](2-) sheets constructed from pentagonal bipyramidal UO(7) units that are joined by bridging SeO(3)(2-) anions. In 1, the selenite oxo ligands that are not utilized within the layers coordinate the Ag(+) cations to create a three-dimensional network structure. In 2-5, half of the selenite ligands are monoprotonated to yield a layer composition of [(UO(2))(HSeO(3))(SeO(3))](1-), and coordination of the K(+), Rb(+), Cs(+), and Tl(+) cations occurs through long ionic contacts. The structure of 6 contains a uranyl selenite layered substructure that differs substantially from those in 1-5 because the selenite anions adopt both bridging and chelating binding modes to the uranyl centers. Furthermore, the Pb(2+) cations form strong covalent bonds with these anions creating a three-dimensional framework. These cations occur as distorted square pyramidal PbO(5) units with stereochemically active lone pairs of electrons. These polyhedra align along the c-axis to create a polar structure. Second-harmonic generation (SHG) measurements revealed a response of 5x alpha-quartz for 6. The diffuse reflectance spectrum of 6 shows optical transitions at 330 and 440 nm. The trailing off of the 440 nm transition to longer wavelengths is responsible for the orange coloration of 6.

  16. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K(2)[(UO(2))3(IO(3))(4)O(2)] and Ba[(UO(2)2(IO(3))(2)O(2)](H(2)O).

    PubMed

    Bean, A C; Ruf, M; Albrecht-Schmitt, T E

    2001-07-30

    The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.

  17. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    PubMed

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  18. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-05-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  19. DR2DI: a powerful computational tool for predicting novel drug-disease associations

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Yu, Hua

    2018-04-01

    Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

  20. PREPARATION OF HIGH DENSITY UO$sub 2$

    DOEpatents

    Googin, J.M.

    1959-09-29

    A method is presented for the preparation of highdensity UO/sub 2/ from UF/sub 6/. In accordance with the invention, UF/sub 6/ is reacted with water and concentrated ammonium hydroxide is added to the resulting aqueous solution of UO/ sub 2/F/sub 2/. The resulting precipitate is calcined to U/sub 3/O/sub 8/ an d the U/sub 3/O/sub 8/ is reduced to UO/sub 2/ with a gaseous mixture comprised of carbon monoxide and carbon dioxide at a temperature of from 1600 to 1900 deg C.

  1. Computational study of the energetics and defect clustering tendencies for Y- and La-doped UO 2

    DOE PAGES

    Solomon, J. M.; Alexandrov, V.; Sadigh, B.; ...

    2014-07-24

    The energetics and defect-ordering tendencies in solid solutions of uoritestructured UO 2 with trivalent rare earth cations (M 3+=Y, La) are investigated computationally using a combination of ionic-pair-potential and densityfunctional- theory (DFT) based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions relative to Y, consistent with the di erences in experimentally measured solubility limits for the two systems. Additionally, calculations performed for di erent atomic con gurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent withmore » related calculations and calorimetry measurements in other trivalent-doped uorite-structured oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. The implications of these results are discussed in the context of the e ect of trivalent impurities on oxygen-ion mobilities in UO 2, which are relevant to the understanding of experimental observations concerning the e ect of trivalent ssion products on oxidative corrosion rates of spent nuclear fuel.« less

  2. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    PubMed

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  3. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  4. Spectroscopy of the UO+2 cation and the delayed ionization of UO2.

    PubMed

    Merritt, Jeremy M; Han, Jiande; Heaven, Michael C

    2008-02-28

    Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).

  5. The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel

    DOE PAGES

    Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.; ...

    2017-11-21

    Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less

  6. The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.

    Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less

  7. The effect of fuel chemistry on UO2 dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda; Hanson, Brady; Miller, William

    2016-08-01

    The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater infiltration into the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters have on the dissolution rate of unirradiated UO2 under repository conditionsmore » and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods where radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix showed a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.« less

  8. The thermodynamic properties of gaseous UO2(OH)2

    NASA Astrophysics Data System (ADS)

    Konings, R. J. M.; Kovács, A.; Beneš, O.

    2017-12-01

    Quantum chemical calculations of the molecular properties of the UO2(OH)2 molecule are presented. From the results the thermodynamic properties of this gaseous species have been calculated, and these have been used to re-evaluate the existing literature study on the volatilization of U3O8 in steam, allowing to derive the enthalpy of formation of the UO2(OH)2 molecule.

  9. Surface reactions of ethanol over UO 2(100) thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Senanayake; Mudiyanselage, K.; Burrell, A. K.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure, and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO 3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH 3CH 2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C 1s, O 1s, and U 4f to investigate the bondingmore » mode, surface composition, electronic structure, and probable chemical changes to the stoichiometric-UO 2(100) [smooth-UO 2(100)] and Ar +-sputtered UO 2(100) [rough-UO 2(100)] surfaces. Unlike UO 2(111) single crystal and UO 2 thin film, Ar-ion-sputtering of this UO 2(100) did not result in noticeable reduction of U cations. Upon ethanol adsorption (saturation occurred at 0.5 ML), only the ethoxy (CH 3CH 2O –) species is formed on smooth-UO 2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO–) on the Ar +-sputtered UO 2(100) surface. Furthermore, all ethoxy and acetate species are removed from the surface between 600 and 700 K.« less

  10. Dissolution of Biogenic and Synthetic UO2 under Varied Reducing Conditions

    PubMed Central

    ULRICH, KAI – UWE; SINGH, ABHAS; SCHOFIELD, ELEANOR J.; BARGAR, JOHN R.; VEERAMANI, HARISH; SHARP, JONATHAN O.; LATMANI, RIZLAN BERNIER -; GIAMMAR, DANIEL E.

    2008-01-01

    The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles’ surface free energy, structural defects, and compositional variability in analogy to abiotic UO2+x (0 ≤ x ≤ 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic nano-UO2 and synthetic bulk UO2.00, taking molecular-scale structure into account. Rates were determined under anoxic conditions as a function of pH and dissolved inorganic carbon in continuous-flow experiments. The dissolution rates of biogenic and synthetic UO2 solids were lowest at near neutral pH and increased with decreasing pH. Similar surface area-normalized rates of biogenic and synthetic UO2 suggest comparable reactive surface site densities. This finding is consistent with the identified structural homology of biogenic UO2 and stoichiometric UO2.00. Compared to carbonate-free anoxic conditions, dissolved inorganic carbon accelerated the dissolution rate of biogenic UO2 by 3 orders of magnitude. This phenomenon suggests continuous surface oxidation of U(IV) to U(VI), with detachment of U(VI) as the rate-determining step in dissolution. Although reducing conditions were maintained throughout the experiments, the UO2 surface can be oxidized by water and radiogenic oxidants. Even in anoxic aquifers, UO2 dissolution may be controlled by surface U(VI) rather than U(IV) phases. PMID:18754482

  11. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO(2)(CrO(4))(IO(3))(H(2)O)], A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K, Rb, Cs), and K(2)[UO(2)(MoO(4))(IO(3))(2)].

    PubMed

    Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-10-07

    The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.

  12. UO(2) 2+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate.

    PubMed

    Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-04-01

    In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of

  13. Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K[UO(2)Te(2)O(5)(OH)], Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O, beta-Tl(2)[UO(2)(TeO(3))(2)], and Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-10-21

    The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta

  14. A charge-optimized many-body potential for the U-UO2-O2 system

    NASA Astrophysics Data System (ADS)

    Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.

    2013-12-01

    Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.

  15. Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun; Song, Kun-Woo

    2015-07-01

    As one of accident tolerant fuel pellets which should have features of good thermal conductivity and high fission product retention, a micro-cell UO2-Mo pellet has been studied in the aspect of fabrication and thermal property. It was intended to develop the compatible process with conventional UO2 pellet fabrication process. The effects of processing parameters such as the size and density of UO2 granule and the size of Mo powder have been studied to produce sound and dense pellet with completely connected uniform Mo cell-walls. The micro-cell UO2-Mo pellet consists of many Mo micro-cells and UO2 in them. The thermal conductivity of the micro-cell UO2-Mo pellet was measured and compared to those of the UO2 pellet and the UO2-Mo pellet with dispersed form of Mo particles. The thermal conductivity of the micro-cell UO2-Mo pellet was much enhanced and was found to be influenced by the Mo volumetric fraction and pellet integrity. A continuous Mo micro-cell works as a heat conducting channel in the pellet, greatly enhancing the thermal conductivity of the micro cell UO2-Mo pellet.

  16. Chelation of UO(2)(2+) by vitamin B6 complex derivatives: synthesis and characterization of [UO2(beta-pyracinide)2(H2O)] and [UO2(Pyr2en)DMSO]Cl2{Pyr2en=N,N'-ethylenebis(pyridoxylideneiminato)}. A useful modeling of assimilation of uranium by living beings.

    PubMed

    Back, Davi Fernando; de Oliveira, Gelson Manzoni; Lang, Ernesto Schulz

    2006-10-01

    The vitamin B(6) derivatives 4-pyridoxic acid (anionic) and the Schiff base N,N'-ethylenebis(pyridoxylideneiminato) react with UO(2)(NO(3))(2) * 6H(2)O to give [UO(2)(beta-pyracinide)(2)(H(2)O)] (beta-pyracin=4-pyridoxic acid) and [UO(2)(Pyr(2)en)DMSO]Cl(2)(Pyr(2)en=N,N'-ethylenebis(pyridoxylideneiminato); DMSO=dimethyl sulfoxide). In both compounds the two uranyl oxo ligands set the axis of distorted pentagonal bipyramides. The ability of vitamin B(6) derivatives to react with UO(2)(2+) allowing the chelation of one uranium atom represents a very specific model of assimilation of uranium by living beings. It could also explain the serious damages caused by heavy or radioactive metals like uranium since their complexation "in vivo" by enzymatic systems like pyridoxal phosphate-containing enzymes would lead to a modification of the prosthetic groups of the metalloenzymes with loss of their catalytic activities.

  17. The mechanism for water exchange in [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-), as studied by quantum chemical methods.

    PubMed

    Vallet, V; Wahlgren, U; Schimmelpfennig, B; Szabó, Z; Grenthe, I

    2001-12-05

    The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO

  18. Non-Destructive Characterization of UO2+x Nuclear Fuels

    DOE PAGES

    Pokharel, Reeju; Brown, Donald W.; Clausen, Bjørn; ...

    2017-10-27

    This article describes the effect of fabrication conditions on as-sintered microstructures of various stoichiometric ratios of uranium dioxide, UO 2+x, with the aim of enhancing the understanding of fabrication process and developing and validating a predictive microstructurebased model for fuel performance. We demonstrate the ability of novel, non-destructive methods such as near-field high-energy X-ray diffraction microscopy (nf-HEDM) and micro-computed tomography (μ-CT) to probe bulk samples of high-Z materials by non-destructively characterizing three samples: UO 2.00, UO 2.11, and UO 2.16, which were sintered at 1450°C for 4 hours. The measured 3D microstructures revealed that grain size and porosity were influencedmore » by deviation from stoichiometry.« less

  19. Synthesis and sintering of UN-UO 2 fuel composites

    DOE PAGES

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; ...

    2015-06-17

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less

  20. Synthesis and sintering of UN-UO2 fuel composites

    NASA Astrophysics Data System (ADS)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Tyburska-Püschel, Beata; Meyer, Mitch; Xu, Peng; Lahoda, Edward J.; Butt, Darryl P.

    2015-11-01

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN - UO2 composite pellets were sintered in Ar - (0-1 at%) N2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar - 100 ppm N2 to assess the effects of temperature (1700-2000 °C) on the final grain morphology and phase concentration.

  1. Electronic spectrum of the UO and UO(+) molecules.

    PubMed

    Tyagi, Rajni; Zhang, Zhiyong; Pitzer, Russell M

    2014-12-18

    Electronic theory calculations are applied to the study of the UO molecule and the UO(+) ion. Relativistic effective core potentials are used along with the accompanying valence spin-orbit operators. Polarized double-ς and triple-ς basis sets are used. Molecular orbitals are obtained from state-averaged multiconfiguration self-consistent field calculations and then used in multireference spin-orbit configuration interaction calculations with a number of millions of terms. The ground state of UO has open shells of 5f(3)7s(1), angular momentum Ω = 4, and a spin-orbit-induced avoided crossing near the equilibrium internuclear distance. Many UO excited states are studied with rotational constants, intensities, and experimental comparisons. The ground state of UO(+) is of 5f(3) nature with Ω = 9/2. Many UO(+) excited states are also studied. The open-shell nature of both UO and UO(+) leads to many low-lying excited states.

  2. A Fock space coupled cluster study on the electronic structure of the UO(2), UO(2) (+), U(4+), and U(5+) species.

    PubMed

    Infante, Ivan; Eliav, Ephraim; Vilkas, Marius J; Ishikawa, Yasuyuki; Kaldor, Uzi; Visscher, Lucas

    2007-09-28

    The ground and excited states of the UO(2) molecule have been studied using a Dirac-Coulomb intermediate Hamiltonian Fock-space coupled cluster approach (DC-IHFSCC). This method is unique in describing dynamic and nondynamic correlation energies at relatively low computational cost. Spin-orbit coupling effects have been fully included by utilizing the four-component Dirac-Coulomb Hamiltonian from the outset. Complementary calculations on the ionized systems UO(2) (+) and UO(2) (2+) as well as on the ions U(4+) and U(5+) were performed to assess the accuracy of this method. The latter calculations improve upon previously published theoretical work. Our calculations confirm the assignment of the ground state of the UO(2) molecule as a (3)Phi(2u) state that arises from the 5f(1)7s(1) configuration. The first state from the 5f(2) configuration is found above 10,000 cm(-1), whereas the first state from the 5f(1)6d(1) configuration is found at 5,047 cm(-1).

  3. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOEpatents

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  4. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    NASA Astrophysics Data System (ADS)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  5. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO 3, U 2O 7, and UO 4

    DOE PAGES

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; ...

    2016-09-01

    The thermal decomposition of studtite (UO 2)O 2(H 2O) 2·2H 2O results in a series of intermediate X-ray amorphous materials with general composition UO 3+x (x = 0, 0.5, 1). As an extension of a structural study on U 2O 7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solutionmore » calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO 3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO 3+x materials that pose the risk of significant O 2 gas. Quantitative knowledge of the energy landscape of amorphous UO 3+x was provided for stability analysis and assessment of conditions for decomposition.« less

  6. Rates and mechanism of fluoride and water exchange in UO(2)F(5)(3-) and [UO(2)F(4)(H(2)O)](2-) studied by NMR spectroscopy and wave function based methods.

    PubMed

    Vallet, Valérie; Wahlgren, Ulf; Szabó, Zoltán; Grenthe, Ingmar

    2002-10-21

    The reaction mechanism for the exchange of fluoride in UO(2)F(5)(3-) and UO(2)F(4)(H(2)O)(2-) has been investigated experimentally using (19)F NMR spectroscopy at -5 degrees C, by studying the line broadening of the free fluoride, UO(2)F(4)(2-)(aq) and UO(2)F(5)(3-), and theoretically using quantum chemical methods to calculate the activation energy for different pathways. The new experimental data allowed us to make a more detailed study of chemical equilibria and exchange mechanisms than in previous studies. From the integrals of the different individual peaks in the new NMR spectra, we obtained the stepwise stability constant K(5) = 0.60 +/- 0.05 M(-1) for UO(2)F(5)(3-). The theoretical results indicate that the fluoride exchange pathway of lowest activation energy, 71 kJ/mol, in UO(2)F(5)(3-) is water assisted. The pure dissociative pathway has an activation energy of 75 kJ/mol, while the associative mechanism can be excluded as there is no stable UO(2)F(6)(4-) intermediate. The quantum chemical calculations have been made at the SCF/MP2 levels, using a conductor-like polarizable continuum model (CPCM) to describe the solvent. The effects of different model assumptions on the activation energy have been studied. The activation energy is not strongly dependent on the cavity size or on interactions between the complex and Na(+) counterions. However, the solvation of the complex and the leaving fluoride results in substantial changes in the activation energy. The mechanism for water exchange in UO(2)F(4)(H(2)O)(2-) has also been studied. We could eliminate the associative mechanism, the dissociative mechanism had the lowest activation energy, 39 kJ/mol, while the interchange mechanism has an activation energy that is approximately 50 kJ/mol higher.

  7. Onset conditions for flash sintering of UO 2

    DOE PAGES

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; ...

    2017-06-22

    In this paper, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26°C) up to 600°C. The onset conditions for flash sintering were determined for three stoichiometries (UO 2.00, UO 2.08, and UO 2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. Finally, the results from this study highlight the effect of stoichiometry on the flash sintering behavior ofmore » uranium dioxide and will serve as the foundation for future studies on this material.« less

  8. Onset conditions for flash sintering of UO2

    NASA Astrophysics Data System (ADS)

    Raftery, Alicia M.; Pereira da Silva, João Gustavo; Byler, Darrin D.; Andersson, David A.; Uberuaga, Blas P.; Stanek, Christopher R.; McClellan, Kenneth J.

    2017-09-01

    In this work, flash sintering was demonstrated on stoichiometric and non-stoichiometric uranium dioxide pellets at temperatures ranging from room temperature (26 °C) up to 600 °C . The onset conditions for flash sintering were determined for three stoichiometries (UO2.00, UO2.08, and UO2.16) and analyzed against an established thermal runaway model. The presence of excess oxygen was found to enhance the flash sintering onset behavior of uranium dioxide, lowering the field required to flash and shortening the time required for a flash to occur. The results from this study highlight the effect of stoichiometry on the flash sintering behavior of uranium dioxide and will serve as the foundation for future studies on this material.

  9. Use of UO 2 films for electrochemical studies

    NASA Astrophysics Data System (ADS)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  10. Method for producing UO$sub 2$ loaded refractory metals

    DOEpatents

    Baker, R.D.; Hayter, S.W.; Lewis, H.D.

    1973-12-11

    A finely divided dispersion of UO/sub 2/ in tungsten or molybdenum is prepared by co-precipitating the metals from mixed aqueous solution with oxine. The co-precipitate thus formed is separated from the solution, dried, calcined, and finally reduced to UO/sub 2/ and refractory metal. (Official Gazette)

  11. PROCESS FOR THE PRODUCTION OF AN ACTIVATED FORM OF UO$sub 2$

    DOEpatents

    Polissar, M.J.

    1957-09-24

    A process for producing a highly active form of UO/sub 2/ characterized both by rapid oxidation in air and by rapid chlorination with CCl/sub 4/ vapor at an elevated temperature is reported. In accordance with the process, commercial UO/sub 2/, is subjected to a series of oxidation-reduction operations to produce a form of UC/sub 2/ of enhanced reactivity. By treatimg commercial UO/sub 2/ at a temperature between 335 and 485 deg C with methane, then briefly with an oxygen containing gas and followimg this by a second treatment with a methane containing gas, the original relatively stable charge of UO/sub 2/ will be transformed into an active form of UO/sub 2/.

  12. Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Tiankai; Mo, Kun; Yun, Di

    Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less

  13. Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets

    DOE PAGES

    Yao, Tiankai; Mo, Kun; Yun, Di; ...

    2017-03-25

    Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less

  14. Antiferromagnetic-ferromagnetic crossover in UO 2-TiO x multi-phase systems

    NASA Astrophysics Data System (ADS)

    Nakamura, Akio; Tsutsui, Satoshi; Yoshii, Kenji

    2001-05-01

    An antiferromagnetic (AF)-weakly ferromagnetic (WF) crossover has been found for UO 2-TiO x multi-phase systems, (1- y)UO 2+ yTiO x ( y=0.05-0.72, x=0, 1.0, 1.5 and 2.0), when these mixtures are heat treated at high temperature in vacuum. From the powder X-ray diffraction and electron-microprobe analyses, their phase assemblies were as follows: for x=0, 1.0 and 1.5, a heterogeneous two-phase mixture of UO 2+TiO x; for x=2.0, that of UO 2+UTi 2O 6 for y<0.67, showing characteristic microstructures, and for y>0.67 that of UTi 2O 6+TiO 2 (plus residual minor UO 2). Magnetic susceptibility ( χ) of the present UO 2 powder was confirmed to exhibit an antiferromagnetic sharp drop at TN (=30.5 K). In contrast, χ of these multi-phase systems was found to exhibit a sharp upturn at the respective TN, while their TN values remained almost constant with varying y. This χ upturn at TN is most pronounced for UO 2+Ti-oxide (titania) systems ( x=1.0, 1.5 and 2.0) over the wide mixture ratio above y˜0.10. These observations indicate that an AF-WF crossover is induced for these multi-phase systems, plausibly due to the interfacial magnetic modification of UO 2 in contact with the oxide partners.

  15. $sup 18$O enrichment process in UO$sub 2$F$sub 2$ utilizing laser light

    DOEpatents

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1975-12-01

    Photochemical reaction induced by laser light is employed to separate oxygen isotopes. A solution containing UO$sub 2$F$sub 2$, HF, H$sub 2$O and a large excess of CH$sub 3$OH is irradiated with laser light of appropriate wavelength to differentially excite the UO$sub 2$$sup 2+$ ions containing $sup 16$O atoms and cause a reaction to proceed in accordance with the reaction 2 UO$sub 2$F$sub 2$ + CH$sub 3$OH + 4 HF $Yields$ 2 UF$sub 4$ down arrow + HCOOH + 3 H$sub 2$O. Irradiation is discontinued when about 10 percent of the UO$sub 2$F$sub 2$ has reacted, the UF$sub 4$ is filtered from the reaction mixture and the residual CH$sub 3$OH and HF plus the product HCOOH and H$sub 2$O are distilled away from the UO$sub 2$F$sub 2$ which is thereby enriched in the $sup 18$O isotope, or the solution containing the UO$sub 2$F$sub 2$ may be photochemically processed again to provide further enrichment in the $sup 18$O isotope.

  16. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    PubMed

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  17. Gas-phase reactions of uranate ions, UO(2)(-), UO(3)(-), UO(4)(-), and UO(4)H(-), with methanol: a convergence of experiment and theory.

    PubMed

    Michelini, Maria Del Carmen; Marçalo, Joaquim; Russo, Nino; Gibson, John K

    2010-04-19

    Bimolecular reactions of uranium oxide molecular anions with methanol have been studied experimentally, by Fourier transform ion cyclotron resonance mass spectrometry, and computationally, by density functional theory (DFT). The primary goals were to provide fundamental insights into mechanistic and structural details of model reactions of uranium oxides with organics, and to examine the validity of theoretical modeling of these types of reactions. The ions UO(3)(-), UO(4)(-), and UO(4)H(-) each reacted with methanol to give a singular product; the primary products each exhibited sequential reactions with two additional methanol molecules to again give singular products. The observed reactions were elimination of water, formaldehyde, or hydrogen, and in one case addition of a methanol molecule. The potential energy profiles were computed for each reaction, and isotopic labeling experiments were performed to probe the validity of the computed mechanisms and structures-in each case where the experiments could be compared with the theory there was concurrence, clearly establishing the efficacy of the employed DFT methodologies for these and related reaction systems. The DFT results were furthermore in accord with the surprisingly inert nature of UO(2)(-). The results provide a basis to understand mechanisms of key reactions of uranium oxides with organics, and a foundation to extend DFT methodologies to more complex actinide systems which are not amenable to such direct experimental studies.

  18. Molybdenum-UO2 cerment irradiation at 1145 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  19. Syntheses and crystal structures of two topologically related modifications of Cs(2)[(UO(2))(2)(MoO(4))(3)].

    PubMed

    Krivovichev, S V; Cahill, C L; Burns, P C

    2002-01-14

    Two polymorphs of Cs(2)(UO(2))(2)(MoO(4))(3) have been synthesized by hydrothermal (alpha-phase) and high-temperature (beta-phase) routes. Both were characterized by single-crystal X-ray diffraction: alpha-Cs(2)(UO(2))(2)(MoO(4))(3), orthorhombic, Pna2(1), a = 20.4302(15) A, b = 8.5552(7) A, c = 9.8549(7) A, Z = 4; beta-Cs(2)(UO(2))(2)(MoO(4))(3), tetragonal, P4(2)/n, a = 10.1367(8) A, c = 16.2831(17) A, Z = 4. The structures of both phases consist of linked UO(7) pentagonal bipyramids and MoO(4) tetrahedra: alpha-Cs(2)(UO(2))(2)(MoO(4))(3) is a framework compound with large channels parallel to the c axis. Two cesium sites are located in these channels and are coordinated by 8 and 10 oxygen atoms. The structure of beta-Cs(2)(UO(2))(2)(MoO(4))(3) contains corrugated [(UO(2))(2)(MoO(4))(3)] sheets that are parallel to (001). The cesium cations are located between the sheets and are coordinated by eight oxygen atoms. The structures are topologically related; both can be described in terms of chains of 5-connected UO(7) pentagonal bipyramids and 3- and 4-connected MoO(4) tetrahedra.

  20. Complete reduction of high-density UO2 to metallic U in molten Li2O-LiCl

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Lee, Jeong

    2017-10-01

    The large size and high density of spent fuel pellets make it difficult to use the pellets directly in electrolytic reduction (also called as oxide reduction, OR) for pyroprocessing owing to the slow diffusion of molten Li2O-LiCl salt electrolyte into the pellets. In this study, we investigated complete OR of high-density UO2 to metallic U without any remaining UO2. Only partial reductions near the surface of high-density UO2 pellets were observed under operation conditions employing fast electrolysis rate that allowed previously complete reduction of low-density UO2 pellets. Complete reduction of high-density UO2 pellets was observed at fast electrolysis rate when the pellet size was reduced. The complete reduction of high-density UO2 pellets without size reduction was achieved at slow electrolysis rate, which allowed sufficient chemical reduction of UO2 with the lithium metal generated by the cathode reaction.

  1. UO(2) Oxidative Corrosion by Nonclassical Diffusion.

    PubMed

    Stubbs, Joanne E; Chaka, Anne M; Ilton, Eugene S; Biwer, Craig A; Engelhard, Mark H; Bargar, John R; Eng, Peter J

    2015-06-19

    Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.

  2. Local structure and charge distribution in the UO(2)-U(4)O(9) system.

    PubMed

    Conradson, Steven D; Manara, Dario; Wastin, Franck; Clark, David L; Lander, Gerard H; Morales, Luis A; Rebizant, Jean; Rondinella, Vincenzo V

    2004-11-01

    Analysis of X-ray absorption fine structure spectra of UO(2+x) for x = 0-0.20 (UO(2)--U(4)O(9)) reveals that the adventitious O atoms are incorporated as oxo groups with U--O distances of 1.74 A, most likely associated with U(VI), that occur in clusters so that the UO(2) fraction of the material largely remains intact. In addition to the formation of some additional longer U--O bonds, the U sublattice consists of an ordered portion that displays the original U--U distance and a spectroscopically silent, glassy part. This is very different from previous models derived from neutron diffraction that maintained long U--O distances and high U--O coordination numbers. UO(2+x) also differs from PuO(2+x) in its substantially shorter An-oxo distances and no sign of stable coordination with H(2)O and its hydrolysis products.

  3. Peierls-Nabarro modeling of dislocations in UO2

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2017-11-01

    Under conditions of high stress or low temperature, glide of dislocations plays an important role in the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}. The energy of the inelastic displacement field in the dislocation core is parameterized using generalized stacking fault energies, which are calculated atomistically using interatomic potentials. We use seven different interatomic potential models, representing the variety of different models available for UO2. The different models broadly agree on the relative order of the strengths of the different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly on the interatomic potential used, with values ranging between 2.7 and 12.9 GPa for glide of 1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-13.6 GPa for 1/2<110>{111} edge dislocations. The glide of 1/2<110> screw dislocations in UO2 is also found to depend on the interatomic potential used, with some models predicting similar Peierls stresses for glide on {100} and {111}, while others predict a unique easy glide direction. Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can accurately predict dislocation properties in UO2.

  4. Uranium migration in spark plasma sintered W/UO2 CERMETS

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn

    2018-03-01

    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.

  5. Amoeba behavior of UO/sub 2/ coated particle fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner-Loeffler, M.

    1977-09-01

    The data extracted from numerous irradiation tests were used to derive amoeba endurance parameters for UO/sub 2/. The data do not yet allow an unambiguous definition of the controlling mechanism, which may be due to either gaseous or solid-state diffusion processes. Adequate data on the amoeba effect are available for design of a steam-raising high-temperature gas-cooled reactor using UO/sub 2/ fuel.

  6. Photochemical reduction of UO(2)(2+) in the presence of alcohol studied by density functional theory calculations.

    PubMed

    Tsushima, Satoru

    2009-06-01

    A well-known photochemical process of U(VI)O(2)(2+) reduction to U(V)O(2)(+) in the presence of alcohols was studied by density functional theory (DFT) calculations. It was found that the first process which takes place is a photoexcitation of the ground-state UO(2)(2+) to the triplet excited state (*UO(2)(2+)) followed by a significant shortening of the *UO(2)(2+)-to-alcohol O(ax)-H distance. A charge transfer from *UO(2)(2+) to alcohol and hydrogen abstraction takes place in the following step. Consequently, U(VI)O(2)(2+) gets reduced to U(V)O(OH)(2+). The photochemical byproduct RCHOH acts further as a reducing agent toward UO(2)(2+) to yield UO(2)(+) and RCHO (aldehyde). Only a combination of these two reactions can explain a high quantum yield of this reaction. In the absence of alcohol, the lowest-lying triplet state exhibits a different character, and photoreduction is unlikely to take place via the same mechanism. The present results agree well with recent experimental finding [J. Am. Chem. Soc. 2006, 128, 14024] and supports the idea that the O(ax)-H linkage between UO(2)(2+) and the solvent molecule is the key to the photochemical reduction process.

  7. Functionalized UO[sub 2] salenes. Neutral receptors for anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudkevich, D.M.; Verboom, W.; Brzozka, Z.

    1994-05-18

    A novel class of neutral receptors for anions that contain a unique combination of an immobilized Lewis acidic binding site (UO[sub 2][sup 2+]) and additional amide C(O)NH groups, which can form a favorable H-bond with a coordinated anion guest, has been developed. The unique combination of a Lewis acidic UO[sub 2] center and amide C(O)NH groups in one receptor leads to highly specific H[sub 2]PO[sub 4[sup [minus

  8. Synthesis and characterization of UO(2)(2+)-ion imprinted polymer for selective extraction of UO(2)(2+).

    PubMed

    Singh, Dhruv K; Mishra, Shraddha

    2009-06-30

    Ion-imprinted polymers (IIPs) were prepared for uranyl ion (imprint ion) by formation of binary (salicylaldoxime (SALO) or 4-vinylpyridine (VP)) or ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking monomer using 2,2'-azobisisobutyronitrile as initiator. Control polymers (CPs) were also prepared under identical experimental conditions without using imprint ion. The above synthesized polymers were characterized by surface area measurement, microanalysis and FT-IR analysis techniques. The imprinted polymer formed with ternary complex of UO(2)(2+)-SALO-VP (1:2:2, IIP3) showed quantitative enrichment of uranyl ion from dilute aqueous solution and hence was chosen for detailed studies. The optimal pH for quantitative enrichment is 3.5-6.5. The adsorbed UO(2)(2+) was completely eluted with 10 mL of 1.0 M HCl. The retention capacity of IIP3 was found to be 0.559 mmol g(-1). Further, the distribution ratio and selectivity coefficients of uranium and other selected inorganic ions were also evaluated. Five replicate determinations of 25 microg L(-1) of uranium(VI) gave a mean absorbance of 0.032 with a relative standard deviation of 2.20%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 microg L(-1). IIP3 was tested for preconcentration of uranium(VI) from ground, river and sea water samples.

