Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity
Kupchak, Connor; Rind, Samuel; Jordaan, Bertus; Figueroa, Eden
2015-01-01
Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via time-domain homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction. PMID:26585904
Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity.
Kupchak, Connor; Rind, Samuel; Jordaan, Bertus; Figueroa, Eden
2015-01-01
Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via time-domain homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction. PMID:26585904
Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity
NASA Astrophysics Data System (ADS)
Kupchak, Connor; Rind, Samuel; Jordaan, Bertus; Figueroa, Eden
2015-11-01
Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via time-domain homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction.
Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity
Priyesh, K. V.; Thayyullathil, Ramesh Babu
2014-01-28
We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.
Transitional behavior between self-Kerr and cross-Kerr effects by two photons
Koshino, Kazuki
2007-06-15
The transitional behavior of the two-photon Kerr effect between the self-Kerr and cross-Kerr cases is investigated. To this end, we have developed a semiclassical method for evaluating the two-photon Kerr effect that is applicable to any two-photon input state. It is revealed that the maximum Kerr effect is obtained when the second photon is input with a delay time that corresponds to the absorption time of the first photon by the optical material.
NASA Astrophysics Data System (ADS)
Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.
2011-06-01
Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the
Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.
2016-01-01
Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811
Tewarie, P; Bright, M G; Hillebrand, A; Robson, S E; Gascoyne, L E; Morris, P G; Meier, J; Van Mieghem, P; Brookes, M J
2016-04-15
Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811
NASA Astrophysics Data System (ADS)
Leyva, J. Francisco; Málaga, Carlos; Plaza, Ramón G.
2013-11-01
This paper studies a reaction-diffusion-chemotaxis model for bacterial aggregation patterns on the surface of thin agar plates. It is based on the non-linear degenerate cross diffusion model proposed by Kawasaki et al. (1997) [5] and it includes a suitable nutrient chemotactic term compatible with such type of diffusion, as suggested by Ben-Jacob et al. (2000) [20]. An asymptotic estimation predicts the growth velocity of the colony envelope as a function of both the nutrient concentration and the chemotactic sensitivity. It is shown that the growth velocity is an increasing function of the chemotactic sensitivity. High resolution numerical simulations using Graphic Processing Units (GPUs), which include noise in the diffusion coefficient for the bacteria, are presented. The numerical results verify that the chemotactic term enhances the velocity of propagation of the colony envelope. In addition, the chemotaxis seems to stabilize the formation of branches in the soft-agar, low-nutrient regime.
Passive CPHASE Gate via Cross-Kerr Nonlinearities.
Brod, Daniel J; Combes, Joshua
2016-08-19
A fundamental and open question is whether cross-Kerr nonlinearities can be used to construct a controlled-phase (cphase) gate. Here we propose a gate constructed from a discrete set of atom-mediated cross-Kerr interaction sites with counterpropagating photons. We show that the average gate fidelity F between a cphase and our proposed gate increases as the number of interaction sites increases and the spectral width of the photon decreases; e.g., with 12 sites we find F>99%. PMID:27588840
Breakdown of the cross-Kerr scheme for photon counting.
Fan, Bixuan; Kockum, Anton F; Combes, Joshua; Johansson, Göran; Hoi, Io-chun; Wilson, C M; Delsing, Per; Milburn, G J; Stace, Thomas M
2013-02-01
We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the conclusions also apply to optical systems. PMID:23414018
Extension of non-linear beam models with deformable cross sections
NASA Astrophysics Data System (ADS)
Sokolov, I.; Krylov, S.; Harari, I.
2015-12-01
Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.
Semiclassical evaluation of the two-photon cross-Kerr effect
Koshino, Kazuki
2006-11-15
When two distinguishable photons are simultaneously input into a nonlinear system, the output photons undergo nonlinear optical effects of the cross-Kerr type. Theoretical quantification of this two-photon cross-Kerr effect requires, in principle, a fully quantum-mechanical analysis involving heavy computation. In this paper, we propose a method for evaluating the two-photon cross-Kerr effect using a semiclassical optical response theory. The semiclassical method enables precise evaluation of the cross-Kerr effect with greatly reduced computation. The validity of the method is confirmed using a model nonlinear system.
Linear vs non-linear QCD evolution in the neutrino-nucleon cross section
NASA Astrophysics Data System (ADS)
Albacete, Javier L.; Illana, José I.; Soto-Ontoso, Alba
2016-03-01
Evidence for an extraterrestrial flux of ultra-high-energy neutrinos, in the order of PeV, has opened a new era in Neutrino Astronomy. An essential ingredient for the determination of neutrino fluxes from the number of observed events is the precise knowledge of the neutrino-nucleon cross section. In this work, based on [1], we present a quantitative study of σνN in the neutrino energy range 104 < Eν < 1014 GeV within two transversal QCD approaches: NLO DGLAP evolution using different sets of PDFs and BK small-x evolution with running coupling and kinematical corrections. Further, we translate this theoretical uncertainty into upper bounds for the ultra-high-energy neutrino flux for different experiments.
NASA Astrophysics Data System (ADS)
Muñoz-Diosdado, A.
2005-01-01
We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.
Cross-Kerr effect on an optomechanical system
NASA Astrophysics Data System (ADS)
Xiong, Wei; Jin, Da-Yu; Qiu, Yueyin; Lam, Chi-Hang; You, J. Q.
2016-02-01
We study the cross-Kerr (CK) effect on an optomechanical system driven by two-tone fields. We show that in the presence of the CK effect, a bistable behavior of the mean photon number in the cavity becomes more robust against the fluctuations of the frequency detuning between the cavity mode and the control field. The bistability can also be turned into a tristability within the experimentally accessible range of the system parameters. Also, we find that the symmetric profile of the optomechanically induced transparency is broken and the zero-absorption point is shifted in the presence of the CK effect. This shift can be used to measure the strength of the CK effect and the asymmetric absorption profiles can be employed to engineer a high quality factor of the cavity.
Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Wang, Meiyu; Yan, Fengli
2016-05-01
We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.
Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Wang, Meiyu; Yan, Fengli
2016-08-01
We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.
Enhanced cross-Kerr effect for probing tunnelling in coupled quantum dots
NASA Astrophysics Data System (ADS)
Peng, Yandong; Yang, Aihong; Chen, Bing; Zhang, Shaomei; Liu, Shande; Wang, Xueshui
2016-02-01
An efficient scheme for probing electron tunnelling is proposed based on the enhanced cross-Kerr nonlinearity in a double-dot system. Due to resonant tunnelling, the cross-Kerr nonlinearity arises in a transparency window. Its intensity is nearly two orders of magnitude greater than that of the self-Kerr effect under any given conditions, where residual absorption is suppressed due to the competition of nonlinear gain and absorption. The enhanced cross-Kerr effect is sensitive to the tunnelling, so the probe spectrum can detect subtle tunnelling changes. The simulation results show that the probe sensitivity of the nonlinear phase shift is about 0.28 rad/μeV.
Kundi, Varun; Thankachan, Pompozhi Protasis
2015-05-14
A detailed theoretical study of linear and non-linear optical susceptibilities (NLOS), one- and two-photon absorption (OPA and TPA) properties for a series of push-pull trans-stilbene (TSB) derivatives with introduction of different electron donor (D) and acceptor (A) groups on either side of the TSB ring system is presented. The objective of the work is to design new TSB derivatives with large TPA cross-section values and to explore their linear and non-linear optical susceptibilities, OPA and TPA properties. We have used linear and quadratic response theory methods and CAM-B3LYP functional in conjunction with the 6-31+G* basis set for all property calculations. We have explained the results of the first hyperpolarizability and TP transition probability using two-state model (2SM) calculations, the results of which are in excellent agreement with the response theory methods. The TP tensor elements have been analysed to explain the large TP activity of molecules. Orbitals involved in the transition processes have been studied both qualitatively (molecular orbital pictures) and quantitatively (Λ-values) in order to explain the nature of charge transfer in different TSB derivatives. The study reveals that the novel derivatives TSBD-10, TSBD-11, TSBD-12 and TSBD-13 have large non-linear optical susceptibilities and TPA cross-section values, the largest being found for TSBD-13 (5560 G.M.). PMID:25894609
Ramos, Daniel Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko
2014-11-03
We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.
Siuly; Yin, Xiaoxia; Hadjiloucas, Sillas; Zhang, Yanchun
2016-04-01
This work provides a performance comparison of four different machine learning classifiers: multinomial logistic regression with ridge estimators (MLR) classifier, k-nearest neighbours (KNN), support vector machine (SVM) and naïve Bayes (NB) as applied to terahertz (THz) transient time domain sequences associated with pixelated images of different powder samples. The six substances considered, although have similar optical properties, their complex insertion loss at the THz part of the spectrum is significantly different because of differences in both their frequency dependent THz extinction coefficient as well as differences in their refractive index and scattering properties. As scattering can be unquantifiable in many spectroscopic experiments, classification solely on differences in complex insertion loss can be inconclusive. The problem is addressed using two-dimensional (2-D) cross-correlations between background and sample interferograms, these ensure good noise suppression of the datasets and provide a range of statistical features that are subsequently used as inputs to the above classifiers. A cross-validation procedure is adopted to assess the performance of the classifiers. Firstly the measurements related to samples that had thicknesses of 2mm were classified, then samples at thicknesses of 4mm, and after that 3mm were classified and the success rate and consistency of each classifier was recorded. In addition, mixtures having thicknesses of 2 and 4mm as well as mixtures of 2, 3 and 4mm were presented simultaneously to all classifiers. This approach provided further cross-validation of the classification consistency of each algorithm. The results confirm the superiority in classification accuracy and robustness of the MLR (least accuracy 88.24%) and KNN (least accuracy 90.19%) algorithms which consistently outperformed the SVM (least accuracy 74.51%) and NB (least accuracy 56.86%) classifiers for the same number of feature vectors across all studies
NASA Astrophysics Data System (ADS)
Marcotte, D.
2016-04-01
The turning bands method (TBM) is a commonly used method of simulation for large Gaussian fields, its O(N) complexity being unsurpassed (N denotes the number of points to simulate). TBM can be implemented either in the spatial or the spectral domains. In the multivariate anisotropic case, spatial versions of TBM are currently available only for the linear model of coregionalization (LMC). For anisotropic non-LMC with symmetrical covariances only the spectral version is currently available. The spectral domain approach can be slow in the case of non-differentiable covariances due to the numerous frequencies to sample. Here a derivation of the equations is provided for simulating the anisotropic non-LMC directly in the spatial domain and the method is illustrated with two synthetic examples. The approach allows the specification of many different direct and cross-covariance components, each with possibly different geometric anisotropies and different model types. The complexity of the new multivariate approach remains O(N). Hence, a case of two variables defining an anisotropic non-LMC is simulated over one billion points in less than one hour on a desktop computer. These results help enlarge the scope of application of the TBM. The method can be easily implemented in any existing TBM program.
NASA Astrophysics Data System (ADS)
Pan, Jun; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo; Wang, Qin
2016-04-01
Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes physical qubits in a logic qubit, has great application in the future quantum communication. We present an efficient entanglement concentration protocol (ECP) for recovering less-entangled C-GHZ state into the maximally entangled C-GHZ state with the help of cross-Kerr nonlinearities and photon detectors. With the help of the cross-Kerr nonlinearity, the obtained maximally entangled C-GHZ state can be remained for other applications. Moreover, the ECP can be used repeatedly, which can increase the success probability largely. Based on the advantages above, our ECP may be useful in the future long-distance quantum communication.
Simplified optical quantum-information processing via weak cross-Kerr nonlinearities
Guo Qi; Bai Juan; Cheng Liuyong; Wang Hongfu; Zhang Shou; Shao Xiaoqiang
2011-05-15
We propose a simplified parity meter for photonic qubits with cross-Kerr nonlinearities, homodyne measurement, and some optical elements. Our scheme has lower error probability than the protocol proposed in Nemoto and Munro [Phys. Rev. Lett. 93, 250502 (2004)]. Based on the present parity meter, we achieve cluster-state preparation, a complete Bell-state analyzer, and quantum teleportation. All of these schemes are nearly deterministic in the regime with little noise and include less optical elements, which makes our schemes more meaningful for large-scale quantum computing.
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less
Complete Analysis of Four-Photon χ-Type Entangled State via Cross-Kerr Nonlinearity
NASA Astrophysics Data System (ADS)
Zeng, Zhi; Li, Xi-Han; Wang, Chun; Wang, Li-Li; Liu, Zhen-Zhen; Wei, Hua
2015-09-01
We propose an efficient method to construct an optical four-photon |χ> state analyzer via the cross-Kerr nonlinearity combined with linear optical elements. In this protocol, two four-qubit parity-check gates and two controlled phase gates are employed. We show that all the 16 orthogonal four-qubit |χ> states can be completely discriminated with our apparatus. The scheme is feasible and realizable with current technology. It may have useful potential applications in quantum information processing which based on |χ> state. Supported by the National Natural Science Foundation of China under Grant No. 11004258, and Fundamental Research Funds for the Central Universities Project under Grant No. CQDXWL-2012-014, the Natural Science Foundation Project of CQ CSTC 2011jjA90017
Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Li, Xi-Han; Ghose, Shohini
2016-02-01
We present two complete maximally hyperentangled state analysis protocols for photons entangled in the polarization and spatial-mode degrees of freedom. The first protocol is a hyperentangled Bell state analysis scheme for two photons, and the second is a hyperentangled Greenberger-Horne-Zeilinger (GHZ) state analysis scheme for three photons. In each scheme, a set of mutually orthogonal hyperentangled basis states are completely and deterministically discriminated with the aid of cross-Kerr nonlinearities and linear optics. We also generalize the schemes to unambiguously analyze the N -photon hyperentangled GHZ state. Compared with previous protocols, our schemes greatly simplify the discrimination process and reduce the requirements on nonlinearities by using the measured spatial-mode state to assist in the analysis of the polarization state. These advantages make our schemes useful for practical applications in long-distance high-capacity quantum communication.
Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States.
Holland, E T; Vlastakis, B; Heeres, R W; Reagor, M J; Vool, U; Leghtas, Z; Frunzio, L; Kirchmair, G; Devoret, M H; Mirrahimi, M; Schoelkopf, R J
2015-10-30
Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying an active feedback condition on an ancillary system or through reservoir engineering. Reservoir engineering maintains a desired quantum state through a combination of drives and designed entropy evacuation. We propose and implement a quantum-reservoir engineering protocol that stabilizes Fock states in a microwave cavity. This protocol is realized with a circuit quantum electrodynamics platform where a Josephson junction provides direct, nonlinear coupling between two superconducting waveguide cavities. The nonlinear coupling results in a single-photon-resolved cross-Kerr effect between the two cavities enabling a photon-number-dependent coupling to a lossy environment. The quantum state of the microwave cavity is discussed in terms of a net polarization and is analyzed by a measurement of its steady state Wigner function. PMID:26565448
Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Shen, Hong-Zhi; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun; Oh, Choo Hiap
2016-01-01
Relying on weak cross-Kerr nonlinearities, we propose a nearly deterministic generation scheme of the three-photon polarization-entangled perfect W state which can be applied to the perfect teleportation of an unknown single-photon state and has robust entanglement against the loss of one photon of them. Three photons entangle together by virtue of the bus function of the coherent state serving as the intermediate among them. In the scheme, three processes are executed successively and two kinds of modules are inserted into the circuit, where the homodyne measurement and the photon number measurement are aptly performed. By means of classical feedforward techniques, single-photon unitary transformation operations are performed on the corresponding photons based on the obtained measurement outcomes, by which the generation efficiency of the perfect W state aims to nearly unity. Moreover, some currently available optical elements are applied in the generation process, which offer facilities for the practical implementation.
Liu, Qian; Wang, Guan-Yu; Ai, Qing; Zhang, Mei; Deng, Fu-Guo
2016-01-01
Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication. PMID:26912172
Liu, Qian; Wang, Guan-Yu; Ai, Qing; Zhang, Mei; Deng, Fu-Guo
2016-01-01
Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication. PMID:26912172
NASA Astrophysics Data System (ADS)
Liu, Qian; Wang, Guan-Yu; Ai, Qing; Zhang, Mei; Deng, Fu-Guo
2016-02-01
Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication.
Katashima, Takuya; Urayama, Kenji; Chung, Ung-il; Sakai, Takamasa
2015-05-01
The pure shear deformation of the Tetra-polyethylene glycol gels reveals the presence of an explicit cross-effect of strains in the strain energy density function even for the polymer networks with nearly regular structure including no appreciable amount of structural defect such as trapped entanglement. This result is in contrast to the expectation of the classical Gaussian network model (Neo Hookean model), i.e., the vanishing of the cross effect in regular networks with no trapped entanglement. The results show that (1) the cross effect of strains is not dependent on the network-strand length; (2) the cross effect is not affected by the presence of non-network strands; (3) the cross effect is proportional to the network polymer concentration including both elastically effective and ineffective strands; (4) no cross effect is expected exclusively in zero limit of network concentration in real polymer networks. These features indicate that the real polymer networks with regular network structures have an explicit cross-effect of strains, which originates from some interaction between network strands (other than entanglement effect) such as nematic interaction, topological interaction, and excluded volume interaction. PMID:25956121
Cross Kerr and Raman effects on the switching efficiency of soliton optical fiber gates
NASA Astrophysics Data System (ADS)
Chimfwembe, Patrick Chilufya
Scope and method of study. The purpose of this study was to examine the cross Kerr and Raman effects on the switching efficiency of soliton optical fiber gates. Analytical propagation models were derived via the reductive perturbation method, and the numerical propagation models via the symmetrized split-step Fourier method. Zero propagation attenuation is assumed. The second and higher order dispersion parameters, in the two orthogonal axes of the strongly birefringent fiber, are assumed to be equal. Findings and conclusions. The traditional propagation equation of two orthogonally polarized solitons, in a strongly birefringent singlemode fiber, is significantly modified by the introduction of cross steepening and cross frequency shifting effects. Co-propagation numerical solutions of the coupled nonlinear Schrödinger equation, using the symmetrized split-step Fourier method, were used to simulate an inverter soliton trapping gate (STG), inverter soliton dragging gate (SDG), and two newly discovered soliton optical fiber gates. The two newly discovered gates are the STG-NOLM gate (NOLM stands for nonlinear optical loop mirror), and the STG-PSI-NOLM gate (PSI stands for partial shuffle interaction). It was found that the inverter STG, with the control pulse on the fast axis, is much more immune to the delay effects introduced by the higher order nonlinear and dispersion effects. The STG is still capable of switching efficiently under these delaying effects. The inverter SDG, however, is less immune to these effects, especially when the control pulse is on the slow axis (at angle 30°). The clock time window needs only to be slightly reduced for the SDG, when the control pulse is on the fast axis (at angle 60°). Inference from these results indicates that a STG is better than a SDG, when operated under the higher order nonlinear and dispersion effects. The switching performance of the STG-PSI-NOLM gate (with segment length equal to walk-off length) is very
NASA Astrophysics Data System (ADS)
Dutta, Srimonti; Ghosh, Dipak; Samanta, Shukla
2016-04-01
This paper studies the human gait pattern of normal people and patients suffering from Parkinson's disease using the MFDXA (Multifractal Detrended Cross-correlation Analysis) methodology. The auto correlation and cross correlation of the time series of the total force under the left foot and right foot were studied. The study reveals that the degree of multifractality (W) and degree of correlation (γ) are generally more for normal patients than the diseased set. It is also observed that the values of W and γ are nearly same for left foot and right. It is also observed that the study of autocorrelation alone is not sufficient, cross correlations should also be studied to get a better concept of neurodegenerative diseases.
NASA Astrophysics Data System (ADS)
Kang, Yi-Hao; Xia, Yan; Lu, Pei-Min
2014-02-01
The controlled phase gate is one of the most important logic gates in the quantum computation field. In this paper, we proposed a protocol for implementing the two-qubit controlled phase gates with the help of cross-Kerr nonlinearity, optical elements and the conventional photon detectors, which are feasible with existing experimental technology. The protocol also can be applied to implement the controlled phase gates of many different atomic and photonic degrees of freedom with successful probability of 100%, that is, our protocol is efficient and flexible.
Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting
2016-01-01
We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state. PMID:27412489
Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting
2016-01-01
We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state. PMID:27412489
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting
2016-07-01
We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state.
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-07-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.
NASA Astrophysics Data System (ADS)
Liu, Huan-Juan; Xia, Yan; Song, Jie
2016-05-01
In this scheme, based on the weak cross-Kerr nonlinearity, an hyperconcentration protocol for the arbitrary partially hyperentangled N-particle Greenberger-Horne-Zeilinger (GHZ) state is presented. Considering the N photons initially in the nonmaximally hyperentangled GHZ state in which photons are entangled simultaneously in the polarization and the spatial-mode degrees of freedom, we can obtain the maximally hyperentangled N-particle GHZ state by the projection measurements on the additional photons. Numerical simulation demonstrates that by iterating the entanglement concentration process, we can improve the success probability of the scheme. Furthermore, we discuss the feasibility of the setups of the protocol, concluding that the present protocol is feasible with existing experimental technology. All these advantages make this scheme more efficient and more convenient in quantum communication.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
NASA Astrophysics Data System (ADS)
Abdel-Wahab, N. H.; Thabet, Lamia E.
2016-01-01
In this paper, some properties through the moving four-level N-type atom interacting with a two-mode radiation field are presented. We study this system in the presence of the nonlinearity. The exact solution of this model is given by using the Schrödinger equation when the atom and the field are initially in an excited state and a squeezed state, respectively. We employed the results to perform a careful investigation of the temporal evolution of the cross-correlation function, the momentum increment, the difference mean photon numbers and the normal squeezing. The influence of the Kerr and the cross-Kerr medium parameters on these aspects is examined. It is found that the atom-field properties are affected by the changing of these parameters.
Non-linearity in clinical practice.
Petros, Peter
2003-05-01
The whole spectrum of medicine consists of complex non-linear systems that are balanced and interact with each other. How non-linearity confers stability on a system and explains variation and uncertainty in clinical medicine is discussed. A major theme is that a small alteration in initial conditions may have a major effect on the end result. In the context of non-linearity, it is argued that 'evidence-based medicine' (EBM) as it exists today can only ever be relevant to a small fraction of the domain of medicine, that the 'art of medicine' consists of an intuitive 'tuning in' to these complex systems and as such is not so much an art as an expression of non-linear science. The main cause of iatrogenic disease is interpreted as a failure to understand the complexity of the systems being treated. Case study examples are given and analysed in non-linear terms. It is concluded that good medicine concerns individualized treatment of an individual patient whose body functions are governed by non-linear processes. EBM as it exists today paints with a broad and limited brush, but it does promise a fresh new direction. In this context, we need to expand the spectrum of scientific medicine to include non-linearity, and to look upon the 'art of medicine' as a historical (but unstated) legacy in this domain. PMID:12787180
NASA Astrophysics Data System (ADS)
Jino, Heo; Chang-Ho, Hong; Dong-Hoon, Lee; Hyung-Jin, Yang
2016-02-01
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-01-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong
2016-01-01
Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767
Stability of non-linear integrable accelerator
Batalov, I.; Valishev, A.; /Fermilab
2011-09-01
The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.
Non-linear Post Processing Image Enhancement
NASA Technical Reports Server (NTRS)
Hunt, Shawn; Lopez, Alex; Torres, Angel
1997-01-01
A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,
Non-linear cord-rubber composites
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1989-01-01
A method is presented for calculating the stress-strain relations in a multi-layer composite made up of materials whose individual stress-strain characteristics are non-linear and possibly different. The method is applied to the case of asymmetric tubes in tension, and comparisons with experimentally measured data are given.
NASA Astrophysics Data System (ADS)
Thomson, Mark J.; McKellar, Bruce H. J.
1991-04-01
A simple, non-linear generalization of the MSW equation is presented and its analytic solution is outlined. The orbits of the polarization vector are shown to be periodic, and to lie on a sphere. Their non-trivial flow patterns fall into two topological categories, the more complex of which can become chaotic if perturbed.
Non-linear dark energy clustering
Anselmi, Stefano; Ballesteros, Guillermo; Pietroni, Massimo E-mail: ballesteros@pd.infn.it
2011-11-01
We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10–15 per cent for small scales.
Phototube non-linearity correction technique
NASA Astrophysics Data System (ADS)
Riboldi, S.; Blasi, N.; Brambilla, S.; Camera, F.; Giaz, A.; Million, B.