  9. Thermodynamics of fission products in UO(2 ± x).

    PubMed

    Nerikar, P V; Liu, X-Y; Uberuaga, B P; Stanek, C R; Phillpot, S R; Sinnott, S B

    2009-10-28

    The stabilities of selected fission products-Xe, Cs, and Sr-are investigated as a function of non-stoichiometry x in UO(2 ± x). In particular, density functional theory (DFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO(2), the DFT calculations are performed using spin polarization and with the Hubbard U term. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. Cs(2)O is observed as a second stable phase and SrO is found to be soluble in the UO(2) matrix for all stoichiometries. These observations mirror experimentally observed phenomena.

  10. Simulations of Xe and U diffusion in UO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.

    2012-09-10

    Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms andmore » vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.« less

  11. Near Surface Stoichiometry in UO 2 : A Density Functional Theory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-01-01

    The mechanisms of oxygen stoichiometry variation in UO 2at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmore » is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  12. Near surface stoichiometry in UO 2: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-08-01

    The mechanisms of oxygen stoichiometry variation in UO 2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the nearmore » surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  13. Recovery of UO[sub 2]/PuO[sub 2] in IFR electrorefining process

    DOEpatents

    Tomczuk, Z.; Miller, W.E.

    1994-10-18

    A process is described for converting PuO[sub 2] and UO[sub 2] present in an electrorefiner to the chlorides, by contacting the PuO[sub 2] and UO[sub 2] with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO[sub 2] and PuO[sub 2] to metals while converting Li metal to Li[sub 2]O. Li[sub 2]O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O[sub 2] out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li[sub 2]O to disassociate to O[sub 2] and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl[sub 2].

  14. Recovery of UO.sub.2 /Pu O.sub.2 in IFR electrorefining process

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.

    1994-01-01

    A process for converting PuO.sub.2 and UO.sub.2 present in an electrorefiner to the chlorides, by contacting the PuO.sub.2 and UO.sub.2 with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO.sub.2 and PuO.sub.2 to metals while converting Li metal to Li.sub.2 O. Li.sub.2 O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O.sub.2 out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li.sub.2 O to disassociate to O.sub.2 and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl.sub.2.

  15. Speciation of residual carbon contained in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziouane, Yannis; Arab-Chapelet, Bénédicte; Tamain, Christelle

    2016-12-15

    UO{sub 2} powders were synthesized thanks to oxalic precipitation (platelet morphology) and sol-gel route and completely characterized. A secondary phase was found depending on the calcination atmospheres. This phase has been identified by Raman spectroscopy as graphitic material (i.e. carbon-based secondary compound) and quantified by thermogravimetric analyses. Its amount varies with the calcination atmosphere. The presence of this secondary phase has no significant effect on the lattice parameter and its specific surface area. - Graphical abstract: Figure 2: Raman spectroscopy of the three UO{sub 2} powders and of the dissolution residues.

  16. The UO2 ex-ADU powder preparation and pellet sintering for optimum efficiency: experimental and modeling studies

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Trong; Thuan, Le Ba; Van Tung, Nguyen; Thuy, Nguyen Thanh; Lee, Jin-Young; Jyothi, Rajesh Kumar

    2017-12-01

    The UO2 nuclear fuel pellet process for light water reactors (LWR) includes the conversion of uranium hexafluoride (UF6) into UO2 powder and the fabrication of UO2 pellets from such UO2 powder. In the paper, studies on UO2 pellet process from ammonium diuranate-derived uranium dioxide powder (UO2 ex-ADU powder) were reported. The UO2 ex-ADU powders were converted from ADU at various temperatures of 973 K, 1023 K and 1073 K and then UO2 pellets prepared from the powders were sintered at temperatures of 1923 K, 1973 K and 2023 K for times of 4 h, 6 h and 8 h. Response surface methodology (RSM) based on quadratic central composite design (CCD) type of face centered (CCF) improved by Box and Hunter was used to model the UO2 pellet process, using MODDE 5.0 software as an assessing tool. On the base of the proposed model, the relationship between the technological parameters and density of the UO2 pellet product was suggested to control the UO2 ex-ADU pellet process as desired levels.

  17. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    NASA Astrophysics Data System (ADS)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  18. Topological ordering in liquid UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benmore, C. J.; Skinner, L. B.; Lee, B.

    2015-12-10

    A molecular dynamics model of liquid UO2 that is in good agreement with recent high-energy x-ray diffraction data has been analyzed using the Bhatia–Thornton formalism. A pre-peak appears in the topological structure factor S NN(Q) at Q = 1.85(1)Å-1 which is not present in the more common, element specific Faber–Ziman partial structure factors. A radical Voronoi tessellation of the 3D molecular dynamics model shows the presence of a wide distribution of clusters, consistent with presence of highly mobile oxygen atoms. However, 4-fold Voronoi polyhedra (n 4) are found to dominate the structure and the majority of clusters can be describedmore » by the distribution n 3 ≤ n 4 ≥ n 5. It is argued that an open network of 4-fold Voronoi polyhedra could explain the origin of the pre-peak in S NN(Q) and the topological ordering observed in liquid UO2.« less

  19. [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mer, A.; Obbade, S.; Rivenet, M.

    2012-01-15

    The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -}more » and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.« less

  20. PREPARATION OF UO$sub 2$ FOR NUCLEAR REACTOR FUEL PELLETS

    DOEpatents

    Googin, J.M.

    1962-06-01

    A method is given for preparing high-density UO/sub 2/ compacts. An aqueous uranyl fluoride solution is contacted with an aqueous ammonium hydroxide solution at an ammonium to-uranium ratio of 25: 1 to 30:1 to form a precipitate. The precipitate is separated from the- mother liquor, dried, and contacted with steam at a uniform temperature within the range of 400 to 650 deg C to produce U/ sub 3/O/sub 8/. The U/sub 3/O/sub 8/ is red uced to UO/sub 2/ with hydrogen at a uniform temperature within the range of 550 to 600 deg C. The UO/sub 2/ is then compressed into compacts and sintered. High-density compacts are fabricated to close tolerances without use of a binder and without machining or grinding. (AEC)

  1. Density functional theory calculations of UO2 oxidation: evolution of UO(2+x), U4O(9-y), U3O7, and U3O8.

    PubMed

    Andersson, D A; Baldinozzi, G; Desgranges, L; Conradson, D R; Conradson, S D

    2013-03-04

    Formation of hyperstoichiometric uranium dioxide, UO2+x, derived from the fluorite structure was investigated by means of density functional theory (DFT) calculations. Oxidation was modeled by adding oxygen atoms to UO2 fluorite supercells. For each compound ab initio molecular dynamics simulations were performed to allow the ions to optimize their local geometry. A similar approach was used for studying the reduction of U3O8. In agreement with the experimental phase diagram we identify stable line compounds at the U4O9-y and U3O7 stoichiometries. Although the transition from fluorite to the layered U3O8 structure occurs at U3O7 (UO2.333) or U3O7.333 (UO2.444), our calculated low temperature phase diagram indicates that the fluorite derived compounds are favored up to UO2.5, that is, as long as the charge-compensation for adding oxygen atoms occurs via formation of U(5+) ions, after which the U3O8-y phase becomes more stable. The most stable fluorite UO2+x phases at low temperature (0 K) are based on ordering of split quad-interstitial oxygen clusters. Most existing crystallographic models of U4O9 and U3O7, however, apply the cuboctahedral cluster. To better understand these discrepancies, the new structural models are analyzed in terms of existing neutron diffraction data. DFT calculations were also performed on the experimental cuboctahedral based U4O9-y structure, which enable comparisons between the properties of this phase with the quad-interstitial ones in detail.

  2. Development of Innovative Accident Tolerant High Thermal Conductivity UO 2-Diamond Composite Fuel Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulenko, James; Subhash, Ghatu

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO 2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO 2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO 2 – SiC and UO 2 – Carbon Nanotube fuel pins. UF ismore » proving with the current research results that the addition of diamond micro particles to UO 2 may greatly enhanced the thermal conductivity of the UO 2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.« less

  3. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    DOE PAGES

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; ...

    2017-03-10

    There are three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from free O generated when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. Furthermore, in the HTGR UCO kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium in the form of a carbide, UC x. An approach for determining the minimum UC xmore » content to ensure negligible CO formation was developed and demonstrated using CALPHAD models and the Serpent 2 reactor physics and depletion analysis tool. Our results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmutation products on the oxygen distribution as the fuel kernel composition evolves with burnup.« less

  4. Modelling oxygen self-diffusion in UO 2 under pressure

    DOE PAGES

    Cooper, Michael William D.; Grimes, R. W.; Fitzpatrick, M. E.; ...

    2015-10-22

    Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO 2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO 2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.

  5. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-05-01

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 °C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity. However, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 °C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 °C. Furthermore, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.

  6. Irradiation effects in UO2 and CeO2

    NASA Astrophysics Data System (ADS)

    Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.

    2013-10-01

    Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.

  7. Chemical reactivity of CVC and CVD SiC with UO 2 at high temperatures

    DOE PAGES

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; ...

    2015-02-11

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO 2 pellets and evaluated for their potential chemical reaction with UO 2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO 2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO 2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive thanmore » CVD SiC at 1500 C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi 2, and U 3Si 2 as a result of SiC reaction with UO 2.« less

  8. Hypoeutectic melting in the UO2-x-Gd2O3 system

    NASA Astrophysics Data System (ADS)

    Journeau, Christophe; Fouquart, Pascal; Domenger, Renaud; Allegri, Patrick

    2017-05-01

    Gadolinium is one of the best neutron absorber materials and its use can be considered as a sacrificial material in a Sodium Fast Reactor core catcher in view of preventing recriticallity. A series of experiments have been conducted in the VITI induction-heated facility to study the melting in the UO2-x-Gd2O3 system with 60-87 mol% gadolinia. These experiments have indicated that the eutectic composition is around 92 mol% Gd2O3 - 8 mol% UO2-x and that the liquidus line is close to that of Popov et al. [Atom. Energ. 110 (2011) pp. 221-229] phase diagram.

  9. Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1973-01-01

    The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.

  10. XPS studies of UO 2 oxidation by alpha radiolysis of water at 100°C

    NASA Astrophysics Data System (ADS)

    Sunder, S.; Boyer, G. D.; Miller, N. H.

    1990-12-01

    The effect of alpha radiolysis of water on the oxidation and dissolution of UO 2 was studied at 100°C as a function of alpha-field strength and water chemistry using X-ray photoelectron spectroscopy. In N 2-purged solutions the oxidation of UO 2 increases with the strength of the alpha flux; an alpha flux greater than or equal to that from a 250-μ Ci americium-241 source leads to oxidation of UO 2 beyond the UO 2.33 (U 3O 7) stage, and an alpha flux equal to that from a 5-μ Ci source does not result in UO 2 oxidation beyond the UO 2.33 stage. The presence of dissolved H 2 in water, at a concentration ≥ 1.6 × 10 -4moldm-3, reduces the oxidation and dissolution of UO 2 due to alpha radiolysis at temperatures ≥ 100° C. It is concluded that the radiolysis of groundwater at ~ 100°C, due to the alpha flux associated with used CANDU fuel, is unlikely to make a significant contribution to its oxidative dissolution in the geological disposal vault planned in the Canadian Nuclear Fuel Waste Management Program. CANada Deuterium Uranium. Registered trademark.

  11. Methodology for Producing a Uniform Distribution of UO2 in a Tungsten Matrix

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; O'Conner, Andrew; Hickman, Rickman; Broadway, Jeramie; Belancik, Grace

    2015-01-01

    Current work at NASA's Marshall Space Flight Center (MSFC) is focused on the development CERMET fuel materials for Nuclear Thermal Propulsion (NTP). The CERMETs consist of uranium dioxide (UO2) fuel particles embedded in a tungsten (W) metal matrix. Initial testing of W-UO2 samples fabricated from fine angular powders performed reasonably well, but suffered from significant fuel loss during repeated thermal cycling due to agglomeration of the UO2 (1). The blended powder mixtures resulted in a non-uniform dispersion of the UO2 particles in the tungsten matrix, which allows rapid vaporization of the interconnected UO2 from the sample edges into the bulk material. Also, the angular powders create areas of stress concentrations due to thermal expansion mismatch, which eventually cracks the tungsten matrix. Evenly coating spherical UO2 particles with chemical vapor deposited (CVD) tungsten prior to consolidation was previously demonstrated to provide improved performance. However, the CVD processing technology is expensive and not currently available. In order to reduce cost and enhance performance, a powder coating process has been developed at MSFC to produce a uniform distribution of the spherical UO2 particles in a tungsten matrix. The method involves utilization of a polyethylene binder during mixing which leads to fine tungsten powders clinging to the larger UO2 spherical particles. This process was developed using HfO2 as a surrogate for UO2. Enough powder was mixed to make 8 discs (2cm diameter x 8mm thickness) using spark plasma sintering. A uniaxial pressure of 50 MPa was used at four different temperatures (2 samples at each temperature). The first two samples were heated to 1400C and 1500C respectively for 5 minutes. Densities for these samples were less than 85% of theoretical, so the time at temperature was increased to 20 minutes for the remaining samples. The highest densities were achieved for the two samples sintered at 1700C (approx. 92% of

  12. Effect of the ZrCl4 concentration in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt and the electrolysis current density on the quantitative composition of UO2-ZrO2 cathode deposits. Calculation and experiment

    NASA Astrophysics Data System (ADS)

    Krotov, V. E.; Filatov, E. C.

    2014-08-01

    A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.

  13. Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance

    NASA Astrophysics Data System (ADS)

    Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip

    2016-08-01

    Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.

  14. Excited States and Luminescent Properties of UO 2F 2 and Its Solvated Complexes in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jing; Wang, Zheming; Pan, Duoqiang

    2014-07-21

    The electronic absorption and emission spectra of free UO 2F 2 and its water solvated complexes below 32 000 cm –1 are investigated at the levels of ab initio CASPT2 and CCSD(T) with inclusion of scalar relativistic and spin–orbit coupling effects. The influence of the water coordination on the electronic spectra of UO 2F 2 is explored by investigating the excited states of solvated complexes (H 2O) nUO 2F 2 (n = 1–3). In these uranyl complexes, water coordination is found to have appreciable influence on the 3Δ (Ω = 1 g) character of the luminescent state and on themore » electronic spectral shape. The simulated luminescence spectral curves based on the calculated spectral parameters of (H 2O) nUO 2F 2 from CCSD(T) approach agree well with experimental spectra in aqueous solution at both near-liquid-helium temperature and room temperature. The possible luminescence spectra of free UO 2F 2 in gas phase are predicted on the basis of CASPT2 and CCSD(T) results, respectively, by considering three symmetric vibration modes. Finally, the effect of competition between spin–orbit coupling and ligand field repulsion on the luminescent state properties is discussed.« less

  15. XPS study of the surface chemistry of UO2 (111) single crystal film

    NASA Astrophysics Data System (ADS)

    Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian

    2018-03-01

    A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.

  16. Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3

    NASA Astrophysics Data System (ADS)

    Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha

    2008-02-01

    Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.

  17. Electronic transport in pure and doped UO2

    NASA Astrophysics Data System (ADS)

    Massih, A. R.

    2017-12-01

    The thermoelectric properties of pure and doped UO2, namely the thermal and electrical conductivities and the thermopower, are assessed. We adopt the small polaron theory of the Mott type insulators, wherein the charge carriers, the electron and hole on the U3+ and U5+ ions, are treated as small polarons. For the thermal conductivity, the small polaron theory is applicable at temperatures above 1500 K. A review of the experimental data on the temperature dependence of the aforementioned transport properties is made. The data include UO2 with dopants such as Cr2O3, Gd2O3, Y2O3 and Nb2O5. We compare the applications of the theory with the data. Two limiting regimes, adiabatic and nonadiabatic, with the ensuing expressions for the conductivities and the thermoelectric power are considered. We discuss both the merits and shortcomings of the putative small polaron model and the simplification thereof as applied to pure and doped uranium dioxide.

  18. Thermal-stress fracture and fractography in UO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, C.R.; Bandyopadhyay, G.

    1976-01-01

    Pressed and sintered UO/sub 2/ pellets were thermally shocked by quenching into a water bath at room temperature. The cracking behavior and strength degradation, as measured by the diametral compression technique, in these quench tests are discussed. Fractography of the thermally shocked specimens by scanning-electron microscopy indicated predominantly intergranular fracture in UO/sub 2/ in severe thermal-shock tests. The implication of this observation is that intergranular cracking may occur during the initial heat up in a reactor. Because fission gas bubbles tend to migrate toward the grain boundary, preferential microcracking along the boundary may strongly affect subsequent fission gas release behavior.

  19. First-principles study of defects and phase transition in UO(2).

    PubMed

    Yu, Jianguo; Devanathan, Ram; Weber, William J

    2009-10-28

    Defect properties and phase transition in UO(2) have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The generalized gradient approximation with empirical self-interaction correction, (GGA)+U, formalism has been used to account for the strong on-site Coulomb repulsion among the localized U 5f electrons. The Hubbard parameter U(eff), magnetic ordering, chemical potential and heat of formation have been systematically examined. By choosing an appropriate U(eff) = 3.0 eV it is possible to consistently describe structural properties of UO(2) and model the phase transition processes. The phase transition pressure for UO(2) is about 20 GPa, which is less than the experimental value of 42 GPa but better than the LDA+U value of 7.8 GPa. Meanwhile our results for the formation energies of intrinsic defects partly confirm earlier calculations for the intrinsic charge neutral defects but reveal large variations depending on the determination of the chemical potential and whether the environment is O-rich or U-rich. Moreover, the results for extrinsic defects of Xe, which are representative of mobile insoluble fission product in UO(2), are consistent with experimental data in which Xe prefers to be trapped by Schottky defects.

  20. Microstructure and mechanical properties of eutectic B2O3-UO2 ceramic composites solidified at different cooling rates

    NASA Astrophysics Data System (ADS)

    Yusufu, Aikebaier; Uno, Masayoshi

    2018-02-01

    The removal of nuclear debris from damaged reactors by drilling or cutting requires an understanding of various properties of the solidified debris, such as mechanical properties (hardness, fractural features, strength, etc.) and microstructural properties like porosity, which have a significant impact on the mechanical properties. In this study, B2O3-UO2 composites were prepared by the eutectic reaction as solidified samples of mock fuel debris with a wide variety of porosities, and the porosity dependence of the mechanical properties under compression were characterized to obtain fundamental data on the complicated fuel debris. The porous eutectic B2O3-UO2 (B2O3/UO2 atomic ratio = 0.225:0.775) samples were successfully prepared by solidification of the molten phase below 2073 K, and the porosity increased as the pore network developed as the cooling rate was decreased. The nano- and microhardness as well as Young's moduli of the eutectic B2O3-UO2 samples were higher than those of UO2. However, the compressive strengths of the eutectic B2O3-UO2 samples were lower than that of UO2, and they decreased as the porosity increased. All samples showed typical brittle fracturing behavior. The low-porosity samples showed a linear elastic step up to a sudden rupture, whereas the high-porosity samples exhibited two main regimes: a linear elastic region that can be attributed to pore-edge bending or face stretching; a zigzag step that is related to the progression of pore collapse.

  1. On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Naji, Mohamed; Holzhäuser, Michael; Freis, Daniel; Prieur, Damien; Martin, Philippe; Cremer, Bert; Murray-Farthing, Mairead; Cologna, Marco

    2017-04-01

    The electric field has a large effect on the stoichiometry and grain growth of UO2+x during Spark Plasma Sintering. UO2+x is gradually reduced to UO2.00 as a function of sintering temperature and time. A gradient in the oxidation state within the pellets is observed in intermediate conditions. The shape of the gradient depends unequivocally on the direction of the electrical field. The positive surface of the pellet shows a higher oxidation state compared to the negative one. An area with larger grain size is found close to the positive electrode, but not in contact with it. We interpret these findings with the redistribution of defects under an electric field, which affect the stoichiometry of UO2+x and thus the cation diffusivity. The results bear implications for understanding the electric field assisted sintering of UO2 and non-stoichiometric oxides in general.

  2. On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x

    PubMed Central

    Tyrpekl, Vaclav; Naji, Mohamed; Holzhäuser, Michael; Freis, Daniel; Prieur, Damien; Martin, Philippe; Cremer, Bert; Murray-Farthing, Mairead; Cologna, Marco

    2017-01-01

    The electric field has a large effect on the stoichiometry and grain growth of UO2+x during Spark Plasma Sintering. UO2+x is gradually reduced to UO2.00 as a function of sintering temperature and time. A gradient in the oxidation state within the pellets is observed in intermediate conditions. The shape of the gradient depends unequivocally on the direction of the electrical field. The positive surface of the pellet shows a higher oxidation state compared to the negative one. An area with larger grain size is found close to the positive electrode, but not in contact with it. We interpret these findings with the redistribution of defects under an electric field, which affect the stoichiometry of UO2+x and thus the cation diffusivity. The results bear implications for understanding the electric field assisted sintering of UO2 and non-stoichiometric oxides in general. PMID:28422164

  3. Thermal transport in UO 2 with defects and fission products by molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO 2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO 2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U 5+ and Zr 4+ in UO 2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then correctedmore » for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO 2+x samples.« less

  4. First-principles molecular dynamics simulation of the Ca 2UO 2(CO 3) 3 complex in water

    DOE PAGES

    Priest, Chad; Tian, Ziqi; Jiang, De-en

    2016-01-22

    Recent experiments have shown that the neutral Ca 2UO 2(CO 3) 3 complex is the dominant species of uranium in many uranyl-containing streams. However, the structure and solvation of such a species in water has not been investigated from first principles. Herein we present a first principles molecular dynamics perspective of the Ca 2UO 2(CO 3) 3 complex in water based on density functional theory and Born–Oppenheimer approximation. We find that the Ca 2UO 2(CO 3) 3 complex is very stable in our simulation timeframe for three different concentrations considered and that the key distances from our simulation are inmore » good agreement with the experimental data from extended X-ray absorption fine structure (EXAFS) spectroscopy. More important, we find that the two Ca ions bind differently in the complex, as a result of the hydrogen-bonding network around the whole complex. Furthermore, this finding invites confirmation from time-resolved EXAFS and has implications in understanding the dissociative equilibrium of the Ca 2UO 2(CO 3) 3 complex in water.« less

  5. In situ synchrotron investigation of grain growth behavior of nano-grained UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Yao, Tiankai; Lian, Jie

    Here, we report on the study of grain growth kinetics in nano-grained UO 2 samples. Dense nano-grained UO 2 samples with well-controlled stoichiometry and grain size were fabricated using the spark plasma sintering technique. To determine the grain growth kinetics at elevated temperatures, a synchrotron wide-angle X-ray scattering (WAXS) study was performed in situ to measure the real-time grain size evolution based on the modified Williamson-Hall analysis. The unique grain growth kinetics of nanocrystalline UO 2 at 730 °C and 820 °C were observed and explained by the difference in mobility of various grain boundaries.

  6. In situ synchrotron investigation of grain growth behavior of nano-grained UO 2

    DOE PAGES

    Miao, Yinbin; Yao, Tiankai; Lian, Jie; ...

    2017-01-09

    Here, we report on the study of grain growth kinetics in nano-grained UO 2 samples. Dense nano-grained UO 2 samples with well-controlled stoichiometry and grain size were fabricated using the spark plasma sintering technique. To determine the grain growth kinetics at elevated temperatures, a synchrotron wide-angle X-ray scattering (WAXS) study was performed in situ to measure the real-time grain size evolution based on the modified Williamson-Hall analysis. The unique grain growth kinetics of nanocrystalline UO 2 at 730 °C and 820 °C were observed and explained by the difference in mobility of various grain boundaries.

  7. MARMOT simulations of Xe segregation to grain boundaries in UO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders D.; Tonks, Michael; Casillas, Luis

    2012-06-20

    Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less

  8. Neutron diffraction study of the in situ oxidation of UO(2).

    PubMed

    Desgranges, Lionel; Baldinozzi, Gianguido; Rousseau, Gurvan; Nièpce, Jean-Claude; Calvarin, Gilbert

    2009-08-17

    This paper discusses uranium oxide crystal structure modifications that are observed during the low-temperature oxidation which transforms UO(2) into U(3)O(8). The symmetries and the structural parameters of UO(2), beta-U(4)O(9), beta-U(3)O(7), and U(3)O(8) were determined by refining neutron diffraction patterns on pure single-phase samples. Neutron diffraction patterns were also collected during the in situ oxidation of powder samples at 483 K. The lattice parameters and relative ratios of the four pure phases were measured during the progression of the isothermal oxidation. The transformation of UO(2) into U(3)O(8) involves a complex modification of the oxygen sublattice and the onset of complex superstructures for U(4)O(9) and U(3)O(7), associated with regular stacks of complex defects known as cuboctahedra, which consist of 13 oxygen atoms. The kinetics of the oxidation process are discussed on the basis of the results of the structural analysis.

  9. Synthesis and structure of R{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (R = Rb or Cs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serezhkin, V. N., E-mail: lserezh@samsu.ru; Peresypkina, E. V.; Grigor’eva, V. A.

    2015-01-15

    Crystals Rb{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (I) and Cs{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (II) have been synthesized and studied by IR spectroscopy and X-ray diffraction. Crystals I are monoclinic, with the following parameters: a = 12.2118(5) Å, b = 10.2545(3) Å, c = 11.8754(4) Å, β = 110.287(1)°, sp. gr. C2/c, Z = 4, and R = 0.0523. Crystals II are orthorhombic, with a = 13.7309(3) Å, b = 10.5749(2) Å, c = 10.1891(2) Å, sp. gr. Pnma, Z = 4, and R = 0.0411. The basic structural units of crystals I and II are one-core complexes [UO{submore » 2}(NO{sub 3}){sub 2}(NCS){sub 2}]{sup 2−}, which belong to the crystallochemical group cis-AB{sub 2}{sup 01}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = NO{sub 3}{sup −}, M{sup 1} = NCS{sup −}), which are combined into a framework via electrostatic interactions with ions of alkaline metals R (R = Rb or Cs). The structural features of crystals I and II, which condition the formation of [UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}]{sup 2−} complexes with a cis rather than a trans position of isothiocyanate ions in the coordination sphere of uranyl ions, are discussed.« less

  10. Estimated critical conditions for UO{sub 2}F{sub 2}--H{sub 2}O systems in fully water-reflected spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  11. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  12. Simple (17) O NMR method for studying electron self-exchange reaction between UO2 (2+) and U(4+) aqua ions in acidic solution.

    PubMed

    Bányai, István; Farkas, Ildikó; Tóth, Imre

    2016-06-01

    (17) O NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of (17) O-enrichment in U(17) OO(2+) ion in the presence of U(4+) ion in aqueous solution. The reactions have been performed at room temperature using I = 5 M ClO4 (-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U(4+) and UO2 (2+) aqua ions. The rate equation is given as R = a[H(+) ](-2)  + R', where R' is an acid independent parallel path. R' depends on the concentration of the uranium species according to the following empirical rate equation: R' = k1 [UO(2 +) ](1/2) [U(4 +) ](1/2)  + k2 [UO(2 +) ](3/2) [U(4 +) ](1/2) . The mechanism of the inverse H(+) concentration-dependent path is interpreted as equilibrium formation of reactive UO2 (+) species from UO2 (2+) and U(4+) aqua ions and its electron exchange with UO2 (2+) . The determined rate constant of this reaction path is in agreement with the rate constant of UO2 (2+) -UO2 (+) , one electron exchange step calculated by Marcus theory, match the range given experimentally of it in an early study. Our value lies in the same order of magnitude as the recently calculated ones by quantum chemical methods. The acid independent part is attributed to the formation of less hydrolyzed U(V) species, i.e. UO(3+) , which loses enrichment mainly by electron exchange with UO2 (2+) ions. One can also conclude that (17) O NMR spectroscopy, or in general NMR spectroscopy with careful kinetic analysis, is a powerful tool for studying isotope exchange reactions without the use of sophisticated separation processes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Adsorption characteristics of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents.

    PubMed

    Humelnicu, Doina; Dinu, Maria Valentina; Drăgan, Ecaterina Stela

    2011-01-15

    Adsorption features of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto a novel chitosan/clinoptilolite (CS/CPL) composite as beads have been investigated compared with chitosan cross-linked with epichlorohydrin. The effects of contact time, the initial metal ion concentration, sorbent mass and temperature on the adsorption capacity of the CS-based sorbents were investigated. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Sips model. The maximum experimental adsorption capacities were 328.32 mg Th(4+)/g composite, and 408.62 mg UO(2)(2+)/g composite. The overall adsorption tendency of CS/CPL composite toward UO(2)(2+) and Th(4+) radiocations in the presence of Cu(2+), Fe(2+) and Al(3+), under competitive conditions, followed the order: Cu(2+)>UO(2)(2+)>Fe(2+)>Al(3+), and Cu(2+)>Th(4+)>Fe(2+)>Al(3+), respectively. The negative values of Gibbs free energy of adsorption indicated the spontaneity of the adsorption of radioactive ions on both the CS/CPL composite and the cross-linked CS. The desorption level of UO(2)(2+) from the composite CS/CPL, by using 0.1M Na(2)CO(3), was around 92%, and that of Th(4+) ions, performed by 0.1M HCl, was around 85%, both values being higher than the desorption level of radiocations from the cross-linked CS, which were 89% and 83%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Strong electron correlation in UO{sub 2}{sup −}: A photoelectron spectroscopy and relativistic quantum chemistry study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Li; Jian, Tian; Lopez, Gary V.

    2014-03-07

    The electronic structures of actinide systems are extremely complicated and pose considerable challenges both experimentally and theoretically because of significant electron correlation and relativistic effects. Here we report an investigation of the electronic structure and chemical bonding of uranium dioxides, UO{sub 2}{sup −} and UO{sub 2}, using photoelectron spectroscopy and relativistic quantum chemistry. The electron affinity of UO{sub 2} is measured to be 1.159(20) eV. Intense detachment bands are observed from the UO{sub 2}{sup −} low-lying (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} orbitals and the more deeply bound O2p-based molecular orbitals which are separated by a large energy gap from themore » U-based orbitals. Surprisingly, numerous weak photodetachment transitions are observed in the gap region due to extensive two-electron transitions, suggesting strong electron correlations among the (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}{sup −} and the (7sσ{sub g}){sup 1}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}. These observations are interpreted using multi-reference ab initio calculations with inclusion of spin-orbit coupling. The strong electron correlations and spin-orbit couplings generate orders-of-magnitude more detachment transitions from UO{sub 2}{sup −} than expected on the basis of the Koopmans’ theorem. The current experimental data on UO{sub 2}{sup −} provide a long-sought opportunity to arbitrating various relativistic quantum chemistry methods aimed at handling systems with strong electron correlations.« less

  15. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O (α-, β-RbUAs) and the anhydrous phase Rb[UO2(AsO3OH)(AsO2(OH)2)] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions.

  16. Summary report on UO 2 thermal conductivity model refinement and assessment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to eachmore » individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel

  17. Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

    PubMed

    Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene

    2009-09-07

    We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.