2015-06-01
Scintillation light is often detected by photo-multiplier tube (PMT) technology. PMTs are however intrinsically non linear devices, especially when operated with high light yield scintillators and high input photon flux. Many physical effects (e.g. inter-dynode field variation, photocathode resistivity, etc.) can spoil the ideal PMT behavior in terms of gain, ending up in what are addressed as the under-linearity and over-linearity effects. Established techniques implemented in the PMT base (e.g. increasing bleeding current, active voltage divider, etc.) can mitigate these effects, but given the unavoidable spread in manufacturing and materials, it turns out that, with respect to linearity at the percent level, every PMT sample is a story of its own. The residual non linearity is usually accounted for with polynomial correction of the spectrum energy scale, starting from the position of a few known energy peaks of calibration sources, but uncertainly remains in between of calibration peaks. We propose to retrieve the calibration information from the entire energy spectrum and not only the position of full energy peaks (FEP), by means of an automatic procedure that also takes into account the quality (signal/noise ratio) of the information about the non-linearity extracted from the various regions of the spectrum.
Spin waves cause non-linear friction
NASA Astrophysics Data System (ADS)
Magiera, M. P.; Brendel, L.; Wolf, D. E.; Nowak, U.
2011-07-01
Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-10-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predatorprey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-04-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon
Non-linear Models for Longitudinal Data
Serroyen, Jan; Molenberghs, Geert; Verbeke, Geert; Davidian, Marie
2009-01-01
While marginal models, random-effects models, and conditional models are routinely considered to be the three main modeling families for continuous and discrete repeated measures with linear and generalized linear mean structures, respectively, it is less common to consider non-linear models, let alone frame them within the above taxonomy. In the latter situation, indeed, when considered at all, the focus is often exclusively on random-effects models. In this paper, we consider all three families, exemplify their great flexibility and relative ease of use, and apply them to a simple but illustrative set of data on tree circumference growth of orange trees. PMID:20160890
Non-linearities in Holocene floodplain sediment storage
NASA Astrophysics Data System (ADS)
Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten
2013-04-01
Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Non-linear Flood Risk Assessment
NASA Astrophysics Data System (ADS)
Mazzarella, A.
The genesis of floodings is very complex depending on hydrologic, meteorological and evapo-transpirative factors that are linked among themselves in a non linear way with numerous feedback processes. The Cantor dust and the rank-ordering statistics supply a proper framework for identifying a kind of a non linear order in the time succession of the floodings and so provide a basis for their prediction. When a catalogue is analysed, it is necessary to test its completeness with respect to the size of the recorded events and results obtained from analysis of catalogues that do not take into account such a test are suspect and possibly wrong, or, at least, unreliable. Floodings have no instrumentally determined magnitude scale, like that conventionally used for earthquakes, and this is why they are generally described in qualitative terms. For this reason, a semi-quantitative index, called ASI (Alluvial Strength Index) has been here developed that combines attributes of alluvial triggering mechanisms and effects on the territorial and hydraulic system.The historical succession of alluvial events occurred at high valley of Po river (Northern Italy), mean valley of Calore river (Southern Italy) and at Sarno, near Naples, have been accurately reconstructed on the basis of old documents and classified according to their ASI. The catalogues have been verified to be complete only for events classified at least as moderate and this probably because many of the lowest energetic events, especially in the past, escaped the detection. The identification of scale-invariances in the time clustering of alluvial events, both on short and long time scales, even if indicative of the complexity of their genesis, might be very helpful for the assessment and reduction of the hazard of future disasters. For example, on the basis of the results of the rank-ordering statistics, the most probable occurrence of an alluvial event at Sarno, classified at least as strong, is predicted to occur
Influence of Kerr-like medium on the dynamics of a two-mode Raman coupled model
NASA Astrophysics Data System (ADS)
Singh, Sudha; Gilhare, Karuna
2016-08-01
We study the quantum dynamics of an effective two-level atom interacting with two modes via Raman process inside an ideal cavity in the presence of Kerr non-linearity. The cavity modes interact both with the atom as well as the Kerr-like medium. The unitary transformation method presented here, not only solves the time-dependent problem, but also provides the eigensolutions of the interacting Hamiltonian at the same time. We study the atomic-population dynamics and the dynamics of the photon statistics in the two cavity modes. The influence of the Kerr-like medium on the statistics of the field is explored and it is observed that Kerr medium introduces antibunching in mode 1 and this effect is enhanced by a stronger interaction with the non-linear medium. In the high non-linear coupling regime anticorrelated beam become correlated. Kerr medium also introduces non-classical correlation between the two modes.
Non-linear electrohydrodynamics in microfluidic devices.
Zeng, Jun
2011-01-01
Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. PMID:21673912
Non-Linear Electrohydrodynamics in Microfluidic Devices
Zeng, Jun
2011-01-01
Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. PMID:21673912
NASA Astrophysics Data System (ADS)
Canabarro, Askery; Santos, B.; de Lima Bernardo, B.; Moura, André L.; Soares, W. C.; de Lima, E.; Gléria, Iram; Lyra, M. L.
2016-02-01
Taking into account relaxing Kerr nonlinearity and walk-off effects, the conditions and gain spectra of cross-phase modulation-induced modulational instability (XPM-MI) of two incoherently copropagating optical waves of different frequencies and same polarization are investigated. We devote particular attention to the mixed case in which one pulse propagates under the normal group-velocity dispersion (GVD) regime, while the second one is under an anomalous GVD regime. We unveil that in the limit of an instantaneuous nonlinear response, the typical frequency with maximum gain converges to a finite value in the mixed GDV regime, while it continuously grows with the group-velocity mismatch in the normal GVD regime. As a result, the maximum gain typically decreases with the group-velocity mismatch in the mixed regime, contrasting with the opposite trend in the normal GVD regime. Further, we show that besides the mode having maximum gain at a frequency decaying with 1 /τ1 /3 in the slow response limit, there is a second mode having maximum gain with a distinct scaling behavior Ωmax∝1 /τ in the absence of group-velocity mismatch. The associated maximum gains scale, respectively, as 1 /τ2 /3 and 1 /τ , thus signaling the corresponding quadratic and linear dispersion relation of these modes in the low-frequency limit. A detailed analysis of the influence of the nonlinear response time and group-velocity dispersion on the MI gain spectrum is also provided.
NASA Astrophysics Data System (ADS)
Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin
2015-05-01
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.
Non-linear interaction of elastic waves in rocks
NASA Astrophysics Data System (ADS)
Kuvshinov, B. N.; Smit, T. J. H.; Campman, X. H.
2013-09-01
We study theoretically the interaction of elastic waves caused by non-linearities of rock elastic moduli, and assess the possibility to use this phenomenon in hydrocarbon exploration and in the analysis of rock samples. In our calculations we use the five-constant model by Gol'dberg. It is shown that the interaction of plane waves in isotropic solids is completely described by five coupling coefficients, which have the same order of magnitude. By considering scattering of compressional waves generated by controlled sources at the Earth surface from a non-linear layer at the subsurface, we conclude that non-linear signals from deep formations are unlikely to be measured with the current level of technology. Our analysis of field tests where non-linear signals were measured, suggests that these signals are generated either in the shallow subsurface or in the vicinity of sources. Non-linear wave interaction might be observable in lab tests with focused ultrasonic beams. In this case, the non-linear response is generated in the secondary parametric array formed by linear beams scattered from inclusions. Although the strength of this response is controlled by non-linearity of the surrounding medium rather than by non-linearity of inclusions, its measurement can help to obtain better images of rock samples.
Simulation of non-linear coregionalization models by FFTMA
NASA Astrophysics Data System (ADS)
Liang, Min; Marcotte, Denis; Shamsipour, Pejman
2016-04-01
A fast and efficient method to simulate multivariate fields with non-linear models of coregionalization (N-LMC) is described. The method generalizes FFTMA to the multivariate simulation of the N-LMC with symmetric cross-covariances, hence the name GFFTMA. It allows us for example to use an exponential model as the direct covariance for the main variable, a Cauchy model for the secondary variable and a K-Bessel model for the cross-covariance. Each covariance and cross-covariance are Fast Fourier Transformed (FFT) to get the discrete spectral densities. Then the spectral matrix is eigen-decomposed at each frequency separately to provide the square root matrix and to enforce positive-definiteness in cases where small negative eigenvalues are found. Finally the simulated spectrum is obtained as multiplication of the root matrix and the white noise coefficients. The method is particularly fast for covariances having derivatives at the origin and/or for covariances with long range. Hence, two-variables' 2D fields of 100 million pixels with all-Gaussian or all-cubic covariances and cross-covariance are both simulated in less than 200 s. The CPU-time increases only as N log(N) (N, the number of points to simulate). Additional realizations are obtained at a low marginal cost as the eigen-decomposition step needs to be done only once for the first realization. The main limitation of the approach is its rather stringent memory requirement. Synthetic examples illustrate the simulations of N-LMC with two and three variables for different combinations of the seven available models. It shows that the theoretical models are all well reproduced. An illustrative case-study on overburden thickness simulation is provided where the secondary information consists of a latent Gaussian variable identifying the geological domain.
Employment of CB models for non-linear dynamic analysis
NASA Technical Reports Server (NTRS)
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
NASA Astrophysics Data System (ADS)
Dymnikova, Irina; Galaktionov, Evgeny
2015-08-01
In non-linear electrodynamics coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have an obligatory de Sitter center. By the Gürses-Gürsey algorithm they are transformed to spinning electrically charged solutions that are asymptotically Kerr-Newman for a distant observer. Rotation transforms the de Sitter center into a de Sitter vacuum surface which contains the equatorial disk r = 0 as a bridge. We present a general analysis of the horizons, ergoregions and de Sitter surfaces, as well as the conditions of the existence of regular solutions to the field equations. We find asymptotic solutions and show that de Sitter vacuum surfaces have properties of a perfect conductor and ideal diamagnetic, violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media, and the Kerr ring singularity is replaced with the superconducting current.
NASA Astrophysics Data System (ADS)
Chimfwembe, Patrick C.; Krasinski, Jerzy S.
1999-06-01
The reductive perturbation method was applied to the propagation of two orthogonal polarized sub-100 fs soliton pulses, in a singlemode fiber, to give an analytical propagation model. The analytical propagation model was transformed into a numerical propagation model via the symmetrized split-step Fourier method. The numerical propagation model was then used to analyze the switching efficiency of an inverter soliton-trapping gate (STG) and an inverter soliton-dragging gate (SDG), with a clock time window of about four pulse widths. For the STG and the SDG, with the control on the slow axis, the switching maximum clock time windows are reduced by 32 percent and 62 percent respectively, due to the self and cross Raman effects. However, for the STG and SDG, operated with the control on the fast axis, it was found that the switching maximum clock time windows are increased by 30 percent and 28 percent respectively, due to the self and cross Raman effects.
Computer modeling of batteries from non-linear circuit elements
NASA Technical Reports Server (NTRS)
Waaben, S.; Federico, J.; Moskowitz, I.
1983-01-01
A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.
Analysis of non-linearity in differential wavefront sensing technique.
Duan, Hui-Zong; Liang, Yu-Rong; Yeh, Hsien-Chi
2016-03-01
An analytical model of a differential wavefront sensing (DWS) technique based on Gaussian Beam propagation has been derived. Compared with the result of the interference signals detected by quadrant photodiode, which is calculated by using the numerical method, the analytical model has been verified. Both the analytical model and numerical simulation show milli-radians level non-linearity effect of DWS detection. In addition, the beam clipping has strong influence on the non-linearity of DWS. The larger the beam clipping is, the smaller the non-linearity is. However, the beam walking effect hardly has influence on DWS. Thus, it can be ignored in laser interferometer. PMID:26974079
Dilatonic non-linear sigma models and Ricci flow extensions
NASA Astrophysics Data System (ADS)
Carfora, M.; Marzuoli, A.
2016-09-01
We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.
Asymptotic Stability of Interconnected Passive Non-Linear Systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
Stochastic differential equations for non-linear hydrodynamics
NASA Astrophysics Data System (ADS)
Español, Pep
1998-02-01
We formulate the stochastic differential equations for non-linear hydrodynamic fluctuations. The equations incorporate the random forces through a random stres tensor and random heat flux as in the Landau and Lifshitz theory. However, the equations are non-linear and the random forces are non-Gaussian. We provide explicit expressions for these random quantities in terms of the well-defined increments of the Wienner process.
NASA Astrophysics Data System (ADS)
Webb, Garry; Sørensen, Mads Peter; Brio, Moysey; Zakharian, Aramis R.; Moloney, Jerome V.
2004-04-01
The vector Maxwell equations of non-linear optics coupled to a single Lorentz oscillator and with instantaneous Kerr non-linearity are investigated by using Lie symmetry group methods. Lagrangian and Hamiltonian formulations of the equations are obtained. The aim of the analysis is to explore the properties of Maxwell’s equations in non-linear optics, without resorting to the commonly used non-linear Schrödinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to non-linear sideband wave interactions. This is important in femto-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field E, in terms of the canonical variables, with possible multiple real roots for E. In order to circumvent this problem, non-canonical Poisson bracket formulations of the equations are obtained in which the electric field is one of the non-canonical variables. Noether’s theorem, and the Lie point symmetries admitted by the equations are used to obtain four conservation laws, including the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr non-linearity, are shown to reduce to a single ordinary differential equation for the variable y= E2, where E is the electric field intensity. The differential equation has solutions y= y( ξ), where ξ= z- st is the traveling wave variable and s is the velocity of the wave. These solutions exhibit new phenomena not obtainable by the NLS approximation. The characteristics of the solutions depends on the values of the wave velocity s and the energy integration constant ɛ. Both smooth periodic traveling waves and
Correcting the NICMOS count-rate dependent non-linearity
NASA Astrophysics Data System (ADS)
de Jong, Roelof S.
2006-03-01
We describe a routine to correct NICMOS imaging data for the NICMOS count-rate dependent non-linearity recently discovered by Bohlin et al. (2005) and quantified by deJong et al. (2006) and Bohlin et al. (2006). The routine has been implemented in the python scripting language and is callable from the shell command line and from iraf. The routine corrects NICMOS count-rate images assuming the non-linearity follows a powerlaw behavior. The wavelength dependence of the non-linearity is interpolated between the measured points of de Jong et al. (2006) and Bohlin et al. (2006) if necessary. The count rates in the output images are modified and hence the standard NICMOS calibration zero-points are no longer valid. New calibration zero-points have been derived from standard star images corrected with the routine. The routine was tested on the lamp-on/off data used in de Jong et al. (2006) to measure the non-linearity effect. We apply the correction to the NGC1850 stellar cluster field and the Hubble Ultra Deep Field (HUDF) to show the magnitude offsets expected due to the non-linearity on objects with a range in luminosity and surface brightness.
Theoretical studies for novel non-linear optical crystals
NASA Astrophysics Data System (ADS)
Wu, Kechen; Chen, Chuangtian
1996-09-01
To fulfil the "molecular engineering" of non-linear optical crystals, two theoretical models suitable respectively for the studies of the absorption edge and birefringence of a non-linear optical crystal have been set up. Molecular quantum chemical methods have been adopted in the systematic calculations of some typical crystals. DV-SCM-X α methods have been used to calculate the absorption edge on the UV side of BBO, LBO, KB5, KDP, Na 2SbF 5, Ba 2TiSi 2O 8, iodate and NaNO 2 crystals. Ab initio methods have been adopted to study the birefringence of NaNO 2, BBO, LiIO 3 and urea crystals. All the theoretical results agreed well with the experimental values. The relationship between structure and properties has been discussed. The results will be helpful to the search for novel non-linear optical crystals.
Non-Linear Vibration Characteristics of Clamped Laminated Shallow Shells
NASA Astrophysics Data System (ADS)
ABE, A.; KOBAYASHI, Y.; YAMADA, G.
2000-07-01
This paper examines non-linear free vibration characteristics of first and second vibration modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of motion for the shells based on the first order shear deformation and classical shell theories are derived by means of Hamilton's principle. We apply Galerkin's procedure to the equations of motion in which eigenvectors for first and second modes of linear vibration obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear ordinary differential equations are derived in terms of amplitudes of the first and second vibration modes. Backbone curves for the first and second vibration modes are solved numerically by the Gauss-Legendre integration method and the shooting method respectively. The effects of lamination sequences and transverse shear deformation on the behavior are discussed. It is also shown that the motion of the first vibration mode affects the response for the second vibration mode.
Non-linear dynamic analysis of anisotropic cylindrical shells
Lakis, A.A.; Selmane, A.; Toledano, A.
1996-12-01
A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.
Non-linear system identification in flow-induced vibration
Spanos, P.D.; Zeldin, B.A.; Lu, R.
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
Neural network modelling of non-linear hydrological relationships
NASA Astrophysics Data System (ADS)
Abrahart, R. J.; See, L. M.
2007-09-01
Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfall-runoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling non-linear hydrological processes and are therefore appropriate tools for hydrological modelling.
Proceedings of the Non-Linear Aero Prediction Requirements Workshop
NASA Technical Reports Server (NTRS)
Logan, Michael J. (Editor)
1994-01-01
The purpose of the Non-Linear Aero Prediction Requirements Workshop, held at NASA Langley Research Center on 8-9 Dec. 1993, was to identify and articulate requirements for non-linear aero prediction capabilities during conceptual/preliminary design. The attendees included engineers from industry, government, and academia in a variety of aerospace disciplines, such as advanced design, aerodynamic performance analysis, aero methods development, flight controls, and experimental and theoretical aerodynamics. Presentations by industry and government organizations were followed by panel discussions. This report contains copies of the presentations and the results of the panel discussions.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Non-linear optics of ultrastrongly coupled cavity polaritons
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth
2016-05-01
Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.
Photocrosslinkable copolymers for non-linear optical applications
Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.
1993-12-31
New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.
Non-linear effects in bunch compressor of TARLA
NASA Astrophysics Data System (ADS)
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
BEAM-BASED NON-LINEAR OPTICS CORRECTIONS IN COLLIDERS.
PILAT, R.; LUO, Y.; MALITSKY, N.; PTITSYN, V.
2005-05-16
A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, that gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 4 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non-linear correction techniques.
Realization of non-linear coherent states by photonic lattices
Dehdashti, Shahram Li, Rujiang; Chen, Hongsheng; Liu, Jiarui Yu, Faxin
2015-06-15
In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Arithmetic coding as a non-linear dynamical system
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.
2009-04-01
In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.
Rare earth ion doped non linear laser crystals
NASA Astrophysics Data System (ADS)
Jaque, D.; Romero, J. J.; Ramirez, M. O.; Garcia, J. A. S.; de Las Heras, C.; Bausa, L. E.; Sole, J. G.
2003-01-01
We show how non linear crystals activated with Yb3+ or Nd3+ ions can be used to develop diode pumped solid state lasers emitting in the visible region of the electromagnetic spectrum. For this purpose we have selected relevant examples of systems investigated in our laboratory.
Non-linear protocell models: synchronization and chaos
NASA Astrophysics Data System (ADS)
Filisetti, A.; Serra, R.; Carletti, T.; Villani, M.; Poli, I.
2010-09-01
We consider generic protocells models allowing linear and non-linear kinetics for the main involved chemical reactions. We are interested in understanding if and how the protocell division and the metabolism do synchronise to give rise to sustainable evolution of the protocell.
Is 3D true non linear traveltime tomography reasonable ?
NASA Astrophysics Data System (ADS)
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
Non-linear Langmuir waves in a warm quantum plasma
Dubinov, Alexander E. Kitaev, Ilya N.
2014-10-15
A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.
Evolution equation for non-linear cosmological perturbations
Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch
2011-11-01
We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.
Tunneling control using classical non-linear oscillator
Kar, Susmita; Bhattacharyya, S. P.
2014-04-24
A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.
Non-linear dynamic analysis of geared systems, part 2
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet
1990-01-01
A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.
Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Manganite-based memristive heterojunction with tunable non-linear I-V characteristics.
Lee, Hong-Sub; Park, Hyung-Ho; Rozenberg, M J
2015-04-21
A resistive random access memory (ReRAM) based on the memristive effect allows high-density integration through a cross-point array (CPA) structure. However, a significant common drawback of the CPA configuration is the crosstalk between cells. Here, we introduce a solution based on a novel heterojunction stack solely made of members of the perovskite manganite family Pr(1-x)Ca(x)MnO3 (PCMO) and CaMnO(3-δ) (CMO) which show electroforming-free bipolar resistive switching. The heterojunction consists of rectifying interfaces and shows a symmetrical and tunable non-linear current-voltage curve. The spectromicroscopic measurements support the scenario of specialized roles, with the memristive effect taking place at the active Al-PCMO interface via a redox mechanism, while non-linearity was achieved by adopting a rectifying double interface PCMO-CMO-PCMO. PMID:25794166
Non-linearity in Bayesian 1-D magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong
2011-05-01
This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability
Non-linear aeroelastic prediction for aircraft applications
NASA Astrophysics Data System (ADS)
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
A non-linear model of economic production processes
NASA Astrophysics Data System (ADS)
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
Non-linear Higgs portal to Dark Matter
NASA Astrophysics Data System (ADS)
Brivio, I.; Gavela, M. B.; Merlo, L.; Mimasu, K.; No, J. M.; del Rey, R.; Sanz, V.
2016-04-01
The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle h to a scalar singlet Dark Matter candidate. Phenomenological consequences are also studied in detail, including the possibility of distinguishing this scenario from the standard Higgs portal in which the electroweak symmetry breaking is linearly realised. Two features of significant impact are: i) the connection between the electroweak scale v and the Higgs particle departs from the ( v + h) functional dependence, as the Higgs field is not necessarily an exact electroweak doublet; ii) the presence of specific couplings that arise at different order in the non-linear and in the linear expansions. These facts deeply affect the Dark Matter relic abundance, as well as the expected signals in direct and indirect searches and collider phenomenology, where Dark Matter production rates are enhanced with respect to the standard portal.
Non-linear microscopy and spectroscopy of skin tissues
NASA Astrophysics Data System (ADS)
Palero, Jonathan A.; Latouche, Gwendal; de Bruijn, Henri"tte S.; Gerritsen, Hans C.; Sterenborg, Henricus J. C. M.
2005-11-01
We combined a non-linear microscope with a sensitive prism-based spectrograph and employed it for the imaging of the auto fluorescence of skin tissues. The system has a sub-micron spatial resolution and a spectral resolution of better than 5 nm. The spectral images contain signals arising from two-photon excited fluorescence (TPEF) of endogenous fluorophores in the skin and from second harmonic generation (SHG) produced by the collagen fibers, which have non-centrosymmetric structure. Non-linear microscopy has the potential to image deep into optically thick specimens because it uses near-infrared (NIR) laser excitation. In addition, the phototoxicity of the technique is comparatively low. Here, the technique is used for the spectral imaging of unstained skin tissue sections. We were able to image weak cellular autofluorescence as well as strong collagen SHG. The images were analyzed by spectral unmixing and the results exhibit a clear spectral signature for the different skin layers.
New non-linear photovoltaic effect in uniform bipolar semiconductor
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Garny, Mathias; Konstandin, Thomas E-mail: mathias.garny@desy.de
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
NASA Astrophysics Data System (ADS)
Teukolsky, Saul A.
2015-06-01
This review describes the events leading up to the discovery of the Kerr metric in 1963 and the enormous impact the discovery has had in the subsequent 50 years. The review discusses the Penrose process, the four laws of black hole mechanics, uniqueness of the solution, and the no-hair theorems. It also includes Kerr perturbation theory and its application to black hole stability and quasi-normal modes. The Kerr metric's importance in the astrophysics of quasars and accreting stellar-mass black hole systems is detailed. A theme of the review is the ‘miraculous’ nature of the solution, both in describing in a simple analytic formula the most general rotating black hole, and in having unexpected mathematical properties that make many calculations tractable. Also included is a pedagogical derivation of the solution suitable for a first course in general relativity.
Energy loss of ions in solids: Non-linear calculations for slow and swift ions
NASA Astrophysics Data System (ADS)
Arista, Néstor R.
2002-10-01
The historical approach to describe the energy loss of swift ions in solids is based on the Bohr, Bethe and Bloch theories. As is well known, the central parameter in these theories is the ratio η= Z1e2/ℏ v, whose value is generally used to delimit the ranges of applicability of the Bohr ( η>1) and Bethe ( η<1) theories. The transition between these regimes can be obtained by changing the ratio Z1/ v, although not by simply changing v. In fact, this scheme breaks down at low velocities, where quantum and non-linear effects arise. This domain is characterized by the strong oscillatory Z1 dependence of the stopping powers. This paper proposes a self-consistent non-linear approach to calculate the energy loss of heavy ions on a wide range of velocities. The model is based on the transport cross-section approach and on a previous extension of the Friedel sum rule for moving ions. The purpose of this study is to develop a non-linear stopping power evaluation method that could be applied at finite ion velocities, bridging the current gap between the low- and high-energy models.