  18. Description and crystal structure of albrechtschraufite, MgCa4F2[UO2(CO3)3]2ṡ17-18H2O

    NASA Astrophysics Data System (ADS)

    Mereiter, Kurt

    2013-04-01

    Albrechtschraufite, MgCa4F2[UO2(CO3)3]2ṡ17-18H2O, triclinic, space group Pī, a = 13.569(2), b = 13.419(2), c = 11.622(2) Å, α = 115.82(1), β = 107.61(1), γ = 92.84(1)° (structural unit cell, not reduced), V = 1774.6(5) Å3, Z = 2, D c = 2.69 g/cm3 (for 17.5 H2O), is a mineral that was found in small amounts with schröckingerite, NaCa3F[UO2(CO3)3](SO4)ṡ10H2O, on a museum specimen of uranium ore from Joachimsthal (Jáchymov), Czech Republic. The mineral forms small grain-like subhedral crystals (≤ 0.2 mm) that resemble in appearance liebigite, Ca2[UO2(CO3)3]ṡ ~ 11H2O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2 V = 65(1)° ( λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO2 and H2O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO2(CO3)3]4- anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF2(Ocarbonate)3(H2O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO6, CaF2O2(H2O)4, CaFO3(H2O)4 and CaO2(H2O)6 coordination polyhedra. The crystal structure is built up from MgCa3F2[UO2(CO3)3]ṡ8H2O layers parallel to (001) which are linked by Ca[UO2(CO3)3]ṡ5H2O moieties into a framework of the composition MgCa4F2[UO2(CO3)3]ṡ13H2O. Five additional water molecules are located in voids of the framework and show large displacement parameters. One of the water positions is partly vacant, leading to a

  19. Infrared spectroscopy of extreme coordination: the carbonyls of U(+) and UO(2)(+).

    PubMed

    Ricks, Allen M; Gagliardi, Laura; Duncan, Michael A

    2010-11-17

    Uranium and uranium dioxide carbonyl cations produced by laser vaporization are studied with mass-selected ion infrared spectroscopy in the C-O stretching region. Dissociation patterns, spectra, and quantum chemical calculations establish that the fully coordinated ions are U(CO)(8)(+) and UO(2)(CO)(5)(+), with D(4d) square antiprism and D(5h) pentagonal bipyramid structures. Back-bonding in U(CO)(8)(+) causes a red-shifted CO stretch, but back-donation is inefficient for UO(2)(CO)(5)(+), producing a blue-shifted CO stretch characteristic of nonclassical carbonyls.

  20. The crystal structures of α- and β-CdUO 4

    NASA Astrophysics Data System (ADS)

    Yamashita, Toshiyuki; Fujino, Takeo; Masaki, Norio; Tagawa, Hiroaki

    1981-04-01

    The structural parameters of α- and β-CdUO 4 crystals are determined by X-ray powder diffraction technique. α-CdUO 4 is rhombohedral and cell parameters are a = 6.233(3) Å and α = 36.12(5)°. β-CdUO 4 crystallizes in a C-centered orthorhombic cell with a = 7.023(4), b = 6.849(3), c = 3.514 (2) Å. The space groups are R overline3m for α-CdUO 4 and Cmmm for β-CdUO 4. α-CdUO 4: 1U in (000), 1Cd in ( {1}/{2}{1}/{2}{1}/{2}), 2O(1) in ±( uuu), 2O(2) in ±( vvv); u = 0.113, v = 0.350, Z = 1. β-CdUO 4: 2U in ( 000; {1}/{2}{1}/{2} 0 ), 2Cd in ( {1}/{2} 0 {1}/{2}; 0 {1}/{2}, {1}/{2}), 4O(1) in ( 0, ±y, 0; {1}/{2}, {1}/{2} ±y, 0 ), 4O(2) in ( ±x, 0, {1}/{2}; {1}/{2} ±x, {1}/{2}, {1}/{2}); x = 0.159, y = 0.278, Z = 2. β-CdUO 4 contains collinear uranyl UO 2+2 groups with a UO(1) distance of 1.91 Å, located either along or parallel to the c axis whereas the UO(1) bond length in α-CdUO 4 is 1.98 Å which is longer than the usual uranyl bond length.

  1. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGES

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; ...

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO 3 to UO 2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO 2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  2. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO 3 to UO 2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO 2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  3. Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO(2)2+ and Th4+.

    PubMed

    Ulusoy, Ulvi; Akkaya, Recep

    2009-04-15

    Micro-composite of polyacrylamide (PAA) and apatite (Apt) was prepared by direct polymerization of acrylamide in a suspension of Apt and characterized by means of FT-IR, XRD, SEM and BET analysis. The adsorptive features of PAA-Apt and Apt were then investigated for Pb(2+), UO(2)(2+) and Th(4+) in view of dependency on ion concentration, temperature, kinetics, ion selectivity and reusability. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. Apt in PAA-Apt had higher adsorption capacity (0.81, 1.27 and 0.69 mol kg(-1)) than bare Apt (0.28, 0.41 and 1.33 mol kg(-1)) for Pb(2+) and Th(4+), but not for UO(2)(2+). The affinity to PAA-Apt increased for Pb(2+) and UO(2)(2+) but not changed for Th(4+). The values of enthalpy and entropy changed were positive for all ions for both Apt and PAA-Apt. Free enthalpy change was DeltaG<0. Well compatibility of adsorption kinetics to the pseudo-second-order model predicated that the rate-controlling step was a chemical sorption. This was consistent with the free energy values derived from DR model. The reusability tests for Pb(2+) for five uses proved that the composite was reusable to provide a mean adsorption of 53.2+/-0.7% from 4x10(-3)M Pb(2+) solution and complete recovery of the adsorbed ion was possible (98+/-1%). The results of this investigation suggested that the use of Apt in the micro-composite form with PAA significantly enhanced the adsorptive features of Apt.

  4. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO 2UO 2 solid solutions

    DOE PAGES

    Liu, B.; Aidhy, D. S.; Zhang, Y.; ...

    2014-10-16

    The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO 2UO 2 solid solutions are investigated by density functional theory calculations. In pure ThO 2, the formation energy of oxygen vacancy is 7.58 eV and 1.46 eV under O rich and O poor conditions, respectively, while its migration energy barrier is 1.97 eV. The addition of UO 2 into ThO 2 significantly decreases the energetics of formation and migration of the oxygen vacancy. Among the range of UO 2-ThO 2 solid solutions studied in this work, UO 2 exhibits the lowest formation energy (5.99 eV andmore » -0.13 eV under O rich and O poor conditions, respectively) and Th 0.25U0 .75O 2 exhibits the lowest migration energy barrier (~ 1 eV). Moreover, by considering chemical potential, the phase diagram of oxygen vacancy as a function of both temperature and oxygen partial pressure is shown, which could help to gain experimental control over oxygen vacancy concentration.« less

  5. Effect of organic complexing agents on the interactions of Cs(+), Sr(2+) and UO(2)(2+) with silica and natural sand.

    PubMed

    Reinoso-Maset, Estela; Worsfold, Paul J; Keith-Roach, Miranda J

    2013-05-01

    Sorption processes play a key role in controlling radionuclide migration through subsurface environments and can be affected by the presence of anthropogenic organic complexing agents found at contaminated sites. The effect of these complexing agents on radionuclide-solid phase interactions is not well known. Therefore the aim of this study was to examine the processes by which EDTA, NTA and picolinate affect the sorption kinetics and equilibria of Cs(+), Sr(2+) and UO2(2+) onto natural sand. The caesium sorption rate and equilibrium were unaffected by the complexing agents. Strontium however showed greater interaction with EDTA and NTA in the presence of desorbed matrix cations than geochemical modelling predicted, with SrNTA(-) enhancing sorption and SrEDTA(2-) showing lower sorption than Sr(2+). Complexing agents reduced UO2(2+) sorption to silica and enhanced the sorption rate in the natural sand system. Elevated concentrations of picolinate reduced the sorption of Sr(2+) and increased the sorption rate of UO2(2+), demonstrating the potential importance of this complexing agent. These experiments provide a direct comparison of the sorption behaviour of Cs(+), Sr(2+) and UO2(2+)onto natural sand and an assessment of the relative effects of EDTA, NTA and picolinate on the selected elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The structure of liquid UO2-x in reducing gas atmospheres

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Benmore, C. J.; Weber, J. K. R.; Skinner, L. B.; Tamalonis, A. J.; Sendelbach, S.; Hebden, A.; Williamson, M. A.

    2017-02-01

    High energy X-ray diffraction experiments performed on hypostoichiometric UO2-x liquids in reducing gas mixtures of 95%Ar:5%CO and 95%Ar:5%H2 are compared to that conducted in a pure Ar atmosphere [Skinner et al., Science 346, 984 (2014)]. The measurements are pertinent to severe accident scenarios at nuclear reactors, where core melts can encounter reducing conditions and further shed light on the oxide chemistry of the low valence states of uranium, particularly U(III), which become stable only at very high temperatures and low oxygen potentials. The radioactive samples were melted by floating small spheres of material using an aerodynamic levitator and heating with a laser beam. In the more reducing environments, a 1.7% shift to lower Q-values is observed in the position of the principal peak of the measured X-ray structure factors, compared to the more oxidizing Ar environment. This corresponds to an equivalent elongation in the U-U nearest neighbor distances and the U-U periodicity. The U-O peak (modal) bond-length, as measured from the real-space total correlation functions, is also observed to expand by 0.9-1.6% under reducing conditions, consistent with the presence of 15-27% U3+ cations, assuming constant U-O coordination number. The slightly larger U-U elongation, as compared to the U-O elongation, is interpreted as a slight increase in U-O-U bond angles. Difficulties concerning the determination of the hypostoichiometry, x, are discussed, along with the future directions for related research.

  7. The structure of liquid UO 2-x in reducing gas atmospheres

    DOE PAGES

    Alderman, O. L. G.; Benmore, C. J.; Weber, J. K. R.; ...

    2017-02-22

    High energy X-ray diffraction experiments performed on hypostoichiometric UO 2-x liquids in reducing gas mixtures of 95%Ar:5%CO and 95%Ar:5%H 2 are compared to that conducted in a pure Ar atmosphere [Skinner et al., Science 346, 984 (2014)]. The measurements are pertinent to severe accident scenarios at nuclear reactors, where core melts can encounter reducing conditions and further shed light on the oxide chemistry of the low valence states of uranium, particularly U(III), which become stable only at very high temperatures and low oxygen potentials. The radioactive samples were melted by floating small spheres of material using an aerodynamic levitator andmore » heating with a laser beam. In the more reducing environments, a 1.7% shift to lower Q-values is observed in the position of the principal peak of the measured X-ray structure factors, compared to the more oxidizing Ar environment. This corresponds to an equivalent elongation in the U-U nearest neighbor distances and the U-U periodicity. The U-O peak (modal) bond-length, as measured from the real-space total correlation functions, is also observed to expand by 0.9–1.6% under reducing conditions, consistent with the presence of 15–27% U 3+ cations, assuming constant U-O coordination number. The slightly larger U-U elongation, as compared to the U-O elongation, is interpreted as a slight increase in U-O-U bond angles. Difficulties concerning the determination of the hypostoichiometry, x, are discussed, along with the future directions for related research.« less

  8. Polymorphism in Alkali Metal Uranyl Nitrates: Synthesis and Crystal Structure of γ-K(UO2)(NO3)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Krivovichev, Sergey V.; Burns, Peter C.

    2011-07-20

    Single crystals of γ-K(UO2)(NO3)3 were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) Å3, Z = 8] was determined by direct methods and refined to R1 = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO2)(NO3)3]–, that are linked through eleven-coordinated K+ cations. Both known polymorphs of K(UO2)(NO3)3 (α- and γ-phases) can be considered as based upon sheets of isolated complex [(UO2)(NO3)3]– ions separated by K+ cations. The existence ofmore » polymorphism in the two K[UO2(NO3)3] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two-dimensional but different three-dimensional arrangements.« less

  9. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three differentmore » layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.« less

  10. Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert

    2013-01-01

    W-UO2 CERMET fuels are under development to enable Nuclear Thermal Propulsion (NTP) for deep space exploration. Research efforts with an emphasis on fuel fabrication, testing, and identification of potential risks is underway. One primary risk is fuel loss due to CTE mismatch between W and UO2 and the grain boundary structure of W particles resulting in higher thermal stresses. Mechanical failure can result in significant reduction of the UO2 by hot hydrogen. Fuel loss can be mitigated if the UO2 particles are coated with a layer of high density tungsten before the consolidation process. This paper discusses the work to date, results, and advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process. Keywords: Space, Nuclear, Thermal, Propulsion, Fuel, CERMET, CVD, Tungsten, Uranium

  11. Coordination trends in alkali metal crown ether uranyl halide complexes: the series [A(crown)]2[UO(2)X(4)] where A=Li, Na, K and X=Cl, Br.

    PubMed

    Danis, J A; Lin, M R; Scott, B L; Eichhorn, B W; Runde, W H

    2001-07-02

    UO(2)(C(2)H(3)O(2))(2).2H(2)O reacts with AX or A(C(2)H(3)O(2) or ClO(4)) (where A = Li, Na, K; X = Cl, Br) and crown ethers in HCl or HBr aqueous solutions to give the sandwich-type compounds [K(18-crown-6)](2)[UO(2)Cl(4)] (1), [K(18-crown-6)](2)[UO(2)Br(4)] (2), [Na(15-crown-5)](2)[UO(2)Cl(4)] (3), [Na(15-crown-5)](2)[UO(2)Br(4)] (4), [Li(12-crown-4)](2)[UO(2)Cl(4)] (5), and [Li(12-crown-4)](2)[UO(2)Br(4)] (6). The compounds have been characterized by single-crystal X-ray diffraction, powder diffraction, elemental analysis, IR, and Raman spectroscopy. The [UO(2)X(4)](2-) ions coordinate to two [A(crown)](+) cations through the four halides only (2), through two halides only (3), through the two uranyl oxygens and two halides (3, 4), or through the two uranyl oxygen atoms only (5, 6). Raman spectra reveal nu(U-O) values that correlate with expected trends. The structural trends are discussed within the context of classical principles of hard-soft acid-base theory.

  12. Analysis of the vibrational frequencies of the UO/sup 2 +//sub 2/ ion in complexes containing acido-ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobets, L.V.; Umreiko, D.S.

    1986-02-01

    This paper presents an analysis of the vibrational frequencies of the UO/sup 2 +//sub 2/ ion in its complexes with acido-ligands that shows that in the series of the compounds indicated the correlation of UO/sup 2 +//sub 2/ with the nature of the anions and in particular with their basicity is limited in nature and may not be considered without taking account of the specific structures. If neutral ligands are present in the complexes, the situation is probably even more complicated.

  13. Synthesis and crystal structure of two new uranyl oxychloro-vanadate layered compounds: M7(UO 2) 8(VO 4) 2O 8Cl with M=Rb, Cs

    NASA Astrophysics Data System (ADS)

    Duribreux, I.; Saadi, M.; Obbade, S.; Dion, C.; Abraham, F.

    2003-05-01

    Two new alkali uranyl oxychloro vanadates M7(UO 2) 8(VO 4) 2O 8Cl with M=Rb, Cs, have been synthesized by solid-state reactions and their structures determined from single-crystal X-ray diffraction data. They crystallize in the orthorhombic system with space groups Pmcn and Pmmn, respectively. The a and b unit cell parameters are almost identical in both compounds while the c parameter in the Rb compound is doubled: Rb— a=21.427(5) Å, b=11.814(3) Å, c=14.203(3) Å, V=3595.1(1) Å 3, Z=4, ρmes=5.93(2) g/cm 3, ρcal=5.82(1) g/cm 3; Cs— a=21.458(3) Å, b=11.773(2) Å, c=7.495(1) Å, V=1893.6(5) Å 3, Z=2, ρmes=6.09(2) g/cm 3, ρcal=6.11(1) g/cm 3. A full-matrix least-squares refinement yielded R1=0.0221, w R2=0.0562 for 2675 independent reflections and R1=0.0386, w R2=0.1042 for 2446 independent reflections, for the Rb and Cs compounds, respectively. Data were collected with Mo( Kα) radiation and a charge coupled device (CCD) detector of a Bruker diffractometer. Both structures are characterized by [(UO 2) 8(VO 4) 2O 8Cl] n7 n- layers parallel to the (001) plane. The layers are built up from VO 4 tetrahedra, UO 7 and UO 6Cl pentagonal bipyramids, and UO 6 distorded octahedra. The UO 7 and UO 6Cl pentagonal bipyramids are associated by sharing opposite equatorial edges to form infinite chains (UO 5-UO 4Cl-UO 5) n parallel to the a axis. These chains are linked together by VO 4 tetrahedra, UO 6 octahedra, UO 7 corner sharing and UO 6Cl, Cl sharing. Both structures differ simply by the symmetry of the layers. The unit cell contains one centrosymmetric layer in the Cs compound, whereas in the two-layer unit cell of the Rb compound, two non-centrosymmetric consecutive layers are related by an inversion center. The layers appear to be held together by the alkali ions. The mobility of the M+ ions within the interlayer space in M7(UO 2) 8(VO 4) 2O 8Cl and carnotite analog compounds is compared.

  14. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  15. Estimated critical conditions for UO[sub 2]F[sub 2]--H[sub 2]O systems in fully water-reflected spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO[sub 2]F[sub 2]-H[sub 2]O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO[sub 2]F[sub 2]-H[sub 2]O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k[sub [infinity

  16. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO 2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO 2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO 2, as a function of defectmore » concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].« less

  17. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    PubMed

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  18. ON THE REACTION OF COMPONENETS IN MeNO$sub 3$-UO$sub 2$(NO$sub 3$)$sub 2$- H$sub 2$O TYPE SYSTEMS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakimov, M.A.; Nosova, N.F.; Degtyarev, A.Ya.

    1963-01-01

    Solubility in ternary systems TlNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/-- H/sub 2/ O and CsNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/--H/sub 2/O at 0 to 25 c- C was studi ed by the isothermal method. The first system did not form solid phase compounds; the second system formed two compounds Cs/sub 2/UO/ sub 2/(NO/sub 3/)/sub 4/ and CsUO/sub 2/(NO/sub 3/)/sub 3/ at 25 c- and of water vapor pressure over the systems at 25 c- showed that water activity in the ternary systems at certain concentrations does not exceed the water activity in binary uranyl nitratewater system (at identical uranyl nitrate concentrations) confirmingmore » the observed complex formation in the solution. The mechanism of complex formation was analyzed and expanded for alkali metal - metal salt-complexing agent water systems. (R.V.J.)« less

  19. Evaluation of melting point of UO 2 by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Arima, Tatsumi; Idemitsu, Kazuya; Inagaki, Yaohiro; Tsujita, Yuichi; Kinoshita, Motoyasu; Yakub, Eugene

    2009-06-01

    The melting point of UO 2 has been evaluated by molecular dynamics simulation (MD) in terms of interatomic potential, pressure and Schottky defect concentration. The Born-Mayer-Huggins potentials with or without a Morse potential were explored in the present study. Two-phase simulation whose supercell at the initial state consisted of solid and liquid phases gave the melting point comparable to the experimental data using the potential proposed by Yakub. The heat of fusion was determined by the difference in enthalpy at the melting point. In addition, MD calculations showed that the melting point increased with pressure applied to the system. Thus, the Clausius-Clapeyron equation was verified. Furthermore, MD calculations clarified that an addition of Schottky defects, which generated the local disorder in the UO 2 crystal, lowered the melting point.

  20. Synchrotron characterization of nanograined UO 2 grain growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Miao, Yinbin; Yun, Di

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less

  1. Synthesis and an X-ray diffraction study of Rb{sub 2}[(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serezhkina, L. B., E-mail: Lserezh@ssu.samara.ru; Peresypkina, E. V.; Neklyudova, N. A.

    2010-09-15

    The synthesis and X-ray diffraction study of compound Rb{sub 2}[(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}], which crystallizes in the monoclinic crystal system, are performed. The unit cell parameters are as follows: a = 7.9996(6) A, b = 8.8259(8) A, c = 11.3220(7) A, {beta} = 105.394(2){sup o}, and V = 770.7(1) A{sup 3}; space group P2{sub 1}/n, Z = 2, and R{sub 1} = 0.0271. [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4}){sub 3}]{sup 2-} layers belonging to the AK{sub 0.5}{sup 02}T{sup 11} crystal chemical group of uranyl complexes (A = UO{sub 2}{sup 2+}, K{sup 02} = C{sub 2}O{sub 4}{sup 2-}, and T{supmore » 11} = C{sub 2}O{sub 4}{sup 2-}) are uranium-containing structural units of the crystals. The layers are connected with outer-sphere rubidium cations by electrostatic interactions.« less

  2. Selection of Nuclear Fuel for TREAT: UO 2 vs U 3O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glazoff, Michael Vasily; Van Rooyen, Isabella Johanna; Coryell, Benjamin David

    The Transient Reactor Test (TREAT) that resides at the Materials and Fuels Complex (MFC) at Idaho National Laboratory (INL), first achieved criticality in 1959, and successfully performed many transient tests on nuclear fuel until 1994 when its operations were suspended. Resumption of operations at TREAT was approved in February 2014 to meet the U.S. Department of Energy (DOE) Office of Nuclear Energy’s objectives in transient testing of nuclear fuels. The National Nuclear Security Administration’s is converting TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU) (i.e., U-235< 20% by weight). Themore » TREAT Conversion project is currently progressing with conceptual design phase activities. Dimensional stability of the fuel element assemblies, predictable fuel can oxidation and sufficient heat conductivity by the fuel blocks are some of the critical performance requirements of the new LEU fuel. Furthermore, to enable the design team to design fuel block and can specifications, it is amongst the objectives to evaluate TREAT LEU fuel and cladding material’s chemical interaction. This information is important to understand the viability of Zr-based alloys and fuel characteristics for the fabrication of the TREAT LEU fuel and cladding. Also, it is very important to make the right decision on what type of nuclear fuel will be used at TREAT. In particular, one has to consider different oxides of uranium, and most importantly, UO 2 vs U 3O 8. In this report, the results are documented pertaining to the choice mentioned above (UO 2 vs U 3O 8). The conclusion in favor of using UO 2 was made based on the analysis of historical data, up-to-date literature, and self-consistent calculations of phase equilibria and thermodynamic properties in the U-O and U-O-C systems. The report is organized as follows. First, the criteria that were used to make the choice are analyzed. Secondly, existing historical data and

  3. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  4. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Marcus, E-mail: marcus.walter@vkta.d; Somers, Joseph; Bouexiere, Daniel

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond showsmore » only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.« less

  5. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  6. Modelling the radiolytic corrosion of α-doped UO2 and spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Liu, Nazhen; Qin, Zack; Noël, James J.; Shoesmith, David W.

    2017-10-01

    A model previously developed to predict the corrosion rate of spent fuel (UO2) inside a failed waste container has been adapted to simulate the rates measured on a wide range of α-doped UO2 and spent fuel specimens. This simulation confirms the validity of the model and demonstrates that the steady-state corrosion rate is controlled by the radiolytic production of H2O2 (which has been shown to be the primary oxidant driving fuel corrosion), irrespective of the reactivity of the UO2 matrix. The model was then used to determine the consequences of corrosion inside a failed container resealed by steel corrosion products. The possible accumulation of O2, produced by H2O2 decomposition, was found to accelerate the corrosion rate in a closed system. However, the simultaneous accumulation of radiolytic H2, which is activated as a reductant on the noble metal (ε) particles in the spent fuel, rapidly overcame this acceleration leading to the eventual suppression of the corrosion rate to insignificant values. Calculations also showed that, while the radiation dose rate, the H2O2 decomposition ratio, and the surface coverage of ε particles all influenced the short term corrosion rate, the influence of the radiolytically produced H2 was the overwhelming influence in reducing the rate to negligible level (i.e., <10-20 mol m-2 s-1).

  7. Experimental studies of Micro- and Nano-grained UO 2: Grain Growth Behavior, Sufrace Morphology, and Fracture Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Mo, Kun; Jamison, Laura M.

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-basedmore » materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO 2; (2) investigation of surface morphology in micrograined UO 2; (3) Nano-indentation experiments on nano- and micro-grained UO 2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO 2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO 2.« less

  8. Study of phonons in irradiated epitaxial thin films of UO2

    NASA Astrophysics Data System (ADS)

    Rennie, S.; Lawrence Bright, E.; Darnbrough, J. E.; Paolasini, L.; Bosak, A.; Smith, A. D.; Mason, N.; Lander, G. H.; Springell, R.

    2018-06-01

    We report experiments to determine the effect of radiation damage on the phonon spectra of the most common nuclear fuel, UO2. We irradiated thin (˜300 nm) epitaxial films of UO2 with 2.1 MeV He2 + ions to 0.15 displacements per atom and a lattice swelling of Δ a /a ˜0.6 % and then used grazing-incidence inelastic x-ray scattering to measure the phonon spectrum. We succeeded in observing the acoustic modes, both transverse and longitudinal, across the Brillouin zone. The phonon energies, in both the pristine and irradiated samples, are unchanged from those observed in bulk material. On the other hand, the phonon linewidths (inversely proportional to the phonon lifetimes) show a significant broadening when comparing the pristine and irradiated samples. This effect is shown to increase with phonon energy across the Brillouin zone. The decreases in the phonon lifetimes of the acoustic modes are roughly consistent with a 50% reduction in the thermal conductivity.

  9. Probing the oxygen environment in UO(2)(2+) by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations.

    PubMed

    Cho, Herman; de Jong, Wibe A; Soderquist, Chuck Z

    2010-02-28

    A combined theoretical and solid-state (17)O nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO(2)(2+) in (NH(4))(4)UO(2)(CO(3))(3) and rutherfordine (UO(2)CO(3)) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of (17)O chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state (17)O NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the (17)O echo signal of U (17)O(2)(2+).

  10. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.

    PubMed

    Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua

    2016-02-01

    Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.

  11. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO(2)2+.

    PubMed

    Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang

    2011-08-01

    AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH(4) as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl(2) and NaH(2)PO(2), and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO(2)(2+), AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L(-1) UO(2)(2+) and 5.0-50 pmol L(-1) UO(2)(2+), respectively. This journal is © The Royal Society of Chemistry 2011

  12. Electrical and material properties of hydrothermally grown single crystal (111) UO2

    NASA Astrophysics Data System (ADS)

    Dugan, Christina L.; Peterson, George Glenn; Mock, Alyssa; Young, Christopher; Mann, J. Matthew; Nastasi, Michael; Schubert, Mathias; Wang, Lu; Mei, Wai-Ning; Tanabe, Iori; Dowben, Peter A.; Petrosky, James

    2018-04-01

    The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current-voltage I( V) and capacitance-voltage C( V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.

  13. Carbon monoxide reaction with UO2(111) single crystal surfaces: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Senanayake, S. D.; Soon, A.; Kohlmeyer, A.; Söhnel, T.; Idriss, H.

    2005-07-01

    The reaction of CO has been investigated on the surfaces of UO2(111) single crystal. Over the stoichiometric surface CO does not adsorb at 300 K and no further reaction is noticed. Over UO2-x (prepared by Ar+ bombardment), CO molecules adsorb and in presence of traces of H2 they couple to form acetylene molecules that desorb in two temperature domains during temperature programmed desorption (TPD). In the presence of excess H2 the coupling product is found to be ethylene. X-ray photoelectron spectroscopy (XPS) of the core level shows the presence of an U 4f line at 377 eV on the UO2-x surface, attributed to U metal. This line disappears upon CO adsorption (5 L and above) at 300 K indicating oxidation of U metal atoms by O from dissociatively adsorbed CO. XPS C 1s shows that the only C containing species formed is carbide. Computation of a α-U metal 2d-periodic slab was also conducted using plane-wave pseudopotential in the density functional theoretical framework. Two modes of CO adsorption were considered: molecular and dissociative. The dissociative adsorption was found more energetically favoured by 0.46 eV. From TPD, XPS and computation results it is strongly suggested that CO is dissociatively adsorbed on UO2-x and that a stable U-C species is formed at 300 K.

  14. Characterization of UO2(2+) binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones.

    PubMed

    Qi, Lei; Basset, Christian; Averseng, Olivier; Quéméneur, Eric; Hagège, Agnès; Vidaud, Claude

    2014-01-01

    Bones are one of the few organs in which uranyl (UO2(2+)) accumulates. This large dioxo-cation displays affinity for carboxylates, phenolates and phosphorylated functional groups in proteins. The noncollagenous protein osteopontin (OPN) plays an important role in bone homeostasis. It is mainly found in the extracellular matrix of mineralized tissues but also in body fluids such as milk, blood and urine. Furthermore, OPN is an intrinsically disordered protein, which, like other proteins of the SIBLING family, contains a polyaspartic acid sequence and numerous patterns of alternating acidic and phosphorylated residues. All these properties led to the hypothesis that this protein could be prone to UO2(2+) binding. In this work, a simple purification procedure enabling highly purified bovine (bOPN) and human OPN (hOPN) to be obtained was developed. Various biophysical approaches were set up to study the impact of phosphorylations on the affinity of OPN for UO2(2+) as well as the formation of stable complexes originating from structural changes induced by the binding of this metal cation. The results obtained suggest a new mechanism of the interaction of UO2(2+) with bone metabolism and a new role for OPN as a metal transporter.

  15. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    PubMed

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO(2+x).

    PubMed

    He, Heming; Shoesmith, David

    2010-07-28

    A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.

  17. Electrochemical and spectroelectrochemical studies on UO(2)(saloph)L (saloph = N,N'-disalicylidene-o-phenylenediaminate, L=dimethyl sulfoxide or N,N-dimethylformamide).

    PubMed

    Mizuoka, Koichiro; Kim, Seong-Yun; Hasegawa, Miki; Hoshi, Toshihiko; Uchiyama, Gunzo; Ikeda, Yasuhisa

    2003-02-24

    To examine properties of pentavalent uranium, U(V), we have carried out electrochemical and spectroelectrochemical studies on UO(2)(saloph)L [saloph = N,N'-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF)]. The electrochemical reactions of UO(2)(saloph)L complexes in L were found to occur quasireversibly. The reduction processes of UO(2)(saloph)L complexes were followed spectroelectrochemically by using an optical transparent thin layer electrode cell. It was found that the absorption spectra measured at the applied potentials from 0 to -1.650 V versus ferrocene/ferrocenium ion redox couple (Fc/Fc(+)) for UO(2)(saloph)DMSO in DMSO have clear isosbestic points and that the evaluated electron stoichiometry equals 1.08. These results indicate that the reduction product of UO(2)(saloph)DMSO is [U(V)O(2)(saloph)DMSO](-), which is considerably stable in DMSO. Furthermore, it was clarified that the absorption spectrum of the [U(V)O(2)(saloph)DMSO](-) complex has a very small molar absorptivity in the visible region and characteristic absorption bands due to the 5f(1) orbital at around 750 and 900 nm. For UO(2)(saloph)DMF in DMF, the clear isosbestic points were not observed in the similar spectral changes. It is proposed that the UO(2)(saloph)DMF complex is reduced to [U(V)O(2)(saloph)DMF](-) accompanied by the dissociation of DMF as a successive reaction. The formal redox potentials of UO(2)(saloph)L in L (E(0), vs Fc/Fc(+)) for U(VI)/U(V) couple were determined to be -1.550 V for L = DMSO and -1.626 V for L = DMF.

  18. Gas emission from the UO2 samples, containing fission products and burnable absorber

    NASA Astrophysics Data System (ADS)

    Kopytin, V. P.; Baranov, V. G.; Burlakova, M. A.; Tenishev, A. V.; Kuzmin, R. S.; Pokrovskiy, S. A.; Mikhalchik, V. V.