Non-linear stochastic growth rates and redshift space distortions
NASA Astrophysics Data System (ADS)
Jennings, Elise; Jennings, David
2015-06-01
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = nabla \\cdot v({x},t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ˜10 per cent at k < 0.2 h Mpc-1 to 25 per cent at k ˜ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) for k < 0.1 h Mpc-1. The stochasticity in the θ-δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Approximate solutions for non-linear iterative fractional differential equations
NASA Astrophysics Data System (ADS)
Damag, Faten H.; Kiliçman, Adem; Ibrahim, Rabha W.
2016-06-01
This paper establishes approximate solution for non-linear iterative fractional differential equations: d/γv (s ) d sγ =ℵ (s ,v ,v (v )), where γ ∈ (0, 1], s ∈ I := [0, 1]. Our method is based on some convergence tools for analytic solution in a connected region. We show that the suggested solution is unique and convergent by some well known geometric functions.
Linear Algebraic Method for Non-Linear Map Analysis
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
NASA Astrophysics Data System (ADS)
Hnat, B.
2011-09-01
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Non-linear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc^{-1} to 25 per cent at k ~ 0.45 h Mpc^{-1} at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 10^{12} M_{⊙} h^{-1}, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -f_{LT}δ, where f_{LT }is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc^{-1}. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of f_{LT} from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of f_{LT} extracted using models which assume a linear, deterministic expression.
Non linear identities between unitary minimal Virasoro characters
NASA Astrophysics Data System (ADS)
Taormina, Anne
Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model.
Non-linear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less
Non-linear power spectra in the synchronous gauge
NASA Astrophysics Data System (ADS)
Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui; Gong, Jinn-Ouk; Biern, Sang Gyu
2015-05-01
We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented in the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.
Liapunov functions for non-linear difference equation stability analysis.
NASA Technical Reports Server (NTRS)
Park, K. E.; Kinnen, E.
1972-01-01
Liapunov functions to determine the stability of non-linear autonomous difference equations can be developed through the use of auxiliary exact difference equations. For this purpose definitions are introduced for the gradient of an implicit function of a discrete variable, a principal sum, a definite sum and an exact difference equation, and a theorem for exactness of a difference form is proved. Examples illustrate the procedure.
Can the Non-linear Ballooning Model describe ELMs?
NASA Astrophysics Data System (ADS)
Henneberg, S. A.; Cowley, S. C.; Wilson, H. R.
2015-11-01
The explosive, filamentary plasma eruptions described by the non-linear ideal MHD ballooning model is tested quantitatively against experimental observations of ELMs in MAST. The equations describing this model were derived by Wilson and Cowley for tokamak-like geometry which includes two differential equations: the linear ballooning equation which describes the spatial distribution along the field lines and the non-linear ballooning mode envelope equation, which is a two-dimensional, non-linear differential equation which can involve fractional temporal-derivatives, but is often second-order in time and space. To employ the second differential equation for a specific geometry one has to evaluate the coefficients of the equation which is non-trivial as it involves field line averaging of slowly converging functions. We have solved this system for MAST, superimposing the solutions of both differential equations and mapping them onto a MAST plasma. Comparisons with the evolution of ELM filaments in MAST will be reported in order to test the model. The support of the EPSRC for the FCDT (Grant EP/K504178/1), of Euratom research and training programme 2014-2018 (No 633053) and of the RCUK Energy Programme [grant number EP/I501045] is gratefully acknowledged.
Non-linear Compton Scattering in Short Laser Pulses
NASA Astrophysics Data System (ADS)
Krajewska, Katarzyna; Kamiński, Jerzy
2012-06-01
The generation of short X-ray laser pulses attracts a great deal of attention. One of mechanisms to achieve this goal is the non-linear Compton scattering at very high laser powers. The majority of previous works on the non-linear Compton scattering have been devoted to the case when the incident laser field is treated as a monochromatic plane wave. There is, however, recent interest in analyzing the effect of a pulsed laser field on the non-linear Compton scattering [1-4]. We study the process for different durations of the incident laser pulse and compare it with the results for both a plane wave laser field and a laser pulse train. [4pt] [1] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).[0pt] [2] M. Boca and V. Florescu, Eur. Phys. J. D 61, 446 (2011).[0pt] [3] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).[0pt] [4] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106 (2011).
A Technique for Determining Non-Linear Circuit Parameters from Ring Down Data
ROMERO, LOUIS; DICKEY, FRED M.; DISON, HOLLY
2003-01-01
We present a technique for determining non-linear resistances, capacitances, and inductances from ring down data in a non-linear RLC circuit. Although the governing differential equations are non-linear, we are able to solve this problem using linear least squares without doing any sort of non-linear iteration.
Measurement of the Kerr nonlinear refractive index of Cs vapor
NASA Astrophysics Data System (ADS)
Araújo, Michelle O.; de S. Cavalcante, Hugo L. D.; Oriá, Marcos; Chevrollier, Martine; de Silans, Thierry Passerat; Castro, Romeu; Moretti, Danieverton
2013-12-01
Atomic vapors are systems well suited for nonlinear optics studies but very few direct measurements of their nonlinear refractive index have been reported. Here we use the z-scan technique to measure the Kerr coefficient, n2, for a Cs vapor. Our results are analyzed through a four-level model, and we show that coherence between excited levels as well as cross-population effects contribute to the Kerr nonlinearity.
Global non-linear effect of temperature on economic production
NASA Astrophysics Data System (ADS)
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate. PMID:26503051
Support Vector Machines for Non-linear Geophysical Inversion
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Rector, J. W.
2004-12-01
Classical non-linear geophysical inversion can be simulated using computer learning via Support Vector Machines. Geophysical inverse problems are almost always ill-posed which means that many different models (i.e. descriptions of the earth) can be found to explain a given noisy or incomplete data set. Regularization and constraints encourage inversions to find physically realistic models. The set of preferred models needs to be defined a priori using as much geologic knowledge as is available. In inversion, it is assumed that data and a forward modeling process is known. The goal is to solve for a model. In the SVM paradigm, a series of models and associated data are known. The goal is to solve for a reverse modeling process. Starting with a series of initial models assembled using all available geologic information, synthetic data is created using the most realistic forward modeling program available. With the synthetic data as inputs and the known models as outputs, a Support Vector Machine is trained to approximate a local inverse to the forward modeling program. The advantages of this approach are that it is honest about the need to establish, a priori, the kinds of models that are reasonable in a particular field situation. There is no need to adjust the forward process to accommodate inversion, because SVMs can be easily modified to capture complicated, non-linear relationships. SVMs are transparent and require very little programming. If an SVM is trained using model/data pairs that are drawn from the same probability distribution that is implicit in the regularization of an inversion, then it will get very similar results to the inversion. Because SVMs can interpret as much data as desired so long as the conditions of an experiment do not change, they can be used to perform otherwise computationally expensive procedures. Support Vector Machines are trained to emulate non-linear seismic Amplitude Variation with Offset (AVO) inversions, gravity inversions
Response of a rotorcraft model with damping non-linearities
NASA Astrophysics Data System (ADS)
Tongue, B. H.
1985-11-01
The linearized equations of motion of a helicopter in contact with the ground have solutions which can be linearly stable or unstable, depending on the system parameters. The present study includes physical non-linearities in the helicopter model. This allows one to determine if a steady-state response exists and, if so, what the frequency and amplitude of the oscillations will be. In this way, one can determine how serious the linearly unstable operating regime is and whether destructive oscillations are possible when the system is in the linearly stable regime. The present analysis applies to helicopters having fully articulated rotors.
Non-linear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.
Non-linear identification of a squeeze-film damper
NASA Technical Reports Server (NTRS)
Stanway, Roger; Mottershead, John; Firoozian, Riaz
1987-01-01
Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.
Non-linear dynamics of compound sawteeth in tokamaks
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Garbet, X.; Lütjens, H.; Marx, A.; Nicolas, T.; Sabot, R.; Luciani, J.-F.; Guirlet, R.; Février, O.; Maget, P.
2016-05-01
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as the q = 1 radius and diamagnetic stabilization.
A non-linear UAV altitude PSO-PD control
NASA Astrophysics Data System (ADS)
Orlando, Calogero
2015-12-01
In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Non-linear dielectric spectroscopy of microbiological suspensions
Treo, Ernesto F; Felice, Carmelo J
2009-01-01
Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not
Non-linear isocurvature perturbations and non-Gaussianities
Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr
2008-12-15
We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.
Non-Linear Dynamics of Saturn’s Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
Halo model predictions of the cosmic magnification statistics: the full non-linear contribution
NASA Astrophysics Data System (ADS)
Takada, Masahiro; Hamana, Takashi
2003-12-01
The lensing magnification effect due to large-scale structure is statistically measurable by the correlation of size fluctuations in distant galaxy images as well as by cross-correlation between foreground galaxies and background sources such as the QSO-galaxy cross-correlation. We use the halo model formulation of Takada & Jain to compute these magnification-induced correlations without employing the weak lensing approximation, μ~ 1 + 2κ. Our predictions thus include the full contribution from non-linear magnification, δμ>~ 1, that is due to lensing haloes. We compare the model prediction with ray-tracing simulations and find excellent agreement over the range of angular scales we consider (0.5 <~θ<~ 30 arcmin). In addition, we derive the dependence of the correlation amplitude on the maximum magnification cut-off μmax, which it is necessary to introduce in order to avoid the contributions from strong lensing events. For a general correlation function parametrized as <μpf> (f is any cosmic field correlated with the magnification field), the amplitude remains finite for p < 1 and diverges for p>= 1 as μmax->∞, independent of the details of the lensing mass distribution and of the separation angle. This consequence is verified by the halo model as well as by the simulations. Thus, the magnification correlation with p<= 1 has a practical advantage in that it is insensitive to a selection effect of how strong lensing events with μ>> 1 are observationally excluded from the sample. The non-linear magnification contribution enhances the amplitude of the magnification correlation relative to the weak lensing approximation, and the non-linear correction is more significant on smaller angular scales and for sources at higher redshifts. The enhancement amounts to 10-25 per cent on arcmin scales for the QSO-galaxy cross-correlation, even after the inclusion of a realistic model of galaxy clustering within the host halo. Therefore, it is necessary to account for the
Manganite-based memristive heterojunction with tunable non-linear I-V characteristics
NASA Astrophysics Data System (ADS)
Lee, Hong-Sub; Park, Hyung-Ho; Rozenberg, M. J.
2015-04-01
A resistive random access memory (ReRAM) based on the memristive effect allows high-density integration through a cross-point array (CPA) structure. However, a significant common drawback of the CPA configuration is the crosstalk between cells. Here, we introduce a solution based on a novel heterojunction stack solely made of members of the perovskite manganite family Pr1-xCaxMnO3 (PCMO) and CaMnO3-δ (CMO) which show electroforming-free bipolar resistive switching. The heterojunction consists of rectifying interfaces and shows a symmetrical and tunable non-linear current-voltage curve. The spectromicroscopic measurements support the scenario of specialized roles, with the memristive effect taking place at the active Al-PCMO interface via a redox mechanism, while non-linearity was achieved by adopting a rectifying double interface PCMO-CMO-PCMO.A resistive random access memory (ReRAM) based on the memristive effect allows high-density integration through a cross-point array (CPA) structure. However, a significant common drawback of the CPA configuration is the crosstalk between cells. Here, we introduce a solution based on a novel heterojunction stack solely made of members of the perovskite manganite family Pr1-xCaxMnO3 (PCMO) and CaMnO3-δ (CMO) which show electroforming-free bipolar resistive switching. The heterojunction consists of rectifying interfaces and shows a symmetrical and tunable non-linear current-voltage curve. The spectromicroscopic measurements support the scenario of specialized roles, with the memristive effect taking place at the active Al-PCMO interface via a redox mechanism, while non-linearity was achieved by adopting a rectifying double interface PCMO-CMO-PCMO. Electronic supplementary information (ESI) available: Experimental method of spectromicroscopy; a scheme of the resistive switching mechanism, work function measurement of the CaMnO3-δ film; linear scale current-voltage characteristics; simulation method of the readout margin of a
Kerr Non-linerity in Slow Light Propagation for Quantum Teleportation
NASA Astrophysics Data System (ADS)
Tombesi, Paolo
2001-05-01
Quantum teleportation(C.H. Bennett et al)., Phys. Rev. Lett. 70, 1895 (1993). is the ``reconstruction" with 100% success, of an unknown state given to one station (Alice), performed at another remote station (Bob), on the basis of two bits of classical information sent by Alice to Bob. Perfect teleportation is possible only if the two parties share a maximally entangled state. The most delicate part needed for the effective realization of teleportation is the Bell-state measurement, i.e. the discrimination between the four, maximally entangled, Bell states which has to be performed by Alice and whose result is communicated to Bob through the classical channel. There have been numerous proposals for its realization in different systems and recently beautiful, pioneering experiments have provided convincing experimental proof-of-principle of the correctness of the teleportation concept. These experiments differ by the degrees of freedom used as qubits and for the different ways in which the Bell-state measurement is performed. The Innsbruck experiment (D.Bouwmeester et al)., Nature (London) 390, 575 (1997). is the conceptually simplest one, since each qubit is represented by the polarization state of a single photon pulse. In this experiment, however, only two out of the four Bell states can be discriminated and therefore the success rate cannot be larger than 50%. It is therefore desirable to have a scheme for a Bell-state measurement that can be used in the simplest case of the Innsbruck experiment. This would imply the possibility of realizing the first complete verification of the original quantum teleportation scheme(C.H. Bennett et al)., Phys. Rev. Lett. 70, 1895 (1993). and also of having a device useful for other quantum protocols, as quantum dense coding. A scheme for perfect Bell-state discrimination based on a non-linear optical effect, the cross-phase modulation taking place in Kerr media, will be discussed. We shall show that the needed crossed-Kerr non-linearity
Non-linear leak currents affect mammalian neuron physiology
Huang, Shiwei; Hong, Sungho; De Schutter, Erik
2015-01-01
In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells. PMID:26594148
Non-linear plasma wake growth of electron holes
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-01
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Polycarbonate-Based Blends for Optical Non-linear Applications
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262
Effects on non-linearities on aircraft poststall motion
Rohacs, J.; Thomasson, P.; Mosehilde, E.
1994-12-31
The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.
Non-linear plasma wake growth of electron holes
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-15
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Modified non-linear Burgers' equations and cosmic ray shocks
NASA Technical Reports Server (NTRS)
Zank, G. P.; Webb, G. M.; Mckenzie, J. F.
1988-01-01
A reductive perturbation scheme is used to derive a generalized non-linear Burgers' equation, which includes the effects of dispersion, in the long wavelength regime for the two-fluid hydrodynamical model used to describe cosmic ray acceleration by the first-order Fermi process in astrophysical shocks. The generalized Burger's equation is derived for both relativistic and non-relativistic cosmic ray shocks, and describes the time evolution of weak shocks in the theory of diffusive shock acceleration. The inclusion of dispersive effects modifies the phase velocity of the shock obtained from the lower order non-linear Burger's equation through the introduction of higher order terms from the long wavelength dispersion equation. The travelling wave solution of the generalized Burgers' equation for a single shock shows that larger cosmic ray pressures result in broader shock transitions. The results for relativistic shocks show a steepening of the shock as the shock speed approaches the relativistic cosmic ray sound speed. The dependence of the shock speed on the cosmic ray pressure is also discussed.
NASA Astrophysics Data System (ADS)
RoyChoudhury, Raja; RoyChoudhury, Arundhati
2011-02-01
This paper presents a semi analytical formulation of modal properties of a non linear optical fiber having Kerr non linearity with a three parameter approximation of fundamental modal field. The minimization of core parameter ( U) which involves Kerr nonlinearity through the non-stationary expression of propagation constant, is carried out by Nelder-Mead Simplex method of non linear unconstrained minimization, suitable for problems with non-smooth functions as the method does not require any derivative information. Use of three parameters in modal approximation and implementation of Simplex methods enables our semi analytical description to be an alternative way having less computational burden for calculation of modal parameters than full numerical methods.
Magnetized Kerr/CFT correspondence
NASA Astrophysics Data System (ADS)
Siahaan, Haryanto M.
2016-08-01
We extend the conjectured Kerr/CFT correspondence to the case of extremal Kerr black holes immersed by a magnetic field, namely the extremal Melvin–Kerr black holes. We compute the central charge which appears in the associated Virasoro algebra generated by a class of diffeomorphisms that satisfies a set of boundary conditions in the near horizon of an extremal Melvin–Kerr black hole. Our results support the Kerr/CFT conjecture, where the macroscopic Bekenstein–Hawking entropy for an extremal Melvin–Kerr black hole matches the result obtained from a dual 2D CFT microscopic computation using Cardy formula. Interestingly, the dual CFT description could be non-unitary, due to the possibility of negative central charge.
Non-Linear Cosmological Power Spectra in Real and Redshift Space
NASA Technical Reports Server (NTRS)
Taylor, A. N.; Hamilton, A. J. S.
1996-01-01
We present an expression for the non-linear evolution of the cosmological power spectrum based on Lagrangian trajectories. This is simplified using the Zel'dovich approximation to trace particle displacements, assuming Gaussian initial conditions. The model is found to exhibit the transfer of power from large to small scales expected in self-gravitating fields. Some exact solutions are found for power-law initial spectra. We have extended this analysis into red-shift space and found a solution for the non-linear, anisotropic redshift-space power spectrum in the limit of plane-parallel redshift distortions. The quadrupole-to-monopole ratio is calculated for the case of power-law initial spectra. We find that the shape of this ratio depends on the shape of the initial spectrum, but when scaled to linear theory depends only weakly on the redshift-space distortion parameter, beta. The point of zero-crossing of the quadrupole, kappa(sub o), is found to obey a simple scaling relation and we calculate this scale in the Zel'dovich approximation. This model is found to be in good agreement with a series of N-body simulations on scales down to the zero-crossing of the quadrupole, although the wavenumber at zero-crossing is underestimated. These results are applied to the quadrupole-to-monopole ratio found in the merged QDOT plus 1.2-Jy-IRAS redshift survey. Using a likelihood technique we have estimated that the distortion parameter is constrained to be beta greater than 0.5 at the 95 percent level. Our results are fairly insensitive to the local primordial spectral slope, but the likelihood analysis suggests n = -2 un the translinear regime. The zero-crossing scale of the quadrupole is k(sub 0) = 0.5 +/- 0.1 h Mpc(exp -1) and from this we infer that the amplitude of clustering is sigma(sub 8) = 0.7 +/- 0.05. We suggest that the success of this model is due to non-linear redshift-space effects arising from infall on to caustic and is not dominated by virialized cluster cores
Anderson Localization, Non-linearity and Stable Genetic Diversity
NASA Astrophysics Data System (ADS)
Epstein, Charles L.
2006-07-01
In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasi-species, unless the mutation rate is too high, in which case the asymptotic population becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random fitness term in the linear model produces features analogous to Anderson localization. When coupled with density dependent non-linearities, which limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversity.
Engineering Non-Classical Light with Non-Linear Microwaveguides
NASA Astrophysics Data System (ADS)
Grimsmo, Arne; Clerk, Aashish; Blais, Alexandre
The quest for ever increasing fidelity and scalability in measurement of superconducting qubits to be used for fault-tolerant quantum computing has recently led to the development of near quantum-limited broadband phase preserving amplifiers in the microwave regime. These devices are, however, more than just amplifiers: They are sources of high-quality, broadband two-mode squeezed light. We show how bottom-up engineering of Josephson junction embedded waveguides can be used to design novel squeezing spectra. Furthermore, the entanglement in the two-mode squeezed output field can be imprinted onto quantum systems coupled to the device's output. These broadband microwave amplifiers constitute a realization of non-linear waveguide QED, a very interesting playground for non-equilibrium many-body physics.
Non-linear optical crystal vibration sensing device
Kalibjian, R.
1994-08-09
A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.
Non-linear optical crystal vibration sensing device
Kalibjian, Ralph
1994-01-11
A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).
Non-linear radial spinwave modes in thin magnetic disks
Helsen, M. De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Weigand, M.
2015-01-19
We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point.
Non-linear dielectric response of ferrofluids under magnetic field
NASA Astrophysics Data System (ADS)
Licinio, Pedro; Teixeira, Alvaro V.; Figueiredo, José Marcos A.
2005-03-01
The dielectric response of a water-based magnetic fluid is investigated at room temperature and in the frequency range of 100-10 7 rad/s. The response is linear in the electric fields used. Upon application of a constant magnetic field of 40 mT, which is well below the sample saturation, the response becomes non-linear. Magnetic field effects are isolated by performing a differential analysis of the inverse dielectric permittivity with and without applied field in both perpendicular and parallel configurations. The imaginary part of the differential inverse permittivity displays two peaks. The low-frequency peak is seen to correspond to the orientation relaxation of aggregates also detected in SAXS, photon correlation and atomic force microscopy measurements. The high-frequency peak corresponds to single magnetic particle reorientation.
Memristive non-linear system and hidden attractor
NASA Astrophysics Data System (ADS)
Saha, P.; Saha, D. C.; Ray, A.; Chowdhury, A. R.
2015-07-01
Effects of memristor on non-linear dynamical systems exhibiting chaos are analysed both form the view point of theory and experiment. It is observed that the memristive system has always fewer number of fixed points than the original one. Sometimes there is no fixed point in the memristive system. But its chaotic properties are retained. As such we have a situation known as hidden attractor because if it is a stable fixed point then the attractor does not evolve from its basin of attraction(obtained from its stable fixed point) or if there is no fixed point, the question of basin of attraction from fixed point does not arise at all [1, 2]. Our analysis gives a detailed accounts of properties related to its chaotic behavior. Important observations are also obtained with the help of electronic circuits to support the numerical simulations.
Predictability of extremes in non-linear hierarchically organized systems
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare
Ferrite core non-linearity in coils for magnetic neurostimulation
Lazzi, Gianluca
2014-01-01
The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values. PMID:26609390
Detector noise statistics in the non-linear regime
NASA Technical Reports Server (NTRS)
Shopbell, P. L.; Bland-Hawthorn, J.
1992-01-01
The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.
DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS
Leduc, D
2008-06-10
Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Image enhancement by non-linear extrapolation in frequency space
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)
1998-01-01
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.
Spontaneous Lorentz symmetry breaking in non-linear electrodynamics
Urrutia, Luis F.
2010-07-29
A recently proposed model of non-linear electrodynamics arising from a gauge invariant spontaneous Lorentz symmetry breaking is reviewed. The potential providing the symmetry breaking is argued to arise from the integration of gauge bosons and fermions in an underlying theory. The invariant subgroups remaining after the symmetry breaking are determined, as well as the dispersion relations and polarization modes of the propagating linear sector or the model. Strong bounds upon the predicted anisotropy of the speed of light are obtained by embedding the model in the electromagnetic sector of the Standard Model Extension and taking advantage of the restrictions in the parameters derived there. Finally, a reasonable estimation of the intergalactic magnetic field is obtained by assuming that the vacuum energy of the model is described by the standard cosmological constant.
Neural networks: What non-linearity to choose
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris
1991-01-01
Neural networks are now one of the most successful learning formalisms. Neurons transform inputs (x(sub 1),...,x(sub n)) into an output f(w(sub 1)x(sub 1) + ... + w(sub n)x(sub n)), where f is a non-linear function and w, are adjustable weights. What f to choose? Usually the logistic function is chosen, but sometimes the use of different functions improves the practical efficiency of the network. The problem of choosing f as a mathematical optimization problem is formulated and solved under different optimality criteria. As a result, a list of functions f that are optimal under these criteria are determined. This list includes both the functions that were empirically proved to be the best for some problems, and some new functions that may be worth trying.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Attractor reconstruction for non-linear systems: a methodological note
Nichols, J.M.; Nichols, J.D.
2001-01-01
Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.
Reducing sample variance: halo biasing, non-linearity and stochasticity
NASA Astrophysics Data System (ADS)
Gil-Marín, Héctor; Wagner, Christian; Verde, Licia; Jimenez, Raul; Heavens, Alan F.
2010-09-01
Comparing clustering of differently biased tracers of the dark matter distribution offers the opportunity to reduce the sample or cosmic variance error in the measurement of certain cosmological parameters. We develop a formalism that includes bias non-linearities and stochasticity. Our formalism is general enough that it can be used to optimize survey design and tracers selection and optimally split (or combine) tracers to minimize the error on the cosmologically interesting quantities. Our approach generalizes the one presented by McDonald & Seljak of circumventing sample variance in the measurement of f ≡ d lnD/d lna. We analyse how the bias, the noise, the non-linearity and stochasticity affect the measurements of Df and explore in which signal-to-noise regime it is significantly advantageous to split a galaxy sample in two differently biased tracers. We use N-body simulations to find realistic values for the parameters describing the bias properties of dark matter haloes of different masses and their number density. We find that, even if dark matter haloes could be used as tracers and selected in an idealized way, for realistic haloes, the sample variance limit can be reduced only by up to a factor σ2tr/σ1tr ~= 0.6. This would still correspond to the gain from a three times larger survey volume if the two tracers were not to be split. Before any practical application one should bear in mind that these findings apply to dark matter haloes as tracers, while realistic surveys would select galaxies: the galaxy-host halo relation is likely to introduce extra stochasticity, which may reduce the gain further.
Limit cycle oscillation of missile control fin with structural non-linearity
NASA Astrophysics Data System (ADS)
Bae, J. S.; Lee, I.
2004-01-01
Non-linear aeroelastic characteristics of a deployable missile control fin with structural non-linearity are investigated. A deployable missile control fin is modelled as a two-dimensional typical section model. Doublet-point method is used for the calculation of supersonic unsteady aerodynamic forces, and aerodynamic forces are approximated by using the minimum-state approximation. For non-linear flutter analysis structural non-linearity is represented by an asymmetric bilinear spring and is linearized by using the describing function method. The linear and non-linear flutter analyses indicate that the flutter characteristics are significantly dependent on the frequency ratio. From the non-linear flutter analysis, various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear divergent flutter boundary. The non-linear flutter characteristics and the non-linear aeroelastic responses are investigated.
Uniqueness of extremal Kerr and Kerr-Newman black holes
Amsel, Aaron J.; Horowitz, Gary T.; Marolf, Donald; Roberts, Matthew M.
2010-01-15
We prove that the only four-dimensional, stationary, rotating, asymptotically flat (analytic) vacuum black hole with a single degenerate horizon is given by the extremal Kerr solution. We also prove a similar uniqueness theorem for the extremal Kerr-Newman solution. This closes a long-standing gap in the black hole uniqueness theorems.
Discriminating Non-Linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds
ERIC Educational Resources Information Center
Ebersbach, Mirjam; Van Dooren, Wim; Goudriaan, Margje N.; Verschaffel, Lieven
2010-01-01
People often have difficulties in understanding situations that involve non-linear processes. Also, the topic of non-linear functions is introduced relatively late in the curriculum. Previous research has nevertheless shown that already children aged 6 years and older are able to discriminate non-linear from linear processes. Within the present…
State-variable analysis of non-linear circuits with a desk computer
NASA Technical Reports Server (NTRS)
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise
NASA Astrophysics Data System (ADS)
Ray, Christian; Cooper, Tim; Balazsi, Gabor
2012-02-01
In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.
Rapid Non-Linear Uncertainty Propagation via Analytical Techniques
NASA Astrophysics Data System (ADS)
Fujimoto, K.; Scheeres, D. J.
2012-09-01
Space situational awareness (SSA) is known to be a data starved problem compared to traditional estimation problems in that observation gaps per object may span over days if not weeks. Therefore, consistent characterization of the uncertainty associated with these objects including non-linear effects is crucial in maintaining an accurate catalog of objects in Earth orbit. Simultaneously, the motion of satellites in Earth orbit is well-modeled in that it is particularly amenable to having their solution and their uncertainty described through analytic or semi-analytic techniques. Even when stronger non-gravitational perturbations such as solar radiation pressure and atmospheric drag are encountered, these perturbations generally have deterministic components that are substantially larger than their time-varying stochastic components. Analytic techniques are powerful because time propagation is only a matter of changing the time parameter, allowing for rapid computational turnaround. These two ideas are combined in this paper: a method of analytically propagating non-linear orbit uncertainties is discussed. In particular, the uncertainty is expressed as an analytic probability density function (pdf) for all time. For a deterministic system model, such pdfs may be obtained if the initial pdf and the system states for all time are also given analytically. Even when closed-form solutions are not available, approximate solutions exist in the form of Edgeworth series for pdfs and Taylor series for the states. The coefficients of the latter expansion are referred to as state transition tensors (STTs), which are a generalization of state transition matrices to arbitrary order. Analytically expressed pdfs can be incorporated in many practical tasks in SSA. One can compute the mean and covariance of the uncertainty, for example, with the moments of the initial pdf as inputs. This process does not involve any sampling and its accuracy can be determined a priori. Analytical
THE RESPONSE OF DRUG EXPENDITURE TO NON-LINEAR CONTRACT DESIGN: EVIDENCE FROM MEDICARE PART D*
Einav, Liran; Finkelstein, Amy; Schrimpf, Paul
2016-01-01
We study the demand response to non-linear price schedules using data on insurance contracts and prescription drug purchases in Medicare Part D. We exploit the kink in individuals’ budget set created by the famous “donut hole,” where insurance becomes discontinuously much less generous on the margin, to provide descriptive evidence of the drug purchase response to a price increase. We then specify and estimate a simple dynamic model of drug use that allows us to quantify the spending response along the entire non-linear budget set. We use the model for counterfactual analysis of the increase in spending from “filling” the donut hole, as will be required by 2020 under the Affordable Care Act. In our baseline model, which considers spending decisions within a single year, we estimate that “filling” the donut hole will increase annual drug spending by about $150, or about 8 percent. About one-quarter of this spending increase reflects “anticipatory” behavior, coming from beneficiaries whose spending prior to the policy change would leave them short of reaching the donut hole. We also present descriptive evidence of cross-year substitution of spending by individuals who reach the kink, which motivates a simple extension to our baseline model that allows – in a highly stylized way – for individuals to engage in such cross year substitution. Our estimates from this extension suggest that a large share of the $150 drug spending increase could be attributed to cross-year substitution, and the net increase could be as little as $45 per year. PMID:26769984
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Experimental study of a linear/non-linear flux rope
NASA Astrophysics Data System (ADS)
DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart
2015-08-01
Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, rplasma = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr2B0c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION
Schultz, J.F.; Hemez, F.M.
2000-10-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.
Channel Capacity of Non-Linear Transmission Systems
NASA Astrophysics Data System (ADS)
Ellis, Andrew D.; Zhao, Jian
Since their introduction in the late 1970s, the capacity of optical communication links has grown exponentially, fuelled by a series of key innovations including movement between the three telecommunication windows of 850 nm, 1,310 nm and 1,550 nm, distributed feedback laser, erbium-doped fibre amplifiers (EDFAs), dispersion-shifted and dispersion-managed fibre links, external modulation, wavelength division multiplexing, optical switching, forward error correction (FEC), Raman amplification, and most recently, coherent detection, electronic signal processing and optical orthogonal frequency division multiplexing (OFDM). Throughout this evolution, one constant factor has been the use of single-mode optical fibre, whose fundamental principles dated back to the 1800s, when Irish scientist, John Tyndall demonstrated in a lecture to the Royal Society in London that light could be guided through a curved stream of water [1]. Following many developments, including the proposal for waveguides by J.J. Thompson [2], the presentation of detailed calculations for dielectric waveguides by Snitzer [3], the proposal [4] and fabrication [5] of ultra low loss fibres, single-mode fibres were first adopted for non-experimental use in Dorset, UK in 1975, and are still in use today, despite the evolving designs to control chromatic dispersion and non-linearity.
Non-linear methods in remotely sensed multispectral data classification
NASA Astrophysics Data System (ADS)
Nikolov, Hs; Petkov, Di; Jeliazkova, N.; Ruseva, S.; Boyanov, K.
The aim of this research is to examine existing geoinformation processing systems and to develop a new system, able to cope with the stochastic nature of remote sensing data. In order to achieve this objective, it is necessary to structure the methodological knowledge in the area of data mining and reveal the most suitable methods for the prediction and decision support based on large amounts of multispectral data. Non-linear methods are a vast and quickly advancing field of research, but in the case of geoinformatics they are far away from applications targeted to end-users. The idea is to establish a framework by decomposing the task into functionality objectives and to allow the end-user to experiment with a set of classification methods and select the best methods for specific applications. In this framework we consider Bayesian analysis tools, nonlinear regression models, neural networks, fuzzy reasoning systems, kernel methods, evolutionary programming, genetic algorithms and decision trees. In particular we compare our results from Bayesian classification based on estimated probability densities of the data to the results obtained from other classification methods. We demonstrate that the theoretically optimal Bayesian classification also provides optimal classification in practice.
Organic non-linear optics and opto-electronics
NASA Astrophysics Data System (ADS)
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
Amplitude relations in non-linear sigma model
NASA Astrophysics Data System (ADS)
Chen, Gang; Du, Yi-Jian
2014-01-01
In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.
Non linear processes modulated by low doses of radiation exposure
NASA Astrophysics Data System (ADS)
Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio
The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.
Non-linear saturation mechanism of electron temperature gradient modes
Tokluoglu, E. K.; Sokolov, V.; Sen, A. K.
2012-10-15
The electron temperature gradient (ETG) mode is a very plausible candidate to explain the large electron particle transport and thermal conduction. Production and identification of slab ETG modes and measurement electron transport have been already reported [X. Wei, V. Sokolov, and A. K. Sen, Phys. Plasmas 17, 042108 (2010); V. Sokolov and A. K. Sen, Phys. Rev. Lett. (2011)]. Now, we develop a theoretical model of non-linear saturation mechanism of ETG mode based on the three wave coupling of an unstable high frequency ETG mode with a damped ETG radial harmonic and a damped ion acoustic (IA) mode. Bicoherence analysis of Columbia linear machine (CLM) data show coupling between ETG modes ({approx}2.4 MHz) and a low frequency mode ({approx}50 kHz). The large damping drive of the ETG radial harmonic accompanied by the smaller but finite damping of the IA mode presents an energy sink for the unstable ETG mode, thus causing saturation. This model predicts a saturation level of {approx}10% and agrees with the observed levels of ETG modes in the CLM.
Optimum Damping in a Non-Linear Base Isolation System
NASA Astrophysics Data System (ADS)
Jangid, R. S.
1996-02-01
Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Experimental study of a linear/non-linear flux rope
DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart
2015-08-15
Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
PHOTON RINGS AROUND KERR AND KERR-LIKE BLACK HOLES
Johannsen, Tim
2013-11-10
Very long baseline interferometric observations have resolved structure on scales of only a few Schwarzschild radii around the supermassive black holes at the centers of our Galaxy and M87. In the near future, such observations are expected to image the shadows of these black holes together with a bright and narrow ring surrounding their shadows. For a Kerr black hole, the shape of this photon ring is nearly circular unless the black hole spins very rapidly. Whether or not, however, astrophysical black holes are truly described by the Kerr metric as encapsulated in the no-hair theorem still remains an untested assumption. For black holes that differ from Kerr black holes, photon rings have been shown numerically to be asymmetric for small to intermediate spins. In this paper, I calculate semi-analytic expressions of the shapes of photon rings around black holes described by a new Kerr-like metric which is valid for all spins. I show that photon rings in this spacetime are affected by two types of deviations from the Kerr metric which can cause the ring shape to be highly asymmetric. I argue that the ring asymmetry is a direct measure of a potential violation of the no-hair theorem and that both types of deviations can be detected independently if the mass and distance of the black hole are known. In addition, I obtain approximate expressions of the diameters, displacements, and asymmetries of photon rings around Kerr and Kerr-like black holes.
Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-01-01
Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750
Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra
Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé
2012-01-01
When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720
Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.
Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W
2015-01-01
Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750
NASA Astrophysics Data System (ADS)
Adcock, T. A. A.; Taylor, P. H.
2016-01-01
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.
Non-Linear Pattern Formation in Bone Growth and Architecture
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the
Non-linear scission/recombination kinetics of living polymerization
NASA Astrophysics Data System (ADS)
Nyrkova, I. A.; Semenov, A. N.
2007-10-01
Living polymers are formed by reversible association of primary units (unimers). Generally the chain statistical weight involves a factor σ < 1 suppressing short chains in comparison with free unimers. Living polymerization is a sharp thermodynamic transition for σ ≪ 1 which is typically the case. We show that this sharpness has an important effect on the kinetics of living polymerization (one-dimensional association). The kinetic model involves i) the unimer activation step (a transition to an assembly-competent state); ii) the scission/recombination processes providing growth of polymer chains and relaxation of their length distribution. Analyzing the polymerization with no chains but unimers at t = 0 , with initial concentration of unimers M ≳ M* (M* is the critical polymerization concentration), we determine the time evolution of the chain length distribution and find that: 1) for M* ≪ M ≪ M*/σ the kinetics is characterized by 5 distinct time stages demarcated by 4 characteristic times t1, t2, t3 and t*; 2) there are transient regimes (t1 ≲ t ≲ t3) when the molecular-weight distribution is strongly non-exponential; 3) the chain scissions are negligible at times shorter than t2. The chain growth is auto-accelerated for t1 ≲ t ≲ t2 : the cut-off chain length (= polymerization degree
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
The non-linear initiation of diapirs and plume heads
NASA Astrophysics Data System (ADS)
Bercovici, David; Kelly, Amanda
1997-04-01
A simple theory is devised to describe the non-linear feedback mechanisms involved in the initial growth of a single diapir or plume head from a low viscosity channel overlain by a much more viscous layer. Such feedbacks arise primarily from the relation between the growth of a proto-diapir (i.e. an undulation on the upper boundary of the low viscosity channel) and the draining of the low viscosity channel. In the period of time between its initial exponential growth (characterized by linear stability analysis) and its separation from the low viscosity channel as a fully formed diapir, the proto-diapir can undergo a significant cessation in its development due to deflation of the low viscosity channel; i.e. the proto-diapir's growth can essentially stall for a long period of time before it separates and begins its ascent through the overlying medium. The theory is used to determine a criterion for separation of the diapir from the low viscosity channel that is in terms of the geometrical and mechanical properties of the channel, instead of the ad hoc volume flux widely used in many models of mantle plumes and plume heads (e.g. Whitehead and Luther, 1975; Richards et al., 1989; Olson, 1990; Sleep, 1990; Bercovici and Mahoney, 1994). From this separation criterion, self-consistent scaling laws can be formulated to relate the size of the fully developed diapir and its trailing conduit to the properties of the initial channel, instead of to the ad hoc volume flux. Basic laboratory experiments involving highly viscous fluids are presented and demonstrate that the so-called 'stalling' period between initial growth and separation does indeed occur. These results suggest that nascent mantle plume heads may stall for extended periods at the base of the mantle and thereby contribute to variations in thickness of the D″ layer.
Phenomenon of life: between equilibrium and non-linearity.
Galimov, E M
2004-12-01
A model of ordering applicable to biological evolution is presented. It is shown that a steady state (more precisely approaching to a steady state) system of irreversible processes, under conditions of disproportionation of entropy, produces a lower-entropy product, that is, ordering. The ordering is defined as restricting of degrees of freedom: freedom of motion, interactions etc. The model differs from previous ones in that it relates the ordering to processes running not far from equilibrium, described in the linear field of non-equilibrium thermodynamics. It is shown that a system, which includes adenosine triphosphate (ATP) to adenosine diphosphate (ADP) conversion meets the demands of the physical model: it provides energy maintaining steady state conditions, and hydrolysis of ATP proceeding with consumption of water can be tightly conjugated with the most important reactions of synthesis of organic polymers (peptides, nucleotide chains etc.), which proceed with release of water. For these and other reasons ATP seems to be a key molecule of prebiotic evolution. It is argued that the elementary chemical reaction proceeding under control of an enzyme is not necessarily far from equilibrium. The experimental evidence supporting this idea, is presented. It is based on isotope data. Carbon isotope distribution in biochemical systems reveals regularity, which is inherent to steady state systems of chemical reactions, proceeding not far from equilibrium. In living organisms this feature appears at the statistical level, as many completely irreversible and non-linear processes occur in organisms. However not-far-from-equilibrium reactions are inherent to biochemical systems as a matter of principle. They are reconcilable with biochemical behavior. Extant organisms are highly evolved entities which, however, show in their basis the same features, as the simplest chemical systems must have had been involved in the origin of life. Some consequences following from the
Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko
2015-09-14
For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility. PMID:26374047
Linear and non-linear wall friction of wet foams.
Le Merrer, Marie; Lespiat, Rémi; Höhler, Reinhard; Cohen-Addad, Sylvie
2015-01-14
We study the wall slip of aqueous foams with a high liquid content. We use a set-up where, driven by buoyancy, a foam creeps along an inclined smooth solid wall which is immersed in the foaming solution. This configuration allows the force driving the bubble motion and the bubble confinement in the vicinity of the wall to be tuned independently. First, we consider bubble monolayers with small Bond number Bo < 1 and measure the relation between the friction force F and the bubble velocity V. For bubbles which are so small that they are almost spherical, the friction law F ∝ V is Stokes-like. The analysis shows that the minimal thickness of the lubricating contact between the bubble and the wall is governed by DLVO long-range forces. Our results are the first evidence of this predicted linear friction regime for creeping bubbles. Due to buoyancy, large bubbles flatten against the wall. In this case, dissipation arises because of viscous flow in the dynamic meniscus between the contact film and the spherical part of the bubble. It leads to a non-linear Bretherton-like friction law F ∝ V(2/3), as expected for slipping bubbles with mobile liquid-gas interfaces. The Stokes-like friction dominates for capillary numbers Ca larger than the crossover value Ca* ∼ Bo(3/2). The overall friction force can be expressed as the sum of these two contributions. On this basis, we then study 3D foams close to the jamming transition with osmotic pressures Π small compared to the capillary pressure Pc. We measure the wall shear stress τ as a function of the capillary number, and we evidence two friction regimes that are consistent with those found for the monolayer. Similarly to this latter case, the total shear stress can be expressed as the sum of the Stokes-like friction term τ ∝ Ca and the Bretherton-like one τ ∝ Ca(2/3). However, for a 3D foam, the crossover at a capillary number Ca** between both regimes is governed by the ratio of the osmotic pressure to the
Entropy, non-linearity and hierarchy in ecosystems
NASA Astrophysics Data System (ADS)
Addiscott, T.
2009-04-01
Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and captions needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is in the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable. Prigogine, I. & Stengers, I. 1984. Order out of chaos. Bantam Books, Toronto. Schneider, E.D. & Kay, J.J. 1994. Life as a manifestation of the Second Law of Thermodynamics. Mathematical & Computer Modelling, 19, 25-48. Schneider, E.D. & Kay, J.J. 1995. Order from disorder: The Thermodynamics of Complexity in Biology. In: What is Life: the Next
Kerr response of nematic liquids.
NASA Technical Reports Server (NTRS)
Johnston, A. R.
1973-01-01
Description of the results of recent observations of the Kerr effect in nematic liquid crystals in a temperature range just above their nematic-isotropic transition. These results indicate that the intermolecular ordering forces in a nematic substance can enhance the Kerr effect just above the nematic transition in their isotropic state. It is felt that existing theory provides a useful approximation for relating molecular size to response time.
Nonequatorial charged particle confinement around Kerr black holes
Preti, Giovanni
2010-01-15
We analyze the nonequatorial charged particle dynamics around a rotating black hole in the presence of an external magnetic field, the latter being given by Wald's exact analytical solution to the Maxwell's equations in the Kerr background. At variance with the corresponding Schwarzschild case, the behavior of the particle becomes here markedly charge-sign dependent, and the more so the more the Kerr parameter increases. The interplay between the rotating black hole and the magnetic field is shown to provide a mechanism both for selective charge ejection in axially collimated jetlike trajectories, and for selective charge confinement into nonequatorial bound orbits around the hole; the possibility of such a confinement allows the fate of an accreting particle to not necessarily be doomed: infall into the hole can be prevented, and the neutrality of the Kerr source could therefore be preserved, while the charge is safely parked into bound cross-equatorial orbits all around it.
Shandilya, Sharad; Kurz, Michael C.; Ward, Kevin R.; Najarian, Kayvan
2016-01-01
Objective The timing of defibrillation is mostly at arbitrary intervals during cardio-pulmonary resuscitation (CPR), rather than during intervals when the out-of-hospital cardiac arrest (OOH-CA) patient is physiologically primed for successful countershock. Interruptions to CPR may negatively impact defibrillation success. Multiple defibrillations can be associated with decreased post-resuscitation myocardial function. We hypothesize that a more complete picture of the cardiovascular system can be gained through non-linear dynamics and integration of multiple physiologic measures from biomedical signals. Materials and Methods Retrospective analysis of 153 anonymized OOH-CA patients who received at least one defibrillation for ventricular fibrillation (VF) was undertaken. A machine learning model, termed Multiple Domain Integrative (MDI) model, was developed to predict defibrillation success. We explore the rationale for non-linear dynamics and statistically validate heuristics involved in feature extraction for model development. Performance of MDI is then compared to the amplitude spectrum area (AMSA) technique. Results 358 defibrillations were evaluated (218 unsuccessful and 140 successful). Non-linear properties (Lyapunov exponent > 0) of the ECG signals indicate a chaotic nature and validate the use of novel non-linear dynamic methods for feature extraction. Classification using MDI yielded ROC-AUC of 83.2% and accuracy of 78.8%, for the model built with ECG data only. Utilizing 10-fold cross-validation, at 80% specificity level, MDI (74% sensitivity) outperformed AMSA (53.6% sensitivity). At 90% specificity level, MDI had 68.4% sensitivity while AMSA had 43.3% sensitivity. Integrating available end-tidal carbon dioxide features into MDI, for the available 48 defibrillations, boosted ROC-AUC to 93.8% and accuracy to 83.3% at 80% sensitivity. Conclusion At clinically relevant sensitivity thresholds, the MDI provides improved performance as compared to AMSA
Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.
NASA Astrophysics Data System (ADS)
Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.
2015-12-01
Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (n
non-linear regression techniques were investigated to estimate LAI. Our study area is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.
Challenges in predicting non-linear creep and recovery in glassy polymers
NASA Astrophysics Data System (ADS)
Medvedev, Grigori; Caruthers, James
2014-03-01
The phenomenon of non-linear creep of amorphous polymeric glasses is difficult to predict using the traditional viscoelastic and viscoplastic constitutive frameworks, where two features present a particular challenge: (i) the tertiary stage of the creep and (ii) the recovery from large creep upon removal of the load. Representative examples of these two nonlinear responses will be shown for lightly cross-linked PMMA and an epoxy material, where the creep and recovery behavior has been studied as a function of temperature and aging time. The acceleration of creep during the tertiary stage is not caused by damage since the original dimensions of a cross-linked sample are fully recoverable by annealing above Tg. The assumption that the relaxation time is a function of strain runs into qualitative problems when predicting multi-step constant strain rate loading experiments. Recovery from creep as predicted by the constitutive models where the relaxation time depends on the deformation history is too abrupt compared to the experiment - this known as the ``accelerated aging'' problem. A recently developed Stochastic Constitutive Model that acknowledges dynamic heterogeneity in the glass state naturally predicts both the tertiary creep and the smooth recovery from creep.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered. PMID:27187988
Single-photon non-linear optics with a quantum dot in a waveguide
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-01-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951
Single-photon non-linear optics with a quantum dot in a waveguide.
Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P
2015-01-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951
Magnetised Kerr/CFT correspondence
NASA Astrophysics Data System (ADS)
Astorino, Marco
2015-12-01
The tools of Kerr/CFT correspondence are applied to the Kerr black hole embedded in an axial external magnetic field. Its extremal near horizon geometry remains a warped and twisted product of AdS2 ×S2. The central charge of the Virasoro algebra, generating the asymptotic symmetries of the near horizon geometry, is found. It is used to reproduce, via the Cardy formula, the Bekenstein-Hawking entropy of the magnetised Kerr black hole as the statistical microscopic entropy of a dual CFT. The presence of the background magnetic field makes available also a second dual CFT picture, based on the U (1) electromagnetic symmetry, instead of the only rotational one of the standard non-magnetised Kerr spacetime. A Meissner-like effect, where at extremality the external magnetic field is expelled out of the black hole, allows us to infer the value of the mass for these magnetised extremal black holes. The generalisation to the CFT dual for the magnetised extreme Kerr-Newman black hole is also presented.