    2016-04-01

    The process gas released from the fuel pellets of uranium fuel during fuel burn-up reduces the thermal conductivity of the rod-shell gap, enhances hydrogen embrittlement of the cladding material, causes it's carbonization, as well as transport processes in the fuel. In this study a technique of investigating the thermal desorption of gases from the UO2 fuel material were perfected in the temperature range 300-2000 K for uniform sample heating rate of 15 K/min in vacuum. The characteristic kinetic dependences are acquired for the gas emission from UO2 samples, containing simulators of fission products (SFP) and the burnable neutron absorber (BNA). Depending on the amount of SFP and BNA contained in the sample thermal desorption gas spectra (TDGS) vary. The composition of emitted gas varies, as well as the number of peaks in the TDGS and the peaks shift to higher temperatures. This indicates that introduction of SFPs and BNA alters the sample material structure and cause the creation of so- called traps which have different bonding energies to the gases. The traps can be a grid of dislocations, voids, and contained in the UO2 matrix SFP and BNA. Similar processes will occur in the fuel pellets in the real conditions of the Nuclear Power Plant as well.

  19. In-situ TEM observation of nano-void formation in UO2 under irradiation

    NASA Astrophysics Data System (ADS)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  20. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  1. Determination of successive complexation constants in an ionic liquid: complexation of UO(2)(2+) with NO(3)(-) in C(4)-mimTf(2)N studied by UV-Vis spectroscopy.

    PubMed

    Georg, Sylvia; Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde; Petitjean, Laetitia; Picquet, Michel; Solov'ev, Vitaly

    2010-04-01

    The complexation of UO(2)(2+) with NO(3)(-) has been investigated in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by UV-vis spectroscopy at T = 18.5 degrees C. The complexation is evidenced through the appearance of four peaks at 425, 438, 453, and 467 nm. EXAFS data indicate that the trinitrato complex, UO(2)(NO(3))(3)(-), is dominating the speciation for a reagent ratio of [NO(3)(-)]/[UO(2)(2+)] > 3. Assuming three successive complexation steps, the conditional stability constants are calculated, the individual absorption spectra are derived, and a speciation plot is presented.

  2. Thermal property change of MOX and UO2 irradiated up to high burnup of 74 GWd/t

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro; Kurematsu, Shigeru; Kosaka, Yuji; Yoshino, Aya; Kitagawa, Takaaki

    2013-09-01

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO2 fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO2. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO2 is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO2 at high burnup under the condition that the pellet-cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO2 before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO2. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  3. The defect chemistry of UO2 ± x from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  4. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO(2)(2+) from aqueous solution.

    PubMed

    Shao, Dadong; Jiang, Zhongqing; Wang, Xiangke; Li, Jiaxing; Meng, Yuedong

    2009-01-29

    Carboxymethyl cellulose (CMC) is grafted on multiwalled carbon nanotubes (MWCNT) by using plasma techniques. The CMC grafted MWCNT (MWCNT-g-CMC) is characterized by using Fourier transform infrared spectra (FT-IR), Raman spectra, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA)-differential thermal analysis (DTA), scanning electron microscopy (SEM), and N(2)-BET methods in detail. The application of MWCNT-g-CMC in the removal of UO(2)(2+) from aqueous solution is investigated. MWCNT-g-CMC has much higher sorption ability in the removal of UO(2)(2+) than raw MWCNT. The MWCNT-g-CMC is a suitable material in the preconcentration and solidification of heavy metal ions from large volume of aqueous solutions.

  5. Structural studies of the rhombohedral and orthorhombic monouranates: CaUO{sub 4}, α-SrUO{sub 4}, β-SrUO{sub 4} and BaUO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Gabriel; Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au; Johannessen, Bernt

    The structures of some AUO{sub 4} (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L{sub 3}-edge. The smaller Ca cation favours a rhombohedral AUO{sub 4} structure with 8-coordinate UO{sub 8} moieties whilst an orthorhombic structure based on UO{sub 6} groups is found for BaUO{sub 4}. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO{sub 4}. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In themore » rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO{sub 4}, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction. - Graphical abstract: Diffraction studies of AUO{sub 4} (A = Ca, Sr, or Ba) oxides reveal the importance of the bonding requirements of the A site cation in determining whether the structure is rhombohedral or orthorhombic. - Highlights: • Structures of AUO{sub 4} ( A = Ca Sr, Ba) refined against X-ray and Neutron diffraction. • The alkali cations size has a dramatic effect on the crystal structure. • Smaller cations favouring a rhombohedral structure. • Oxygen vacancies to stabilise the rhombohedral structure in SrUO{sub 4}.« less

  6. The synthesis and crystal structure of α-Ca 3UO 6

    NASA Astrophysics Data System (ADS)

    Holc, J.; Golic̆, L.

    1983-07-01

    Single crystals of α-Ca 3UO 6 were grown from a UO 3CaCl 2CaO melt by the slow cooling method from 950°C. The crystal structure was determined by means of X-ray diffraction with R = 0.032 and Rw = 0.019. The structure of α-Ca 3UO 6 is of Mg 3TeO 6 type. α-Ca 3UO 6 is rhombohedral with a = 6.729 (1)Å, α = 90.30 (1)°, Z = 2, Dc = 4.955 g/cm 3, Dm = 4.79 g/cm 3, space group R overline3. Uranium and calcium atoms are six-coordinated. At 1200°C rhombohedral α-Ca 3UO 6 irreversibly transforms to monoclinic β-Ca 3UO 6.

  7. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav

    2016-07-01

    CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.

  8. A self-calibrated angularly continuous 2D GRAPPA kernel for propeller trajectories

    PubMed Central

    Skare, Stefan; Newbould, Rexford D; Nordell, Anders; Holdsworth, Samantha J; Bammer, Roland

    2008-01-01

    The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging (PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the angular variation of the weights is parameterized. This new angularly continuous kernel formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing the generation of fully sampled diagnostic quality images using only the undersampled propeller data. PMID:19025911

  9. Temperature dependence of the Raman spectrum of UO2

    NASA Astrophysics Data System (ADS)

    Elorrieta, J. M.; Bonales, L. J.; Baonza, V. G.; Cobos, J.

    2018-05-01

    The position of the main spectral features (located at ∼445, ∼575, ∼625, ∼925 and ∼1145 cm-1) in the Raman spectrum of UO2 has been examined from room temperature up to 600 °C. The wavenumber shifts measured for the observed bands have allowed us to obtain the temperature dependence (dω/dT) of the different vibrational modes. Our measurements corroborate the assignment of the band observed at ∼1145 cm-1 to the 2LO overtone. In addition, the temperature dependence of the bandwidths of the T2g and 2LO modes has been analysed.

  10. Viscozyme L pretreatment on palm kernels improved the aroma of palm kernel oil after kernel roasting.

    PubMed

    Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan

    2018-05-01

    With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO 2 Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO 2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO 2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between themore » pellets and clad of 350°C.« less

  12. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  13. Reactivity of formic acid (HCOOD and DCOOH) at uranium and UO 2.0 surfaces

    NASA Astrophysics Data System (ADS)

    Manner, William L.; Lloyd, Jane A.; Paffett, Mark T.

    1999-10-01

    Interactions of DCOOH and HCOOD with uranium and UO 2.0 surfaces have been examined using surface-specific techniques of thermal desorption mass spectroscopy (TDMS), X-ray photoelectron spectroscopy (XPS), and static secondary ion mass spectroscopy (SSIMS). On the clean uranium surface, formate is the predominant product following formic acid adsorption at 100 K. A wide range of products is observed after annealing to 200 K, including formate, hydroxyl, O ads, and H ads (D ads) groups. Adsorbed formate decomposes by 300 K increasing the concentration of the remaining surface products. Surface-adsorbed carbon following TDMS measurements remains as the carbide, as indicated from XPS and SSIMS measurements. The only gaseous species created in high yields from the clean surface upon annealing are H 2, HD, and D 2. On the oxide surface (UO 2.0), adsorbed formate groups are more stable toward dissociation in comparison with the clean uranium surface. Between 100 and 300 K the predominant species on the UO 2.0 surface are surface formate and hydroxyl groups. Hydroxyl groups react between 300 and 350 K to release water from the surface. Adsorbed formate groups decompose between 400 and 500 K to release CO and H 2CO (D 2CO) groups from the oxide surface. Carbon was not detected on the oxide surface by XPS or SSIMS after annealing to 500 K, indicating that all carbon-containing species either desorb in the form of CO-containing products or migrate into the surface.

  14. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  15. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE PAGES

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.; ...

    2017-08-18

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  16. Quantification of process variables for carbothermic synthesis of UC 1-xN x fuel microspheres

    DOE PAGES

    Lindemer, Terrance B.; Silva, Chinthaka M.; Henry, Jr, John James; ...

    2016-11-05

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ~820-μm-dia. UC 1-xN x fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N 2 to UC 1-xN x (x = ~0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UCmore » kernel of ~96% theoretical density was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Increasing the UC 1-xN x kernel nitride component to ~0.98 in flowing N 2-H 2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H 2 in the entire process.« less

  17. Quantification of process variables for carbothermic synthesis of UC1-xNx fuel microspheres

    NASA Astrophysics Data System (ADS)

    Lindemer, T. B.; Silva, C. M.; Henry, J. J.; McMurray, J. W.; Voit, S. L.; Collins, J. L.; Hunt, R. D.

    2017-01-01

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ∼820-μm-dia. UC1-xNx fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO3-H2O-C microspheres in Ar and H2-containing gases, conversion of the resulting UO2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N2 to UC1-xNx (x = ∼0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO2:2UC kernel of ∼96% theoretical density was required, but its subsequent conversion to UC1-xNx at 2123 K was not accompanied by sintering and resulted in ∼83-86% of theoretical density. Increasing the UC1-xNx kernel nitride component to ∼0.98 in flowing N2-H2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.

  18. In situ ligand synthesis with the UO{sub 2}{sup 2+} cation under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisch, Mark; Cahill, Christopher L.; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC

    A novel uranium (VI) coordination polymer, (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2} (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, {beta}=119.112(4){sup o}, Z=4, R{sub 1}=0.0237, wR{sub 2}=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO{sub 2} to form the oxalatemore » linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C{sub 2}O{sub 4}).nH{sub 2}O; 0{<=}n{<=}1) and a known uranyl oxalate [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}.H{sub 2}O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2}, in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO{sub 2}.« less

  19. Electrochemical characterisation of CaCl2 deficient LiCl-KCl-CaCl2 eutectic melt and electro-deoxidation of solid UO2

    NASA Astrophysics Data System (ADS)

    Sri Maha Vishnu, D.; Sanil, N.; Mohandas, K. S.; Nagarajan, K.

    2016-03-01

    The CaCl2 deficient ternary eutectic melt LiCl-KCl-CaCl2 (50.5: 44.2: 5.3 mol %) was electrochemically characterised by cyclic voltammetry and polarization techniques in the context of its probable use as the electrolyte in the electrochemical reduction of solid UO2 to uranium metal. Tungsten (cathodic polarization) and graphite (anodic polarization) working electrodes were used in these studies carried out in the temperature range 623 K-923 K. The cathodic limit of the melt was observed to be set by the deposition of Ca2+ ions followed by Li+ ions on the tungsten electrode and the anodic limit by oxidation of chloride ions on the graphite electrode (chlorine evolution). The difference between the onset potential of deposition of Ca2+ and Li+ was found to be 0.241 V at a scan rate of 20 mV/s at 623 K and the difference decreased with increase in temperature and vanished at 923 K. Polarization measurements with stainless steel (SS) cathode and graphite anode at 673 K showed the possibility of low-energy reactions occurring on the UO2 electrode in the melt. UO2 pellets were cathodically polarized at 3.9 V for 25 h to test the feasibility of electro-reduction to uranium in the melt. The surface of the pellets was found reduced to U metal.

  20. Reinvestigation of the uranium(3.5+) rare-earth oxysulfides "(UO)2LnS3" (Ln = Yb, Y).

    PubMed

    Jin, Geng Bang; Choi, Eun Sang; Ibers, James A

    2009-09-07

    Dark-red square plates of the previously reported compounds "(UO)(2)LnS(3)" (Ln = Yb, Y) have been synthesized by solid-state reactions of UOS and YbS or Y(2)S(3) with Sb(2)S(3) as a flux at 1273 K. The structure of these isotypic compounds was reinvestigated by single-crystal X-ray diffraction methods and an inductively coupled plasma experiment. The actual formula of "(UO)(2)LnS(3)" (Ln = Yb, Y) is (U(0.5)Ln(0.5)O)(2)LnS(3), that is, ULn(2)O(2)S(3), which can be charge-balanced with U(4+) and Ln(3+). The layered structure comprises (U/Ln)O(4)S(4) square antiprisms alternating with LnS(6) octahedra. U and Ln1 atoms disorder on the eight-coordinate metal position, but Ln2 atoms occupy the six-coordinate metal position exclusively. UYb(2)O(2)S(3) is a modified Curie-Weiss paramagnet between 293 and 32 K, below which part of the paramagnetic moments go through a possible ferromagnetic transition. The band gaps of ULn(2)O(2)S(3) (Ln = Yb, Y) are around 2 eV.

  1. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. Themore » result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.« less

  2. High temperature redox reactions with uranium: Synthesis and characterization of Cs(UO{sub 2})Cl(SeO{sub 3}), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 2}, and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babo, Jean-Marie; Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; Albrecht-Schmitt, Thomas E., E-mail: talbrechtschmitt@gmail.com

    2013-10-15

    Cs(UO{sub 2})Cl(SeO{sub 3}) (1), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 3} (2), and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7} (3) single crystals were synthesized using CsCl, RbCl, and a CuCl/NaCl eutectic mixture as fluxes, respectively. Their lattice parameters and space groups are as follows: P2{sub 1}/n (a=6.548(1) Å, b=11.052(2) Å, c=10.666(2) Å and β=93.897(3)°), P1{sup ¯} (a=7.051(2) Å, b=7.198(2) Å, c=8.314(2) Å, α=107.897(3)°, β=102.687(3)° and γ=100.564(3)°) and C2/c (a=17.862(4) Å, b=6.931(1) Å, c=20.133(4) Å and β=109.737(6)°. The small anionic building units found in these compounds are SeO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} tetrahedra, oxide, and chloride. The crystal structure ofmore » the first compound is composed of [(UO{sub 2}){sub 2}Cl{sub 2}(SeO{sub 3}){sub 2}]{sup 2−} chains separated by Cs{sup +} cations. The structure of (2) is constructed from [(UO{sub 2}){sub 3}O{sub 11}]{sup 16−} chains further connected through selenite units into layers stacked perpendicularly to the [0 1 0] direction, with Rb{sup +} cations intercalating between them. The structure of compound (3) is made of uranyl sulfate layers formed by edge and vertex connections between dimeric [U{sub 2}O{sub 16}] and [SO{sub 4}] polyhedra. These layers contain unusual sulfate–metal connectivity as well as large voids. - Graphical abstract: A new family of uranyl selenites and sulfates has been prepared by high-temperature redox reactions. This compounds display new bonding motifs. Display Omitted - Highlights: • Low-dimensional Uranyl Oxoanion compounds. • Conversion of U(IV) to U(VI) at high temperatures. • Dimensional reduction by both halides and stereochemically active lone-pairs.« less

  3. A novel open-framework with non-crossing channels in the uranyl vanadates A(UO 2) 4(VO 4) 3 ( A=Li, Na)

    NASA Astrophysics Data System (ADS)

    Obbade, S.; Dion, C.; Rivenet, M.; Saadi, M.; Abraham, F.

    2004-06-01

    A new sodium uranyl vanadate Na(UO 2) 4(VO 4) 3 has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. It crystallizes in the tetragonal symmetry with space group I4 1/ amd and following cell parameters: a=7.2267(4) Å and c=34.079(4) Å, V=1779.8(2) Å 3, Z=4 with ρmes=5.36(3) g/cm 3 and ρcal=5.40(2) g/cm 3. A full-matrix least-squares refinement on the basis of F2 yielded R1=0.028 and w R2=0.056 for 52 parameters with 474 independent reflections with I⩾2 σ( I) collected on a BRUKER AXS diffractometer with Mo Kα radiation and a CCD detector. The crystal structure is characterized by ∞2[(UO 2) 2(VO 4)] sheets parallel to (001) formed by corner-shared UO 6 distorted octahedra and V(2)O 4 tetrahedra, connected by V(1)O 4 tetrahedra to ∞1[UO 5] 4- chains of edge-shared UO 7 pentagonal bipyramids alternately parallel to the a- and b-axis. The resulting three-dimensional framework creates mono-dimensional channels running down the a- and b-axis formed by face-shared oxygen octahedra half occupied by Na. The powder of Li analog compound Li(UO 2) 4(VO 4) 3 has been synthesized by solid-state reaction. The two compounds exhibit high mobility of the alkaline ions within the two-dimensional network of non-intersecting channels.

  4. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  5. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE PAGES

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.; ...

    2016-08-23

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  6. Phase equilibria in the UO 2-PuO 2 system under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Kleykamp, Heiko

    2001-04-01

    The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.

  7. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Expression of Fungal diacylglycerol acyltransferase2 Genes to Increase Kernel Oil in Maize[OA

    PubMed Central

    Oakes, Janette; Brackenridge, Doug; Colletti, Ron; Daley, Maureen; Hawkins, Deborah J.; Xiong, Hui; Mai, Jennifer; Screen, Steve E.; Val, Dale; Lardizabal, Kathryn; Gruys, Ken; Deikman, Jill

    2011-01-01

    Maize (Zea mays) oil has high value but is only about 4% of the grain by weight. To increase kernel oil content, fungal diacylglycerol acyltransferase2 (DGAT2) genes from Umbelopsis (formerly Mortierella) ramanniana and Neurospora crassa were introduced into maize using an embryo-enhanced promoter. The protein encoded by the N. crassa gene was longer than that of U. ramanniana. It included 353 amino acids that aligned to the U. ramanniana DGAT2A protein and a 243-amino acid sequence at the amino terminus that was unique to the N. crassa DGAT2 protein. Two forms of N. crassa DGAT2 were tested: the predicted full-length protein (L-NcDGAT2) and a shorter form (S-NcDGAT2) that encoded just the sequences that share homology with the U. ramanniana protein. Expression of all three transgenes in maize resulted in small but statistically significant increases in kernel oil. S-NcDGAT2 had the biggest impact on kernel oil, with a 26% (relative) increase in oil in kernels of the best events (inbred). Increases in kernel oil were also obtained in both conventional and high-oil hybrids, and grain yield was not affected by expression of these fungal DGAT2 transgenes. PMID:21245192

  9. Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO

    NASA Astrophysics Data System (ADS)

    Garcia, Chad B.; Brito, Ryan A.; Ortega, Luis H.; Malone, James P.; McDeavitt, Sean M.

    2017-12-01

    The low thermal conductivity of oxide nuclear fuels is a performance-limiting parameter. Enhancing this property may provide a contribution toward establishing accident-tolerant fuel forms. In this study, the thermal conductivity of UO2 was increased through the fabrication of ceramic-ceramic composite forms with UO2 containing a continuous BeO matrix. Fuel with a higher thermal conductivity will have reduced thermal gradients and lower centerline temperatures in the fuel pin. Lower operational temperatures will reduce fission gas release and reduce fuel restructuring. Additions of BeO were made to UO2 fuel pellets in 2.5, 5, 7.5, and 10 vol pct concentrations with the goals of establishing reliable lab-scale processing procedures, minimizing porosity, and maximizing thermal conductivity. The microstructure was characterized with electron probe microanalysis, and the thermal properties were assessed by light flash analysis and differential scanning calorimetry. Reliable, high-density samples were prepared using compaction pressure between 200 and 225 MPa and sintering times between 4 and 6 hours. It was found that the thermal conductivity of UO2 improved approximately 10 pct for each 1 vol pct BeO added over the measured temperature range 298.15 K to 523.15 K (25 °C to 250 °C) with the maximum observed improvement being ˜ 100 pct, or doubled, at 10 vol pct BeO.

  10. Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation

    NASA Astrophysics Data System (ADS)

    Günay, Seçkin D.

    2016-11-01

    In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.

  11. 7 CFR 51.1415 - Inedible kernels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Inedible kernels. 51.1415 Section 51.1415 Agriculture... Standards for Grades of Pecans in the Shell 1 Definitions § 51.1415 Inedible kernels. Inedible kernels means that the kernel or pieces of kernels are rancid, moldy, decayed, injured by insects or otherwise...

  12. METHOD FOR PREPARATION OF SPHERICAL UO$sub 4$

    DOEpatents

    Gregory, J.F. Jr.; Levey, R.P. Jr.

    1962-06-01

    A method is given for continuously precipitating ura nium peroxide in the form of spherical particles. Seed crystals are formed in a first reaction zone by introducing an acidified aqueous uranyl nitrate solution and an aqueous hydrogen peroxide solution at a ratio of 5 to 20 per cent of the stoichiometric amount required for complete precipitation. After a mean residence time of 2 to 5 minutes in the first reaction zone, the resulting mixture is introduced into a second reaction zone, together with a large excess of hydrogen peroxide solution. The resulting UO4 is rapidly separated from the mother liquor after an over-all residence time of 5 to 11 minutes. The first reaction is maintained at a temperature of 85 to 90 deg C and the second zone above 50 deg C. Additional reaction zones may be employed for further crystal growth. The UO/sub 4/ is converted to U/sub 3/O/sub 8/ or UO/sub 2/ by heating in air or hydrogen atmosphere. This method is particularly useful for the preparation of spherical UO/sub 2/ particles 10 to 25 microns in diameter. (AEC)

  13. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  14. High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.

    NASA Astrophysics Data System (ADS)

    Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof

    Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  15. Fabrication of Natural Uranium UO 2 Disks (Phase II): Texas A&M Work for Others Summary Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerczak, Tyler J.; Baldwin, Charles A.; Schmidlin, Joshua E.

    The steps to fabricate natural UO 2 disks for an irradiation campaign led by Texas A&M University are outlined. The process was initiated with stoichiometry adjustment of parent, U 3O 8 powder. The next stage of sample preparation involved exploratory pellet pressing and sintering to achieve the desired natural UO 2 pellet densities. Ideal densities were achieved through the use of a bimodal powder size blend. The steps involved with disk fabrication are also presented, describing the coring and thinning process executed to achieve final dimensionality.

  16. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    NASA Astrophysics Data System (ADS)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  17. PRODUCCION DE PLACAS DELGADAS DE UO$sub 2$ INFORME NO. 71. (Production of Thin Plates of UO$sub 2$. Report No. 71)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koll, H.; Carrea, A.J.

    1962-01-01

    The effect of some parameters on the fabrication of thin plates of UO/ sub 2/ by the sintering process is studied. Compacting pressures of 0.25 to 2 ton/cm/sub 2/, temperatures from 1100 to 1400 deg C, and sintering times from 1 to 3 hrs were used to determine the optimum values of these parameters. An analysis of the effect of the lubricant during the compression showed that the results were improved by the substitution of polyethylene glycol types for steric types, as the former were more easily removed from the compact and did not attack the UO/sub 2/ during sintering.more » Fracture during compression and extraction was studied. The compression law for the powder was determined, and the valid ity of the Bal'shin law was proved. The furnace atmospher is of importance to the sintered product. Two types of atmosphere were analyzed ---neutral atmosphere during sintering with final reduction in hydrogen and slightly reducing atmosphere during the entire process. An analysis of the effects on the final density and porosity showed that adding 3% H/sub 2/ to Ar produced good density and a stoichiometric oxide in the final product. It was shown that density is not a sufficient measurement to evaluate the degree of sintering. Only the combined use of density and porosity give a good evaluation. The compression pressure has a great effect on the pore size and distribution in the sintered product. Best results are obtained with high pressures, which gives small uniformly distributed pores. A metallographic study was made to determine the relation between pore size and distribution and the process parameters. Compact zones'' were observed with mean diameter from 1 to 2 mm with very reduced porosity. These zones had better hardness and resistance to corrosion and chemical attack than the rest of the material. (tr-auth)« less

  18. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  19. Thermodynamic assessment of oxygen diffusion in non-stoichiometric UO2±x from experimental data and Frenkel pair modeling

    NASA Astrophysics Data System (ADS)

    Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.

    2013-02-01

    The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.

  20. U(v) in metal uranates: A combined experimental and theoretical study of MgUO 4, CrUO 4, and FeUO 4

    DOE PAGES

    Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang; ...

    2016-01-01

    Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO 4, CrUO 4 and FeUO 4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U 5+ has been solidly confirmed in CrUOmore » 4 and FeUO 4, which are thermodynamically stable compounds, and the origin and stability of U 5+ in the system was elaborated by DFT. Lastly, the structural and thermodynamic behaviour of U 5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.« less

  1. Oxidation kinetics for conversion of U 3O 8 to ε-UO 3 with NO 2

    DOE PAGES

    Johnson, J. A.; Rawn, C. J.; Spencer, B. B.; ...

    2017-04-04

    The oxidation kinetics of U 3O 8 powder to ε-UO 3 in an NO 2 environment was measured by in situ x-ray diffraction (XRD). Experiments were performed at temperatures of 195, 210, 235, and 250°C using a custom designed and fabricated sample isolation stage. Data were refined to quantify phase fractions using a newly proposed structure for the ε-UO 3 polymorph. The kinetics data were modeled using a shrinking core approach. A proposed two-step reaction process is presented based on the developed models.

  2. Development of Macroscale Models of UO 2 Fuel Sintering and Densification using Multiscale Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenquist, Ian; Tonks, Michael

    2016-10-01

    Light water reactor fuel pellets are fabricated using sintering to final densities of 95% or greater. During reactor operation, the porosity remaining in the fuel after fabrication decreases further due to irradiation-assisted densification. While empirical models have been developed to describe this densification process, a mechanistic model is needed as part of the ongoing work by the NEAMS program to develop a more predictive fuel performance code. In this work we will develop a phase field model of sintering of UO 2 in the MARMOT code, and validate it by comparing to published sintering data. We will then add themore » capability to capture irradiation effects into the model, and use it to develop a mechanistic model of densification that will go into the BISON code and add another essential piece to the microstructure-based materials models. The final step will be to add the effects of applied fields, to model field-assisted sintering of UO 2. The results of the phase field model will be validated by comparing to data from field-assisted sintering. Tasks over three years: 1. Develop a sintering model for UO 2 in MARMOT 2. Expand model to account for irradiation effects 3. Develop a mechanistic macroscale model of densification for BISON« less

  3. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    DOE PAGES

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; ...

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO 2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO 2(NTf 2) 2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM +NTf 2 –). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO 2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. Themore » UO 2deposit was characterized by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).« less

  4. 7 CFR 51.2295 - Half kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...

  5. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  6. Hydrothermal Synthesis, Crystal Structure, and Photoluminescent Properties of Li[UO2(CH3COO)3]3[Co(H2O)6

    NASA Astrophysics Data System (ADS)

    AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.

    2017-12-01

    Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.

  7. P(4-vinyl pyridine) hydrogel use for the removal of UO(2)(2+) and Th(4+) from aqueous environments.

    PubMed

    Ozay, Ozgur; Ekici, Sema; Aktas, Nahit; Sahiner, Nurettin

    2011-12-01

    4-vinyl pyridine (4-VP) based hydrogels with 2-hydroxyethylmetacrylate (HEMA) and magnetic composites were prepared and tested for use in the removal of UO(2)(2+) and Th(4+) ions from aqueous environments. It was found that the absorption of these metal ions from aqueous environments decreased with an increase in the amount of HEMA contained within p(4-VP-co-HEMA) hydrogels between 0.498 mmol for pure p(4-VP) and 0.027 mmol for pure p(HEMA). The characterization of the hydrogels was determined by swelling experiments, FT-IR and thermal analysis. The effects of initial metal ion concentration, hydrogel amount and the temperature of the medium on absorption of the ions were investigated. Langmuir and Freundlich isotherms were constructed for the absorption of UO(2)(2+) and Th(4+). Both isotherms demonstrated that these metal ions complied with monolayer absorption kinetics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Safety Testing of AGR-2 UCO Compacts 5-2-2, 2-2-2, and 5-4-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    2016-08-01

    Post-irradiation examination (PIE) is being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). This effort builds upon the understanding acquired throughout the AGR-1 PIE campaign, and is establishing a database for the different AGR-2 fuel designs. The AGR-2 irradiation experiment included TRISO fuel particles coated at BWX Technologies (BWXT) with a 150-mm-diameter engineering-scale coater. Two coating batches were tested in the AGR-2 irradiation experiment. Batch 93085 had 508-μm-diameter uranium dioxide (UO 2) kernels. Batch 93073 had 427-μm-diameter UCO kernels, which is a kernel design where somemore » of the uranium oxide is converted to uranium carbide during fabrication to provide a getter for oxygen liberated during fission and limit CO production. Fabrication and property data for the AGR-2 coating batches have been compiled and compared to those for AGR-1. The AGR-2 TRISO coatings were most like the AGR-1 Variant 3 TRISO deposited in the 50-mm-diameter ORNL lab-scale coater. In both cases argon-dilution of the hydrogen and methyltrichlorosilane coating gas mixture employed to deposit the SiC was used to produce a finer-grain, more equiaxed SiC microstructure. In addition to the fact that AGR-1 fuel had smaller, 350-μm-diameter UCO kernels, notable differences in the TRISO particle properties included the pyrocarbon anisotropy, which was slightly higher in the particles coated in the engineering-scale coater, and the exposed kernel defect fraction, which was higher for AGR-2 fuel due to the detected presence of particles with impact damage introduced during TRISO particle handling.« less

  9. K 2x Sn 4-x S 8-x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs + , Sr 2+ and UO 2 2+ ions

    DOE PAGES

    Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; ...

    2015-10-27

    The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. We report the synthesis and crystal structure of K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs +, Sr 2+ and UO 2 2+ ion exchange properties in varying conditions. Furthermore, the compound adoptsmore » a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P2 1/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs +, Sr 2+ and UO 2 2+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (K d) for KTS-3 are high for Cs + (5.5 × 10 4), Sr 2+ (3.9 × 10 5) and UO 2 2+ (2.7 × 10 4) at neutral pH (7.4, 6.9, 5.7 ppm Cs +, Sr 2+ and UO 2 2+, respectively; V/m ~ 1000 mL g -1). KTS-3 exhibits impressive Cs +, Sr 2+ and UO 2 2+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste.« less

  10. 7 CFR 51.1441 - Half-kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...

  11. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  12. Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures

    NASA Astrophysics Data System (ADS)

    Annamareddy, Ajay; Eapen, Jacob

    2017-01-01

    Neutron scattering experiments show significant oxygen disorder in UO2 at temperatures above 2000 K. The nature of the disorder, however, has not been ascertained with certainty. Using atomistic simulations and metrics from statistical mechanics we show that the oxygen anions predominantly hop from one native (tetrahedral) lattice site to another, above a characteristic temperature Tα (∼2000 K). Interestingly, we discover two types of disorder - the first one, which is a measure of the fraction of anions that are displaced from their native sites, portrays a monotonic increase with temperature and shows excellent conformity to neutron scattering data. The second metric based on the mean square displacement of the anions in an isoconfigurational ensemble demonstrates a dynamic self-organization behavior in which the anions are spatially correlated to those with similar mobility. This dynamic self-organization, however, experiences a non-monotonic variation with temperature depicting a maximum near the Bredig or λ-transition. We further establish that the thermodynamic metric cp/T, which is equal to the rate of change of entropy with temperature, is a key entropic indicator of the dynamic self-organization among the oxygen anions in UO2 at high temperatures.

  13. Synthesis, characterization and biological study on Cr(3+), ZrO(2+), HfO(2+) and UO(2)(2+) complexes of oxalohydrazide and bis(3-hydroxyimino)butan-2-ylidene)-oxalohydrazide.