Fast and Robust Newton strategies for non-linear geodynamics problems
NASA Astrophysics Data System (ADS)
Le Pourhiet, Laetitia; May, Dave
2014-05-01
Geodynamic problems are inherently non-linear, with sources of non-inearities arising from the (i) rheology, (ii) boundary conditions and (iii) the choice of time integration scheme. We have developed a robust non-linear scheme utilizing PETSc's non-linear solver framework; SNES. Through the SNES framework, we have access to a wide range of globalization techniques. In this work we extensively use line search implementation. We explored a wide range different strategies for solving a variety of non-linear problems specific to geodynamics. In this presentation, we report of the most robust line-searching techniques which we have found for the three classes of non-linearities previously identified. Among the class of rheological non-linearities, the shear banding instability using visco-plastic flow rules is the most difficult to solve. Distinctively from its sibling, the elasto-plastic rheology, the visco-plastic rheology causes instantaneous shear localisation. As a results, decreasing time-stepping is not a viable approach to better capture the initial phase of localisation. Furthermore, return map algorithms based on a consistent tangent cannot be used as the slope of the tangent is infinite. Obtaining a converged non-linear solution to this problem only relies on the robustness non-linear solver. After presenting a Newton methodology suitable for rheological non-linearities, we examine the performance of this formulation when frictional sliding boundary conditions are introduced. We assess the robustness of the non-linear solver when applied to critical taper type problems.
Characteristic Dynamics of a Non-Linear Flux Rope
NASA Astrophysics Data System (ADS)
Dehaas, Timothy; Gekelman, Walter; van Compernolle, Bart
2015-11-01
A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and often recreated in laboratory environments. In a series of experiments, a single flux rope of varying cross-section and length was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated via a DC discharge between a cathode and anode with a fixed-free boundary condition. Upon the initiation of the kink instability (IKink > πr2Bzc/2L), the displacement of the flux rope saturates, commencing complex motion. The flux ropes exhibit two types of motion, common to all cases of varying Alfven speeds, injection currents, lengths, and cross-sections. The first motion is characterized by a circular path in the transverse plane, whose displacement depends on the input power and whose frequency varies with injection current. The second motion is characterized by random Lorentzian pulses in the magnetic signals. The polarity of these pulses align with the transverse magnetic field and manifest with greater frequency with increases in magnetic field and injection current. This work is supported by LANL-UC research grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.
Topographical studies on GNF crystals of non linear optical origin
NASA Astrophysics Data System (ADS)
Khandpekar, M. M.; Pati, S. P.
2013-02-01
α-glycine has been combined with equal amount of nitric acid and hydrofluoric acid to form GNF crystals. Transparent and elongated crystals of appreciable sizes (2.5 cm length) useful for dislocation studies have been obtained from solution by slow evaporation in 3-4 weeks time. Crystals were found to be delicate and care is needed while handling them. The external geometry of the crystals was found to vary with composition. Glacial acetic acid (GAA) is found to be universal etching agent. GAA produces well defined elongated etch pits on the habit faces and curved triangular pits on cleavage faces in 15 seconds time. Evidence of impurity inclusions and pits on these inclusions have been detected. The orientation of pits on partial cleavage faces are clearly seen to differ. Occasional presence of long domain lines crossing the field of view has been observed. The curvature of pits edges indicates an optically active material with lower symmetry.
NASA Astrophysics Data System (ADS)
Dautcourt, G.
2009-06-01
Roy P. Kerr has discovered his celebrated metric 45 years ago, yet the problem to find a generalization of the Schwarzschild metric for a rotating mass was faced much earlier. Lense and Thirring, Bach, Andress, Akeley, Lewis, van Stockum and others have tried to solve it or to find an approximative solution at least. In particular Achilles Papapetrou, from 1952 to 1961 in Berlin, was interested in an exact solution. He directed the author in the late autumn of 1959 to work on the problem. Why did these pre-Kerr attempts fail? Comments based on personal reminiscences and old notes.
Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig
NASA Astrophysics Data System (ADS)
Pagano, Stefano; Russo, Riccardo; Strano, Salvatore; Terzo, Mario
2013-02-01
This paper investigates the modelling, parameter identification and control of an unidirectional hydraulically actuated seismic isolator test rig. The plant is characterized by non-linearities such as the valve dead zone and frictions. A non-linear model is derived and then employed for parameter identification. The results concerning the model validation are illustrated and they fully confirm the effectiveness of the proposed model. The testing procedure of the isolation systems is based on the definition of a target displacement time history of the sliding table and, consequently, the precision of the table positioning is of primary importance. In order to minimize the test rig tracking error, a suitable control system has to be adopted. The system non-linearities highly limit the performances of the classical linear control and a non-linear one is therefore adopted. The test rig mathematical model is employed for a non-linear control design that minimizes the error between the target table position and the current one. The controller synthesis is made by taking no specimen into account. The proposed approach consists of a non-linear optimal control based on the state-dependent Riccati equation (SDRE). Numerical simulations have been performed in order to evaluate the soundness of the designed control with and without the specimen under test. The results confirm that the performances of the proposed non-linear controller are not invalidated because of the presence of the specimen.
The origin of off-resonance non-linear optical activity of a gold chiral nanomaterial
NASA Astrophysics Data System (ADS)
Abdulrahman, Nadia; Syme, Christopher D.; Jack, Calum; Karimullah, Affar; Barron, Laurence D.; Gadegaard, Nikolaj; Kadodwala, Malcolm
2013-11-01
We demonstrate that engineered artificial gold chiral nanostructures display significant levels of non-linear optical activity even without plasmonic enhancement. Our work suggests that although plasmonic excitation enhances the intensity of second harmonic emission it is not a prerequisite for significant non-linear (second harmonic) optical activity. It is also shown that the non-linear optical activities of both the chiral nanostructures and simple chiral molecules on surfaces have a common origin, namely pure electric dipole excitation. This is a surprising observation given the significant difference in length scales, three orders of magnitude, between the nanostructures and simple chiral molecules. Intuitively, given that the dimensions of the nanostructures are comparable to the wavelength of visible light, one would expect non-localised higher multipole excitation (e.g. electric quadrupole and magnetic dipole) to make the dominant contribution to non-linear optical activity. This study provides experimental evidence that the electric dipole origin of non-linear optical activity is a generic phenomenon which is not limited to sub-wavelength molecules and assemblies. Our work suggests that viewing non-plasmonic nanostructures as ``meta-molecules'' could be useful for rationally designing substrates for optimal non-linear optical activity.We demonstrate that engineered artificial gold chiral nanostructures display significant levels of non-linear optical activity even without plasmonic enhancement. Our work suggests that although plasmonic excitation enhances the intensity of second harmonic emission it is not a prerequisite for significant non-linear (second harmonic) optical activity. It is also shown that the non-linear optical activities of both the chiral nanostructures and simple chiral molecules on surfaces have a common origin, namely pure electric dipole excitation. This is a surprising observation given the significant difference in length scales
Non linear volume flow dependence on osmotic pressure difference in frog skin.
Celentano, F; Monticelli, G; Orsenigo, M N
1978-01-01
The volume flow dependence upon the osmotic pressure difference of both impermeant (sucrose) and permeable (NaCl) species has been investigated in leg skin bags of Rana esculenta. It is concluded: 1. The hydration-dehydration error in the flow measurement with leg skin bags is negligible. 2. The flow-force relationship is non-linear. 3. Unstirred layers and solute permeation have little, if any, influence on non linearity. 4. Structural modifications of the skin induced with hypertonic solutions have been observed and may contribute to non linearity, as well as the multiple-barrier effect. PMID:310878
Uncertainty due to non-linearity in radiation thermometers calibrated by multiple fixed points
Yamaguchi, Y.; Yamada, Y.
2013-09-11
A new method to estimate the uncertainty due to non-linearity is described on the n= 3 scheme basis. The expression of uncertainty is mathematically derived applying the random walk method. The expression is simple and requires only the temperatures of the fixed points and a relative uncertainty value for each flux-doubling derived from the non-linearity measurement. We also present an example of the method, in which the uncertainty of temperature measurement by a radiation thermometer is calculated on the basis of non-linearity measurement.
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
Minati, Ludovico E-mail: ludovico.minati@unitn.it
2015-12-15
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.
Spontaneous Fluctuations and Non-linear Ignitions: Two Dynamic Faces of Cortical Recurrent Loops.
Moutard, Clément; Dehaene, Stanislas; Malach, Rafael
2015-10-01
Recent human neurophysiological recordings have uncovered two fundamental modes of cerebral cortex activity with distinct dynamics: an active mode characterized by a rapid and sustained activity ("ignition") and a spontaneous (resting-state) mode, manifesting ultra-slow fluctuations of low amplitude. We propose that both dynamics reflect two faces of the same recurrent loop mechanism: an integration device that accumulates ongoing stochastic activity and, either spontaneously or in a task-driven manner, crosses a dynamic threshold and ignites, leading to content-specific awareness. The hypothesis can explain a rich set of behavioral and neuronal phenomena, such as perceptual threshold, the high non-linearity of visual responses, the subliminal nature of spontaneous activity fluctuations, and the slow activity buildup anticipating spontaneous behavior (e.g., readiness potential). Further elaborations of this unified scheme, such as a cascade of integrators with different ignition thresholds or multi-stable states, can account for additional complexities in the repertoire of human cortical dynamics. PMID:26447581
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
NASA Astrophysics Data System (ADS)
Minati, Ludovico
2015-12-01
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.
Linear and non-linear fluorescence imaging of neuronal activity
NASA Astrophysics Data System (ADS)
Fisher, Jonathan A. N.
-photon absorption (TPA) cross sections, Sigma2 of various fluorophores are described as well. Utilizing single-beam two-photon microscopy, action potentials were recorded optically from individual (˜1 mum) nerve terminals of the intact mouse neurohypophysis, in a single sweep. Single-trial recordings of action potentials exhibited signal-to-noise ratios ˜5 and fractional fluorescence changes of up to ˜10%. These results represent the first single-trial optical recording of action potentials from individual nerve terminals in an intact mammalian preparation using 180° detection, and may serve as an alternative to invasive electrode arrays for studying neuronal systems in vivo .
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133
Tortajada-Genaro, L A; Campíns-Falcó, P
2007-05-15
Multivariate standardisation is proposed for the successful chemiluminescence determination of chromium based on luminol-hydrogen peroxide reaction. In an extended concentration range, non-linear calibration model is needed. The studied instrumental situations were different detection cells, instruments, assemblies, time and their possible combinations. Chemiluminescence kinetic registers have been transferred using piecewise direct standardisation (PDS) method. The optimisation of transfer parameters has been carried out based on the prediction residual error criteria. Non-linear principal component regression (NL-PCR) and non-linear partial least square regression (NL-PLS) were chosen for modelling the relationship signal-concentration of transferred registers. Good accuracy and precision were obtained for water samples. The concentrations of chromium were statistically in agreement with reference method values and with recovery studies. Therefore, it is possible to transfer chemiluminescence curves without loosing ability of prediction, even the presence of a non-linear behaviour. PMID:19071716
Optimal feedback control of strongly non-linear systems excited by bounded noise
NASA Astrophysics Data System (ADS)
Zhu, W. Q.; Huang, Z. L.; Ko, J. M.; Ni, Y. Q.
2004-07-01
A strategy for non-linear stochastic optimal control of strongly non-linear systems subject to external and/or parametric excitations of bounded noise is proposed. A stochastic averaging procedure for strongly non-linear systems under external and/or parametric excitations of bounded noise is first developed. Then, the dynamical programming equation for non-linear stochastic optimal control of the system is derived from the averaged Itô equations by using the stochastic dynamical programming principle and solved to yield the optimal control law. The Fokker-Planck-Kolmogorov equation associated with the fully completed averaged Itô equations is solved to give the response of optimally controlled system. The application and effectiveness of the proposed control strategy are illustrated with the control of cable vibration in cable-stayed bridges and the feedback stabilization of the cable under parametric excitation of bounded noise.
Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli
NASA Astrophysics Data System (ADS)
Aerts, Johan
The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and
How does non-linear dynamics affect the baryon acoustic oscillation?
Sugiyama, Naonori S.; Spergel, David N. E-mail: dns@astro.princeton.edu
2014-02-01
We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do not guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.
Construction of the wave operator for non-linear dispersive equations
NASA Astrophysics Data System (ADS)
Tsuruta, Kai Erik
In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.
Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI Study
Su, Longfei; Wang, Lubin; Shen, Hui; Feng, Guiyu; Hu, Dewen
2013-01-01
Background: Dysfunctional integration of distributed brain networks is believed to be the cause of schizophrenia, and resting-state functional connectivity analyses of schizophrenia have attracted considerable attention in recent years. Unfortunately, existing functional connectivity analyses of schizophrenia have been mostly limited to linear associations. Objective: The objective of the present study is to evaluate the discriminative power of non-linear functional connectivity and identify its changes in schizophrenia. Method: A novel measure utilizing the extended maximal information coefficient was introduced to construct non-linear functional connectivity. In conjunction with multivariate pattern analysis, the new functional connectivity successfully discriminated schizophrenic patients from healthy controls with relative higher accuracy rate than the linear measure. Result: We found that the strength of the identified non-linear functional connections involved in the classification increased in patients with schizophrenia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. Conclusion: The classification results suggest that the non-linear functional connectivity provided useful discriminative power in diagnosis of schizophrenia, and the inverse but similar spatial distributed changes between the non-linear and linear measure may indicate the underlying compensatory mechanism and the complex neuronal synchronization underlying the symptom of schizophrenia. PMID:24155713
Second-order optical non-linearity of proton exchanged lithium tantalate waveguides
NASA Astrophysics Data System (ADS)
Korkishko, Y. N.; Fedorov, V. A.; Alkaev, A. N.; Laurell, F.
2001-10-01
A detailed correlation between the fabrication conditions, crystallographic phase state of HxLi1-xTaO3 waveguides and second-order optical non-linearity has been investigated by using reflected SHG measurements from the polished waveguide end face. The non-linearity, strongly reduced after the initial proton exchange, is found to be restored and even increased after annealing. However, this apparent increase in the non-linearity is accompanied by a strong degradation of the quality of the SHG reflected beam in the region of the initial as-exchanged waveguide due to beam scattering. The high temperature proton exchange technique has been shown to produce high-quality α-phase waveguides with essentially undegraded non-linear optical properties. There is no phase transition when the α-phase waveguides are fabricated by direct exchange. This phase presents the same crystalline structure as that of LiTaO3 and maintains the excellent non-linear properties of the bulk material. The results obtained are important for the design, fabrication and optimization of guided-wave non-linear optical devices in LiTaO3.
Geometrically non-linear vibration of spinning structures by finite element method
NASA Astrophysics Data System (ADS)
Leung, A. Y. T.; Fung, T. C.
1990-05-01
The geometrically non-linear steady state vibration of spinning structures is studied. Full flap-lag-torsional gyroscopic coupling effects are considered. The non-linearity arises mainly from the non-linear axial strain-displacement relation. The equations of motion are derived from Lagrangian equations. Spatial discretization is achieved by the finite element method and steady state nodal displacements are expanded into Fourier series. The harmonic balance method gives a set of non-linear algebraic equations with the Fourier coefficients of the nodal displacements as unknowns. The non-linear algebraic equations are solved by a Newtonian algorithm iteratively. The importance of the conditions of completeness and balanceability in choosing the number of harmonic terms to be used is discussed. General frame structures with arbitrary orientation in a rotating frame can be investigated by the present method. Rotating blades and shafts are treated as special cases. Examples of a rotating ring with different orientations are given. The non-linear amplitude-frequency relation can be constructed parametrically.
Detecting non-linearities in neuro-electrical signals: A study of synchronous local field potentials
NASA Astrophysics Data System (ADS)
Müller-Gerking, Johannes; Martinerie, Jacques; Neuenschwander, Sergio; Pezard, Laurent; Renault, Bernard; Varela, Francisco J.
The question of the presence and detection of non-linear dynamics and possibly low-dimensional chaos in the brain is still an open question, with recent results indicating that initial claims for low dimensionality were faulted by incomplete statistical testing. To make some progress on this question, our approach was to use stringent data analysis of precisely controlled and behaviorally significant neuroelectric data. There are strong indications that functional brain activity is correlated with synchronous local field potentials. We examine here such synchronous episodes in data recorded from the visual system of behaving cats and pigeons. Our purpose was to examine under these ideal conditions whether the time series showed any evidence of non-linearity concommitantly with the arising of synchrony. To test for non-linearity we have used surrogate sets for non-linear forecasting, the false nearest strands method, and an examination of deterministic vs stochastic modeling. Our results indicate that the time series under examination do show evidence for traces of non-linear dynamics but weakly, since they are not robust under changes of parameters. We conclude that low-dimensional chaos is unlikely to be found in the brain, and that a robust detection and characterization of higher-dimensional non-linear dynamics is beyond the reach of current analytical tools.
Neural potentials and micro-signals of non-linear deep and shallow conical shells
NASA Astrophysics Data System (ADS)
Chai, W. K.; Smithmaitrie, P.; Tzou, H. S.
2004-07-01
Conventional sensors, such as proximeters and accelerometers, are add-on devices usually adding additional weights to structures and machines. Health monitoring of flexible structures by electroactive smart materials has been investigated over the years. Thin-film piezoelectric material, e.g. polyvinylidene fluoride (PVDF) polymeric material, is a lightweight and dynamic sensitive material appearing to be a perfect candidate in monitoring structure's dynamic state and health status of flexible shell structures with complex geometries. The complexity of shell structures has thwarted the progress in studying the distributed sensing of shell structures. Linear distributed sensing of various structures have been studied, e.g. beams, plates, cylindrical shells, conical shells, spherical shells, paraboloidal shells and toroidal shells. However, distributed microscopic neural signals of non-linear shell structures has not been carried out rigorously. This study is to evaluate microscopic signals, modal voltages and distributed micro-neural signal components of truncated non-linear conical shells laminated with distributed infinitesimal piezoelectric neurons. Signal generation of distributed neuron sensors laminated on conical shells is defined first. The dynamic neural signal of truncated non-linear conical shells consists of microscopic linear and non-linear membrane components and linear bending component based on the von Karman geometric non-linearity. Micro-signals, modal voltages and distributed neural signal components of two different truncated non-linear conical shells are investigated and their sensitivities discussed.
Domain walls of linear polarization in isotropic Kerr media
NASA Astrophysics Data System (ADS)
Louis, Y.; Sheppard, A. P.; Haelterman, M.
1997-09-01
We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
NASA Astrophysics Data System (ADS)
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in
Non-linear dual-axis biodynamic response to vertical whole-body vibration
NASA Astrophysics Data System (ADS)
Nawayseh, N.; Griffin, M. J.
2003-11-01
Seated human subjects have been exposed to vertical whole-body vibration so as to investigate the non-linearity in their biodynamic responses and quantify the response in directions other than the direction of excitation. Twelve males were exposed to random vertical vibration in the frequency range 0.25-25 Hz at four vibration magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 r.m.s.). The subjects sat in four sitting postures having varying foot heights so as to produce differing thigh contact with the seat (feet hanging, feet supported with maximum thigh contact, feet supported with average thigh contact, and feet supported with minimum thigh contact). Forces were measured in the vertical, fore-and-aft, and lateral directions on the seat and in the vertical direction at the footrest. The characteristic non-linear response of the human body with reducing resonance frequency at increasing vibration magnitudes was seen in all postures, but to a lesser extent with minimum thigh contact. Appreciable forces in the fore-and-aft direction also showed non-linearity, while forces in the lateral direction were low and showed no consistent trend. Forces at the feet were non-linear with a multi-resonant behaviour and were affected by the position of the legs. The decreased non-linearity with the minimum thigh contact posture suggests the tissues of the buttocks affect the non-linearity of the body more than the tissues of the thighs. The forces in the fore-and-aft direction are consistent with the body moving in two directions when exposed to vertical vibration. The non-linear behaviour of the body, and the considerable forces in the fore-aft direction should be taken into account when optimizing vibration isolation devices.
Characterization and correction of non-linearity effect on oxygen spectra of TANSO-FTS onboard GOSAT
NASA Astrophysics Data System (ADS)
Suto, H.; Frankenberg, C.; Crisp, D.; kuze, A.
2011-12-01
The Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) collects high spectral resolution spectra of reflected sunlight in the molecular oxygen (O2) A-band near 760 nm, the carbon dioxide (CO2) bands near 1600 and 2060 nm, and the methane (CH4) band near 1660 nm. The O2 measurements are used to estimate the surface pressure and the dry air column, which are used to define the column-averaged CO2 and CH4 dry air mole fractions, XCO2 and XCH4. O2 measurements are ideal for this application because the O2 dry air mole fraction is almost constant and well known. However, systematic errors in the O2 measurements can introduce biases in the XCO2 and XCH4 retrievals from TANSO-FTS. For example, 1% overestimate of the O2 column retrievals introduced a 10 hPa high bias in surface pressure and a 4 hPa low bias in XCO2 in early retrievals. This near-global bias has been traced to uncertainties in the O2 A-band absorption cross sections. Other spatially-varying O2 errors have been traced to uncertainties in the calibration of the TANSO-FTS A-band channel. For example, non-linearity in the A-band channel response introduces errors in the depths of both O2 lines and solar Fraunhofer lines. There are three possible sources of non-linearity: detector, analogue circuit (amplifier and electric filters), and analogue to digital converter (ADC). Observations acquired with the flight instrument and laboratory experiments with TANSO-FTS engineering model (EM) is being used to discriminate and correct these errors. The EM tests have largely vindicated the silicon photo-diode detector, but show that the non-linearity of the analogue circuit and ADC is almost identical to that seen in data acquired by the on-orbit flight model. We have developed and applied a correction to the measured interferograms from the flight instrument and confirmed it validity by showing that the Fraunhofer
Development of experimental verification techniques for non-linear deformation and fracture.
Moody, Neville Reid; Bahr, David F.
2003-12-01
This project covers three distinct features of thin film fracture and deformation in which the current experimental technique of nanoindentation demonstrates limitations. The first feature is film fracture, which can be generated either by nanoindentation or bulge testing thin films. Examples of both tests will be shown, in particular oxide films on metallic or semiconductor substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates for two cases; one where the metal was a bulk (effectively single crystal) material and the other where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases indentation was used to produce discontinuous loading curves, which indicate film fracture after plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting the importance of defects and film thickness in evaluating film strength. The second feature of concern is film adhesion. Several qualitative and quantitative tests exist today that measure the adhesion properties of thin films. A relatively new technique that uses stressed overlayers to measure adhesion has been proposed and extensively studied. Delamination of thin films manifests itself in the form of either telephone cord or straight buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film system. Finally, deformation in metallic systems can lead to non-linear deformation due to 'bursts' of dislocation activity during nanoindentation. An experimental study to examine the structure of dislocations around
Massive vector particles tunneling from Kerr and Kerr-Newman black holes
NASA Astrophysics Data System (ADS)
Li, Xiang-Qian; Chen, Ge-Rui
2015-12-01
In this paper, we investigate the Hawking radiation of massive spin-1 particles from 4-dimensional Kerr and Kerr-Newman black holes. By applying the Hamilton-Jacobi ansatz and the WKB approximation to the field equations of the massive bosons in Kerr and Kerr-Newman space-time, the quantum tunneling method is successfully implemented. As a result, we obtain the tunneling rate of the emitted vector particles and recover the standard Hawking temperature of both the two black holes.
A three-dimensional network model describing a non-linear composite material
NASA Astrophysics Data System (ADS)
Mårtensson, E.; Gäfvert, U.
2004-01-01
A three-dimensional network model for performing non-linear time-dependent simulations of the electrical characteristics related to a composite material is presented. The considered compounds are represented by a cubic lattice and consist of conducting particles distributed in an insulating matrix. Earlier studies of the non-linear characteristics of silicon carbide (SiC) grains and of the linear frequency-dependent electrical properties of composites are combined and extended. The calculations are compared to measurements on ethylene-propylene-diene monomer rubber filled with angular SiC grains. The field-dependent conductivity measured for the unconsolidated SiC powder is used as input to the simulations. The model can manage the conductivity difference of seven decades between the constituents and the strong exponential non-linearity of the conducting particles. The network calculations replicate the experimental characteristic at high filler concentrations, where direct 'face' contacts between the filler grains dominate the behaviour. At lower concentrations, it is shown that indirect 'edge' contacts involving the polymer control the current transport also in the non-linear high field range. The general effective conductivity describing an edge connection in the linear case is no longer appropriate. Non-linear mechanisms in the polymer and the conducting grains within a field enhanced limited region around the contact need to be represented by an equivalent circuit element with a case-dependent resulting expression.
On the Slow Transition across Instabilities in Non-Linear Dissipative Systems
NASA Astrophysics Data System (ADS)
Raman, A.; Bajaj, A. K.; Davies, P.
1996-05-01
Non-linear vibratory systems are often characterized by external or excitation parameters which vary with time (i.e., are "non-stationary"). A general methodology is presented to predict analytically the response of some weakly non-linear dissipative systems as an excitation parameter varies slowly across points of instability corresponding to co-dimensional-1 bifurcations. It is shown that the motion near the bifurcation/critical point can be approximated by motion along a center manifold, and can be represented by a 1-dimensional dynamical system with a slowly varying parameter. Techniques expounded by Haberman [1] for analyzing such 1-dimensional equations using matched asymptotic expansions and non-linear boundary layers are summarized. The results are then used to obtain responses of some classical non-linear vibratory systems in the presence of non-stationary excitation. The problem of transition across saddle-node bifurcations or jumps during passage through primary resonance in the forced Duffing's oscillator is studied. Then, the transition across the points of dynamic instability (pitchfork bifurcations) in the parametrically excited non-linear Mathieu equation is analyzed. Lastly, the transition across a Hopf bifurcation in the Parkinson-Smith model for galloping of bluff bodies is discussed. The methodology described here is found to be effective in approximating the behavior of the systems in the vicinity of bifurcation points. The solutions and their qualitative features predicted by the analysis are in good agreement with those obtained from direct numerical integration of the equations.
Spectral Hole Burning via Kerr Nonlinearity
NASA Astrophysics Data System (ADS)
Khan, Anwar Ali; Abdul Jabar, M. S.; Jalaluddin, M.; Bacha, Bakht Amin; Iftikhar, Ahmad
2015-10-01
Spectral hole burning is investigated in an optical medium in the presence of Doppler broadening and Kerr nonlinearity. The Kerr nonlinearity generates coherent hole burning in the absorption spectrum. The higher order Kerr nonlinearity enhances the typical lamb dip of the hole. Normal dispersion in the hole burning region while Steep anomalous dispersion between the two hole burning regions also enhances with higher order Kerr effect. A large phase shift creates large delay or advancement in the pulse propagation while no distortion is observed in the pulse. These results provide significant steps to improve optical memory, telecom devices, preservation of information and image quality. Supported by Higher Education Commission (HEC) of Pakistan
An iterative method to solve the heat transfer problem under the non-linear boundary conditions
NASA Astrophysics Data System (ADS)
Zhu, Zhenggang; Kaliske, Michael
2012-02-01
The aim of the paper is to determine the approximation of the tangential matrix for solving the non-linear heat transfer problem. Numerical model of the strongly non-linear heat transfer problem based on the theory of the finite element method is presented. The tangential matrix of the Newton method is formulated. A method to solve the heat transfer with the non-linear boundary conditions, based on the secant slope of a reference function, is developed. The contraction mapping principle is introduced to verify the convergence of this method. The application of the method is shown by two examples. Numerical results of these examples are comparable to the ones solved with the Newton method and the commercial software COMSOL for the heat transfer problem under the radiative boundary conditions.
Real-Time Monitoring of Non-linear Suicidal Dynamics: Methodology and a Demonstrative Case Report
Fartacek, Clemens; Schiepek, Günter; Kunrath, Sabine; Fartacek, Reinhold; Plöderl, Martin
2016-01-01
In recent years, a number of different authors have stressed the usefulness of non-linear dynamic systems approach in suicide research and suicide prevention. This approach applies specific methods of time series analysis and, consequently, it requires a continuous and fine-meshed assessment of the processes under consideration. The technical means for this kind of process assessment and process analysis are now available. This paper outlines how suicidal dynamics can be monitored in high-risk patients by an Internet-based application for continuous self-assessment with integrated tools of non-linear time series analysis: the Synergetic Navigation System. This procedure is illustrated by data from a patient who attempted suicide at the end of a 90-day monitoring period. Additionally, future research topics and clinical applications of a non-linear dynamic systems approach in suicidology are discussed. PMID:26913016
DSP-based Mitigation of RF Front-end Non-linearity in Cognitive Wideband Receivers
NASA Astrophysics Data System (ADS)
Grimm, Michael; Sharma, Rajesh K.; Hein, Matthias A.; Thomä, Reiner S.
2012-09-01
Software defined radios are increasingly used in modern communication systems, especially in cognitive radio. Since this technology has been commercially available, more and more practical deployments are emerging and its challenges and realistic limitations are being revealed. One of the main problems is the RF performance of the front-end over a wide bandwidth. This paper presents an analysis and mitigation of RF impairments in wideband front-ends for software defined radios, focussing on non-linear distortions in the receiver. We discuss the effects of non-linear distortions upon spectrum sensing in cognitive radio and analyse the performance of a typical wideband software-defined receiver. Digital signal processing techniques are used to alleviate non-linear distortions in the baseband signal. A feed-forward mitigation algorithm with an adaptive filter is implemented and applied to real measurement data. The results obtained show that distortions can be suppressed significantly and thus increasing the reliability of spectrum sensing.
Stability analysis, non-linear pulsations and mass loss of models for 55 Cygni (HD 198478)
NASA Astrophysics Data System (ADS)
Yadav, Abhay Pratap; Glatzel, Wolfgang
2016-04-01
55 Cygni is a variable supergiant. Recent observational studies revealed that this star pulsates in pressure, gravity and strange modes. The pulsations seem to be associated with episodes of mass loss. In this paper we present a theoretical study of stellar models with parameters close to that of 55 Cygni. A linear non-adiabatic stability analysis with respect to radial perturbations is performed and the evolution of instabilities into the non-linear regime is followed by numerical simulation. Our study indicates that the mass of 55 Cygni lies below 28 M⊙. As the final consequence of the instabilities the non-linear simulations revealed finite amplitude pulsations with periods consistent with the observations. The non-linear results also indicate a connection between pulsations and mass loss and allow for an estimate of the mean mass-loss rate. It is consistent with the observed values.
Non-Linear Fuzzy Logic Control for Forced Large Motions of Spinning Shafts
NASA Astrophysics Data System (ADS)
LEI, SHULIANG; PALAZZOLO, ALAN; NA, UHNJOO; KASCAK, ALBERT
2000-08-01
A unique control approach is developed for prescribed large motion control using magnetic bearings in a proposed active stall control test rig. A finite element based, flexible shaft is modeled in a closed loop system with PD controllers that generate the control signals to support and to shake the rotor shaft. A linearized force model of the stall rig with 16 magnetic poles (4 opposing C-cores) yields stability and frequency responses. The non-linear model retains the non-linearities in Ampere's law, Faraday's law and the Maxwell stress tensor. A fuzzy logic control system is then designed to show the advantages over the conventional controllers with the fully non-linear model.
Roles of Different Forms of Scale Factor in Non-linear Electrodynamics for Accelerating Universe
NASA Astrophysics Data System (ADS)
Maity, Sayani; Debnath, Ujjal
2013-07-01
In this work, we have assumed the modified Lagrangian of non-linear electrodynamics for accelerated universe. The energy density and pressure for non-linear electromagnetic theory have been considered in terms of both electric and magnetic fields. The Einstein's filed equations have been considered in FRW universe for Hořava-Lifshitz gravity. Since we are considering the non-linear form of Lagrangian for accelerating universe, so four forms of scale factors like logamediate, intermediate, emergent and power law forms are chosen in our investigation. For every expansion, the natures of electric field and magnetic field have been shown through graphical representation. The electric and magnetic fields increase for logamediate, intermediate and emergent expansion and decrease in power law expansion.
Instantaneous stepped-frequency, non-linear radar part 2: experimental confirmation
NASA Astrophysics Data System (ADS)
Ranney, Kenneth; Mazzaro, Gregory; Gallagher, Kyle; Martone, Anthony; Sherbondy, Kelly; Narayanan, Ram
2016-05-01
Last year, we presented the theory behind "instantaneous stepped-frequency, non-linear radar". We demonstrated through simulation that certain devices (when interrogated by a multi-tone transmit signal) could be expected to produce a multi-tone output signal near harmonics of the transmitted tones. This hypothesized non-linear (multitone) response was then shown to be suitable for pulse compression via standard stepped-frequency processing techniques. At that time, however, we did not have measured data to support the theoretical and simulated results. We now present laboratory measurements confirming our initial hypotheses. We begin with a brief description of the experimental system, and then describe the data collection exercise. Finally, we present measured data demonstrating the accurate ranging of a non-linear target.
Russell, Steven J.; Carlsten, Bruce E.
2012-06-26
We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.
Effect of non-linear capacitance on a non-uniform transmission line
NASA Astrophysics Data System (ADS)
Kumar, L.; Shankar Pandey, V.; Parthasarathy, H.; Shrimali, V.; Varshney, G.
2016-05-01
In this paper we derive a non-linear polarization electric field relationship in a dielectric by considering harmonics binding of the electrons to its nuclei. We apply this theory to a transmission line to model the non-linear, inhomogeneous frequency-dependent capacitance of the line and approximate an expression for the line current when the line is terminated by load impedance. We then suggest a method for estimating the inhomogeneous, frequency-dependent non-linear component of the line capacitance from the measurements of the far field electromagnetic field radiated by the line current. The far field magnetic vector potential is calculated from the line current by the standard Green's function integration in free space.
S-cone contributions to linear and non-linear motion processing.
Michna, Magda L; Yoshizawa, Tatsuya; Mullen, Kathy T
2007-04-01
We investigated the characteristics of mechanisms mediating motion discrimination of S-cone isolating stimuli and found a double dissociation between the effects of luminance noise, which masks linear but not non-linear motion, and chromatic noise, which masks non-linear but not linear motion. We conclude that S-cones contribute to motion via two different pathways: a non-linear motion mechanism via a chromatic pathway and a linear motion mechanism via a luminance pathway. Additionally, motion discrimination and detection thresholds for drifting, S-cone isolating Gabors are unaffected by luminance noise, indicating that grating motion is mediated via chromatic mechanisms and based on higher-order motion processing. PMID:17343890
Sammer, G
1998-05-01
In the investigation of heart rate and heart rate variability, the discrimination between mental workload, physical activity and respiration is known to be methodologically difficult. At most, heart rate variability measures are more likely to be coarse-grained measures with variability confounded by heart rate. Moreover, the spectral analysis of heart rate variability shows broad-band frequency characteristics, pointing towards non-stationarity or non-linearity. From this it is suggested to focus on non-linear dynamic analyses that are variance-insensitive. The experimental section of the paper focuses on the estimation of two non-linear measures for both heartbeat dynamics and respiration, the correlation dimension indicating complexity and the Lyapunov exponents indicating predictability. The results indicate that the complexity of heart dynamics is related to the type of task and that the predictability of heart dynamics is related to the amount of load. PMID:9613233
Use of non-linear EEG analysis to study abnormal brain dynamics in deaf human subjects.
Micheloyannis, S; Stam, C J; Fountoulakis, E; Bourkas, M; Arvanitis, S; Papanikolaou, E
1998-06-19
We compared the cortical dynamics of deaf subjects to those of control subjects at rest with eyes closed and during reading with the help of a non-linear prediction statistic. This method is suitable for short-term noisy time series such as electroencephalographic signals. Furthermore, we used surrogate data to test for non-linear dynamics underlying the electroencephalographic time series recorded. Our results indicate that significant non-linearity accompanies cortical activation during reading. This is more diffuse in deaf subjects and could be due to the widespread reorganization of their cerebral cortex. Predictability was lower in deaf subjects at rest, which indicates their increased 'readiness' in the resting condition. Finally, our results indicate that normal and deaf subjects differ significantly in terms of cortical dynamics. PMID:9682843
Non-linear regime of the Generalized Minimal Massive Gravity in critical points
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-03-01
The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about AdS_3 space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges c_-=0 or c_+=0, in the non-linear regime. We show that AdS_3 wave solutions are present, and have logarithmic form in critical points. Then we study the AdS_3 non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott-Deser-Tekin method we calculate the energy and angular momentum of these types of black hole solutions.
A Signal Transmission Technique for Stability Analysis of Multivariable Non-Linear Control Systems
NASA Technical Reports Server (NTRS)
Jackson, Mark; Zimpfer, Doug; Adams, Neil; Lindsey, K. L. (Technical Monitor)
2000-01-01
Among the difficulties associated with multivariable, non-linear control systems is the problem of assessing closed-loop stability. Of particular interest is the class of non-linear systems controlled with on/off actuators, such as spacecraft thrusters or electrical relays. With such systems, standard describing function techniques are typically too conservative, and time-domain simulation analysis is prohibitively extensive, This paper presents an open-loop analysis technique for this class of non-linear systems. The technique is centered around an innovative use of multivariable signal transmission theory to quantify the plant response to worst case control commands. The technique has been applied to assess stability of thruster controlled flexible space structures. Examples are provided for Space Shuttle attitude control with attached flexible payloads.
On incremental non-linearity in granular media: phenomenological and multi-scale views
NASA Astrophysics Data System (ADS)
Darve, Félix; Nicot, François
2005-12-01
On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto-viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro-mechanical models based on multi-scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro-mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non-linear character of their behaviour. It is shown that both phenomenological and micro-mechanical models exhibit an incremental non-linearity. In addition, the multi-scale approach reveals that the macroscopic incremental non-linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright
The non-linear power spectrum of the Lyman alpha forest
NASA Astrophysics Data System (ADS)
Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue
2015-12-01
The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z~ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.
Three-dimensional finite-difference modeling of non-linear ground notion
Jones, E.M.; Olsen, K.B.
1997-08-01
We present a hybrid finite-difference technique capable of modeling non-linear soil amplification from the 3-D finite-fault radiation pattern for earthquakes in arbitrary earth models. The method is applied to model non-linear effects in the soils of the San Fernando Valley (SFV) from the 17 January 1994 M 6.7 Northridge earthquake. 0-7 Hz particle velocities are computed for an area of 17 km by 19 km immediately above the causative fault and 5 km below the surface where peak strike-parallel, strike-perpendicular, vertical, and total velocities reach values of 71 cm/s, 145 cm/s, 152 cm/s, and 180 cm/s, respectively. Selected Green`s functions and a soil model for the SFV are used to compute the approximate stress level during the earthquake, and comparison to the values for near-surface alluvium at the U.S. Nevada Test Site suggests that the non-linear regime may have been entered. We use selected values from the simulated particle velocity distribution at 5 km depth to compute the non-linear response in a soil column below a site within the Van Norman Complex in SFV, where the strongest ground motion was recorded. Since site-specific non- linear material parameters from the SFV are currently unavailable, values are taken from analyses of observed Test Site ground motions. Preliminary results show significant reduction of spectral velocities at the surface normalized to the peak source velocity due to non-linear effects when the peak velocity increases from 32 cm/s (approximately linear case) to 64 cm/s (30-92%), 93 cm/s (7-83%), and 124 cm/s (2-70%). The largest reduction occurs for frequencies above 1 Hz.
NASA Astrophysics Data System (ADS)
Paterson, Greig A.
2013-05-01
Numerous non-ideal factors can influence paleointensity data, but the detection of these factors remains problematic and new approaches to understanding how paleointensity data behave are needed. In this study, a recently developed stochastic model of single domain (SD) paleointensity behaviour is expanded to investigate the effects that anisotropic and non-linear thermoremanent magnetizations (TRMs) have on the paleointensity results and the parameters used to select data. The model results indicate that before applying any form of correction these non-ideal factors can produce results that are self-consistent, but highly inaccurate. The methods that are currently used to correct for anisotropic and non-linear TRMs are effective and greatly increase the likelihood of obtaining accurate results. The corrections, however, do not restore the results to those of ideal SD samples measured with the same laboratory-to-ancient field ratio, but the data are restored to those of ideal SD samples with the equivalent laboratory-to-ancient magnetization ratios (MLab/MAnc). The simulations indicate that non-linear and anisotropic TRM have no or only a weak influence on the parameters commonly used to select paleointensity data, which means that these non-ideal factors are effectively undetectable. These new models suggest that the paleointensity behaviour of thermally/chemically stable SD samples, whether they are ideally behaved, anisotropy or non-linear TRM corrected, is near universal and depends only on MLab/MAnc and the choice of paleointensity protocol (i.e. Coe-type versus Thellier). Given the high self-consistency and highly inaccurate results that anisotropic and non-linear TRM can yield, it is essential to test for such effects and all Thellier-type paleointensity studies must include tests for anisotropic and non-linear TRM to assert the reliability of the data obtained.
Influence of shear in the non-linear analysis of RC members
Diotallevi, Pier Paolo; Landi, Luca; Cardinetti, Filippo
2008-07-08
The purpose of this study is to develop an analytical model characterized by a beam-column finite element which is able to reproduce the non-linear flexural-shear behavior of RC structures. The paper shows a brief description of the finite element formulation, the theory used for modeling the constitutive relationship and the scheme of the algorithm, transformed in a computer program, which was developed for implementing the theoretical model. Finally it illustrates a comparison with available experimental results for the calibration and validation of the model and a study on the influence of the non-linear shear response.
NASA Astrophysics Data System (ADS)
HARRAS, B.; BENAMAR, R.; WHITE, R. G.
2002-04-01
The geometrically non-linear free vibration of thin composite laminated plates is investigated by using a theoretical model based on Hamilton's principle and spectral analysis previously applied to obtain the non-linear mode shapes and resonance frequencies of thin straight structures, such as beams, plates and shells (Benamar et al. 1991Journal of Sound and Vibration149 , 179-195; 1993, 164, 295-316; 1990 Proceedings of the Fourth International Conference on Recent Advances in Structural Dynamics, Southampton; Moussaoui et al. 2000 Journal of Sound and Vibration232, 917-943 [1-4]). The von Kármán non-linear strain-displacement relationships have been employed. In the formulation, the transverse displacement W of the plate mid-plane has been taken into account and the in-plane displacements U and V have been neglected in the non-linear strain energy expressions. This assumption, quite often made in the literature has been adopted in reference [2] and (El Kadiri et al. 1999 Journal of Sound and Vibration228, 333-358 [5]), in the isotropic case and has been mentioned here because the results obtained have been found to be in very good agreement with those based on the hierarchical finite element method (HFEM). In a previous study, it was assumed, based on the analogy with the isotropic case, that the fundamental carbon fibre reinforced plastic (CFRP) plate non-linear mode shape could be well estimated, by using nine plate functions, obtained as products of clamped-clamped beam functions in the x and y directions, symmetric in both the length U001and width directions [3]. In the present work, a convergence study has been performed and has shown that, although such an assumption may yield a good estimate for the non-linear resonance frequency, 18 plate functions should be taken into account instead of nine in the first non-linear mode shape and associated bending stress patterns calculations. This allows the anisotropy induced by the fibre orientations to be taken
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
NASA Astrophysics Data System (ADS)
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-01
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can "surf" a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
Non-Linear Approach to the Energy Loss of Ions in Solids
NASA Astrophysics Data System (ADS)
Arista, Néstor R.; Lifschitz, Agustín F.
The present work includes the discussion of three main aspects in the area of the energy loss of ions in solids. First we review some of the main features contained in the historical Bohr, Bethe and Bloch theories, and related models based on them. Then we analyze new developments in this area based on a non-linear formulation of the energy loss of ions in a free electron gas. As a final question, we reconsider, from the new perspective of the non-linear approach, some long-standing problems concerning the charge state of ions moving in solids and its relationship with the effective charge concept.
Non-Linear Luminescent Coupling in Series-Connected Multijunction Solar Cells
Steiner, M. A.; Geisz, J. F.
2012-06-18
The assumption of superposition or linearity of photocurrent with solar flux is widespread for calculations and measurements of solar cells. The well-known effect of luminescent coupling in multijunction solar cells has also been assumed to be linear with excess current. Here we show significant non-linearities in luminescent coupling in III-V multijunction solar cells and propose a simple model based on competition between radiative and nonradiative processes in the luminescent junction to explain these non-linearities. We demonstrate a technique for accurately measuring the junction photocurrents under a specified reference spectrum, that accounts for and quantifies luminescent coupling effects.
Airframe structural damage detection: a non-linear structural surface intensity based technique.
Semperlotti, Fabio; Conlon, Stephen C; Barnard, Andrew R
2011-04-01
The non-linear structural surface intensity (NSSI) based damage detection technique is extended to airframe applications. The selected test structure is an upper cabin airframe section from a UH-60 Blackhawk helicopter (Sikorsky Aircraft, Stratford, CT). Structural damage is simulated through an impact resonator device, designed to simulate the induced vibration effects typical of non-linear behaving damage. An experimental study is conducted to prove the applicability of NSSI on complex mechanical systems as well as to evaluate the minimum sensor and actuator requirements. The NSSI technique is shown to have high damage detection sensitivity, covering an extended substructure with a single sensing location. PMID:21476618
Non-linear performance of a three-bearing rotor incorporating a squeeze-film damper
NASA Technical Reports Server (NTRS)
Holmes, R.; Dede, M.
1987-01-01
This paper is concerned with the non-linear vibration performance of a rigid rotor supported on three bearings, one being surrounded by a squeeze-film damper. This damper relies on the pressure built up in the squeeze film to help counter-act external forces arising from unbalance and other effects. As a result a vibration orbit of a certain magnetude results. Such vibration orbits illustrate features found in other non-linear systems, in particular sub-harmonic resonances and jump phenomena. Comparisons between theoretical prediction and experimental observations of these phenomena are made.
Solution algorithms for non-linear singularly perturbed optimal control problems
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1983-01-01
The applicability and usefulness of several classical and other methods for solving the two-point boundary-value problem which arises in non-linear singularly perturbed optimal control are assessed. Specific algorithms of the Picard, Newton and averaging types are formally developed for this class of problem. The computational requirements associated with each algorithm are analysed and compared with the computational requirement of the method of matched asymptotic expansions. Approximate solutions to a linear and a non-linear problem are obtained by each method and compared.
Genetic programming as an analytical tool for non-linear dielectric spectroscopy.
Woodward, A M; Gilbert, R J; Kell, D B
1999-05-01
By modelling the non-linear effects of membranous enzymes on an applied oscillating electromagnetic field using supervised multivariate analysis methods, Non-Linear Dielectric Spectroscopy (NLDS) has previously been shown to produce quantitative information that is indicative of the metabolic state of various organisms. The use of Genetic Programming (GP) for the multivariate analysis of NLDS data recorded from yeast fermentations is discussed, and GPs are compared with previous results using Partial Least Squares (PLS) and Artificial Neural Nets (NN). GP considerably outperforms these methods, both in terms of the precision of the predictions and their interpretability. PMID:10379559
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-15
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
The 'Schwarzschild-Kerr' Equilibrium Configurations
Manko, V. S.; Ruiz, E.
2010-12-07
We discuss the possibility of equilibrium between a Schwarzschild black hole possessing zero intrinsic angular momentum and a hyperextreme Kerr source. The balance occurs due to frame-dragging exerted by the latter source on the black-hole constituent, thus giving rise to a non-zero horizon's angular velocity parallel to the angular momentum of the Kerr object.
Guica, Monica; Hartman, Thomas; Song Wei; Strominger, Andrew
2009-12-15
Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J=GM{sup 2}) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge c{sub L}=(12J/({Dirac_h}/2{pi})). This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature T{sub L}=(1/2{pi}) and conjugate energy given by the zero mode generator, L{sub 0}, of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy S{sub micro}=(2{pi}J/({Dirac_h}/2{pi})) for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy S{sub macro}=(Area/4({Dirac_h}/2{pi})G). The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge c{sub L}=(12J/({Dirac_h}/2{pi})), and, in particular, that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with c{sub L}{approx}2x10{sup 79}.
Scanning heterodyne Kerr-effect microscope for imaging of magnetic tracks
NASA Astrophysics Data System (ADS)
Protopopov, Vladimir V.; Lee, Sukwon; Kwon, Youngkun; Cho, Sunghoon; Kim, Hyuk; Chae, Jonggyn
2006-07-01
Design and performance of a new type of Kerr microscope based on heterodyne cross-polarized technique is presented. Weak depolarization of the probe beam due to longitudinal magneto-optical Kerr effect is detected by means of heterodyne mixing of the two cross-polarized and frequency shifted waves generated by Zeeman-type He-Ne laser. In comparison with the traditional homodyne method the proposed technique has better sensitivity and spatial resolution. Experimental results of imaging service magnetic tracks on real samples of magnetic disks are presented, showing better contrast and spatial resolution with respect to the images obtained from commercial devices available in the market.
Non-Linear EMG Parameters for Differential and Early Diagnostics of Parkinson’s Disease
Meigal, Alexander Y.; Rissanen, Saara M.; Tarvainen, Mika P.; Airaksinen, Olavi; Kankaanpää, Markku; Karjalainen, Pasi A.