    PubMed

    El-Asmy, A A; El-Gammal, O A; Radwan, H A

    2010-09-01

    Cr(3+), ZrO(2+), HfO(2+) and UO(2)(2+) complexes of oxalohydrazide (H(2)L(1)) and oxalyl bis(diacetylmonoxime hydrazone) [its IUPAC name is oxalyl bis(3-hydroxyimino)butan-2-ylidene)oxalohydrazide] (H(4)L(2)) have been synthesized and characterized by partial elemental analysis, spectral (IR; electronic), thermal and magnetic measurements. [Cr(L(1))(H(2)O)(3)(Cl)].H(2)O, [ZrO(HL(1))(2)].C(2)H(5)OH, [UO(2)(L(1))(H(2)O)(2)] [ZrO(H(3)L(2))(Cl)](2).2H(2)O, [HfO(H(3)L(2))(Cl)](2).2H(2)O and [UO(2)(H(2)L(2))].2H(2)O have been suggested. H(2)L(1) behaves as a monobasic or dibasic bidentate ligand while H(4)L(2) acts as a tetrabasic octadentate with the two metal centers. The molecular modeling of the two ligands have been drawn and their molecular parameters were calculated. Examination of the DNA degradation of H(2)L(1) and H(4)L(2) as well as their complexes revealed that direct contact of [ZrO(H(3)L(2))(Cl)](2).2H(2)O or [HfO(H(3)L(2))(Cl)](2).2H(2)O degrading the DNA of Eukaryotic subject. The ligands and their metal complexes were tested against Gram's positive Bacillus thuringiensis (BT) and Gram's negative (Escherichia coli) bacteria. All compounds have small inhibitory effects. Copyright 2010 Elsevier B.V. All rights reserved.

  14. From {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} to {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} infinite chains in A{sub 6}U{sub 2}Mo{sub 4}O{sub 21} (A=Na, K, Rb, Cs) compounds: Synthesis and crystal structure of Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagoubi, S.; Groupe de Radiochimie, Institut de Physique Nucleaire d'Orsay, Universite Paris-Sud XI, 91406 Orsay Cedex; Obbade, S., E-mail: said.obbade@phelma.grenoble-inp.f

    2011-05-15

    A new caesium uranyl molybdate belonging to the M{sub 6}U{sub 2}Mo{sub 4}O{sub 21} family has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. Contrary to the other alkali uranyl molybdates of this family (A=Na, K, Rb) where molybdenum atoms adopt only tetrahedral coordination and which can be formulated A{sub 6}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}], the caesium compound Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 21} should be written Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] with molybdenum atoms in tetrahedral and square pyramidal environments. Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] crystallizes in the triclinic symmetry withmore » space group P1-bar and a=10.4275(14) A, b=15.075(2) A, c=17.806(2) A, {alpha}=70.72(1){sup o}, {beta}=80.38(1){sup o} and {gamma}=86.39(1){sup o}, V=2604.7(6) A{sup 3}, Z=4, {rho}{sub mes}=5.02(2) g/cm{sup 3} and {rho}{sub cal}=5.08(3) g/cm{sup 3}. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R{sub 1}=0.0464 and wR{sub 2}=0.0950 for 596 parameters with 6964 independent reflections with I{>=}2{sigma}(I) collected on a BRUKER AXS diffractometer with Mo(K{alpha}) radiation and a CCD detector. The crystal structure of Cs compound is characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} parallels chains built from U{sub 2}O{sub 13} dimeric units, MoO{sub 4} tetrahedra and MoO{sub 5} square pyramids, whereas, Na, K and Rb compounds are characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} parallel chains formulated simply of U{sub 2}O{sub 13} units and MoO{sub 4} tetrahedra. Infrared spectroscopy measurements using powdered samples synthesized by solid-state reaction, confirm the structural results. The thermal stability and the electrical conductivity are also studied. The four compounds decompose at low temperature (between 540 and 610

  15. QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population

    PubMed Central

    Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua

    2014-01-01

    Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932

  16. The pressure dependence of oxygen-isotope-exchange rates between solution and apical oxygens on the UO 2(OH) 4 2- ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Steven J.; Ohlin, C. Andre; Johnson, Rene L.

    2011-04-06

    The pressure dependence of isotope exchange rate was determined for apical oxygen atoms in the UO 2(OH) 4 2-(aq) ion. The results can be interpreted to indicate an associative character of the reaction.

  17. Kernel Machine SNP-set Testing under Multiple Candidate Kernels

    PubMed Central

    Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.

    2013-01-01

    Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868

  18. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  19. Probing the electronic structure of UO+ with high-resolution photoelectron spectroscopy.

    PubMed

    Goncharov, Vasiliy; Kaledin, Leonid A; Heaven, Michael C

    2006-10-07

    The pulsed field ionization-zero kinetic energy photoelectron technique has been used to observe the low-lying energy levels of UO+. Rotationally resolved spectra were recorded for the ground state and the first nine electronically excited states. Extensive vibrational progressions were characterized. Omega+ assignments were unambiguously determined from the first rotational lines identified in each vibronic band. Term energies, vibrational frequencies, and anharmonicity constants for low-lying energy levels of UO+ are reported. In addition, accurate values for the ionization energies for UO [48,643.8(2) cm(-1)] and U [49,957.6(2) cm(-1)] were determined. The pattern of low-lying electronic states for UO+ indicates that they originate from the U3+(5f3)O2- configuration, where the uranium ion-centered interactions between the 5f electrons are significantly stronger than interactions with the intramolecular electric field. The latter lifts the degeneracy of U3+ ion-core states, but the atomic angular momentum quantum numbers remain reasonably well defined.

  20. Unconventional protein sources: apricot seed kernels.

    PubMed

    Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M

    1981-09-01

    Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.

  1. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermal expansion in UO 2 determined by high-energy X-ray diffraction

    DOE PAGES

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; ...

    2016-06-24

    In this study, we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO 2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  3. Charge distribution and local structure and speciation in the UO 2+x and PuO 2+x binary oxides for x⩽0.25

    NASA Astrophysics Data System (ADS)

    Conradson, Steven D.; Begg, Bruce D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Haire, Richard G.; Hess, Nancy J.; Hess, Ryan F.; Webster Keogh, D.; Lander, Gerard H.; Manara, Dario; Morales, Luis A.; Neu, Mary P.; Paviet-Hartmann, Patricia; Rebizant, Jean; Rondinella, Vincenzo V.; Runde, Wolfgang; Drew Tait, C.; Kirk Veirs, D.; Villella, Phillip M.; Wastin, Franck

    2005-02-01

    The local structure and chemical speciation of the mixed valence, fluorite-based oxides UO 2+x (0.00⩽ x⩽0.20) and PuO 2+x/PuO 2+x-y(OH) 2y· zH 2O have been determined by U/Pu L III XAFS spectroscopy. The U spectra indicate (1) that the O atoms are incorporated as oxo groups at short (1.75 Å) U-O distances consistent with U(VI) concomitant with a large range of U displacements that reduce the apparent number of U neighbors and (2) that the UO 2 fraction remains intact implying that these O defects interact to form clusters and give the heterogeneous structure consistent with the diffraction patterns. The PuO 2+x system, which does not show a separate phase at its x=0.25 endpoint, also displays (1) oxo groups at longer 1.9 Å distances consistent with Pu(V+ δ), (2) a multisite Pu-O distribution even when x is close to zero indicative of the formation of stable species with H 2O and its hydrolysis products with O 2-, and (3) a highly disordered, spectroscopically invisible Pu-Pu component. The structure and bonding in AnO 2+x are therefore more complicated than have previously been assumed and show both similarities but also distinct differences among the different elements.

  4. Mechanism for transient migration of xenon in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.

    2011-04-11

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO{sub 2} nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediatedmore » diffusion on the uranium sublattice.« less

  5. Supplying materials needed for grain growth characterizations of nano-grained UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Miao, Yinbin; Yun, Di

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less

  6. Effect of Acrocomia aculeata Kernel Oil on Adiposity in Type 2 Diabetic Rats.

    PubMed

    Nunes, Ângela A; Buccini, Danieli F; Jaques, Jeandre A S; Portugal, Luciane C; Guimarães, Rita C A; Favaro, Simone P; Caldas, Ruy A; Carvalho, Cristiano M E

    2018-03-01

    The macauba palm (Acrocomia aculeata) is native of tropical America and is found mostly in the Cerrados and Pantanal biomes. The fruits provide an oily pulp, rich in long chain fatty acids, and a kernel that encompass more than 50% of lipids rich in medium chain fatty acids (MCFA). Based on biochemical and nutritional evidences MCFA is readily catabolized and can reduce body fat accumulation. In this study, an animal model was employed to evaluate the effect of Acrocomia aculeata kernel oil (AKO) on the blood glucose level and the fatty acid deposit in the epididymal adipose tissue. The A. aculeata kernel oil obtained by cold pressing presented suitable quality as edible oil. Its fatty acid profile indicates high concentration of MCFA, mainly lauric, capric and caprilic. Type 2 diabetic rats fed with that kernel oil showed reduction of blood glucose level in comparison with the diabetic control group. Acrocomia aculeata kernel oil showed hypoglycemic effect. A small fraction of total dietary medium chain fatty acid was accumulated in the epididymal adipose tissue of rats fed with AKO at both low and high doses and caprilic acid did not deposit at all.

  7. Simulation of xenon, uranium vacancy and interstitial diffusion and grain boundary segregation in UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis

    2014-10-31

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO 2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO 2 ( Σ5 tilt, Σ5more » twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.« less

  8. Oecophylla longinoda (Hymenoptera: Formicidae) Lead to Increased Cashew Kernel Size and Kernel Quality.

    PubMed

    Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K

    2017-06-01

    Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...

  10. L2-norm multiple kernel learning and its application to biomedical data fusion

    PubMed Central

    2010-01-01

    Background This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as L∞, L1, and L2 MKL. In particular, L2 MKL is a novel method that leads to non-sparse optimal kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing L∞ MKL method. In real biomedical applications, L2 MKL may have more advantages over sparse integration method for thoroughly combining complementary information in heterogeneous data sources. Results We provide a theoretical analysis of the relationship between the L2 optimization of kernels in the dual problem with the L2 coefficient regularization in the primal problem. Understanding the dual L2 problem grants a unified view on MKL and enables us to extend the L2 method to a wide range of machine learning problems. We implement L2 MKL for ranking and classification problems and compare its performance with the sparse L∞ and the averaging L1 MKL methods. The experiments are carried out on six real biomedical data sets and two large scale UCI data sets. L2 MKL yields better performance on most of the benchmark data sets. In particular, we propose a novel L2 MKL least squares support vector machine (LSSVM) algorithm, which is shown to be an efficient and promising classifier for large scale data sets processing. Conclusions This paper extends the statistical framework of genomic data fusion based on MKL. Allowing non-sparse weights on the data sources is an attractive option in settings where we believe most data sources to be relevant to the problem at hand and want to avoid a "winner-takes-all" effect seen in L∞ MKL, which can be detrimental to the performance in prospective studies. The notion of optimizing L2 kernels can be straightforwardly extended to ranking, classification, regression, and clustering algorithms. To tackle the

  11. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel.

    PubMed

    Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming

    2014-01-01

    To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P kernel (P 2% ± 19.2% in medium kernel (P kernel (P kernel showed better visualization of the stent struts and in-stent lumen than that with medium kernel. Iterative reconstruction in image space reconstruction can effectively reduce the image noise and improve image quality. The sharp kernel images constructed with iterative reconstruction are considered the optimal images to observe coronary stents in this study.

  12. Anisotropic hydrodynamics with a scalar collisional kernel

    NASA Astrophysics Data System (ADS)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 22 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  13. Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}: Spectroscopic characterization and cationic mobility studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagoubi, S., E-mail: said.yagoubi@cea.fr; Renard, C.; Abraham, F.

    2013-04-15

    The reaction of triuranyl diphosphate tetrahydrate precursor (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} with a CsI flux at 750 °C yields a yellow single crystals of new compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. The crystal structure (monoclinic, space group C2/c, a=13.6261 (13) Å, b=8.1081(8) Å, c=12.3983(12) Å, β=114.61(12)°, V=1245.41(20) Å{sup 3} with Z=4) has been solved using direct methods and Fourier difference techniques. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R1=0.028 and wR2=0.071 for 79 parameters and 1352 independent reflections with I≥2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupledmore » device detector. The crystal structure is built by two independent uranium atoms in square bipyramidal coordination, connected by two opposite corners to form infinite chains {sup 1}{sub ∞}[UO{sub 5}] and by one phosphorus atom in a tetrahedral environment PO{sub 4}. The two last entities {sup 1}{sub ∞}[UO{sub 5}] and PO{sub 4} are linked by sharing corners to form a three-dimensional structure presenting different types of channels occupied by Cs{sup +} alkaline cations. Their mobility within the tunnels were studied between 280 and 800 °C and compared with other tunneled uranyl minerals. The infrared spectrum shows a good agreement with the values inferred from the single crystal structure analysis of uranyl phosphate compound. - Graphical abstract: Arrhenius plot of the electrical conductivity of tunneled compounds Cs{sub 3}U{sub 2}PO{sub 10} and CsU{sub 2}Nb{sub 2}O{sub 11.5}. Highlights: ► The reaction of (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} in excess of molten CsI leads to single-crystals of new tunneled compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. ► Ionic conductivity measurements and crystal structure analysis indicate a strong connection of the Cs{sup +} cations to the tunnels. ► A low symmetry in Cs{sub 3

  14. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE PAGES

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James; ...

    2016-10-25

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel

  15. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel

  16. The Pressure Dependence of Oxygen Isotope Exchange Rates Between Solution and Apical Oxygen Atoms on the [UO2(OH)4]2- Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Steven J.; Ohlin, C. André; Johnson, Rene L.

    2011-04-06

    Under pressure: The pressure dependence of isotope exchange rate was determined for apical oxygen atoms in the [UO2(OH)4]2-(aq) ion (see picture). The results can be interpreted to indicate an associative character of the reaction.

  17. Theoretical investigations of geometry, electronic structure and stability of UO(6): octahedral uranium hexoxide and its isomers.

    PubMed

    Xiao, Hai; Hu, Han-Shi; Schwarz, W H Eugen; Li, Jun

    2010-08-26

    The existence of a novel octahedral UO(6) complex had been suggested by Pyykko et al. [Pyykko, P.; Runeberg, N.; Straka, M.; Dyall, K. G. Chem. Phys. Lett. 2000, 328, 415]. We have now investigated the stability, the geometric and electronic structures, and the vibrations of various UO(6) molecules, using spin-orbit density functional and scalar-relativistic coupled-cluster approaches. We find four different (meta-)stable species, namely (3)D(2h)-UO(2)(eta(2)-O(2)(*))(2) at lowest energy, (3)C(2v)-UO(4)(*)(eta(2)-O(2)(*)) and (1)D(3)-U(eta(2)-O(2))(3) at medium energies, and (1)O(h)-UO(6) at highest energy. The decay of O(h)-UO(6) occurs via an activated spin-flip mechanism. The UO(6) species correspond to local minima on singlet and triplet energy surfaces and might be trapped in noble gas matrices. Experimentally, the four species might be identified through their vibrational spectra. Uranium is best described as coordinated by oxygen atoms in various oxidation states as oxo O(2-), oxido(1) O(*-), peroxido O(2)(2-), and superoxido O(2)(*-) ligands. The occurrence of monovalent oxygen is remarkable. The resulting characterization of the central ion as U(VI) in all four cases does not fully reflect the electronic differences, nor the "valence-activity" of the U-6p(6) semicore shell.

  18. Dehydration of the Uranyl Peroxide Studtite, [UO 22-O 2)(H 2O) 22H 2O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitova, Tonya; Pidchenko, Ivan; Biswas, Saptarshi

    The dehydration of studtite, [UO 2(2-O 2)(H 2O)22H 2O, to metastudtite, [UO 2(2-O 2)(H 2O) 2], uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage, has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite the highest reported for a uranyl mineral studied by this technique. Further information on the changes in the electronic structure was elucidated using U M4-edge High Energy Resolution XANES (HR-XANES) spectroscopy, which directly probesmore » f-orbital states. The transition from the 3d to the 5f* orbital is sensitive to variations of the U=Oaxial bond length and to changes in the bond covalency. We report evidences that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to the 5f * transition towards U=Oaxial bond variation.« less

  19. Effect of metallic iron on the oxidative dissolution of UO2 doped with a radioactive alpha emitter in synthetic Callovian-Oxfordian groundwater

    NASA Astrophysics Data System (ADS)

    Odorowski, Mélina; Jegou, Christophe; De Windt, Laurent; Broudic, Véronique; Jouan, Gauthier; Peuget, Sylvain; Martin, Christelle

    2017-12-01

    In the hypothesis of direct disposal of spent fuel in a geological nuclear waste repository, interactions between the fuel mainly composed of UO2 and its environment must be understood. The dissolution rate of the UO2 matrix, which depends on the redox conditions on the fuel surface, will have a major impact on the release of radionuclides into the environment. The reducing conditions expected for a geological disposal situation would appear to be favorable as regards the solubility and stability of the UO2 matrix, but may be disturbed on the surface of irradiated fuel. In particular, the local redox conditions will result from a competition between the radiolysis effects of water under alpha irradiation (simultaneously producing oxidizing species like H2O2, hydrogen peroxide, and reducing species like H2, hydrogen) and those of redox active species from the environment. In particular, Fe2+, a strongly reducing aqueous species coming from the corrosion of the iron canister or from the host rock, could influence the dissolution of the fuel matrix. The effect of iron on the oxidative dissolution of UO2 was thus investigated under the conditions of the French disposal site, a Callovian-Oxfordian clay formation chosen by the French National Radioactive Waste Management Agency (Andra), here tested under alpha irradiation. For this study, UO2 fuel pellets doped with a radioactive alpha emitter (238/239Pu) were leached in synthetic Callovian-Oxfordian groundwater (representative of the French waste disposal site groundwater) in the presence of a metallic iron foil to simulate the steel canister. The pellets had varying levels of alpha activity, in order to modulate the concentrations of species produced by water radiolysis on the surface and to simulate the activity of aged spent fuel after 50 and 10,000 years of alpha radioactivity decay. The experimental data showed that whatever the sample alpha radioactivity, the presence of iron inhibits the oxidizing dissolution of

  20. Structural, spectroscopic and thermal characterization of 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester and its Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2005-04-01

    Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.

  1. Chemical compatibility between UO2 fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels)

    NASA Astrophysics Data System (ADS)

    Braun, James; Guéneau, Christine; Alpettaz, Thierry; Sauder, Cédric; Brackx, Emmanuelle; Domenger, Renaud; Gossé, Stéphane; Balbaud-Célérier, Fanny

    2017-04-01

    Silicon carbide-silicon carbide (SiC/SiC) composites are considered to replace the current zirconium-based cladding materials thanks to their good behavior under irradiation and their resistance under oxidative environments at high temperature. In the present work, a thermodynamic analysis of the UO2±x/SiC system is performed. Moreover, using two different experimental methods, the chemical compatibility of SiC towards uranium dioxide, with various oxygen contents (UO2±x) is investigated in the 1500-1970 K temperature range. The reaction leads to the formation of mainly uranium silicides and carbides phases along with CO and SiO gas release. Knudsen Cell Mass Spectrometry is used to measure the gas release occurring during the reaction between UO2+x and SiC powders as function of time and temperature. These experimental conditions are representative of an open system. Diffusion couple experiments with pellets are also performed to study the reaction kinetics in closed system conditions. In both cases, a limited chemical reaction is observed below 1700 K, whereas the reaction is enhanced at higher temperature due to the decomposition of SiC leading to Si vaporization. The temperature of formation of the liquid phase is found to lie between 1850 < T < 1950 K.

  2. FABRICATION DEVELOPMENT OF UO$sub 2$-STAINLESS STEEL COMPOSITE FUEL PLATES FOR CORE B OF THE ENRICO FERMI FAST BREEDER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherubini, J.H.; Beaver, R.J.; Leitten, C.F. Jr.

    1961-04-18

    The development of an inexpensive composite fuel plate with a high burnup potential for application in a 500 deg C sodium environment as Core B of the Enrico Fermi Fast Breeder Reactor is described. The dispersion fuel product consists of 35 wt.% spheroidal UO/sub 2/ dispersed in type 347B stainless steel powder and clad with wrought type 347 stainless steel. Nominal over-all dimensions of Type II design fuel plates are 18.97 in. long x 2.406 in. wide x 0.112 in. thick with 0.005-in. cladding. Reliable processing methods for achieving a uniform distribution of spheroidal UO/sub 2/ in the matrix powdermore » and cladding the sintered powder compact by roll bonding are described. Examination of experimental plates reveals that the degree of UO/sub 2/ fragmentation and stringering encountered during processing is primarily a function of the degree of cold work employed in the finishing operation snd the starting quality of the UO/sub 2/ powder. Cladding studies indicate that a sound metallurgical bond can be achieved with an 87.5% reduction in thickness at 1200 deg C and that close processing control is required to meet the stringent tolerances specified. The developed process meets all criteria except possibly the surface finish requirement; occasionally, pitting occurs due to scale embedded during hot working. Detailed procedures covering composite plate manufacture are presented. (auth)« less

  3. 7 CFR 51.2125 - Split or broken kernels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...

  4. Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite {(UO2)O2(OH)3}4n and hexanuclear {Th6O4(OH)4} motifs

    NASA Astrophysics Data System (ADS)

    Liang, Lingling; Zhang, Ronglan; Zhao, Jianshe; Liu, Chiyang; Weng, Ng Seik

    2016-11-01

    Two new actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H3tci) under hydrothermal condition. The combination of H3tci and uranyl nitrate hexahydrate in aqueous solution leads to the isolation of [(UO2)2(H2O)4]0.5(tci)2(UO2)4(OH)4·18H2O (1), which contains two distinct UO22+ coordination environments. Four uranyl cations, linked through μ3-OH respectively, result in the edge-sharing ribbons. Then, the layer structure is constructed by U-O clusters linked through other eight-coordinated uranyl unions, giving rise to a porous structure in the space. Topological analysis reveals that complex 1 belongs to a (4, 8)-connected net with a schläfli symbol of (34.26.3)2(34.46.56.68.73.8). Th3(tci)2O2(OH)2(H2O)3·12H2O (2) generated by the reaction of H3tci and thorium nitrate tetrahydrate, possesses nine-fold coodinated Th(IV) centers with a monocapped square antiprismatic geometry. The hexamers "Th6O4(OH)4" motifs are connected together by the carboxylate groups, showing a three-dimensional structures. Complex 2 takes on an 8-connected architecture and the point symbol is (424.64).

  5. 7 CFR 51.2296 - Three-fourths half kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...

  6. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: Synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation

    NASA Astrophysics Data System (ADS)

    Fahem, Abeer A.

    2012-03-01

    Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L1) and 2:1 (L2) having bifunctional coordinated groups (NH2 and CHO groups, respectively) and their metal complexes with Ni(II) and UO2(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, 1H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L1)Cl22.5H2O, [UO2(L1)(NO3)22H2O, [Ni(L2)Cl2]·1.5H2O and [UO2(L2)(NO3)2] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: Dq, B, β and LFSE were calculated while, UO2(II) complexes are eight coordinate with dodecahedral geometry and the force constant, FUsbnd O and bond length, RUsbnd O were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO2(L2)(NO3)2] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO2(L2)(NO3)2] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.

  7. XPS Investigation on Changes in UO 2 Speciation following Exposure to Humidity

    DOE PAGES

    Donald, Scott B.; Davisson, M. Lee; Nelson, Art J.

    2016-04-27

    High purity UO 2powder samples were subjected to accelerated aging under controlled conditions with relative humidity ranging from 34% to 98%. Characterization of the chemical speciation of the products was accomplished using X-ray photoelectron spectroscopy (XPS). A shift to higher uranium oxidation states was found to be directly correlated to increased relative humidity exposure. In addition, the relative abundance of O 2-, OH -, and H 2O was found to vary with exposure time. Therefore, it is expected that uranium oxide materials exposed to high relative humidity conditions during processing and storage would display a similar increase in average uraniummore » valence.« less

  8. Processing and microstructural characterisation of a UO2-based ceramic for disposal studies on spent AGR fuel

    NASA Astrophysics Data System (ADS)

    Hiezl, Z.; Hambley, D. I.; Padovani, C.; Lee, W. E.

    2015-01-01

    Preparation and characterisation of a Simulated Spent Nuclear Fuel (SIMFuel), which replicates the chemical state and microstructure of Spent Nuclear Fuel (SNF) discharged from a UK Advanced Gas-cooled Reactor (AGR) after a cooling time of 100 years is described. Given the relatively small differences in radionuclide inventory expected over longer time periods, the SIMFuel studied in this work is expected to be also representative of spent fuel after significantly longer periods (e.g. 1000 years). Thirteen stable elements were added to depleted UO2 and sintered to simulate the composition of fuel pellets after burn-ups of 25 and 43 GWd/tU and, as a reference, pure UO2 pellets were also investigated. The fission product distribution was calculated using the FISPIN code provided by the UK National Nuclear Laboratory. SIMFuel pellets were up to 92% dense and during the sintering process in H2 atmosphere Mo-Ru-Rh-Pd metallic precipitates and grey-phase ((Ba, Sr)(Zr, RE) O3 oxide precipitates) formed within the UO2 matrix. These secondary phases are present in real PWR and AGR SNF. Metallic precipitates are generally spherical and have submicron particle size (0.8 ± 0.7 μm). Spherical oxide precipitates in SIMFuel measured up to 30 μm in diameter, but no data were available in the public domain to compare this to AGR SNF. The grain size of actual AGR SNF (∼ 3-30 μm) is larger than that measured in AGR SIMFuel (∼ 2-5 μm).

  9. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846

  10. Development of a single kernel analysis method for detection of 2-acetyl-1-pyrroline in aromatic rice germplasm

    USDA-ARS?s Scientific Manuscript database

    Solid-phase microextraction (SPME) in conjunction with GC/MS was used to distinguish non-aromatic rice (Oryza sativa, L.) kernels from aromatic rice kernels. In this method, single kernels along with 10 µl of 0.1 ng 2,4,6-Trimethylpyridine (TMP) were placed in sealed vials and heated to 80oC for 18...

  11. Bubble evolution in Kr-irradiated UO2 during annealing

    NASA Astrophysics Data System (ADS)

    He, L.; Bai, X. M.; Pakarinen, J.; Jaques, B. J.; Gan, J.; Nelson, A. T.; El-Azab, A.; Allen, T. R.

    2017-12-01

    Transmission electron microscopy observation of Kr bubble evolution in polycrystalline UO2 annealed at high temperature was conducted in order to understand the inert gas behavior in oxide nuclear fuel. The average diameter of intragranular bubbles increased gradually from 0.8 nm in as-irradiated sample at room temperature to 2.6 nm at 1600 °C and the bubble size distribution changed from a uniform distribution to a bimodal distribution above 1300 °C. The size of intergranular bubbles increased more rapidly than intragranular ones and bubble denuded zones near grain boundaries formed in all the annealed samples. It was found that high-angle grain boundaries held bigger bubbles than low-angle grain boundaries. Complementary atomistic modeling was conducted to interpret the effects of grain boundary character on the Kr segregation. The area density of strong segregation sites in the high-angle grain boundaries is much higher than that in the low angle grain boundaries.

  12. Thermodynamic and kinetic aspects of UO 2 fuel oxidation in air at 400-2000 K

    NASA Astrophysics Data System (ADS)

    Taylor, Peter

    2005-09-01

    Most nuclear fuel oxidation research has addressed either low-temperature (<700 K) air oxidation related to fuel storage or high-temperature (>1500 K) steam oxidation linked to reactor safety. This paper attempts to unify modelling for air oxidation of UO 2 fuel over a wide range of temperature, and thus to assist future improvement of the ASTEC code, co-developed by IRSN and GRS. Phenomenological correlations for different temperature ranges distinguish between oxidation on the scale of individual grains to U 3O 7 and U 3O 8 below ˜700 K and individual fragments to U 3O 8 via UO 2+ x and/or U 4O 9 above ˜1200 K. Between about 700 and 1200 K, empirical oxidation rates slowly decline as the U 3O 8 product becomes coarser-grained and more coherent, and fragment-scale processes become important. A more mechanistic approach to high-temperature oxidation addresses questions of oxygen supply, surface reaction kinetics, thermodynamic properties, and solid-state oxygen diffusion. Experimental data are scarce, however, especially at low oxygen partial pressures and high temperatures.

  13. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...

  14. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...

  15. Crystal structures of isomeric 3,5-di-chloro-N-(2,3-di-methyl-phen-yl)benzene-sulfonamide, 3,5-di-chloro-N-(2,6-di-methyl-phen-yl)benzene-sulfonamide and 3,5-di-chloro-N-(3,5-di-methyl-phen-yl)benzene-sulfonamide.

    PubMed

    Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A

    2017-05-01

    The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

  16. Electronic spectroscopy of UO(2)Cl(2) isolated in solid Ar.

    PubMed

    Jin, Jin; Gondalia, Raj; Heaven, Michael C

    2009-11-12

    Laser-induced fluorescence spectra have been recorded for uranyl chloride isolated in a solid Ar matrix. Pulsed excitation was examined using a XeCl excimer laser (308 nm) and a dye laser operating in the 19500-27500 cm-1 range. Several absorption and emission band systems were observed. The emission spectra were characterized by a nearly harmonic vibrational progression with a frequency of 840 cm-1 starting at 20323 cm-1. The electronic absorption spectra were dominated by five harmonic vibrational progressions with frequencies of approximately 710 cm-1. Comparisons with theoretical calculations indicate that all of the transitions observed were associated with the UO2+2 subunit. They involved the promotion of an electron from a bonding orbital to the metal-centered 5f(delta) and 5f(phi) orbitals. Band origins and vibrational constants for five excited states were obtained. Fluorescence was observed from the lowest-energy excited state alone, regardless of the excitation wavelength. The decay curve was found to be biexponential, with characteristic decay lifetimes of 50 and 260 micros.

  17. Short Message Service (SMS) Command and Control (C2) Awareness in Android-based Smartphones Using Kernel-Level Auditing

    DTIC Science & Technology

    2012-06-14

    Display 480 x 800 pixels (3.7 inches) CPU Qualcomm QSD8250 1GHz Memory (internal) 512MB RAM / 512 MB ROM Kernel version 2.6.35.7-ge0fb012 Figure 3.5: HTC...development and writing). The 34 MSM kernel provided by the AOSP and compatible with the HTC Nexus One’s motherboard and Qualcomm chipset, is used for this...building the kernel is having the prebuilt toolchains and the right kernel for the hardware. Many HTC products use Qualcomm processors which uses the

  18. Classification With Truncated Distance Kernel.

    PubMed

    Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas

    2018-05-01

    This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.

  19. New insight into UO 2F 2 particulate structure by micro-Raman spectroscopy

    DOE PAGES

    Stefaniak, Elzbieta A.; Darchuk, Larysa; Sapundjiev, Danislav; ...

    2013-02-19

    Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO 2F 2 in comparison to graphite. The fundamental stretching of the U–O band appeared at 867 cm –1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm –1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layermore » appeared to be most effective. Lastly, application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.« less

  20. Modeling the UO2 ex-AUC pellet process and predicting the fuel rod temperature distribution under steady-state operating condition

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Trong; Thuan, Le Ba; Thanh, Tran Chi; Nhuan, Hoang; Khoai, Do Van; Tung, Nguyen Van; Lee, Jin-Young; Jyothi, Rajesh Kumar

    2018-06-01

    Modeling uranium dioxide pellet process from ammonium uranyl carbonate - derived uranium dioxide powder (UO2 ex-AUC powder) and predicting fuel rod temperature distribution were reported in the paper. Response surface methodology (RSM) and FRAPCON-4.0 code were used to model the process and to predict the fuel rod temperature under steady-state operating condition. Fuel rod design of AP-1000 designed by Westinghouse Electric Corporation, in these the pellet fabrication parameters are from the study, were input data for the code. The predictive data were suggested the relationship between the fabrication parameters of UO2 pellets and their temperature image in nuclear reactor.