2013-01-01
The pre-clinical diagnostics is essential for management of Parkinson’s disease (PD). Although PD has been studied intensively in the last decades, the pre-clinical indicators of that motor disorder have yet to be established. Several approaches were proposed but the definitive method is still lacking. Here we report on the non-linear characteristics of surface electromyogram (sEMG) and tremor acceleration as a possible diagnostic tool, and, in prospective, as a predictor for PD. Following this approach we calculated such non-linear parameters of sEMG and accelerometer signal as correlation dimension, entropy, and determinism. We found that the non-linear parameters allowed discriminating some 85% of healthy controls from PD patients. Thus, this approach offers considerable potential for developing sEMG-based method for pre-clinical diagnostics of PD. However, non-linear parameters proved to be more reliable for the shaking form of PD, while diagnostics of the rigid form of PD using EMG remains an open question. PMID:24062722
Piezoeletric and Mechanical properties of Non-linear Optical Manganese Mercury thiocyanate (MMTC)
NASA Astrophysics Data System (ADS)
Kumar, Santhosh R.; Korah, Ignatius; Chandralingam, S.; kumar, Binay; George, Sijosh; Joseph, Ginson P.
2011-07-01
Single crystasls of the coordination complex non-linear optical crystal material, MMTC with dimensions of 12×8×6 mm3 were grown from aqueous solutions by slow evaporation technique. The mechanical properties and piezoelectric properties of the crystals were studied.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-08-01
The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.
Testing procedures for non-stationarity and non-linearity in physiological signals.
Popivanov, D; Mineva, A
1999-03-15
Most of the physiological signals (EEG, ECG, blood flow, human gait, etc.) characterize by complex dynamics including both non-stationarities and non-linearities. These time series resemble red noise with long-range correlation and 1/(f beta) power spectrum. A question arises as to how to distinguish the characteristics of the process underlying the signal dynamics from the properties of the observed time series. The classical methods to determine possible non-linear (chaotic) dynamics (e.g. correlation dimension) often fail in such signals because of relatively short data records containing stochastic components and non-stationarities. We report an application of several approaches, aimed at (1) determining of the non-stationarities in the signals and (2) testing whether non-linear dynamics exists. Assessment of the intrinsic correlation properties of the dynamic process and distinguishing the same from external trends was performed using singular spectra and detrended fluctuation analysis. The existence of non-linear dynamics was tested by correlation dimension (modified algorithm of re-embedding) and by correlation integrals of real and surrogate data. The correlation integrals of real signal and surrogate data sets were statistically compared using Kolmogorov-Smirnov (K-S) test. The procedures were tested on EEG and laser-Doppler (LD) blood flow. Our suggestion is that no one approach taken alone is the best for our aims. Instead, a battery of methods should be used. PMID:10194935
NASA Astrophysics Data System (ADS)
Lay, E. H.; Holzworth, R. H.; Cho, M.; Rodger, C. J.; Thomas, J. N.
2008-12-01
We report results on the temporal-spatial modeling of non-linear electron density enhancement due to successive lightning strokes using World Wide Lightning Location Network (WWLLN) data to experimentally describe the rate of large lightning strokes. The WWLLN provides real-time lightning locations globally by measuring the very low frequency (VLF) radiation emanating from lightning discharges. These WWLLN stroke rates are used as input to an axi-symmetric FDTD model that describes the non-linear effect of lightning electromagnetic pulses (EMP) on the ionosphere. This non-linear effect results from accumulating electron density modifications due to the interaction of the EMP from multiple successive lightning strokes with the lower ionosphere. Further studies must be completed to narrow uncertainties in the model, but the qualitative ionospheric response to successive EMPs is presented in two-dimensional, axi-symmetric space. Results from this study show that the non-linear effect of lightning EMP due to successive lightning strokes must be taken into account and varies with altitude. The limiting maximum electron density is reached earlier in time for higher altitudes, and the most significant effect occurs at 88 km. The limiting maximum modeled electron density profile in the 83- to 91-km altitude range does not depend on the initial electron density.
NASA Astrophysics Data System (ADS)
Wang, Jing; You, Jiangong
2016-07-01
We study the boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequencies. We proved that if the forcing is quasi-periodic in time with two frequencies which is not super-Liouvillean, then all solutions of the equation are bounded. The proof is based on action-angle variables and modified KAM theory.
Positron self-driven hollow channel in non-linear plasma wakefields
NASA Astrophysics Data System (ADS)
Amorim, Ligia Diana; Vieira, Jorge; Fonseca, Ricardo A.; Silva, Luis O.; GoLP/Instituto de Plasmas e Fusão Nuclear Team
2014-10-01
Plasma based accelerators are capable of sustaining very high acceleration gradients when compared to conventional accelerators. In particular plasma based accelerators operating in non-linear regimes reached the 100GV/m. One of the challenges for a future plasma based collider is to accelerate positrons in non-linear regimes. Although novel techniques have been investigated to this end, it is still important to propose and explore other new configurations for positron acceleration in non-linear regimes. In this context we suggest a novel process for positron acceleration in non-linear plasma wakefields, where a tightly focused positron drive beam expels the plasma ions forming a hollow channel with large accelerating and focusing wakefields suitable for positron acceleration. We introduce the setup of the proposed scheme and illustrate it with analytical and numerical results of a 3D numerical simulations performed with the PIC code OSIRS. Moreover, we discuss the optimal conditions for the positron drive beam stability. This work was partially supported by FCT grant SFRH / BD / 84851 / 2012. We acknowledge PRACE for access to resources on SuperMUC (Leibniz Research Center).
Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool
ERIC Educational Resources Information Center
Bligh, Brett; Coyle, Do
2013-01-01
This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…
Self-consistent linearization of non-linear BEM formulations with quadratic convergence
NASA Astrophysics Data System (ADS)
Fernandes, G. R.; de Souza Neto, E. A.
2013-11-01
In this work, a general technique to obtain the self-consistent linearization of non-linear formulations of the boundary element method (BEM) is presented. In the incremental-iterative procedure required to solve the non-linear problem the convergence is quadratic, being the solution obtained from the consistent tangent operator. This technique is applied to non-linear BEM formulations for plates where two independent problems are discussed: the plate bending and the stretching problem. For both problems an equilibrium equation is written in terms of strains and internal forces and then the consistent tangent operator is derived by applying the Newton-Raphson’s scheme. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness, although the presented formulations can be used with any non-linear model. Numerical examples are presented showing the accuracy of the results as well as the high convergence rate of the iterative procedure.
Spherically symmetric analysis on open FLRW solution in non-linear massive gravity
Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin E-mail: izumi@phys.ntu.edu.tw
2012-12-01
We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.
CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR
Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...
Loop-Imbedded (Non-Linear) Instruction Modules: A Novel Delivery Method for Online Learning
ERIC Educational Resources Information Center
Dai, Jing; Turgeon, A. J.
2008-01-01
Instructional modules are typically designed with the linear format of PowerPoint slide sets, thus mimicking classroom-based instruction with its temporal and spatial constraints. In an attempt to make instructional modules more student-centered and thus more individualized for online education, a prototype non-linear module was developed on the…
Study of non-linear energy response of POLAR plastic scintillators to electrons
NASA Astrophysics Data System (ADS)
Zhang, Xiaofeng; Xiao, Hualin; Yu, Boxiang; Orsi, Silvio; Wu, Bobing; Hu, Wei; Zhang, Xuan
2015-10-01
The POLAR experiment is a joint Chinese-European project conceived for a precise measurement of gamma ray polarization and optimized for the detection of the prompt emission of Gamma-Ray Bursts (GRBs) in the energy range 50-500 keV. POLAR is a novel compact space-borne Compton polarimeter consisting of 1600 low-Z plastic scintillator bars (EJ-248M), read out by 25 flat-panel multi-anode photomultiplier tubes. In the paper, we first present a dedicated experiment to study the non-linear energy response of EJ-248M plastic scintillator bars to electrons and the detailed data analysis. Second we obtained the Birks' constant of EJ-248M plastic scintillator as kB = 0.143 mm / MeV by least squares fitting. Finally we used Geant4 simulation to study the influence of non-linear energy response on the performance of POLAR, through which it was found that non-linear energy response will lead to a significant decrease in statistics and result in larger uncertainty in polarization measurement. The paper presents a general solution to the study of non-linear energy response of plastic scintillators to electrons.
Dynamic Analysis of Flexible Slider-Crank Mechanisms with Non-Linear Finite Element Method
NASA Astrophysics Data System (ADS)
CHEN, J.-S.; HUANG, C.-L.
2001-09-01
Previous research in finite element formulation of flexible mechanisms usually neglected high order terms in the strain-energy function. In particular, the quartic term of the displacement gradient is always neglected due to the common belief that it is not important in the dynamic analysis. In this paper, we show that this physical intuition is not always valid. By retaining all the high order terms in the strain-energy function the equations of motion naturally become non-linear, which can then be solved by the Newmark method. In the low-speed range it is found that the dynamic responses predicted by non-linear and linear approaches indeed make no significant difference. However, when the rotation speed increases up to about one-fifth of the fundamental bending natural frequency of the connecting rod, simplified approaches begin to incur noticeable error. Specifically, for a connecting rod with a slenderness ratio of 0·01 the conventional simplified approaches overestimate the vibration amplitude almost 10-fold when the rotation speed is comparable to the fundamental natural frequency of the connecting rod. Therefore, non-linear finite element formulation taking into account the complete non-linear strain is needed in analyzing high-speed flexible mechnisms with slender links.
Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer
NASA Technical Reports Server (NTRS)
Pai, P. F.; Lee, S.-Y.
2003-01-01
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.
A Navigational Analysis of Linear and Non-Linear Hypermedia Interfaces.
ERIC Educational Resources Information Center
Hall, Richard H.; Balestra, Joel; Davis, Miles
The purpose of this experiment was to assess the effectiveness of a comprehensive model for the analysis of hypermap navigation patterns through a comparison of navigation patterns associated with a traditional linear interface versus a non-linear "hypermap" interface. Twenty-six general psychology university students studied material on bipolar…
Non-Linear Editing for the Smaller College-Level Production Program, Rev. 2.0.
ERIC Educational Resources Information Center
Tetzlaff, David
This paper focuses on a specific topic and contention: Non-linear editing earns its place in a liberal arts setting because it is a superior tool to teach the concepts of how moving picture discourse is constructed through editing. The paper first points out that most students at small liberal arts colleges are not going to wind up working…
Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum
ERIC Educational Resources Information Center
Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo
2004-01-01
We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…
Trumpet slices in Kerr spacetimes.
Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J
2014-12-31
We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface. PMID:25615297
PkANN - I. Non-linear matter power spectrum interpolation through artificial neural networks
NASA Astrophysics Data System (ADS)
Agarwal, Shankar; Abdalla, Filipe B.; Feldman, Hume A.; Lahav, Ofer; Thomas, Shaun A.
2012-08-01
We investigate the interpolation of power spectra of matter fluctuations using artificial neural networks (PkANN). We present a new approach to confront small-scale non-linearities in the power spectrum of matter fluctuations. This ever-present and pernicious uncertainty is often the Achilles heel in cosmological studies and must be reduced if we are to see the advent of precision cosmology in the late-time Universe. We show that an optimally trained artificial neural network (ANN), when presented with a set of cosmological parameters (? and redshift z), can provide a worst-case error ≤1 per cent (for z≤ 2) fit to the non-linear matter power spectrum deduced through N-body simulations, for modes up to k≤ 0.7 h Mpc-1. Our power spectrum interpolator is accurate over the entire parameter space. This is a significant improvement over some of the current matter power spectrum calculators. In this paper, we detail how an accurate interpolation of the matter power spectrum is achievable with only a sparsely sampled grid of cosmological parameters. Unlike large-scale N-body simulations which are computationally expensive and/or infeasible, a well-trained ANN can be an extremely quick and reliable tool in interpreting cosmological observations and parameter estimation. This paper is the first in a series. In this method paper, we generate the non-linear matter power spectra using HALOFIT and use them as mock observations to train the ANN. This work sets the foundation for Paper II, where a suite of N-body simulations will be used to compute the non-linear matter power spectra at sub-per cent accuracy, in the quasi-non-linear regime (0.1 ≤k≤ 0.9 h Mpc-1). A trained ANN based on this N-body suite will be released for the scientific community.
Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves
NASA Astrophysics Data System (ADS)
Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2015-11-01
We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.
A study of non-linearity in rainfall-runoff response using 120 UK catchments
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.
2016-09-01
This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.
Linear and non-linear performance of transducer and pupil in Calliphora retinula cells.
Leutscher-Hazelhoff, J T
1975-01-01
1. Intracellular recordings have been made from the blowfly (Calliphora erythrocephala) retinula cell; apart from the transducer mechanism, these cells also feature a pupil mechanism. 2. At several mean intensity levels, within the apparently linear range of response, frequency characteristics of amplitude and phase and responses to 'delta'-flashes and 'delta'-flash pairs have been obtained. 3. Fourier methods have shown these responses to be mutually compatible, confirming linearity in these circumstances. 4. Non-linear behaviour can be made to appear at the lower frequencies when the modulation depth is increased. 5. Non-linearities can also appear through application of the superposition test: a low frequency sine wave, modulated so as to elicit an apparently linear response, and a high frequence sine wave which does not give rise to non-linearity even at the highest modulation depths can, when superimposed, yield a greater response to the latter when situated at the minima of the former than at its maxima. 6. At frequencies above approximately 1 Hz these superposition non-linearities are attributed to the transducer mechanism gain control. Below this frequency the pupil mechanism takes part considerably in the retinula cell's total observed gain control: its characteristics remain yet to be cleared up. 7. The transducer's linear and non-linear properties fit in closely with those of the Fuortes-Hodgkin model which couples increases in gain and time constants. 8. The Fuortes-Hodgkin model will probably require some quantitative modifications in the originally treated case of Limulus, on account of its pupil. 9. Finally, the merits of Veringa's diffusion model, and the possibility of eventually joining this model with the Fuortes-Hodgkin one are pointed out briefly. PMID:1142250
Effects of Dual-Energy CT with Non-Linear Blending on Abdominal CT Angiography
Wang, Chaoqin; Jiang, Xiaochen; Xu, Ge
2014-01-01
Objective To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. Materials and Methods This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Results Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Conclusion Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning. PMID:25053901
Disentangling redshift-space distortions and non-linear bias using the 2D power spectrum
NASA Astrophysics Data System (ADS)
Jennings, Elise; Wechsler, Risa H.; Skillman, Samuel W.; Warren, Michael S.
2016-03-01
We present the 2D redshift-space galaxy power spectrum, P(k, μ), measured from the Dark Sky simulations, using catalogues constructed with halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual μ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of non-linear growth and redshift-space distortion (RSD) effects. Using the μ < 0.2 simulation data, which is not impacted by RSD, we can successfully measure the non-linear bias to ˜5 per cent at k < 0.6 h Mpc-1. Using the low μ simulation data to constrain the non-linear bias, and μ ≥ 0.2 to constrain the growth rate, we show that f can be constrained to ˜26(22) per cent to a kmax < 0.4(0.6) h Mpc-1 from clustering alone using a dispersion model, for a range of galaxy models. Our analysis of individual μ bins reveals interesting physical effects which arise from different methods of populating haloes with galaxies. We find a prominent turnaround scale, at which RSD damping effects are greater than the non-linear growth, which differs for each galaxy model. The idea of separating non-linear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.
Hidden and generalized conformal symmetry of Kerr-Sen spacetimes
NASA Astrophysics Data System (ADS)
Ghezelbash, A. M.; Siahaan, H. M.
2013-07-01
It is recently conjectured that generic non-extremal Kerr black hole could be holographically dual to a hidden conformal field theory (CFT) in two dimensions. Moreover, it is known that there are two CFT duals (pictures) to describe the charged rotating black holes which correspond to angular momentum J and electric charge Q of the black hole. Furthermore these two pictures can be incorporated by the CFT duals (general picture) that are generated by SL(2, {Z}) modular group. The general conformal structure can be revealed by looking at charged scalar wave equation in some appropriate values of frequency and charge. In this regard, we consider the wave equation of a charged massless scalar field in the background of Kerr-Sen black hole and show that in the ‘near region’, the wave equation can be reproduced by the Casimir operator of a local SL(2, {R})_L \\times SL(2, {R})_R hidden conformal symmetry. We find the exact agreement between macroscopic and microscopic physical quantities like entropy and absorption cross section of scalars for Kerr-Sen black hole. We then find an extension of vector fields that in turn yields an extended local family of SL(2, {R})_L \\times SL(2, {R})_R hidden conformal symmetry, parameterized by one parameter. For some special values of the parameter, we find a copy of SL(2, {R}) hidden conformal algebra for the charged Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole in the strong deflection limit.
NASA Astrophysics Data System (ADS)
Bauwens, M.; Ohlsson, H.; Beelaerts, V.; Barbé, K.; Dehairs, F.; Schoukens, J.
2009-04-01
The reconstruction of seasonal variations in the paleo-environement is possible thanks to the bivalve shells that are commonly found back in archeological sites and that are sensitive environmental recorders. To do these reconstructions we look to the chemical composition of a shell along his growth axis. When a certain element or isotope can be related to an environmental parameter it is called a proxy for that parameter. Many elemental and isotopic have been proposed as potential temperature proxy. But the same problem is showing up over and over again: a certain elemental shows a good linear correlation with temperature, but at the moment that the intrinsic variation has to be explained, the incorporation of the proxy seems to be much more complex than assumed in the first instance. Two observations gave us the idea to use a new type of models to reconstruct temperature. In first instance we observed that all proxy incorporations were always influenced by more than one environmental parameter, which automatically implicate that the reconstruction of an environmental parameter should be done with more than one proxy input. A second observation is that some proxy-environment relations seemed to be non-linear. We propose to do climate reconstructions based on Non-linear multi-proxy models. We will present our own intuitive approach to do temperature reconstructions and we will compare our results to two recognized engineering techniques: Manifold learning and Supported vector machines. These three methods are validated on shell data of Scheldt estuarine environment using high resolution measurements of Mg, Mn, Ba, Sr and Pb on a LA-ICP-MS. The site specificity is tested for all methods using shell-data from 4 different sites along the Scheldt. Time specificity is checked by reconstructing the temperature corresponding to a shell that grew in another year. The best reconstructions are computed with the manifold learning algorithms, but the simplicity and high
Second order Kerr-Newman time delay
NASA Astrophysics Data System (ADS)
He, G.; Lin, W.
2016-01-01
The explicit form for the post-Newtonian gravitational time delay of light signals propagating on the equatorial plane of a Kerr-Newman black hole is derived. Based on the null geodesic in Kerr-Newman spacetime, we adopt the iterative method to calculate the time delay. Our result reduces to the previous formulation for the Kerr black hole if we drop the contribution from the electrical charge. Our time-delay formula for the Reissner-Nordström geometry is different from the previous publication [Phys. Rev. D 69, 023002 (2004)], in which the largest second order contribution to the time delay is missing.
- on Kerr Black Hole and its Entropy
NASA Astrophysics Data System (ADS)
Goncharov, Yu. P.
We describe U(N)-monopoles (N>1) on Kerr black holes using the parameters of the moduli space of holomorphic vector U(N)-bundles over { S}2 with the help of the Grothendieck splitting theorem. For N = 2,3 we obtain this description in an explicit form as well as the estimates for the corresponding monopole masses. This gives us a possibility to adduce some reasonings in favor of the existence of both a fine structure for Kerr black holes and the statistical ensemble tied with it which might generate the Kerr black hole entropy.
Gravitational perturbation and Kerr/CFT correspondence
NASA Astrophysics Data System (ADS)
Ghezelbash, A. M.
2016-07-01
We find the explicit form of two-point function for the conformal spin-2 energy momentum operators on the near horizon of a near extremal Kerr black hole by variation of a proper boundary action. In this regard, we consider an appropriate boundary action for the gravitational perturbation of the Kerr black hole. We show that the variation of the boundary action with respect to the boundary fields yields the two-point function for the energy momentum tensor of a conformal field theory. We find agreement between the two-point function and the correlators of the dual conformal field theory to the Kerr black hole.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. PMID:26341070
Non-linear heterogeneous FE approach for FRP strengthened masonry arches
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele; Fedele, Roberto
2015-12-01
A fast and reliable non-linear heterogeneous FE approach specifically conceived for the analysis of FRP-reinforced masonry arches is presented. The approach proposed relies into the reduction of mortar joints to interfaces exhibiting a non-linear holonomic behavior, with a discretization of bricks by means of four-noded elastic elements. The FRP reinforcement is modeled by means of truss elements with elastic-brittle behavior, where the peak tensile strength is estimated by means of a consolidated approach provided by the Italian guidelines CNR-DT200 on masonry strengthening with fiber materials, where the delamination of the strip from the support is taken into account. The model is validated against some recent experimental results relying into circular masonry arches reinforced at both the intrados and the extrados. Some sensitivity analyses are conducted varying the peak tensile strength of the trusses representing the FRP reinforcement.
Fully non-linear cosmological perturbations of multicomponent fluid and field systems
NASA Astrophysics Data System (ADS)
Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung
2016-09-01
We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.
Modelling the Non-Linear Viscoelastic and Viscoplastic Behaviour of Aramid Fibre Yarns
NASA Astrophysics Data System (ADS)
Chailleux, E.; Davies, P.
A non-linear viscoelastic viscoplastic model is proposed for the tensile behaviour of aramid fibres, based on an analysis of the deformation mechanisms of these materials. This model uses the macroscopic formulation developed by Schapery together with the plasticity concept of Perzyna. A simple identification procedure for the model parameters has been developed using creep/recovery cycles at different load levels. The identification reveals that two of the four parameters of the viscoelastic model (g1 and aσ) are independent of stress level. This may be due to the simple and regular nature of the fibre structure. The model enables the parameters which characterise the non-linear reversible viscoelasticity to be identified independently from those which characterise the viscoplasticity. The model predictions are compared to experimental data for a more complex load sequence and reasonable correlation is obtained.
Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.
Wigren, Torbjörn
2015-01-01
The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data. PMID:26671817
Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.
Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged
A non-linear finite-element model of the newborn ear canal
Qi, Li; Liu, Hengjin; Lutfy, Justyn; Funnell, W. Robert J.; Daniel, Sam J.
2010-01-01
We present a three-dimensional non-linear finite-element model of a 22-day-old newborn ear canal. The geometry is based on a clinical X-ray CT scan. A non-linear hyperelastic constitutive law is applied to model large deformations. The Young’s modulus of the soft tissue is found to have a significant effect on the ear-canal volume change, which ranges from approximately 27% to 75% over the static-pressure range of ±3 kPa. The effects of Poisson’s ratio and of the ratio C10:C01 in the hyperelastic model are found to be small. The volume changes do not reach a plateau at high pressures, which implies that the newborn ear-canal wall would not be rigid in tympanometric measurements. The displacements and volume changes calculated from the model are compared with available experimental data. PMID:17225406
A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses
NASA Astrophysics Data System (ADS)
Hwang, Harold Y.; Fleischer, Sharly; Brandt, Nathaniel C.; Perkins, Bradford G., Jr.; Liu, Mengkun; Fan, Kebin; Sternbach, Aaron; Zhang, Xin; Averitt, Richard D.; Nelson, Keith A.
2015-10-01
Over the past decade, breakthroughs in the generation and control of ultrafast high-field terahertz (THz) radiation have led to new spectroscopic methodologies for the study of light-matter interactions in the strong-field limit. In this review, we will outline recent experimental demonstrations of non-linear THz material responses in materials ranging from molecular gases, to liquids, to varieties of solids - including semiconductors, nanocarbon, and correlated electron materials. New insights into how strong THz fields interact with matter will be discussed in which a THz field can act as either a non-resonant electric field or a broad bandwidth pulse driving specific resonances within it. As an emerging field, non-linear THz spectroscopy shows promise for elucidating dynamic problems associated with next generation electronics and optoelectronics, as well as for demonstrating control over collective material degrees of freedom.
NASA Astrophysics Data System (ADS)
Khandpekar, M. M.; Patil, Smita S.
2013-06-01
L-arginine combines with a variety of salts and acids to form a potential non-linear optical material. Nano crystals of L-arginine-Sulphate (LAS) have been grown from solution by the slow evaporation technique for the first time. The single phase formation has been verified by XRD studies. TEM studies confirm the formation of nanocrystallites of particle size of about 34nm. The optical absorption studies shows presence of a sharp UV cut-off region at 239.57nm. Further the presence of wide transparency window in the entire visible region shows its use for optoelectronic applications. Energy Dispersive X-ray Analysis (EDAX) confirms the presence of potassium and sulphur in the grown nanocrystal of LAS. Fungus growth has been avoided by subjecting the solution to pre-heat treatment. Preliminary studies indicate presence of non-linear optical (NLO) response.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
NASA Astrophysics Data System (ADS)
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2016-07-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
The non-linear relationship between nerve conduction velocity and skin temperature.