  1. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Francine Joyce; Stempien, John Dennis

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less

  2. Milestone report: The simulation of radiation driven gas diffusion in UO 2 at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Michael William; Kuganathan, Navaratnarajah; Burr, Patrick A

    2016-10-24

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xemore » lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials

  3. The initial stage of uranium oxidation: mechanism of UO(2) scale formation in the presence of a native lateral stress field.

    PubMed

    Chernia, Z; Ben-Eliyahu, Y; Kimmel, G; Braun, G; Sariel, J

    2006-11-23

    In this work, an oxidation model for alpha-uranium is presented. It describes the internally lateral stress field built in the oxide scale during the reaction. The thickness of the elastic, stress-preserving oxide (UO(2+x)) scale is less than 0.5 microm. A lateral, 6.5 GPa stress field has been calculated from strains derived from line shifts (delta(2theta)) as measured by the X-ray diffraction of UO(2). It is shown that in the elastic growth domain, (110) is the main UO(2) growth plane for gas-solid oxidation. The diffusion-limited oxidation mechanism discussed here is based on the known "2:2:2" cluster theory which describes the mechanism of fluorite-based hyperstoichiometric oxides. In this study, it is adapted to describe oxygen-anion hopping. Anion hopping toward the oxide-metal interface proceeds at high rates in the [110] direction, hence making this pipeline route the principal growth direction in UO(2) formation. It is further argued that growth in the pure elastic domain of the oxide scale should be attributed entirely to anion hopping in 110. Anions, diffusing isotropically via grain boundaries and cracks, are shown to have a significant impact on the overall oxidation rate in relatively thick (>0.35 microm) oxide scales if followed by an avalanche break off in the postelastic regime. Stress affects oxidation in the elastic domain by controlling the hopping rate directly. In the postelastic regime, stress weakens hopping, indirectly, by enhancing isotropic diffusion. Surface roughness presents an additional hindering factor for the anion hopping. In comparison to anisotropic hopping, diffusion of isotropic hopping has a lower activation energy barrier. Therefore, a relatively stronger impact at lower temperatures due to isotropic diffusion is displayed.

  4. SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL

    PubMed Central

    Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan

    2013-01-01

    Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108

  5. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  6. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  7. A combined calorimetric and computational study of the energetics of rare earth substituted UO 2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Solomon, Jonathan M.; Asta, Mark

    2015-09-01

    The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less

  8. Performance Characteristics of a Kernel-Space Packet Capture Module

    DTIC Science & Technology

    2010-03-01

    Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to

  9. Assessing ligand selectivity for uranium over vanadium ions to aid in the discovery of superior adsorbents for extraction of UO 2 2+ from seawater

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-06

    Uranium is used as the basic fuel for nuclear power plants, which generate significant amounts of electricity and have life cycle carbon emissions that are as low as renewable energy sources. However, the extraction of this valuable energy commodity from the ground remains controversial, mainly because of environmental and health impacts. Alternatively, seawater offers an enormous uranium resource that may be tapped at minimal environmental cost. Nowadays, amidoxime polymers are the most widely utilized sorbent materials for large-scale extraction of uranium from seawater, but they are not perfectly selective for uranyl, UO 2 2+. In particular, the competition between UOmore » 2 2+ and VO 2+/VO2+ cations poses a significant challenge to the effi-cient mining of UO 2 2+. Thus, screening and rational design of more selective ligands must be accomplished. One of the key components in achieving this goal is the establishment of computational techniques capable of assessing ligand selec-tivity trends. Here, we report an approach based on quantum chemical calculations that achieves high accuracy in repro-ducing experimental aqueous stability constants for VO 2+/VO 2+ complexes with ten different oxygen donor lig-ands. The predictive power of the developed computational protocol was demonstrated for amidoxime-type ligands, providing greater insights into new design strategies for the development of the next generation of adsorbents with high selectivity toward UO 2 2+over VO 2+/VO 2+ ions. Furthermore, the results of calculations suggest that alkylation of amidox-ime moieties present in poly(acrylamidoxime) sorbents can be a potential route to better discrimination between the uranyl and competing vanadium ions within seawater.« less

  10. A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar

    2017-03-01

    The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. An evaluation of UO2-CNT composites made by SPS as an accident tolerant nuclear fuel pellet and the feasibility of SPS as an economical fabrication process for the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Cartas, Andrew R.

    The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.

  12. Effect of Al(OH)3 on the sintering of UO2-Gd2O3 fuel pellets with addition of U3O8 from recycle

    NASA Astrophysics Data System (ADS)

    dos Santos, Lauro Roberto; Durazzo, Michelangelo; Urano de Carvalho, Elita Fontenele; Riella, Humberto Gracher

    2017-09-01

    The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.

  13. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  14. THERMOS. 30-Group ENDF/B Scattered Kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrosson, F.J.; Finch, D.R.

    1973-12-01

    These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code. To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tapemore » library from which they may be retrieved easily for use in any 30-group THERMOS library.« less

  15. Recent advances in the study of the UO2-PuO2 phase diagram at high temperatures

    NASA Astrophysics Data System (ADS)

    Böhler, R.; Welland, M. J.; Prieur, D.; Cakir, P.; Vitova, T.; Pruessmann, T.; Pidchenko, I.; Hennig, C.; Guéneau, C.; Konings, R. J. M.; Manara, D.

    2014-05-01

    Recently, novel container-less laser heating experimental data have been published on the melting behaviour of pure PuO2 and PuO2-rich compositions in the uranium dioxide-plutonium dioxide system. Such data showed that previous data obtained by more traditional furnace heating techniques were affected by extensive interaction between the sample and its containment. It is therefore paramount to check whether data so far used by nuclear engineers for the uranium-rich side of the pseudo-binary dioxide system can be confirmed or not. In the present work, new data are presented both in the UO2-rich part of the phase diagram, most interesting for the uranium-plutonium dioxide based nuclear fuel safety, and in the PuO2 side. The new results confirm earlier furnace heating data in the uranium-dioxide rich part of the phase diagram, and more recent laser-heating data in the plutonium-dioxide side of the system. As a consequence, it is also confirmed that a minimum melting point must exist in the UO2-PuO2 system, at a composition between x(PuO2) = 0.4 and x(PuO2) = 0.7 and 2900 K ⩽ T ⩽ 3000 K. Taking into account that, especially at high temperature, oxygen chemistry has an effect on the reported phase boundary uncertainties, the current results should be projected in the ternary U-Pu-O system. This aspect has been extensively studied here by X-ray diffraction and X-ray absorption spectroscopy. The current results suggest that uncertainty bands related to oxygen behaviour in the equilibria between condensed phases and gas should not significantly affect the qualitative trend of the current solid-liquid phase boundaries.

  16. Ruthenium Nanoparticles Mediated Electrocatalytic Reduction of UO22+ Ions for Its Rapid and Sensitive Detection in Natural Waters.

    PubMed

    Gupta, Ruma; Sundararajan, Mahesh; Gamare, Jayashree S

    2017-08-01

    Reduction of UO 2 2+ ions to U 4+ ions is difficult due to involvement of two axially bonded oxygen atoms, and often requires a catalyst to lower the activation barrier. The noble metal nanoparticles (NPs) exhibit high electrocatalytic activity, and could be employed for the sensitive and rapid quantifications of U0 2 2+ ions in the aqueous matrix. Therefore, the Pd, Ru, and Rh NPs decorated glassy carbon electrode were examined for their efficacy toward electrocatalytic reduction of UO 2 2+ ions and observed that Ru NPs mediate efficiently the electro-reduction of UO 2 2+ ions. The mechanism of the electroreduction of UO 2 2+ by the RuNPs/GC was studied using density functional theory calculations which pointed different approach of 5f metal ions electroreduction unlike 4p metal ions such as As(III). RuNP decorated on the glassy carbon would be hydrated, which in turn assist to adsorb the uranyl sulfates through hydrogen bonding thus facilitated electro-reduction. Differential pulse voltammetric (DPV) technique, was used for rapid and sensitive quantification of UO 2 2+ ions. The RuNPs/GC based DPV technique could be used to determine the concentration of uranyl in a few minutes with a detection limit of 1.95 ppb. The RuNPs/GC based DPV was evaluated for its analytical performance using seawater as well lake water and groundwater spiked with known amounts of UO 2 2+ .

  17. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  18. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  19. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  20. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  1. UO 2 Particle Standards: Synthesis, Purification & Planchet Preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Christopher A.; Anheier, Norman C.

    2016-03-31

    The IAEA has previously indicated its desire for reliable provision of suitable reference materials in support of environmental sample analysis and sustained advancement at the Department of Safeguards, as laid out in the Long Term R&D plan (LTRD 10.1 & 10.2). In a recent meeting between NPAC, the IAEA and PNNL, this pressing need was directly outlined by the IAEA as having two main objectives. The first pertains to current operations, such as instrument calibrations and evaluation of bias across the Network of Analytical Laboratories and requires particles on the order of 300-500 nm in diameter. The second need formore » particle reference material would directly support the IAEA’s ongoing R&D efforts and calls for smaller particles ranging from 50 -100 nm in size. As such, the IAEA has expressed a great deal of interest in the newly established synthesis capabilities at PNNL, initially cultivated through a PNNL LDRD project to address the particle-standards shortcomings for uranium oxide material. The joint meeting concluded with a request by the IAEA for 1-2 planchet samples containing PNNL’s UO 2 particulate material, to be delivered in the near-term. This report outlines the steps taken to meet that request and includes some basic characteristics of the samples sent to the IAEA.« less

  2. UNICOS Kernel Internals Application Development

    NASA Technical Reports Server (NTRS)

    Caredo, Nicholas; Craw, James M. (Technical Monitor)

    1995-01-01

    Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.

  3. Di(2-ethylhexyl)adipate

    Integrated Risk Information System (IRIS)

    Di ( 2 - ethylhexyl ) adipate ; CASRN 103 - 23 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  4. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14-

    NASA Astrophysics Data System (ADS)

    Gaunt, Andrew J.; May, Iain; Collison, David; Travis Holman, K.; Pope, Michael T.

    2003-08-01

    Two new composite polyoxotungstate anions with unprecedented structural features, [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- (1) and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14- (2) contain polyoxo-uranium and -zirconium clusters as bridging units. The anions are synthesized by reaction of Na12[P2W15O56] with solutions of UO2(NO3)2 and ZrCl4. The structure of 1 in the sodium salt contains four [P2W15O56]12- anions assembled into an overall tetrahedral cluster by means of trigonal bridging groups formed by three equatorial-edge-shared UO7 pentagonal bipyramids. The structure of anion 2 consists of a centrosymmetric assembly of two [P2W16O59]12- anions linked by a {Zr4O2(OH)2(H2O)4}10+ cluster. Both complexes in solution yield the expected two-line 31P-NMR spectra with chemical shifts of -2.95, -13.58 and -6.45, -13.69 ppm, respectively.

  5. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  6. Di(hydroxyphenyl)- 1,2,4-triazole monomers

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)

    1993-01-01

    The di(hydroxyphenyl)- 1,2,4-triazole monomers were first synthesized by reacting bis (4-hydroxyphenyl) hydrazide with aniline hydrochloride at 250 C in the melt and also by reacting 1,3 or 1,4-bis- (4-hydroxyphenyl)- phenylene- dihydrazide with 2 moles of aniline hydrochloride in the melt. Purification of the di(hydroxyphenyl)- 1,2,4-triazole monomers was accomplished by recrystallization. Poly (1,2,4-triazoles) (PT) were prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)- 1,2,4-triazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions were carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. This synthetic route has provided high molecular weight PT of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides.

  7. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  8. PUREX/UO{sub 3} deactivation project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retainedmore » during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.« less

  9. SINGLE-STEP CONVERSION OF UO$sub 3$ TO UF$sub 4$

    DOEpatents

    Moore, J.E.

    1960-07-12

    A description is given of the preparation of uranium tetrafluoride by reacting a hexavalent uranium compound with a pclysaccharide and gaseous hydrogen fluoride at an elevated temperature. Uranium trioxide and starch are combined with water to form a doughy mixture. which is extruded into pellets and dried. The pellets are then contacted with HF at a temperature from 500 to 700 deg C in a moving bed reactor to prcduce UF/sub 4/. Reduction of the hexavalent uranium to UO/sub 2/ and conversion of the UO/sub 2/ to UF/sub 4/ are accomplished simultaneously in this process.

  10. 7 CFR 981.7 - Edible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...

  11. Extreme Performance Scalable Operating Systems Final Progress Report (July 1, 2008 - October 31, 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D; Shende, Sameer

    This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at UO delivered excellent results in all research work areas: * scalable parallel monitoring * kernel-level performance measurement * parallel I/0 system measurement * large-scale and hybrid application performance measurement * onlne scalable performance data reduction and analysis * binary instrumentation

  12. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.

    PubMed

    Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D

    2010-05-01

    The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to

  13. 7 CFR 981.8 - Inedible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...

  14. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  15. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...

  16. FASTGRASS implementation in BISON and Fission gas behavior characterization in UO 2 and connection to validating MARMOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di; Mo, Kun; Ye, Bei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL). Two major accomplishments in FY 15 are summarized in this report: (1) implementation of the FASTGRASS module in the BISON code; and (2) a Xe implantation experiment for large-grained UO 2. Both BISON AND MARMOT codes have been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. To contribute to the development of the Moose-Bison-Marmot (MBM) code suite, we have implemented the FASTGRASS fission gas model as a module inmore » the BISON code. Based on rate theory formulations, the coupled FASTGRASS module in BISON is capable of modeling LWR oxide fuel fission gas behavior and fission gas release. In addition, we conducted a Xe implantation experiment at the Argonne Tandem Linac Accelerator System (ATLAS) in order to produce the needed UO 2 samples with desired bubble morphology. With these samples, further experiments to study the fission gas diffusivity are planned to provide validation data for the Fission Gas Release Model in MARMOT codes.« less

  17. Multiple kernels learning-based biological entity relationship extraction method.

    PubMed

    Dongliang, Xu; Jingchang, Pan; Bailing, Wang

    2017-09-20

    Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.

  18. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Stempien, John Dennis; Demkowicz, Paul Andrew

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO 2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. Thesemore » data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO 2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO 2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  19. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These datamore » were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less

  20. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    PubMed

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  1. Self-assembly of [UO{sub 2}X{sub 4}]{sup 2−} (X=Cl, Br) dianions with γ substituted pyridinium cations: Structural systematics and fluorescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surbella, Robert G.; Andrews, Michael B.; Cahill, Christopher L., E-mail: cahill@gwu.edu

    2016-04-15

    Room temperature self-assembly of [UO{sub 2}X{sub 4}]{sup 2−} (X=Cl, Br) with γ substituted pyridinium cations has resulted in the formation of twelve compounds that were studied via single crystal X-ray diffraction and fluorescence spectroscopy. Systematic variation of electron donating groups on the pyridinium species is shown to influence the presence and/or strength of various supramolecular synthons, including hydrogen bonding and pi interactions. Combinations of such non-covalent interactions (NCIs) have given rise to a range of supramolecular assemblies, and are shown to influence uranyl emission by way of second sphere coordination to equatorial ligands. - Graphical abstract: Supramolecular assembly of themore » [UO{sub 2}Cl{sub 4}]{sup 2−} dianion with pyridinium cations is a viable synthetic route to the growth of uranyl containing single crystals.« less

  2. Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels

    NASA Astrophysics Data System (ADS)

    Webb, Jonathan A.; Charit, Indrajit

    2012-08-01

    The thermal conductivity of tungsten based CERMET fuels containing UO2 and UN fuel particles are determined as a function of particle geometry, stabilizer fraction and fuel-volume fraction, by using a combination of an analytical approach and experimental data collected from literature. Thermal conductivity is estimated using the Bruggeman-Fricke model. This study demonstrates that thermal conductivities of various CERMET fuels can be analytically predicted to values that are very close to the experimentally determined ones.

  3. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  4. Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Darnbrough, J. E.; Harker, R. M.; Griffiths, I.; Wermeille, D.; Lander, G. H.; Springell, R.

    2018-04-01

    This paper reports experiments investigating the reaction of H2 with uranium metal-oxide bilayers. The bilayers consist of ≤ 100 nm of epitaxial α-U (grown on a Nb buffer deposited on sapphire) with a UO2 overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2 caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2 overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3. This explains why no diffraction peaks from UH3 are observed.

  5. The oxidation of 2,6-di-tert-butyl-4-methylphenol

    USGS Publications Warehouse

    Yohe, G.R.; Dunbar, J.E.; Pedrotti, R.L.; Scheidt, F.M.; Lee, F.G.H.; Smith, E.C.

    1956-01-01

    The products formed in the oxidation of 2,6-di-tert-butyl-4-methylphenol with oxygen and sodium hydroxide at about 100?? are 3,5-di-tert-butyl-4-hydroxybenzaldehyde, trimethylacetic acid, an acidic compound C14H22O3, and probably 2,6-di-tert-butylbenzoquinone (which was actually isolated in the similar oxidation of the above-named benzaldehyde), in addition to compounds previously reported. Some of the properties of C14H22O3 are given, and the oxidation of it to 2,3-di-tert-butylsuccinic anhydride is described, but assignment of structure is reserved pending the completion of more experimental work.

  6. Experimental determination of the thermal conductivity of liquid UO2 near the melting point

    NASA Astrophysics Data System (ADS)

    Sheindlin, M.; Staicu, D.; Ronchi, C.; Game-Arnaud, L.; Remy, B.; Degiovanni, A.

    2007-05-01

    The article gives an account of measurements of the thermal conductivity of liquid UO2. The sample was heated up to above the melting point by a laser pulse of a controlled shape, and the produced thermogram of temperature history was measured by a fast and accurate pyrometer with a time resolution of 10 μs. The experiment shows that the rate of temperature increase during the ascending part of the pulse changes moderately across the melting point. Due to the high power input, this effect cannot be explained in terms of the sole intake of latent heat of fusion. By solving the related heat transfer equation with a 2D-axisymmetric numerical model, it is demonstrated that this feature depends principally on heat conduction in the sample, and proves that the thermal conductivities of solid and liquid are not very different. A theoretical sensitivity study assessing the influence of the liquid thermal conductivity on the pulse temperature evolution showed that the conductivity of the liquid can be deduced from the fitting of the thermograms with a numerical precision of the order of 1%. The analysis reveals that the thermal conductivity is weakly correlated with the effective heat losses during the pulse and to the melting enthalpy, so that the uncertainty in its evaluation by fitting the experimental thermograms with model predictions is satisfactory. The value of the thermal conductivity of liquid UO2 near the melting point resulted to be 2.6±0.35 W m-1 K-1, where the magnitude of the uncertainty is much lower than the scatter of the previously published, discordant measurements.

  7. Partial Deconvolution with Inaccurate Blur Kernel.

    PubMed

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning

  8. Evaluation of B&W UO2/ThO2 VIII experimental core: criticality and thermal disadvantage factor analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlo Parisi; Emanuele Negrenti

    2017-02-01

    In the framework of the OECD/NEA International Reactor Physics Experiment (IRPHE) Project, an evaluation of core VIII of the Babcock & Wilcox (B&W) Spectral Shift Control Reactor (SSCR) critical experiment program was performed. The SSCR concept, moderated and cooled by a variable mixture of heavy and light water, envisaged changing of the thermal neutron spectrum during the operation to encourage breeding and to sustain the core criticality. Core VIII contained 2188 fuel rods with 93% enriched UO2-ThO2 fuel in a moderator mixture of heavy and light water. The criticality experiment and measurements of the thermal disadvantage factor were evaluated.

  9. Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Abdulaziz, R.; Tjaden, B.; Inman, D.; Brett, D. J. L.; Shearing, P. R.

    2016-11-01

    Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium metal. Thermodynamic prediction of the electrochemical reduction of UO2 to U in LiCl-KCl eutectic has shown to be a function of the oxide ion activity. The pO2- of the salt may be affected by the microstructure of the UO2 electrode. A uranium dioxide filled "micro-bucket" electrode has been partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. This partial electroreduction resulted in two distinct microstructures: a dense UO2 and a porous U metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam tomography was performed on five regions of this electrode which revealed an overall porosity ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the expected extent of reaction in each location. The pore connectivity was also seen to reduce from 88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a value of infinity (disconnected pores). These microstructural characteristics could impede the transport of O2- ions resulting in a change in the local pO2- which could result in the inability to perform the electroreduction.

  10. 7 CFR 981.9 - Kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...

  11. Putting Priors in Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.

  12. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  13. Relative impact of H2O and O2 in the oxidation of UO2 powders from 50 to 300 °C

    NASA Astrophysics Data System (ADS)

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; Roberts, Sarah K.; Nelson, Art J.

    2017-12-01

    The reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO2) powder at elevated temperature was studied by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). Oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice was observed and quantified. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  14. Anthraquinones isolated from the browned Chinese chestnut kernels (Castanea mollissima blume)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Qi, J. H.; Qin, L.; Wang, F.; Pang, M. X.

    2016-08-01

    Anthraquinones (AQS) represent a group of secondary metallic products in plants. AQS are often naturally occurring in plants and microorganisms. In a previous study, we found that AQS were produced by enzymatic browning reaction in Chinese chestnut kernels. To find out whether non-enzymatic browning reaction in the kernels could produce AQS too, AQS were extracted from three groups of chestnut kernels: fresh kernels, non-enzymatic browned kernels, and browned kernels, and the contents of AQS were determined. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) methods were used to identify two compounds of AQS, rehein(1) and emodin(2). AQS were barely exists in the fresh kernels, while both browned kernel groups sample contained a high amount of AQS. Thus, we comfirmed that AQS could be produced during both enzymatic and non-enzymatic browning process. Rhein and emodin were the main components of AQS in the browned kernels.

  15. Low temperature synthesis and sintering of d-UO2 nanoparticles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina Maria; Ferreira, Summer Rhodes; Robinson, David B.

    We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys andmore » d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.« less

  16. Kernel abortion in maize : I. Carbohydrate concentration patterns and Acid invertase activity of maize kernels induced to abort in vitro.

    PubMed

    Hanft, J M; Jones, R J

    1986-06-01

    Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.

  17. Revisiting the diffusion mechanism of helium in UO2: A DFT+U study

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Andersson, D. A.

    2018-01-01

    The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO2 is revisited by using the DFT+U simulation methodology employing the "U-ramping" method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the "asymmetric hop" mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. The new mechanism is shown to be the dominant one over a wide temperature range.

  18. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  19. Kernel-based Linux emulation for Plan 9.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnich, Ronald G.

    2010-09-01

    CNKemu is a kernel-based system for the 9k variant of the Plan 9 kernel. It is designed to provide transparent binary support for programs compiled for IBM's Compute Node Kernel (CNK) on the Blue Gene series of supercomputers. This support allows users to build applications with the standard Blue Gene toolchain, including C++ and Fortran compilers. While the CNK is not Linux, IBM designed the CNK so that the user interface has much in common with the Linux 2.0 system call interface. The Plan 9 CNK emulator hence provides the foundation of kernel-based Linux system call support on Plan 9.more » In this paper we discuss cnkemu's implementation and some of its more interesting features, such as the ability to easily intermix Plan 9 and Linux system calls.« less

  20. A Linear Kernel for Co-Path/Cycle Packing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Zhong; Fellows, Michael; Fu, Bin; Jiang, Haitao; Liu, Yang; Wang, Lusheng; Zhu, Binhai

    Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of 'node-deletion problems with hereditary properties', is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.'s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.

  1. An introduction to kernel-based learning algorithms.

    PubMed

    Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B

    2001-01-01

    This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

  2. Di (2-ethylhexyl)phthalate (DEHP)

    Integrated Risk Information System (IRIS)

    Di ( 2 - ethylhexyl ) phthalate ( DEHP ) ; CASRN 117 - 81 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessme

  3. A new discriminative kernel from probabilistic models.

    PubMed

    Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert

    2002-10-01

    Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.

  4. Facile Reductive Silylation of UO22+ to Uranium(IV) Chloride.

    PubMed

    Kiernicki, John J; Zeller, Matthias; Bart, Suzanne C

    2017-01-19

    General reductive silylation of the UO 2 2+ cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO 2 X 2 (L) 2 (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R 3 Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R 3 SiO) 2 UX 2 (L) 2 in high yields. Support is included for the key step in the process, reduction of U VI to U V . This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl 4 or two equivalents of Me 2 SiCl 2 results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    This study was designed to compare the uptake and distribution of 14C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 30 and 35°C were transferred to [14C]sucrose media 10 days after pollination. Kernels cultured at 35°C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on labeled media. After 8 days in culture on [14C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35°C, respectively. This indicates that some of the sucrose taken up by the cob tissue was cleaved to fructose and glucose in the cob. Of the total carbohydrates, a higher percentage of label was associated with sucrose and a lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35°C compared to kernels cultured at 30°C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35°C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30°C (89%). Kernels cultured at 35°C had a correspondingly higher proportion of 14C in endosperm fructose, glucose, and sucrose. These results indicate that starch synthesis in the endosperm is strongly inhibited in kernels induced to abort by high temperature even though there is an adequate supply of sugar. PMID:16664847

  6. Induction of UO-44 gene expression by tamoxifen in the rat uterus and ovary.

    PubMed

    Huynh, H; Ng, C Y; Lim, K B; Ong, C K; Ong, C S; Tran, E; Tuyen Nguyen, T T; Chan, T W

    2001-07-01

    A complementary DNA, uterine-ovarian-specific gene 44 (UO-44), has been isolated from tamoxifen-induced rat uterine complementary DNA library using differential display techniques. UO-44 transcripts are found to be abundant in the uterus and ovary. UO-44 gene expression in the uterus is strictly regulated by estrogens, tamoxifen, and GH, whereas the pure antiestrogen ICI 182780 is inhibitory. Treatment of ovariectomized rats and hypophysectomized rats with tamoxifen and GH, respectively, resulted in up-regulation of UO-44 expression in a dose-dependent manner. In situ hybridization revealed that UO-44 gene expression was restricted to the luminal and glandular epithelial cells of the uterus and to granulosa cells of medium-size ovarian follicles. Transfection studies showed that UO-44 was a membrane-associated protein. Because estrogens, tamoxifen, and GH are stimulators of uterine luminal epithelial cell growth in vivo, UO-44 protein may serve as a mediator of the effect of these compounds in inducing epithelial proliferation and differentiation in these tissues.

  7. Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.

  8. Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; ...

    2017-03-23

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.

  9. Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}.

    PubMed

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel

    2017-03-24

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO_{2} and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ_{8} and extended Γ_{7} electrons.

  10. Comparison between phase field simulations and experimental data from intragranular bubble growth in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, M. R.; Biner, S. B.; Mille, P. C.

    2013-07-01

    In this work, we used the phase field method to simulate the post-irradiation annealing of UO{sub 2} described in the experimental work by Kashibe et al., 1993 [1]. The simulations were carried out in 2D and 3D using the MARMOT FEM-based phase-field modeling framework. The 2-D results compared fairly well with the experiments, in spite of the assumptions made in the model. The 3-D results compare even more favorably to experiments, indicating that diffusion in all three directions must be considered to accurate represent the bubble growth. (authors)

  11. Local Observed-Score Kernel Equating

    ERIC Educational Resources Information Center

    Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.

    2014-01-01

    Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…

  12. TICK: Transparent Incremental Checkpointing at Kernel Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrini, Fabrizio; Gioiosa, Roberto

    2004-10-25

    TICK is a software package implemented in Linux 2.6 that allows the save and restore of user processes, without any change to the user code or binary. With TICK a process can be suspended by the Linux kernel upon receiving an interrupt and saved in a file. This file can be later thawed in another computer running Linux (potentially the same computer). TICK is implemented as a Linux kernel module, in the Linux version 2.6.5

  13. Travel-time sensitivity kernels in long-range propagation.

    PubMed

    Skarsoulis, E K; Cornuelle, B D; Dzieciuch, M A

    2009-11-01

    Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.

  14. Credit scoring analysis using kernel discriminant

    NASA Astrophysics Data System (ADS)

    Widiharih, T.; Mukid, M. A.; Mustafid

    2018-05-01

    Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.

  15. Effects of ionizing radiation and temperature on uranyl silicates: soddyite (UO2)2(SiO4)(H2O)2 and Uranophane Ca(UO2)2(SiO3OH)2·5H2O.

    PubMed

    Sureda, R; Casas, I; Giménez, J; de Pablo, J; Quiñones, J; Zhang, J; Ewing, R C

    2011-03-15

    The stability of soddyite under electron irradiation has been studied over the temperature range of 25-300 °C. At room temperature, soddyite undergoes a crystalline-to-amorphous transformation (amorphization) at a total dose of 6.38 × 10(8) Gy. The electron beam irradiation results suggest that the soddyite structure is susceptible to radiation-induced nanocrystallization of UO(2). The temperature dependence of amorphization dose increases linearly up to 300 °C. A thermogravimetric and calorimetric analysis (TGA-DSC) combined with X-ray diffraction (XRD) indicates that soddyite retains its water groups up to 400 °C, followed by the collapse of the structure. Based on thermal analysis of uranophane, the removal of some water groups at relatively low temperatures provokes the collapse of the uranophane structure. This structural change appears to be the reason for the increase of amorphization dose at 140 °C. According to the results obtained, radiation field of a nuclear waste repository, rather than temperature effects, may cause changes in the crystallinity of soddyite and affect its stability during long-term storage.

  16. Full characterization of dislocations in ion-irradiated polycrystalline UO2

    NASA Astrophysics Data System (ADS)

    Onofri, C.; Legros, M.; Léchelle, J.; Palancher, H.; Baumier, C.; Bachelet, C.; Sabathier, C.

    2017-10-01

    In order to fully characterize the dislocation loops and lines features (Burgers vectors, habit/slip planes, interstitial or vacancy type) induced by irradiation in UO2, polycrystalline thin foils were irradiated with 4 MeV Au or 390 keV Xe ions at different temperatures (25, 600 and 800 °C) and fluences (0.5 and 1 × 1015 ions/cm2), and further analyzed using TEM. In all the cases, this study, performed on a large number of dislocation loops (diameter ranging from 10 to 80 nm) and for the first time on several dislocation lines, reveals unfaulted prismatic dislocation loops with an interstitial nature and Burgers vectors only along the <110>-type directions. Almost 60% of the studied loops are purely prismatic type and lie on {110} habit planes perpendicular to the Burgers vector directions. The others lie on the {110} or {111} planes, which are neither perpendicular to the Burgers vectors, nor contain them. About 87% of the dislocation lines, formed by loop overlapping as fluence increases, are edge or mixed type in the <100>{100} slip systems, as those induced under mechanical load.

  17. General heat kernel coefficients for massless free spin-3/2 Rarita-Schwinger field

    NASA Astrophysics Data System (ADS)

    Karan, Sudip; Kumar, Shashank; Panda, Binata

    2018-04-01

    We review the general heat kernel method for the Dirac spinor field as an elementary example in any arbitrary background. We, then compute the first three Seeley-DeWitt coefficients for the massless free spin-3/2 Rarita-Schwinger field without imposing any limitations on the background geometry.

  18. Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite ((UO{sub 2})O{sub 2}(OH){sub 3}){sub 4n} and hexanuclear (Th{sub 6}O{sub 4}(OH){sub 4}) motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Lingling; Zhang, Ronglan; Zhao, Jianshe, E-mail: jszhao@nwu.edu.cn

    Two new actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H{sub 3}tci) under hydrothermal condition. The combination of H{sub 3}tci and uranyl nitrate hexahydrate in aqueous solution leads to the isolation of [(UO{sub 2}){sub 2}(H{sub 2}O){sub 4}]{sub 0.5}(tci){sub 2}(UO{sub 2}){sub 4}(OH){sub 4}·18H{sub 2}O (1), which contains two distinct UO{sub 2}{sup 2+} coordination environments. Four uranyl cations, linked through μ{sub 3}-OH respectively, result in the edge-sharing ribbons. Then, the layer structure is constructed by U-O clusters linked through other eight-coordinated uranyl unions, giving rise to a porous structure in the space. Topological analysis reveals thatmore » complex 1 belongs to a (4, 8)-connected net with a schläfli symbol of (3{sup 4.}2{sup 6.}3){sub 2}(3{sup 4.}4{sup 6.}5{sup 6.}6{sup 8.}7{sup 3.}8). Th{sub 3}(tci){sub 2}O{sub 2}(OH){sub 2}(H{sub 2}O){sub 3}·12H{sub 2}O (2) generated by the reaction of H{sub 3}tci and thorium nitrate tetrahydrate, possesses nine-fold coodinated Th(IV) centers with a monocapped square antiprismatic geometry. The hexamers “Th{sub 6}O{sub 4}(OH){sub 4}” motifs are connected together by the carboxylate groups, showing a three-dimensional structures. Complex 2 takes on an 8-connected architecture and the point symbol is (4{sup 24.}6{sup 4}). - Graphical abstract: Two new 3D actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H3tci) and their topological structures were displayed. The infinite ((UO{sub 2})O{sub 2}(OH){sub 3}){sub 4n} and hexanuclear (Th{sub 6}O{sub 4}(OH){sub 4}) motifs were found in the title actinides networks.« less

  19. Mechanical behaviour near grain boundaries of He-implanted UO2 ceramic polycrystals

    NASA Astrophysics Data System (ADS)

    Ibrahim, M.; Castelier, É.; Palancher, H.; Bornert, M.; Caré, S.; Micha, J.-S.

    2017-01-01

    For studying the micromechanical behaviour of UO2 and characterising the intergranular interaction, polycrystals are implanted with helium ions, inducing strains in a thin surface layer. Laue X-ray micro-diffraction is used to measure the strain field in this implanted layer with a spatial resolution of about 1 μm. It allows a 2D mapping of the strain field in a dozen of grains. These measurements show that the induced strain depends mainly on the crystal orientation, and can be evaluated by a semi-analytical mechanical model. A mechanical interaction of the neighbouring grains has also been evidenced near the grain boundaries, which has been well reproduced by a finite element model. This interaction is shown to increase with the implantation energy (i.e. the implantation depth): it can be neglected at low implantation energy (60 keV), but not at higher energy (500 keV).

  20. Simulation of radiation driven fission gas diffusion in UO 2, ThO 2 and PuO 2

    DOE PAGES

    Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; ...

    2016-12-01

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D* 0more » > D* Kr > D* Xe > D* U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO 2, UO 2 and PuO 2, indicating that this process would not change greatly for mixed oxide fuels.« less

  1. Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong

    Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  2. Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C

    DOE PAGES

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; ...

    2017-10-04

    Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  3. Modeling adaptive kernels from probabilistic phylogenetic trees.

    PubMed

    Nicotra, Luca; Micheli, Alessio

    2009-01-01

    Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.

  4. Nonlinear Deep Kernel Learning for Image Annotation.

    PubMed

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  5. Influence of wheat kernel physical properties on the pulverizing process.

    PubMed

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  6. Reduced multiple empirical kernel learning machine.

    PubMed

    Wang, Zhe; Lu, MingZhe; Gao, Daqi

    2015-02-01

    Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3

  7. Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study

    DOE PAGES

    Liu, X. -Y.; Andersson, D. A.

    2017-11-03

    The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less

  8. Revisiting the diffusion mechanism of helium in UO 2 : A DFT+ U study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. -Y.; Andersson, D. A.

    The understanding of migration properties of helium atoms after their generation through α-decay of actinides in spent nuclear fuels is important for the safety of nuclear fuel storage and disposal. The diffusion of helium in UO 2 is revisited by using the DFT+U simulation methodology employing the “U-ramping” method to address the issue of metastable energy states. A novel diffusion mechanism by helium interstitials, the “asymmetric hop” mechanism, is reported and compared to other diffusion mechanisms including an oxygen vacancy mediated mechanism and available experimental diffusion data. We show that the new mechanism is the dominant one over a widemore » temperature range.« less

  9. Transition metal complexes of 2-amino-3,5-dihalopyridines: Syntheses, structures and magnetic properties of (3,5-diCAPH)2CuX4 and (3,5-diBAPH)2CuX4.

    PubMed

    Tremelling, Grant W; Foxman, Bruce M; Landee, Christopher P; Turnbull, Mark M; Willett, Roger D

    2009-12-21

    A family of bis(2-amino-3,5-dihalopyridinium)tetrahalocuprate(II) compounds has been synthesized, including (3,5-diCAPH)2CuCl4 (1), (3,5-diCAPH)2CuBr4 (2), (3,5-diBAPH)2CuCl4 (3), and (3,5-diBAPH)2CuBr4 (4) [3,5-diCAPH = 2-amino-3,5-dichloropyridinium; 3,5-diBAPH = 2-amino-3,5-dibromopyridinium]. These complexes have been analyzed through single crystal X-ray diffraction and temperature dependent magnetic susceptibility. Compound 1 crystallizes in the P-1 space group and the tetrachlorocuprate ion is best described as possessing a distorted square planar geometry. Compounds 2-4 are structurally similar and crystallized in the P2(1)/n, P2(1)/c, and P2(1)/n space groups respectively. The tetrahalocuprate ions are best described as distorted tetrahedra. All four compounds show antiferromagnetic interactions and were fit to the uniform chain Heisenberg model with resulting 2J/kB values of -11.71(2) K, -2.21(1) K, -12.43 (2) K, and -1.36(1) K, respectively. The exchange values correlate well with the two-halide exchange pathway parameters. The unusual observation that the chloride complexes show stronger magnetic exchange than the bromide complexes provides strong support that the exchange can be strongly dependent upon the Cu-X...X angles and Cu-X...X-Cu torsion angles.

  10. VS2DI: Model use, calibration, and validation

    USGS Publications Warehouse

    Healy, Richard W.; Essaid, Hedeff I.

    2012-01-01

    VS2DI is a software package for simulating water, solute, and heat transport through soils or other porous media under conditions of variable saturation. The package contains a graphical preprocessor for constructing simulations, a postprocessor for displaying simulation results, and numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). Flow is described by the Richards equation, and solute and heat transport are described by advection-dispersion equations; the finite-difference method is used to solve these equations. Problems can be simulated in one, two, or three (assuming radial symmetry) dimensions. This article provides an overview of calibration techniques that have been used with VS2DI; included is a detailed description of calibration procedures used in simulating the interaction between groundwater and a stream fed by drainage from agricultural fields in central Indiana. Brief descriptions of VS2DI and the various types of problems that have been addressed with the software package are also presented.

  11. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    NASA Astrophysics Data System (ADS)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations

  12. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    NASA Astrophysics Data System (ADS)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in

  14. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  15. Reduction of Aflatoxins in Apricot Kernels by Electronic and Manual Color Sorting

    PubMed Central

    Zivoli, Rosanna; Gambacorta, Lucia; Piemontese, Luca; Solfrizzo, Michele

    2016-01-01

    The efficacy of color sorting on reducing aflatoxin levels in shelled apricot kernels was assessed. Naturally-contaminated kernels were submitted to an electronic optical sorter or blanched, peeled, and manually sorted to visually identify and sort discolored kernels (dark and spotted) from healthy ones. The samples obtained from the two sorting approaches were ground, homogenized, and analysed by HPLC-FLD for their aflatoxin content. A mass balance approach was used to measure the distribution of aflatoxins in the collected fractions. Aflatoxin B1 and B2 were identified and quantitated in all collected fractions at levels ranging from 1.7 to 22,451.5 µg/kg of AFB1 + AFB2, whereas AFG1 and AFG2 were not detected. Excellent results were obtained by manual sorting of peeled kernels since the removal of discolored kernels (2.6%–19.9% of total peeled kernels) removed 97.3%–99.5% of total aflatoxins. The combination of peeling and visual/manual separation of discolored kernels is a feasible strategy to remove 97%–99% of aflatoxins accumulated in naturally-contaminated samples. Electronic optical sorter gave highly variable results since the amount of AFB1 + AFB2 measured in rejected fractions (15%–18% of total kernels) ranged from 13% to 59% of total aflatoxins. An improved immunoaffinity-based HPLC-FLD method having low limits of detection for the four aflatoxins (0.01–0.05 µg/kg) was developed and used to monitor the occurrence of aflatoxins in 47 commercial products containing apricot kernels and/or almonds commercialized in Italy. Low aflatoxin levels were found in 38% of the tested samples and ranged from 0.06 to 1.50 μg/kg for AFB1 and from 0.06 to 1.79 μg/kg for total aflatoxins. PMID:26797635

  16. Comparing Alternative Kernels for the Kernel Method of Test Equating: Gaussian, Logistic, and Uniform Kernels. Research Report. ETS RR-08-12

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; von Davier, Alina A.

    2008-01-01

    The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…

  17. Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.

    PubMed

    Yamshanov, V A; Kovan'ko, E G; Pustovalov, Yu I

    2016-03-01

    The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor.

  18. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  19. Electron Microscopic Examination of Irradiated TRISO Coated Particles of Compact 6-3-2 of AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori

    2012-12-01

    The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compact 6-3-2more » has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less

  20. Electron Microscopic Examination of Irradiated TRISO Coated Particles of Compact 6-3-2 of AGR-1 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Rooyen, Isabella Johanna; Demkowicz, Paul Andrew; Riesterer, Jessica Lori

    2012-12-01

    The electron microscopic examination of selected irradiated TRISO coated particles of the AGR-1 experiment of fuel compact 6-3-2 are presented in this report. Compact 6-3-2 refers to the compact in Capsule 6 at level 3 of Stack 2. The fuel used in capsule 6 compacts, are called the “baseline” fuel as it is fabricated with refined coating process conditions used to fabricate historic German fuel, because of its excellent irradiation performance with UO 2 kernels. The AGR-1 fuel is however made of low-enriched uranium oxycarbide (UCO). Kernel diameters are approximately 350 µm with a U-235 enrichment of approximately 19.7%. Compactmore » 6-3-2 has been irradiated to 11.3% FIMA compact average burn-up with a time average, volume average temperature of 1070.2°C and with a compact average fast fluence of 2.38E21 n/cm« less

  1. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  2. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  3. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  4. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  5. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  6. Considering causal genes in the genetic dissection of kernel traits in common wheat.

    PubMed

    Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz

    2016-11-01

    Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.

  7. Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.

    PubMed

    Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan

    2017-12-01

    The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, J.H.

    1962-11-15

    An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)

  9. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  10. Unconventional Signal Processing Using the Cone Kernel Time-Frequency Representation.

    DTIC Science & Technology

    1992-10-30

    Wigner - Ville distribution ( WVD ), the Choi- Williams distribution , and the cone kernel distribution were compared with the spectrograms. Results were...ambiguity function. Figures A-18(c) and (d) are the Wigner - Ville Distribution ( WVD ) and CK-TFR Doppler maps. In this noiseless case all three exhibit...kernel is the basis for the well known Wigner - Ville distribution . In A-9(2), the cone kernel defined by Zhao, Atlas and Marks [21 is described

  11. Multinuclear NMR Study of the Pressure Dependence for Carbonate Exchange in the UO 2(CO 3) 3 4-(aq) Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rene L.; Harley, Stephen J.; Ohlin, C. André

    2011-09-16

    Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO 2(CO 3) 3 4-(aq) (see picture) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.

  12. [Effects of UO-126 on proliferation and fbw7 expression of HeLa cells].

    PubMed

    Sun, Di; Shen, Yi; Wang, Shao-hua; Xiang, Zi-wu; Xie, Ying-shan; Jiang, Xin

    2010-02-01

    To observe the effects of UO-126 on the expression of F-box and WD repeat domain-containing protein 7(FBW7)and on the proliferation of human cervical cancer cell lines (HeLa cells). HeLa cells were treated with different concentrations of UO-126, MTT assay was used to observe the proliferation of HeLa cells. Immunofluorescence showed the location and expression of FBW7 in HeLa cells. The mRNA and protein expression of FBW7 were detected by RT-PCR and Western blot before and after mitogen-activated protein kinases (MAPK)signal was blocked by UO-126 a MAPK inhibitor. MTT results showed that the concentration range of MAPK signaling pathway inhibitor UO-126 inhibited the proliferation of HeLa cells in a concentration-and time-dependent manner(P<0.05). Immunofluorescence showed that the expression of positive FBW7 had increased after HeLa cells were treated with UO-126. RT-PCR and Western blot exhibited that the FBW7 mRNA and protein expression had significantly increased before and after HeLa cells were treated with UO-126(P<0.05). UO-126 could inhibit HeLa cells proliferation, FBW7 lied downstream of MAPK signaling pathway.

  13. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    PubMed

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    PubMed

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the

  15. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    PubMed

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  16. Wigner functions defined with Laplace transform kernels.

    PubMed

    Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George

    2011-10-24

    We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America

  17. Metabolic network prediction through pairwise rational kernels.

    PubMed

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy

  18. Comparative Studies on UO2 Fueled HTTR Several Nuclear Data Libraries

    NASA Astrophysics Data System (ADS)

    Hidayati, Anni N.; Prastyo, Puguh A.; Waris, Abdul; Irwanto, Dwi

    2017-07-01

    HTTR (High Temperature Engineering Test Reactor) is one of Generation IV nuclear reactors that has been developed by JAERI (former name of JAEA, JAPAN). HTTR uses graphite moderator, helium gas coolant with UO2 fuel and outlet coolant temperature of 900°C or higher than that. Several studies regarding HTTR have been performed by employing JENDL 3.2 nuclear data libraries. In this paper, comparative evaluation of HTTR with several nuclear data libraries (JENDL 3.3, JENDL 4.0, and JEF 3.1) have been conducted.. The 3-D calculation was performed by using CITATION module of SRAC 2006 code. The result shows some differences between those nuclear data libraries result. K-eff or core effective multiplication factor results are about 1.17, 1,18 and 1,19 (JENDL 3.3, JENDL 4.0, and JEF 3.1) at Begin of Life, also at the End of Life (after two years operation) are 1.16, 1.17 and 1.17 for each nuclear data libraries. There are some different result of K-eff but for neutron spectra results, those nuclear data libraries show the same result.

  19. First-principles investigation of the physical properties of cubic and orthorhombic phase Na3UO4

    NASA Astrophysics Data System (ADS)

    Chen, Haichuan; Tian, Wenyan

    2017-11-01

    The anisotropic elastic properties, Vickers hardness, Debye temperature and the minimum thermal conductivity of c-Na3UO4 and o-Na3UO4 have been investigated by means of the first principles calculations. The lattice parameters are in good agreement with the available experimental data and the theoretical results. The elastic constants satisfy the mechanical stability criteria show that both of them are mechanically stable. The value of B / G and Cauchy pressure reveal that the c-Na3UO4 holds a ductile behavior while the o-Na3UO4 behaves a brittle manner. The elastic anisotropy of c-Na3UO4 is less weak than that of o-Na3UO4. The hardness shows that both of them can be classified as ;soft materials;. Finally, the Debye temperature is 452.6 K and 388.4 K, and the minimum thermal conductivities kmin is 0.883 W m-1 K-1 and 0.753 W m-1 K-1 of c-Na3UO4 and o-Na3UO4, respectively. Due to relatively lower thermal conductivity, and thereby they are suitable to be used as thermal insulating materials.

  20. A dry-inoculation method for nut kernels.

    PubMed

    Blessington, Tyann; Theofel, Christopher G; Harris, Linda J

    2013-04-01

    A dry-inoculation method for almonds and walnuts was developed to eliminate the need for the postinoculation drying required for wet-inoculation methods. The survival of Salmonella enterica Enteritidis PT 30 on wet- and dry-inoculated almond and walnut kernels stored under ambient conditions (average: 23 °C; 41 or 47% RH) was then compared over 14 weeks. For wet inoculation, an aqueous Salmonella preparation was added directly to almond or walnut kernels, which were then dried under ambient conditions (3 or 7 days, respectively) to initial nut moisture levels. For the dry inoculation, liquid inoculum was mixed with sterilized sand and dried for 24 h at 40 °C. The dried inoculated sand was mixed with kernels, and the sand was removed by shaking the mixture in a sterile sieve. Mixing procedures to optimize the bacterial transfer from sand to kernel were evaluated; in general, similar levels were achieved on walnuts (4.8-5.2 log CFU/g) and almonds (4.2-5.1 log CFU/g). The decline of Salmonella Enteritidis populations was similar during ambient storage (98 days) for both wet-and dry-inoculation methods for both almonds and walnuts. The dry-inoculation method mimics some of the suspected routes of contamination for tree nuts and may be appropriate for some postharvest challenge studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Oxidative Corrosion of the UO 2 (001) Surface by Nonclassical Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M.

    Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal themore » structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).« less

  2. The site, size, spatial stability, and energetics of an X-ray flare kernel

    NASA Technical Reports Server (NTRS)

    Petrasso, R.; Gerassimenko, M.; Nolte, J.

    1979-01-01

    The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.

  3. Ideal regularization for learning kernels from labels.

    PubMed

    Pan, Binbin; Lai, Jianhuang; Shen, Lixin

    2014-08-01

    In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The pre-image problem in kernel methods.

    PubMed

    Kwok, James Tin-yau; Tsang, Ivor Wai-hung

    2004-11-01

    In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.

  5. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    NASA Astrophysics Data System (ADS)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  6. Exploiting graph kernels for high performance biomedical relation extraction.

    PubMed

    Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri

    2018-01-30

    Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM

  7. Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity.

    PubMed

    Jung, Stephan; Hütsch, Birgit W; Schubert, Sven

    2017-04-01

    Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H + -ATPase. It was investigated whether the PM H + -ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H + -ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H + -ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Adaptive kernel function using line transect sampling

    NASA Astrophysics Data System (ADS)

    Albadareen, Baker; Ismail, Noriszura

    2018-04-01

    The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.

  9. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  10. Robotic Intelligence Kernel: Driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The INL Robotic Intelligence Kernel-Driver is built on top of the RIK-A and implements a dynamic autonomy structure. The RIK-D is used to orchestrate hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a single cognitive behavior kernel that provides intrinsic intelligence for a wide variety of unmanned ground vehicle systems.

  11. Bell nozzle kernel analysis program

    NASA Technical Reports Server (NTRS)

    Elliot, J. J.; Stromstra, R. R.

    1969-01-01

    Bell Nozzle Kernel Analysis Program computes and analyzes the supersonic flowfield in the kernel, or initial expansion region, of a bell or conical nozzle. It analyzes both plane and axisymmetric geometrices for specified gas properties, nozzle throat geometry and input line.

  12. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    PubMed

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Investigation of various energy deposition kernel refinements for the convolution/superposition method

    PubMed Central

    Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.

    2013-01-01

    found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507

  14. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2(2+)) ions.

    PubMed

    Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht

    2010-03-15

    UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.

  15. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  16. Examining Potential Boundary Bias Effects in Kernel Smoothing on Equating: An Introduction for the Adaptive and Epanechnikov Kernels.

    PubMed

    Cid, Jaime A; von Davier, Alina A

    2015-05-01

    Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.

  17. 7 CFR 868.254 - Broken kernels determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall be...

  18. Experimental study of turbulent flame kernel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{submore » j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)« less

  19. Evaluating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Wilton, Donald R.; Champagne, Nathan J.

    2008-01-01

    Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.

  20. KITTEN Lightweight Kernel 0.1 Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedretti, Kevin; Levenhagen, Michael; Kelly, Suzanne

    2007-12-12

    The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten provides unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency andmore » scalability than with general purpose OS kernels.« less

  1. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    PubMed

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  2. Uranium Isotope Fractionation during Oxidation of Dissolved U(iv) and Synthetic Solid UO2

    NASA Astrophysics Data System (ADS)

    Wang, X.; Johnson, T. M.; Lundstrom, C. C.

    2013-12-01

    U isotopes (238U/235U) show promise as a tool for environmental monitoring of U contamination as well as a proxy for paleo-redox conditions. However, the isotopic fractionation mechanisms of U are still poorly understood. In groundwater systems, U(VI), a mobile contaminant, can be reduced to immobile U(IV) and thus remediated. Previous work shows that 238U/235U of the remaining U(VI) changes with the extent of reduction. Therefore, U(VI) isotope composition in groundwater can potentially be used to detect and perhaps quantify the extent of reduction. However, knowing if isotopic fractionation occurs during U(IV) oxidation is equally important. First, the reduced U(IV) (either solid or as dissolved organic complexes) potentially can be reoxidized to U(VI). If isotope fractionation occurs during oxidation, it would complicate the use of U isotope composition as a monitoring technique. Further, in natural weathering processes, U(IV) minerals are oxidized to form dissolved U(VI), which is carried to rivers and eventually to the ocean and deposited in marine sediments. The weathering cycle is thus sensitive to redox conditions, meaning the sedimentary U isotope record may serve as a paleoredox indicator, provided U isotope fractionation during oxidation and reduction are well known. We conducted experiments oxidizing 2 different U(IV) species by O2 and measuring isotopic fractionation factors. In one experiment, dissolved U(IV) in 0.1 N HCl (pH 1) was oxidized by entrained air. As oxidation proceeds at pH 1, the remaining dissolved U(IV) becomes progressively enriched in 238U in a linear trend, while the product U(VI) paralleled, but was offset to 1.0‰ lighter in 238U/235U. This linear progression of both remaining reactant and product suggests equilibrium fractionation during oxidation of dissolved U(IV) by O2. A second experiment oxidized synthetic, solid UO2 (in 20 mM NaHCO3, pH 7) with entrained air. The oxidative fractionation is very weak in this case with

  3. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  4. 7 CFR 868.304 - Broken kernels determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...

  5. 7 CFR 868.304 - Broken kernels determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...

  6. Probing the Oxygen Environment in UO22+ by Solid-State O-17 Nuclear Magnetic Resonance Spectroscopy and Relativistic Density Functional Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Herman M.; De Jong, Wibe A.; Soderquist, Chuck Z.

    A combined theoretical and solid-state O-17 NMR study of the electronic structure of the uranyl ion UO22+ in (NH4)4UO2(CO3)3 and rutherfordine UO2CO3 is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens, and the latter exemplifying a uranyl environment without hydrogens. A fully relativistic ab initio treatment reveals unique features of the U-O covalent bond, including the finding of O-17 chemical shift anisotropies that are among the largest ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O-17 NMR measurementsmore » in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O-17 echo signal of UO22+. The William R. Wiley environmental Molecular Sciences Laboratory is a US Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated by Battelle for the US Department of Energy.« less

  7. Kernel learning at the first level of inference.

    PubMed

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Irradiation behaviour of the large grained UO{sub 2} fuel pellet in the transient conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaka, Yuji; Watanabe, Seiichi; Arakawa, Yasushi

    2007-07-01

    In order to achieve a high duty fuel rod design, it is the key issue to suppress the fission gas release from the view point of the fuel rod inner pressure design. The large grain UO{sub 2} pellet is one of the candidates to meet such a requirement by reducing the fission gas release especially at high power and/or high burnup. We have demonstrated the fuel performance of the large grain pellet in the PWR irradiation conditions, which was fabricated with no additive but with active UO{sub 2} powder through the conventional pelletizing process for the normal grain size pellet.more » According to the mechanism of the fission gas retention, there may be a concern about the larger gas bubble swelling of the large grain pellet at the power transient conditions which may increase the potential of the PCMI failure. In this paper, we focus on the differences of the dimensional change in comparison among the pellets with the different grain sizes at the power transient conditions. The power ramp tests were carried out on the high burnup fuel rods of normal and large grain pellet with no additive, which had been irradiated in the PWR conditions up to around 60 GWd/t at peak position. The detailed PIE results revealed that the volume increment due to the power ramp clearly showed the dependence on the grain size as well as the fission gas release and suggested that the larger grain with no additive may suppress the gas bubble swelling at the power transient conditions. According to the experimental results, it is concluded that the large grain pellet with no additive does not deteriorate the irradiation performance during the power transient conditions from the view point of the gas bubble swelling. (authors)« less

  9. Evidence-based Kernels: Fundamental Units of Behavioral Influence

    PubMed Central

    Biglan, Anthony

    2008-01-01

    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600

  10. Structure and dynamics of the UO(2)(2+) ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Frick, Robert J; Hofer, Thomas S; Pribil, Andreas B; Randolf, Bernhard R; Rode, Bernd M

    2009-11-12

    A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion. These data were compared to recent experimental data obtained from LAXS and EXAFS and results of various theoretical calculations. Some properties were explained with the aid of charge distribution plots for the solute. The solvent dynamics around the ion were investigated using distance plots and mean ligand residence times and the results compared to experimental and theoretical data of related ions.

  11. The Classification of Diabetes Mellitus Using Kernel k-means

    NASA Astrophysics Data System (ADS)

    Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.

    2018-01-01

    Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.

  12. Precisely Determining Ultralow level UO22+ in Natural Water with Plasmonic Nanowire Interstice Sensor

    NASA Astrophysics Data System (ADS)

    Gwak, Raekeun; Kim, Hongki; Yoo, Seung Min; Lee, Sang Yup; Lee, Gyoung-Ja; Lee, Min-Ku; Rhee, Chang-Kyu; Kang, Taejoon; Kim, Bongsoo

    2016-01-01

    Uranium is an essential raw material in nuclear energy generation; however, its use raises concerns about the possibility of severe damage to human health and the natural environment. In this work, we report an ultrasensitive uranyl ion (UO22+) detection method in natural water that uses a plasmonic nanowire interstice (PNI) sensor combined with a DNAzyme-cleaved reaction. UO22+ induces the cleavage of DNAzymes into enzyme strands and released strands, which include Raman-active molecules. A PNI sensor can capture the released strands, providing strong surface-enhanced Raman scattering signal. The combination of a PNI sensor and a DNAzyme-cleaved reaction significantly improves the UO22+ detection performance, resulting in a detection limit of 1 pM and high selectivity. More importantly, the PNI sensor operates perfectly, even in UO22+-contaminated natural water samples. This suggests the potential usefulness of a PNI sensor in practical UO22+-sensing applications. We anticipate that diverse toxic metal ions can be detected by applying various ion-specific DNA-based ligands to PNI sensors.

  13. Brain tumor image segmentation using kernel dictionary learning.

    PubMed

    Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H

    2015-08-01

    Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.

  14. Development of a kernel function for clinical data.

    PubMed

    Daemen, Anneleen; De Moor, Bart

    2009-01-01

    For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO 2 and UC x) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required tomore » maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.« less

  16. Towards the Geometry of Reproducing Kernels

    NASA Astrophysics Data System (ADS)

    Galé, J. E.

    2010-11-01

    It is shown here how one is naturally led to consider a category whose objects are reproducing kernels of Hilbert spaces, and how in this way a differential geometry for such kernels may be settled down.

  17. Mechanical Behavior of UO 2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, B.; Roney, K.; Gong, B.

    Techniques were developed to measure properties at sub-grain scales using depleted Uranium Oxide (d-UO2) samples heat-treated to obtain different grain sizes and oxygen stoichiometries, through three main tasks: 1) sample processing and characterization, 2) microscale and conventional testing and 3) modeling. Grain size and crystallography were characterized using Scanning Electron Microscopy (SEM), in conjunction with Electron Backscattering Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI). Grains were then carefully selected based on their crystallographic orientations to perform ex-situ micromechanical tests with samples machined via Focused Ion Beam (FIB), with emphasis on micro-cantilever bending. These experiments were performed under controlled atmospheres,more » to insure stoichiometry control, at temperatures up to 700 °C and allowed measurements involving elastic (effective Young’s modulus), plastic (critical resolved shear stresses) and creep (creep strain rates) behavior. Conventional compression experiments were performed simultaneously to compare with the ex-situ measurements and study potential size effects. Modeling was implemented using anisotropic elasticity and inelastic constitutive relations for plasticity and creep based on kinematics and kinetics of dislocation glide that account for the effects of crystal orientation, and stress. The models will be calibrated and validated using the experimental data. This project provided insight on correlations among stoichiometry, crystallography and mechanical behavior in advanced oxide fuels, provided valuable experimental data to validate and calibrate mesoscale fuel performance codes and also a framework to measure sub-grain scale mechanical properties that should be suitable for use with irradiated samples due to small volumes required. The goals and metrics of the ongoing study of thermo-mechanical behavior in depleted uranium dioxide (d-UO 2) outlined in this project have

  18. Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro.

    PubMed

    Leong, C T C; Ong, C K; Tay, S K; Huynh, H

    2007-02-08

    Ovarian cancer is currently the second leading cause of gynecological malignancy and cisplatin or cisplatin-based regimens have been the standard of care for the treatment of advance epithelial ovarian cancers. However, the efficacy of cisplatin treatment is often limited by the development of drug resistance either through the inhibition of apoptotic genes or activation of antiapoptotic genes. We have previously reported the overexpression of human UO-44 (HuUO-44) in ovarian cancers and the HuUO-44 antisera markedly inhibited NIH-OVCAR3 ovarian cancer cell attachment and proliferation (Oncogene 23: 5707-5718, 2004). In the present study, we observed through the cancer cell line profiling array that the expression of HuUO-44 was suppressed in the ovarian cancer cell line (SKOV-3) after treatment with several chemotherapeutic drugs. Similarly, this suppression in HuUO-44 expression was also correlated to the cisplatin sensitivity in two other ovarian cancer cell lines NIH-OVCAR3 and OV-90 in a dose-dependent manner. To elucidate the function of HuUO-44 in cisplatin chemoresistance in ovarian cancer cell, small interfering RNAs (siRNAs) were employed to mediate HuUO-44 silencing in ovarian cancer cell line, NIH-OVCAR3. HuUO-44 RNA interference (RNAi) resulted in the inhibition of cell growth and proliferation. Importantly, HuUO-44 RNAi significantly increased sensitivity of NIH-OVCAR3 to cytotoxic stress induced by cisplatin (P<0.01). Strikingly, we have also demonstrated that overexpression of HuUO-44 significantly conferred cisplatin resistance in NIH-OVCAR3 cells (P<0.05). Taken together, UO-44 is involved in conferring cisplatin resistance; the described HuUO-44-specific siRNA oligonucleotides that can potently silence HuUO-44 gene expression may prove to be valuable pretreatment targets for antitumor therapy or other pathological conditions that involves aberrant HuUO-44 expression.

  19. Kernel-PCA data integration with enhanced interpretability

    PubMed Central

    2014-01-01

    Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge. PMID:25032747

  20. Gaussian mass optimization for kernel PCA parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Wang, Zulin

    2011-10-01

    This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.

  1. Design of CT reconstruction kernel specifically for clinical lung imaging

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.

    2005-04-01

    In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.

  2. Quality changes in macadamia kernel between harvest and farm-gate.

    PubMed

    Walton, David A; Wallace, Helen M

    2011-02-01

    Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.

  3. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images.

    PubMed

    Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K

    2015-05-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Quantum kernel applications in medicinal chemistry.

    PubMed

    Huang, Lulu; Massa, Lou

    2012-07-01

    Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design.

  5. HPLC separation post-column reaction, UV-visible and fluorescence detection of trace UO/sub 2//sup 2 +//U/sup 4 +/ species in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, A.R.

    In this study a method for the measurement of uranium in natural waters at sub-ppB concentration levels by the separation and determination of U/sup 4 +/ and UO/sub 2//sup 2 +/ species is proposed. Reversed phase high performance liquid chromatography, followed by a post-column reaction and a sensitive UV-visible detection system was the method of choice to determine qualitatively and quantitatively the two uranium species. Also a cation-exchange and fluorescence detection system was studied for separation and determination of UO/sub 2//sup 2 +/ ions. Uranyl ion was selectively complexed with L-phenylalanine moetie in the sample solution containing U/sup 4 +/more » ions. Uranium (IV)/U(VI)-ligand was separated on a C/sub 18/ column with acetate buffer. Hexanesulfonate was found to be the choice for ion-pair reagent. The separation was best done with the acetate buffer at .01 M concentration and pH of 3.5. Absorption of the two species were measured after a post-column reaction with Arsenazo-III. Chromatographic parameters were calculated and a calibration curves were constructed. The detection limit for the procedure was 0.7 ..mu..g/mo and 1.2..mu..g/ml for U(IV) and U(VI) respectively. When U(VI) was separated on the cation-exchange column the limit of detection was calculated to be 1 ..mu..g/ml. The direct fluorometric method for U(VI) measurement results in a detection limit of 2 ppB and upper concentration limit of 2 ppM. The effect of interfering ions in the direct method of determination could be eliminated by dilution of sample solution.« less

  6. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    PubMed

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  7. Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments.

    PubMed

    Carpenter, Julian; Bi, Yuqiang; Hayes, Kim F

    2015-01-20

    Iron sulfide precipitates formed under sulfate reducing conditions may buffer U(IV) insoluble solid phases from reoxidation after oxidants re-enter the reducing zone. In this study, sediment column experiments were performed to quantify the effect of biogenic mackinawite on U(IV) stability in the presence of nitrite or dissolved oxygen (DO). Two columns, packed with sediment from an abandoned U contaminated mill tailings site near Rifle, CO, were biostimulated for 62 days with an electron donor (3 mM acetate) in the presence (BRS+) and absence (BRS−) of 7 mM sulfate. The bioreduced sediment was supplemented with synthetic uraninite (UO2(s)), sterilized by gamma-irradiation, and then subjected to a sequential oxidation by nitrite and DO. Biogenic iron sulfides produced in the BRS+ column, mostly as mackinawite, inhibited U(IV) reoxidation and mobilization by both nitrite and oxygen. Most of the influent nitrite (0.53 mM) exited the columns without oxidizing UO2, while a small amount of nitrite was consumed by iron sulfides precipitates. An additional 10-day supply of 0.25 mM DO influent resulted in the release of about 10% and 49% of total U in BRS+ and BRS– columns, respectively. Influent DO was effectively consumed by biogenic iron sulfides in the BRS+ column, while DO and a large U spike were detected after only a brief period in the effluent in the BRS– column.

  8. Multineuron spike train analysis with R-convolution linear combination kernel.

    PubMed

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  10. A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.).

    PubMed

    Weng, Jianfeng; Li, Bo; Liu, Changlin; Yang, Xiaoyan; Wang, Hongwei; Hao, Zhuanfang; Li, Mingshun; Zhang, Degui; Ci, Xiaoke; Li, Xinhai; Zhang, Shihuang

    2013-07-05

    Kernel weight, controlled by quantitative trait loci (QTL), is an important component of grain yield in maize. Cytokinins (CKs) participate in determining grain morphology and final grain yield in crops. ZmIPT2, which is expressed mainly in the basal transfer cell layer, endosperm, and embryo during maize kernel development, encodes an isopentenyl transferase (IPT) that is involved in CK biosynthesis. The coding region of ZmIPT2 was sequenced across a panel of 175 maize inbred lines that are currently used in Chinese maize breeding programs. Only 16 single nucleotide polymorphisms (SNPs) and seven haplotypes were detected among these inbred lines. Nucleotide diversity (π) within the ZmIPT2 window and coding region were 0.347 and 0.0047, respectively, and they were significantly lower than the mean nucleotide diversity value of 0.372 for maize Chromosome 2 (P < 0.01). Association mapping revealed that a single nucleotide change from cytosine (C) to thymine (T) in the ZmIPT2 coding region, which converted a proline residue into a serine residue, was significantly associated with hundred kernel weight (HKW) in three environments (P <0.05), and explained 4.76% of the total phenotypic variation. In vitro characterization suggests that the dimethylallyl diphospate (DMAPP) IPT activity of ZmIPT2-T is higher than that of ZmIPT2-C, as the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) consumed by ZmIPT2-T were 5.48-, 2.70-, and 1.87-fold, respectively, greater than those consumed by ZmIPT2-C. The effects of artificial selection on the ZmIPT2 coding region were evaluated using Tajima's D tests across six subgroups of Chinese maize germplasm, with the most frequent favorable allele identified in subgroup PB (Partner B). These results showed that ZmIPT2, which is associated with kernel weight, was subjected to artificial selection during the maize breeding process. ZmIPT2-T had higher IPT activity than ZmIPT2-C, and

  11. Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.

    2018-02-01

    This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.

  12. Abilities of helium immobilization by the UO2 surface using the “ab initio” method

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Ludwik; Szuta, Marcin

    2016-09-01

    We present density functional theory calculation results concerning the uranium dioxide crystals with a helium atom incorporated in the octahedral sites on a nano superficial layer of UO2 fuel element. In order to quantify the capability of helium immobilization we propose a quantum model of adsorption and desorption which we compare with the classical model of Langmuir. Significant differences between the models are maintained in a wide temperature range including high temperatures of the order of 1000 K. By the proposed method of quantum isotherms it was established that the octahedral positions near the metal surface are good traps for helium atoms. While in a temperature close to 1089 K it predicts an intensive release of helium, which is consistent with the experimental results.

  13. An SVM model with hybrid kernels for hydrological time series

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, H.; Zhao, X.; Xie, Q.

    2017-12-01

    Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.

  14. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  15. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  16. MEASURING THE MASS OF 4UO900-40 DYNAMICALLY

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Etzel, Paul B.; Boyd, Patricia T.

    2006-01-01

    Accurate measurements of neutron star masses are needed to constrain the equation of state of neutron star matter - of importance to both particle physics and the astrophysics of neutron stars - and to identify the evolutionary track of the progenitor stars that form neutron stars. The best measured values of the mass of 4UO900-40 (= Vela XR-l), 1.86 +/- 0.16 Msun (Barziv et al. 2001) and 1.93 +/- 0.20 Msun (Abubekerov et al. 2004), make it a leading candidate for the most massive neutron star known. The direct relationship between the maximum mass of neutron stars and the equation of state of ultra-dense matter makes 4UO900-40 an important neutron star mass to determine accurately. The confidence interval on previous mass estimates, obtained from observations that include parameters determined by non-dynamical methods, are not small enough to significantly restrict possible equations of state. We describe here a purely dynamical method for determining the mass of 4UO900-40, an X-ray pulsar, using the reprocessed UV pulses emitted by its BO.5Ib companion. One can derive the instantaneous radial velocity of each component by simultaneous X-ray and UV observations at the two quadratures of the system. The Doppler shift caused by the primary's rotational velocity and the illumination pattern of the X-rays on the primary, two of the three principal contributors to the uncertainty on the derived mass of the neutron star, almost exactly cancel by symmetry in this method. A heuristic measurement of the mass of 4UO900-40 using observations obtained previously with the High Speed Photometer on HST is given in Appendix A.

  17. 7 CFR 981.61 - Redetermination of kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...

  18. Enhanced gluten properties in soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...

  19. Accelerating the Original Profile Kernel.

    PubMed

    Hamp, Tobias; Goldberg, Tatyana; Rost, Burkhard

    2013-01-01

    One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of large-scale classification tasks. Here, we introduce several software improvements that enable significant acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we explain how to parallelize various computations and provide an integrative program that reduces creating a production-quality classifier to a single program call. The new implementation is available as a Debian package under a free academic license and does not depend on commercial software. For non-Debian based distributions, the source package ships with a traditional Makefile-based installer. Download and installation instructions can be found at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel.

  20. Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; Zhang, Lei; Palomares, Raul I.; Lang, Maik; Navrotsky, Alexandra; Mao, Wendy L.; Ewing, Rodney C.

    2017-07-01

    The structure of lanthanide-doped uranium dioxide, LnxU1-xO2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ∼50-55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25-0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO2, such as Young's modulus.

  1. Modelling of pore coarsening in the high burn-up structure of UO2 fuel

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Tarasov, V. I.

    2017-05-01

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO2 fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  2. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing, manufacturing, packing, processing, preparing, treating...

  3. 7 CFR 981.60 - Determination of kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...

  4. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  5. Structural evolution of the double perovskites Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) upon reduction: Magnetic behavior of the uranium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinacca, R.M., E-mail: rmp@unsl.edu.ar; Viola, M.C.; Pedregosa, J.C.

    2011-11-15

    Highlights: {yields} Evolution of the double perovskites Sr{sub 2}B'UO{sub 6} upon reduction were studied by XRPD. {yields} Orthorhombic (Pnma) disordered perovskites SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} were obtained at 900 {sup o}C. {yields} U{sup 5+/4+} and Zn{sup 2+} cations are distributed at random over the octahedral positions. {yields} AFM ordering for the perovskite with B' = Zn appears below 30 K. -- Abstract: We describe the preparation of five perovskite oxides obtained upon reduction of Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) with H{sub 2}/N{sub 2} (5%/95%) at 900 {sup o}C during 8 h, and their structural characterizationmore » by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when B' = Co, Ni, Fe, and the corresponding B'O oxide when B' = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr{sub 2}B'UO{sub 6} are long-range ordered concerning B' and U cations. The crystal structures of the reduced phases, SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with B' = Zn, indicate uncompensated antiferromagnetic ordering of the U{sup 5+}/U{sup 4+} sublattice below 30 K.« less

  6. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  7. Improved modeling of clinical data with kernel methods.

    PubMed

    Daemen, Anneleen; Timmerman, Dirk; Van den Bosch, Thierry; Bottomley, Cecilia; Kirk, Emma; Van Holsbeke, Caroline; Valentin, Lil; Bourne, Tom; De Moor, Bart

    2012-02-01

    Despite the rise of high-throughput technologies, clinical data such as age, gender and medical history guide clinical management for most diseases and examinations. To improve clinical management, available patient information should be fully exploited. This requires appropriate modeling of relevant parameters. When kernel methods are used, traditional kernel functions such as the linear kernel are often applied to the set of clinical parameters. These kernel functions, however, have their disadvantages due to the specific characteristics of clinical data, being a mix of variable types with each variable its own range. We propose a new kernel function specifically adapted to the characteristics of clinical data. The clinical kernel function provides a better representation of patients' similarity by equalizing the influence of all variables and taking into account the range r of the variables. Moreover, it is robust with respect to changes in r. Incorporated in a least squares support vector machine, the new kernel function results in significantly improved diagnosis, prognosis and prediction of therapy response. This is illustrated on four clinical data sets within gynecology, with an average increase in test area under the ROC curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining clinical parameters and expression data in three case studies on breast cancer, results improved overall with use of the new kernel function and when considering both data types in a weighted fashion, with a larger weight assigned to the clinical parameters. The increase in AUC with respect to a standard kernel function and/or unweighted data combination was maximum 0.127, 0.042 and 0.118 for the three case studies. For clinical data consisting of variables of different types, the proposed kernel function--which takes into account the type and range of each variable--has shown to be a better alternative for linear and non-linear classification problems

  8. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    NASA Astrophysics Data System (ADS)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  9. Moisture Adsorption Isotherm and Storability of Hazelnut Inshells and Kernels Produced in Oregon, USA.

    PubMed

    Jung, Jooyeoun; Wang, Wenjie; McGorrin, Robert J; Zhao, Yanyun

    2018-02-01

    Moisture adsorption isotherms and storability of dried hazelnut inshells and kernels produced in Oregon were evaluated and compared among cultivars, including Barcelona, Yamhill, and Jefferson. Experimental moisture adsorption data fitted to Guggenheim-Anderson-de Boer (GAB) model, showing less hygroscopic properties in Yamhill than other cultivars of inshells and kernels due to lower content of carbohydrate and protein, but higher content of fat. The safe levels of moisture content (MC, dry basis) of dried inshells and kernels for reaching kernel water activity (a w ) ≤0.65 were estimated using the GAB model as 11.3% and 5.0% for Barcelona, 9.4% and 4.2% for Yamhill, and 10.7% and 4.9% for Jefferson, respectively. Storage conditions (2 °C at 85% to 95% relative humidity [RH], 10 °C at 65% to 75% RH, and 27 °C at 35% to 45% RH), times (0, 4, 8, or 12 mo), and packaging methods (atmosphere vs. vacuum) affected MC, a w , bioactive compounds, lipid oxidation, and enzyme activity of dried hazelnut inshells or kernels. For inshells packaged at woven polypropylene bag, MC and a w of inshells and kernels (inside shells) increased at 2 and 10 °C, but decreased at 27 °C during storage. For kernels, lipid oxidation and polyphenol oxidase activity also increased with extended storage time (P < 0.05), and MC and a w of vacuum packaged samples were more stable during storage than those atmospherically packaged ones. Principal component analysis showed correlation of kernel qualities with storage condition, time, and packaging method. This study demonstrated that the ideal storage condition or packaging method varied among cultivars due to their different moisture adsorption and physicochemical and enzymatic stability during storage. Moisture adsorption isotherm of hazelnut inshells and kernels is useful for predicting the storability of nuts. This study found that water adsorption and storability varied among the different cultivars of nuts, in which Yamhill was

  10. Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype.

    PubMed

    Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala

    2011-11-01

    Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.

  11. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  12. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  13. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  14. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  15. Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    PubMed Central

    Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.

    2014-01-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435

  16. Design, Synthesis and Evaluation of Novel Isoxazolines/Oxime Sulfonates of 2‧(2‧,6‧)-(Di)Chloropodophyllotoxins as Insecticidal Agents

    NASA Astrophysics Data System (ADS)

    Yu, Mingqiao; Liu, Guangci; Zhang, Yuanyuan; Feng, Tao; Xu, Ming; Xu, Hui

    2016-09-01

    A series of 2‧(2‧,6‧)-(di)halogeno-isoxazolopodophyllic acids-based esters, and oxime sulfonates of 2‧(2‧,6‧)-(di)halogenopodophyllones were prepared by structural modifications of podophyllotoxin as insecticidal agents against Mythimna separata Walker. It was found that when 2‧(2‧,6‧)-(di)halogenopodophyllones or 2‧(2‧,6‧)-(di)chloropicropodophyllones reacted with hydroxylamine hydrochloride, the desired products were related with the configuration of their lactones. Three key single-crystal structures of Ie, IIe and IIIb were determined by X-ray diffraction. Especially compounds IIc and Vc showed the highest insecticidal activity. Moreover, some interesting results of structure-insecticidal activity relationships of tested compounds were also observed.

  17. Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2005-04-01

    A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.

  18. Some physical properties of ginkgo nuts and kernels

    NASA Astrophysics Data System (ADS)

    Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.

    2013-12-01

    Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.

  19. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.

    PubMed

    Yiğit, D; Yiğit, N; Mavi, A

    2009-04-01

    The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.

  20. URINARY AND AMNIOTIC FLUID LEVELS OF PHTHALATE MONOESTERS IN RATS AFTER THE ORAL ADMINISTRATION OF DI(2-ETHYLHEXYL) PHTHALATE AND DI-N-BUTYL PHTHALATE

    EPA Science Inventory

    Two studies were designed to examine amniotic fluid and maternal urine concentrations of the di(2-ethylhexyl) phthalate (DEHP) metabolite mono(2-ethylhexyl) phthalate (MEHP) and the di-n-butyl phthalate (DBP) metabolite monobutyl phthalate (MBP) after administration of DEHP and D...

  1. A dynamic kernel modifier for linux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnich, R. G.

    2002-09-03

    Dynamic Kernel Modifier, or DKM, is a kernel module for Linux that allows user-mode programs to modify the execution of functions in the kernel without recompiling or modifying the kernel source in any way. Functions may be traced, either function entry only or function entry and exit; nullified; or replaced with some other function. For the tracing case, function execution results in the activation of a watchpoint. When the watchpoint is activated, the address of the function is logged in a FIFO buffer that is readable by external applications. The watchpoints are time-stamped with the resolution of the processor highmore » resolution timers, which on most modem processors are accurate to a single processor tick. DKM is very similar to earlier systems such as the SunOS trace device or Linux TT. Unlike these two systems, and other similar systems, DKM requires no kernel modifications. DKM allows users to do initial probing of the kernel to look for performance problems, or even to resolve potential problems by turning functions off or replacing them. DKM watchpoints are not without cost: it takes about 200 nanoseconds to make a log entry on an 800 Mhz Pentium-Ill. The overhead numbers are actually competitive with other hardware-based trace systems, although it has less 'Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the United States Department of Energy under contract W-7405-ENG-36. accuracy than an In-Circuit Emulator such as the American Arium. Once the user has zeroed in on a problem, other mechanisms with a higher degree of accuracy can be used.« less

  2. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    2018-02-01

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from kernels" target="_blank">https://github.com/apendergrass/cam5-kernels.

  3. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.

    PubMed

    Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang

    2017-07-01

    Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.

  4. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    DOE PAGES

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    2018-02-21

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels.

  5. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.

    Radiative kernels at the top of the atmosphere are useful for decomposing changes in atmospheric radiative fluxes due to feedbacks from atmosphere and surface temperature, water vapor, and surface albedo. Here we describe and validate radiative kernels calculated with the large-ensemble version of CAM5, CESM1.1.2, at the top of the atmosphere and the surface. Estimates of the radiative forcing from greenhouse gases and aerosols in RCP8.5 in the CESM large-ensemble simulations are also diagnosed. As an application, feedbacks are calculated for the CESM large ensemble. The kernels are freely available at https://doi.org/10.5065/D6F47MT6, and accompanying software can be downloaded from https://github.com/apendergrass/cam5-kernels.

  6. Hadamard Kernel SVM with applications for breast cancer outcome predictions.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong

    2017-12-21

    Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.

  7. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  8. Aflatoxin contamination of developing corn kernels.

    PubMed

    Amer, M A

    2005-01-01

    Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.

  9. Single kernel method for detection of 2-acetyl-1-pyrroline in aromatic rice germplasm using SPME-GC/MS

    USDA-ARS?s Scientific Manuscript database

    INTRODUCTION Aromatic rice or fragrant rice, (Oryza sativa L.), has a strong popcorn-like aroma due to the presence of a five-membered N-heterocyclic ring compound known as 2-acetyl-1-pyrroline (2-AP). To date, existing methods for detecting this compound in rice require the use of several kernels. ...

  10. KNBD: A Remote Kernel Block Server for Linux

    NASA Technical Reports Server (NTRS)

    Becker, Jeff

    1999-01-01

    I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a lower level component of a parallel file system. Parallel file systems are an important component of high performance supercomputers and clusters. Although supercomputer vendors such as SGI and IBM have their own custom solutions, there has been a void and hence a demand for such a system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at Clemson University has begun to address this need (1). Although their system provides much of the functionality of (and indeed was inspired by) the equivalent file systems in the commercial supercomputer market, their system is all in user-space. Migrating their 10 services to the kernel could provide a performance boost, by obviating the need for expensive system calls. Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels 2.1.101 and later. You can configure this block device to redirect reads and writes to a remote machine's disk. This can be used as a building block for constructing a striped file system across several nodes.

  11. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    PubMed Central

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  12. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  13. Multiple kernel learning in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei

    2011-03-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information

  14. Oscillatory supersonic kernel function method for interfering surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    In the method presented in this paper, a collocation technique is used with the nonplanar supersonic kernel function to solve multiple lifting surface problems with interference in steady or oscillatory flow. The pressure functions used are based on conical flow theory solutions and provide faster solution convergence than is possible with conventional functions. In the application of the nonplanar supersonic kernel function, an improper integral of a 3/2 power singularity along the Mach hyperbola is described and treated. The method is compared with other theories and experiment for two wing-tail configurations in steady and oscillatory flow.

  15. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  16. Reduction of Aflatoxins in Apricot Kernels by Electronic and Manual Color Sorting.

    PubMed

    Zivoli, Rosanna; Gambacorta, Lucia; Piemontese, Luca; Solfrizzo, Michele

    2016-01-19

    The efficacy of color sorting on reducing aflatoxin levels in shelled apricot kernels was assessed. Naturally-contaminated kernels were submitted to an electronic optical sorter or blanched, peeled, and manually sorted to visually identify and sort discolored kernels (dark and spotted) from healthy ones. The samples obtained from the two sorting approaches were ground, homogenized, and analysed by HPLC-FLD for their aflatoxin content. A mass balance approach was used to measure the distribution of aflatoxins in the collected fractions. Aflatoxin B₁ and B₂ were identified and quantitated in all collected fractions at levels ranging from 1.7 to 22,451.5 µg/kg of AFB₁ + AFB₂, whereas AFG₁ and AFG₂ were not detected. Excellent results were obtained by manual sorting of peeled kernels since the removal of discolored kernels (2.6%-19.9% of total peeled kernels) removed 97.3%-99.5% of total aflatoxins. The combination of peeling and visual/manual separation of discolored kernels is a feasible strategy to remove 97%-99% of aflatoxins accumulated in naturally-contaminated samples. Electronic optical sorter gave highly variable results since the amount of AFB₁ + AFB₂ measured in rejected fractions (15%-18% of total kernels) ranged from 13% to 59% of total aflatoxins. An improved immunoaffinity-based HPLC-FLD method having low limits of detection for the four aflatoxins (0.01-0.05 µg/kg) was developed and used to monitor the occurrence of aflatoxins in 47 commercial products containing apricot kernels and/or almonds commercialized in Italy. Low aflatoxin levels were found in 38% of the tested samples and ranged from 0.06 to 1.50 μg/kg for AFB₁ and from 0.06 to 1.79 μg/kg for total aflatoxins.

  17. Anatomically-Aided PET Reconstruction Using the Kernel Method

    PubMed Central

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-01-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization (EM) algorithm. PMID:27541810

  18. Anatomically-aided PET reconstruction using the kernel method.

    PubMed

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  19. Anatomically-aided PET reconstruction using the kernel method

    NASA Astrophysics Data System (ADS)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-09-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  20. Unprecedented reduction of the uranyl ion [UO2]2+ into a polyoxo uranium(IV) cluster: synthesis and crystal structure of the first f-element oxide with a M6(micro3-O)8 core.

    PubMed

    Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel

    2005-07-21

    The smooth comproportionation reaction of the U(VI) and U(III) complexes UO2(OTf)2 and U(OTf)3, afforded the hexanuclear U(IV) oxide cluster [U6(micro3-O)8(micro2-OTf)8(py)8], a rare example of a metal oxide with a M6(micro3-O)8 core.

  1. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  2. Expanding the Chemistry of Actinide Metallocene Bromides. Synthesis, Properties and Molecular Structures of the Tetravalent and Trivalent Uranium Bromide Complexes: (C 5Me 4R) 2UBr 2, (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br), and [K(THF)][(C 5Me 4R) 2UBr 2] (R = Me, Et)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtscheidl, Alejandro Gaston; Pagano, Justin K.; Scott, Brian Lindley

    The organometallic uranium species (C 5Me 4R) 2UBr 2 (R = Me, Et) were obtained by treating their chloride analogues (C 5Me 4R) 2UCl 2 (R = Me, Et) with Me 3SiBr. Treatment of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with K(O-2,6- iPr 2C 6H 3) afforded the halide aryloxide mixed-ligand complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(X) (R = Me, Et; X = Cl, Br). Complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br) (R = Me, Et) can also be synthesized by treating (C 5Me 4R) 2U(O-2,6-more » iPr 2C 6H 3)(Cl) (R = Me, Et) with Me 3SiBr, respectively. Reduction of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with KC 8 led to isolation of uranium(III) “ate” species [K(THF)][(C 5Me 5) 2UX 2] (X = Cl, Br) and [K(THF) 0.5][(C 5Me 4Et) 2UX 2] (X = Cl, Br), which can be converted to the neutral complexes (C 5Me 4R) 2U[N(SiMe 3) 2] (R = Me, Et). Analyses by nuclear magnetic resonance spectroscopy, X-ray crystallography, and elemental analysis are also presented.« less

  3. Expanding the Chemistry of Actinide Metallocene Bromides. Synthesis, Properties and Molecular Structures of the Tetravalent and Trivalent Uranium Bromide Complexes: (C 5Me 4R) 2UBr 2, (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br), and [K(THF)][(C 5Me 4R) 2UBr 2] (R = Me, Et)

    DOE PAGES

    Lichtscheidl, Alejandro Gaston; Pagano, Justin K.; Scott, Brian Lindley; ...

    2016-01-06

    The organometallic uranium species (C 5Me 4R) 2UBr 2 (R = Me, Et) were obtained by treating their chloride analogues (C 5Me 4R) 2UCl 2 (R = Me, Et) with Me 3SiBr. Treatment of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with K(O-2,6- iPr 2C 6H 3) afforded the halide aryloxide mixed-ligand complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(X) (R = Me, Et; X = Cl, Br). Complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br) (R = Me, Et) can also be synthesized by treating (C 5Me 4R) 2U(O-2,6-more » iPr 2C 6H 3)(Cl) (R = Me, Et) with Me 3SiBr, respectively. Reduction of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with KC 8 led to isolation of uranium(III) “ate” species [K(THF)][(C 5Me 5) 2UX 2] (X = Cl, Br) and [K(THF) 0.5][(C 5Me 4Et) 2UX 2] (X = Cl, Br), which can be converted to the neutral complexes (C 5Me 4R) 2U[N(SiMe 3) 2] (R = Me, Et). Analyses by nuclear magnetic resonance spectroscopy, X-ray crystallography, and elemental analysis are also presented.« less

  4. Kernel Temporal Differences for Neural Decoding

    PubMed Central

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  5. Utilization of wild apricot kernel press cake for extraction of protein isolate.

    PubMed

    Sharma, P C; Tilakratne, B M K S; Gupta, Anil

    2010-12-01

    The kernels of apricot (Prunus armeniaca) stones are utilized for extraction of oil. The press cake left after extraction of oil was evaluated for preparation of protein isolate for its use in food supplementation. The apricot kernels contained 45-50% oil, 23.6-26.2% protein, 4.2% ash, 5.42% crude fibre, 8.2% carbohydrates and 90 mg HCN/100 g kernels, while press cake obtained after oil extraction contained 34.5% crude protein, which can be utilized for preparation of protein isolates. The method standardized for extraction of protein isolate broadly consisted of boiling the press cake with water in 1:20 (w/v) ratio for 1 h, raising pH to 8 and stirring for a few min followed by filtration, coagulation at pH 4 prior to sieving and pressing of coagulant for overnight and drying followed by grinding which resulted in extraction of about 71.3% of the protein contained in the press cake. The protein isolate contained 68.8% protein, 6.4% crude fat, 0.8% ash, 2.2% crude fibre and 12.7% carbohydrates. Thus the apricot kernel press cake can be utilized for preparation of protein isolate to improve the nutritional status of many food formulations.

  6. Gradient-based adaptation of general gaussian kernels.

    PubMed

    Glasmachers, Tobias; Igel, Christian

    2005-10-01

    Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.

  7. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power

  8. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.

    PubMed

    Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu

    2016-04-12

    Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.

  9. Electronic and magnetic properties of double perovskite Sr2CoUO6: Heisenberg model

    NASA Astrophysics Data System (ADS)

    Nid-bahami, A.; Ahmed, S. Sidi; Ait-Tamerd, M.; Zaari, H.; El Kenz, A.; Benyoussef, A.

    2018-01-01

    This work will be focused on the electronic and magnetic properties of Sr2CoUO6 (SCUO) using ab-initio calculations and Monte Carlo Simulation (MCS). Firstly, we calculate the exchange coupling and the crystal field, then, the electronic and magnetic properties will be studied, using the full-potential linearized augmented plane wave (FP-LAPW) method, as implemented in the Wien2k code. This method employing the generalized gradient approximation (GGA) for exchange-correlation term. The half-metallic ferromagnetic nature implies a potential application of this new compound in spintronics devices. Also, we have presented the results of the band structures and densities of states for the two up and down spin polarizations. The exchange coupling and the crystal field calculated are J = 0 . 567 meV and δ = 0 . 559meV, and total spin magnetic moments is 2.96 μB closed to experimental values 3 μB. Secondly, we have presented the results for the magnetization and the susceptibility as a function of temperature. Finally, we obtain the critical temperature T = 9 . 20 K by MCS in good agreement with the experimental value.

  10. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  11. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.

    PubMed

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-10

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  12. Hot Hydrogen Testing of Tungsten-Uranium Dioxide (W-UO2) CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie

    2014-01-01

    CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will

  13. Structure and bulk modulus of Ln-doped UO 2 (Ln = La, Nd) at high pressure

    DOE PAGES

    Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; ...

    2017-04-10

    The structure of lanthanide-doped uranium dioxide, Ln xU 1-xO 2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ~50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ~ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ~ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both themore » ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. As a result, this trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO 2, such as Young's modulus.« less

  14. A rare positively charged nicotinic acid di­sulfide: 2,2′-di­thio­dinicotinic acid hydro­chloride monohydrate

    PubMed Central

    McGuire, Chad M.; Albrecht-Schmitt, Thomas E.

    2018-01-01

    The title compound {systematic name: 3-carb­oxy-2-[2-(3-carb­oxy­pyridin-2-yl)disulfan-1-yl)]pyridin-1-ium chloride monohydrate}, C12H9N2O4S2 +·Cl−·H2O, crystallizes in the triclinic space group P . A pair of 2-mercaptonicotinic acid moieties is connected by a 2,2′-di­sulfide bond with a dihedral angle of 78.79 (3)°. One of the N atom is protonated, as are both carboxyl­ate groups, resulting in an overall +1 charge on the dimer. The structure comprises a zigzagging layer of the dimerized di­thio­dinicotinic acid rings, with charge-balancing chloride ions and water mol­ecules between the layers. Hydrogen bonding between the chloride and water sites with the dimer appears to hold the structure together. Nearest neighbor nicotinic acid rings are offset when viewed down the a axis, suggesting no added stability from ring stacking. The asymmetric unit corresponds to the empirical formula of the compound, and it packs with two formula units per unit cell.

  15. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    PubMed

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.

    2017-05-01

    Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.

  17. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  18. Image quality of mixed convolution kernel in thoracic computed tomography.

    PubMed

    Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar

    2016-11-01

    The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.

  19. ASIC-based architecture for the real-time computation of 2D convolution with large kernel size

    NASA Astrophysics Data System (ADS)

    Shao, Rui; Zhong, Sheng; Yan, Luxin

    2015-12-01

    Bidimensional convolution is a low-level processing algorithm of interest in many areas, but its high computational cost constrains the size of the kernels, especially in real-time embedded systems. This paper presents a hardware architecture for the ASIC-based implementation of 2-D convolution with medium-large kernels. Aiming to improve the efficiency of storage resources on-chip, reducing off-chip bandwidth of these two issues, proposed construction of a data cache reuse. Multi-block SPRAM to cross cached images and the on-chip ping-pong operation takes full advantage of the data convolution calculation reuse, design a new ASIC data scheduling scheme and overall architecture. Experimental results show that the structure can achieve 40× 32 size of template real-time convolution operations, and improve the utilization of on-chip memory bandwidth and on-chip memory resources, the experimental results show that the structure satisfies the conditions to maximize data throughput output , reducing the need for off-chip memory bandwidth.

  20. Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.

    2017-12-01

    The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.