Todnem, K; Knudsen, G; Riise, T; Nyland, H; Aarli, J A
1989-01-01
Median motor and sensory nerves were examined in 20 healthy subjects. Superficial stimulating and recording electrodes were used, and the nerves were examined at natural skin temperature, after cooling and after heating of the arm. The conduction velocity for the fastest and slow conducting sensory fibres (temperature range 17-37 degrees C), and for the fastest conducting motor fibres (temperature range 19-38 degrees C) increased non-linearly with increase in skin temperature. Similarly, distal motor latencies increased non-linearly with decrease in skin temperature. The effect of temperature was most pronounced in the low temperature range, and change in conduction velocity per degree centigrade was reduced toward higher skin temperature. Sensory nerve response duration increased linearly with decline in skin temperature. Sensory and motor amplitude did not show any significant relation to skin temperature. PMID:2738592
Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam
NASA Astrophysics Data System (ADS)
Rizov, V.
2016-03-01
Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.
Non-linear behaviour of charge-pump phase-locked loops
NASA Astrophysics Data System (ADS)
Wiegand, C.; Hedayat, C.; Hilleringmann, U.
2010-10-01
The analysis of the mixed analogue and digital structure of charge-pump phase-locked loops (CP-PLL) is a challenge in modelling and simulation. In most cases the system is designed and characterized using its continuous linear model or its discrete linear model neglecting its non-linear switching behaviour. I.e., the time-varying model is approximated by a time-invariant representation using its average dynamics. Depending on what kind of phase detector is used, the scopes of validity of these approximations are different. Here, a preeminent characterization and simulation technique based on the systems event-driven feature is presented, merging the logical and analogue inherent characteristics of the system. In particular, the high-grade non-linear locking process and the dead-zone are analyzed.
Numerical simulations for parabolic pulse shaping in non-linear media
NASA Astrophysics Data System (ADS)
Nora, R. C.; Durfee, C. G.; Carr, L. D.
2007-03-01
Pulses with parabolic temporal profiles have the property that they can propagate through non-linear media in a self similar manner. Parabolic pulses have been generated experimentally in fiber amplifiers. Input pulses develop into parabolic pulses by the combined action of group velocity dispersion, non-linear refractive index, and gain. In this work, we are exploring the feasibility of generating ultrafast parabolic pulses in laser resonators. We have successfully numerically simulated the generation of parabolic pulses in fiber amplifiers using two different algorithms, the Cayley method, and fourth order Runge-Kutta, to solve the Nonlinear Schrodinger equation with gain and periodic boundary conditions. In contrast to fiber amplifiers, pulses in laser resonators must maintain a stable pulse shape on each round trip through the optical cavity. We are exploring the prediction that a time dependent saturable gain will stabilize the pulse in the oscillator and yield parabolic pulses.
Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis
Huber, K.A.; Hugins, M.S.
1983-01-01
Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity.
Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.
2003-01-01
The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.
Nicol, Thomas W J; Matubayasi, Nobuyuki; Shimizu, Seishi
2016-06-01
The low solubility of drugs, which poses a serious problem in drug development, can in part be overcome by the use of cyclodextrins (CDs) and their derivatives. Here, the key to solubilisation is identified as the formation of inclusion complexes with the drug molecule. If inclusion complexation were the only contribution to drug solubility, it would increase linearly with CD concentration (as per the Higuchi-Connors model); this is because inclusion complexation is a 1 : 1 stoichiometric process. However, solubility curves often deviate from this linearity, whose mechanism is yet to be understood. Here we aim to clarify the origin of such non-linearity, based on the Kirkwood-Buff and the McMillan-Mayer theories of solutions. The rigorous statistical thermodynamic theory shows that non-linearity of solubilisation can be rationalised by two contributions: CD-drug interaction and the drug-induced change of CD-CD interaction. PMID:27206059
Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality
NASA Astrophysics Data System (ADS)
Lee, Seungjin; Mafra, Carlos R.; Schlotterer, Oliver
2016-03-01
Recent progress on scattering amplitudes in super Yang-Mills and super-string theory benefitted from the use of multiparticle superfields. They universally capture tree-level subdiagrams, and their generating series solve the non-linear equations of ten-dimensional super Yang-Mills. We provide simplified recursions for multiparticle superfields and relate them to earlier representations through non-linear gauge transformations of their generating series. Moreover, we discuss the gauge transformations which enforce their Lie symmetries as suggested by the Bern-Carrasco-Johansson duality between color and kine-matics. Another gauge transformation due to Harnad and Shnider is shown to streamline the theta-expansion of multiparticle superfields, bypassing the need to use their recursion relations beyond the lowest components. The findings of this work tremendously simplify the component extraction from kinematic factors in pure spinor superspace.
Experiments on exactly computing non-linear energy transfer rate in MASNUM-WAM
NASA Astrophysics Data System (ADS)
Jiang, Xingjie; Wang, Daolong; Gao, Dalu; Zhang, Tingting
2016-07-01
The Webb-Resio-Tracy (WRT) method for exact computation of the non-linear energy transfer rate was implemented in MASNUM-WAM, which is a third-generation wave model solving the discrete spectral balance equation. In this paper, we describe the transformation of the spectral space in the original WRT method. Four numerical procedures were developed in which the acceleration techniques in the original WRT method, such as geometric scaling, pre-calculating, and grid-searching, are all reorganized. A series of numerical experiments including two simulations based on real data were performed. The availability of such implementation in both serial and parallel versions of the wave model was proved, and a comparison of computation times showed that some of the developed procedures provided good efficacy. With exact computation of non-linear energy transfer, MASNUM-WAM now can be used to perform numerical experiments for research purposes, which augurs well for further developments of the model.
A new line-of-sight approach to the non-linear Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Fidler, Christian; Koyama, Kazuya; Pettinari, Guido W.
2015-04-01
We develop the transport operator formalism, a new line-of-sight integration framework to calculate the anisotropies of the Cosmic Microwave Background (CMB) at the linear and non-linear level. This formalism utilises a transformation operator that removes all inhomogeneous propagation effects acting on the photon distribution function, thus achieving a split between perturbative collisional effects at recombination and non-perturbative line-of-sight effects at later times. The former can be computed in the framework of standard cosmological perturbation theory with a second-order Boltzmann code such as SONG, while the latter can be treated within a separate perturbative scheme allowing the use of non-linear Newtonian potentials. We thus provide a consistent framework to compute all physical effects contained in the Boltzmann equation and to combine the standard remapping approach with Boltzmann codes at any order in perturbation theory, without assuming that all sources are localised at recombination.
Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F
NASA Astrophysics Data System (ADS)
Mellet, N.; Maget, P.; Lütjens, H.; Meshcheriakov, D.; the Tore Supra Team
2013-04-01
The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130-43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899-902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew-Goldberger-Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. PMID:26850752
Synthesis, characterization and calculated non-linear optical properties of two new chalcones
NASA Astrophysics Data System (ADS)
Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav
2012-06-01
Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).
Simulation of non-linear rf losses derived from characteristic Nb topography
Reece, Charles E.; Xu, Chen; Kelley, Michael
2013-09-01
A simplified model has been developed to simulate non-linear RF losses on Nb surfaces exclusively due to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, at locations where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP?d and EP?d fine grain niobium surfaces, we have simulated field-dependent losses and found that when extrapolated to resulting cavity performance, these losses correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution on SRF cavities.
Experimental study of non-linear effects in a typical shear lap joint configuration
NASA Astrophysics Data System (ADS)
Hartwigsen, C. J.; Song, Y.; McFarland, D. M.; Bergman, L. A.; Vakakis, A. F.
2004-10-01
Although mechanical joints are integral parts of most practical structures, their modelling and their effects on structural dynamics are not yet fully understood. This represents a serious impediment to accurate modelling of the dynamics and to the development of reduced-order, finite element models capable of describing the effects of mechanical joints on the dynamics. In this work we provide an experimental study to quantify the non-linear effects of a typical shear lap joint on the dynamics of two structures: a beam with a bolted joint in its center; and a frame with a bolted joint in one of its members. Both structures are subjected to a variety of dynamical tests to determine the non-linear effects of the joints. The tests reveal several important influences on the effective stiffness and damping of the lap joints. The possibility of using Iwan models to represent the experimentally observed joint effects is discussed.
Non-linear effects in the support motion of an elastically mounted slider crank mechanism
NASA Astrophysics Data System (ADS)
Davidson, I.
1983-01-01
A study is made of an in-line slider crank mechanism in which the sliding mass is elastically supported. The ratio of crank length to connecting rod length is not assumed small and relatively large displacements of the support are allowed. Ordinary and parametric non-linear terms are thus retained in the equations of motion. It is shown that the presence of parametric terms gives rise to additional conditions for resonance in the support motion. Approximate solutions are obtained for the fundamental and half subharmonic steady state responses and the effect of the non-linear and parametric terms examined. The stability of the steady state responses is considered and it is shown that instability is associated with a negative slope of the amplitude frequency characteristic.
Ravichandran, Lakshminarayan; Wick, Carson A.; Tridandapani, Srini
2013-01-01
In order to detect the quasi-stationary states of the heart within a cardiac cycle from echocardiography data, we present an algorithm that uses non-linear filtering and boundary detection. The non-linear filtering algorithm involves anisotropic diffusion to remove the speckle noise from the data and to smoothen the homogeneous regions while preserving the edges. Following this, we perform binary thresholding and boundary detection, and observe the positional changes in the region of interest. From a series of echocardiography images, we derived the regions of cardiac quiescence, which we then plotted on the electrocardiograph (ECG) R–R interval. It is observed that the quiescence occurs in the diastolic region of the ECG signal, but the position and length of quiescence varies across multiple cardiac cycles for the same individual. PMID:23366202
Non-linear adaptive sliding mode switching control with average dwell-time
NASA Astrophysics Data System (ADS)
Yu, Lei; Zhang, Maoqing; Fei, Shumin
2013-03-01
In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.
Raman scattering and non-linear optical properties in Li2B4O7
NASA Astrophysics Data System (ADS)
Elbelrhiti Elalaoui, A.; Maillard, A.; Fontana, M. D.
2005-11-01
A complete Raman scattering study on a lithium tetraborate single crystal is reported. The frequency and scattered intensity of Raman modes are carefully determined in the various geometrical configurations. These Raman data are then used to relate to the electro-optical and non-linear optical properties. Raman scattering efficiencies of A1(a), A1(b) and E phonons are consistent with the values of the EO coefficients r13, r33 and r51 respectively.
PkANN: Non-Linear Matter Power Spectrum Interpolation through Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Agarwal, Shankar
We investigate the interpolation of power spectra of matter fluctuations using artificial neural networks (ANNs). We present a new approach to confront small-scale non-linearities in the matter power spectrum. This ever-present and pernicious uncertainty is often the Achilles' heel in cosmological studies and must be reduced if we are to see the advent of precision cosmology in the late-time Universe. We detail how an accurate interpolation of the matter power spectrum is achievable with only a sparsely sampled grid of cosmological parameters. We show that an optimally trained ANN, when presented with a set of cosmological parameters (Omh2 , Obh2, ns, w0, sigma8, sum mnu and z), can provide a worst-case error ≤ 1 per cent (for redshift z ≤ 2) fit to the non-linear matter power spectrum deduced through large-scale N-body simulations, for modes up to k ≤ 0.9 hMpc-1 . Our power spectrum interpolator, which we label 'PkANN', is designed to simulate a range of cosmological models including massive neutrinos and dark energy equation of state w 0 ≠ -1. PkANN is accurate in the quasi-non-linear regime (0.1 hMpc-1 ≤ k ≤ 0.9 hMpc -1) over the entire parameter space and marks a significant improvement over some of the current power spectrum calculators. The response of the power spectrum to variations in the cosmological parameters is explored using PkANN. Using a compilation of existing peculiar velocity surveys, we investigate the cosmic Mach number statistic and show that PkANN not only successfully accounts for the non-linear motions on small scales, but also, unlike N-body simulations which are computationally expensive and/or infeasible, it can be an extremely quick and reliable tool in interpreting cosmological observations and testing theories of structure-formation.
Non-linear partitioning and organic volatility distributions of urban aerosols.
Madronich, S; Conley, A J; Lee-Taylor, J; Kleinman, L I; Hodzic, A; Aumont, B
2016-07-18
Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult's law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA mass to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: a strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as a mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the normalized sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. The rather low exponents suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions. PMID:27092376
Non-linear evolution of tidally forced inertial waves in rotating fluid bodies
NASA Astrophysics Data System (ADS)
Favier, B.; Barker, A. J.; Baruteau, C.; Ogilvie, G. I.
2014-03-01
We perform one of the first studies into the non-linear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the non-linear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of non-linearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially uniformly rotating fluid, i.e. the body does not evolve towards synchronism as a simple solid body rotator. This differential rotation modifies the properties of tidally excited inertial waves, changes the dissipative properties of the flow and eventually becomes unstable to a secondary shear instability provided that the Ekman number is sufficiently small. Our main result is that the inclusion of non-linearities eventually modifies the flow and the resulting dissipation from what linear calculations would predict, which has important implications for tidal dissipation in fluid bodies. We finally discuss some limitations of our simplified model, and propose avenues for future research to better understand the tidal evolution of rotating planets and stars.
Power quality improvement for distribution systems under non-linear conditions
NASA Astrophysics Data System (ADS)
El-Sadaany, Ehab Fahmy
The proliferation of non-linear and electronically switched devices has increased the presence of nonsinusoidal currents and voltages in electrical distribution systems. The analysis of harmonics on the distribution systems has been described as being essential to understanding the nature of harmonic performance. One of the basic reasons for conducting a harmonic study is to analyze the effectiveness of proposed remedies to any existing harmonic problem. The analysis and design of any mitigation equipment requires precise calculation of both voltage and current waveforms. Moreover, the parameters that affect the harmonic performance have to be accurately identified and examined. This thesis offers a new time-domain based approach for the determination of both voltage and current waveforms in non-linear distribution systems taking into account the interaction between both voltage and current harmonics (attenuation effect). In addition, the parameters that control the generation and propagation of harmonics into the distribution systems have been identified and investigated. A simple but efficient time-domain based technique has been developed and employed in order to estimate the combined non-linear load susceptance at different harmonic frequencies based on the previously calculated voltage and current waveforms and with the attenuation phenomenon considered. A novel design and implementation of reactance one-port compensators has been applied to reduce both voltage and current harmonic distortion levels in non-linear distribution systems. This application represents a significant contribution to distribution systems analysis as it successfully limits the system distortion. The performance of the proposed compensator is assessed by both simulation and experimental testing.
Non-linear dynamic analysis of ancient masonry structures by 3D rigid block models
NASA Astrophysics Data System (ADS)
Orduña, Agustin; Ayala, A. Gustavo
2015-12-01
This work presents a formulation for non-linear dynamic analysis of unreinforced masonry structures using rigid block models. This procedure is akin to the distinct element family of methods, nevertheless, we assume that small displacements occur and, therefore, the formulation does not involve the search for new contacts between blocks. This proposal is also related to the rigid element method, although, in this case we use full three-dimensional models and a more robust interface formulation.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-01-01
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also
Physiographic controls on thresholds and non-linearity in rainfall-runoff transformations
NASA Astrophysics Data System (ADS)
Klaus, Julian; Pfister, Laurent
2014-05-01
Thresholds are critical points in time or space that eventually express a rapid change in runoff behavior. They have gained increasing attention in recent years. Two types of thresholds are existing: storage and intensity controlled thresholds. Most threshold studies focused on individual catchments which lead to difficulties in identifying the combinations of hydro-climatic and physiographic factors that control catchment thresholds and non-linearities in rainfall-runoff transformations, as well as differences between catchments. The individual influence of the boundary conditions remains poorly understood. Here, we employ a data set from the Alzette River basin in Luxembourg (Europe). While the climatic conditions are similar throughout the basin, the lithology of individual sub-catchments varies remarkably. We find clean and mixed combinations of distinct geologies: schists, marls, sandstone, dolomite, and limestone. We focus on the role of storage thresholds. The filling of catchment storage plays a critical role on the runoff response and stable isotopes signatures in stream water in the Alzette basin. On seasonal scale the geology leads to distinct non-linearity in the flow duration curve. These changes in the flow duration curve indicate a storage threshold exceedance within a distinct geology that changes streamwater stable isotope behavior. In the catchment with the lowest permeability (e.g. 100% schist), a storage threshold changes the runoff response from a single to a (delayed) double peak hydrograph. On event scale the different geologies control the relation between storage filling and threshold response and the shape of the non-linear relationship between rainfall and runoff. The use of various catchments within the same hydro-climatic region allows a better description of the influence of physiographic properties on thresholds in the rainfall-runoff response. Better understanding of individual influences will further improve our understanding of the
FDATMOS16 non-linear partitioning and organic volatility distributions in urban aerosols
Madronich, Sasha; Kleinman, Larry; Conley, Andrew; Lee-Taylor, Julie; Hodzic, A.; Aumont, Bernard
2015-12-17
Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as a mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.
Non-linear controls influence functions in an aircraft dynamics simulator
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.
2006-01-01
In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.
NASA Astrophysics Data System (ADS)
Richards, Gordon R.
The succession of ice ages and interglacials during the late Pleistocene has been linked with changes in the eccentricity, obliquity and precession of the earth's orbit. The combined effect of orbital cycles with different periodicities argues that climate should exhibit both persistence — significant dependence between observations at distant intervals — and non-linearity. At the same time, a significant component of climatic variation derives from endogenous interactions which exhibit non-linear properties at both higher and lower frequencies than the orbital variations. In order to analyze the effect of orbital shifts and endogenous interactions, climate is factored into an orbitally forced and a residual component. The component explained by orbital forcing shows some evidence of non-linearity, strong dependence between observations over the first 10 ka, and additional dependence between observations at frequencies corresponding to the orbital cycles. The residual component shows greater dependence between observations over the first 20 ka, some evidence of dependence at the orbital cycles, and significantly greater degrees of non-linearity. Neither shows evidence of actual chaoticity. The climatic residual generally moves in the same direction as the path implied by orbital forcing, meaning that endogenous interactions reinforce and accentuate changes in climate implied by orbital shifts. Despite the high variability of the residual, orbital forcing acts as a long-run attractor both for temperature and for atmospheric CO 2. Actual temperatures converge to the path implied by orbital forcing, on average within a period of 7.14 ka. Because orbital forcing is a long-term attractor for temperature but short-term movements show strong serial dependence, the best forecasts for Pleistocene climate are obtained from a model including distributed lags of both orbital shifts and temperature.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
NASA Astrophysics Data System (ADS)
Kong, Yan; Quan, Wei; Wei, Qi; Qiu, Peng
2016-05-01
We theoretically design a device composed of four nanoslits to dynamically modulate the propagation direction of light beam by embedding non-linear material and air, respectively. Directions of radiation fields are determined by the phase difference of the surface waves at the exit interface and distance of each slit. Numerical simulations using finite element method verify that the unidirectional excitation and beam focusing can be achieved easily by changing the intensity of incident light.
FDATMOS16 non-linear partitioning and organic volatility distributions in urban aerosols
Madronich, Sasha; Kleinman, Larry; Conley, Andrew; Lee-Taylor, Julie; Hodzic, A.; Aumont, Bernard
2015-12-17
Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less
Christophersen, A; McKinley-McKee, J S
1984-01-01
An interactive program for analysing enzyme activity-time data using non-linear regression analysis is described. Protection studies can also be dealt with. The program computes inactivation rates, dissociation constants and promotion or inhibition parameters with their standard errors. It can also be used to distinguish different inactivation models. The program is written in SIMULA and is menu-oriented for refining or correcting data at the different levels of computing. PMID:6546558
A single-degree-of-freedom model for non-linear soil amplification
Erdik, Mustafa Ozder
1979-01-01
For proper understanding of soil behavior during earthquakes and assessment of a realistic surface motion, studies of the large-strain dynamic response of non-linear hysteretic soil systems are indispensable. Most of the presently available studies are based on the assumption that the response of a soil deposit is mainly due to the upward propagation of horizontally polarized shear waves from the underlying bedrock. Equivalent-linear procedures, currently in common use in non-linear soil response analysis, provide a simple approach and have been favorably compared with the actual recorded motions in some particular cases. Strain compatibility in these equivalent-linear approaches is maintained by selecting values of shear moduli and damping ratios in accordance with the average soil strains, in an iterative manner. Truly non-linear constitutive models with complete strain compatibility have also been employed. The equivalent-linear approaches often raise some doubt as to the reliability of their results concerning the system response in high frequency regions. In these frequency regions the equivalent-linear methods may underestimate the surface motion by as much as a factor of two or more. Although studies are complete in their methods of analysis, they inevitably provide applications pertaining only to a few specific soil systems, and do not lead to general conclusions about soil behavior. This report attempts to provide a general picture of the soil response through the use of a single-degree-of-freedom non-linear-hysteretic model. Although the investigation is based on a specific type of nonlinearity and a set of dynamic soil properties, the method described does not limit itself to these assumptions and is equally applicable to other types of nonlinearity and soil parameters.
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
Ong, H.L.; Meyer, R.B.; Hurd, A.J.; Karn, A.J.; Arakelian, S.M.; Shen, Y.R.; Sanda, P.N.; Dove, D.B.; Jansen, S.A.; Hoffmann, R.
1989-01-01
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition. 50 refs.
A New Method for Determining the Non-Linear Effective Pressure
NASA Astrophysics Data System (ADS)
Xiao, W.; Li, L.; Bernabe, Y.; Zhao, J.; Li, M.
2014-12-01
The physical properties (for example, permeability k) of linear elastic materials usually obey a simple effective pressure law (EPL), peff= pc-αpf (peff: effective pressure; pc: confining pressure; pf: pore fluid pressure), where α is a constant, often taken to be equal to 1 in the well-known Terzaghi' law, peff=pc-pf. However, non-linear EPL's, peff=pc-αs(pf, pc)pf, where the secant coefficient αs(pf, pc) is a function of pc and pf, should be expected in non-linear elastic rocks [Robin, 1978] and have been previously reported for permeability in low-permeability sandstones [Li et al, 2009, 2014]. A new method for experimentally determining non-linear EPL's for permeability was tested on low-permeability sandstones from reservoirs in China. The permeability of these low-permeability sandstones was measured while simultaneously cycling pf and pc (with 0 ≤ pf < pc). Based on the analysis of the experimental data using the Response Surface Method [Box and Draper, 1987], a contour map of permeability was drawn in the plane [pf, pc], from which the secant coefficient αs(pf, pc) and the effective pressure peff(pf, pc) were calculated. We found that αs(pf, pc) varied in the entire theoretically allowed range, φ ≤ αs(pf, pc) ≤ 1, where φ is the porosity. It is most interesting that αs(pf, pc) could be approximately described as a decreasing function αs(pc-pf) of Terzaghi's differential pressure. Moreover, the non-linear EPL determined using the new method allowed a better estimation of the pressure dependence of permeability, k(peff), than classic Terzaghi' law, k(pc-pf).
Non-linear longitudinal compression effect on dynamics of the transcription bubble in DNA.
Shikhovtseva, E S; Nazarov, V N
2016-01-01
The dependence of the dynamics of transcription bubble on the parameters of non-linear longitudinal compression is presented on the base of simple model of soliton-like conformational switchings in two-component bistable polymer molecules with energetically non-equivalent stable states. It has been shown that under certain conditions the longitudinal compression may be a trap for a conformational switching. PMID:27232455
Design and implementation of non-linear image processing functions for CMOS image sensor
NASA Astrophysics Data System (ADS)
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.
2004-01-01
Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.
Tommasi, C.; May, C.
2010-09-30
The DKL-optimality criterion has been recently proposed for the dual problem of model discrimination and parameter estimation, for the case of two rival models. A sequential version of the DKL-optimality criterion is herein proposed in order to discriminate and efficiently estimate more than two nested non-linear models. Our sequential method is inspired by the procedure of Biswas and Chaudhuri (2002), which is however useful only in the set up of nested linear models.
NASA Astrophysics Data System (ADS)
Kheloufi, N.; Kahlouche, S.; Lamara, R. Ait Ahmed
2009-04-01
The resolution of the MRE's (Multiple Regression Equations) is an important tool for fitting different geodetic network. Nevertheless, in different fields of engineering and earth science, certain cases need more accuracy; the ordinary least squares (linear least squares) prove to be limited. Thus, we have to use new numerical methods of resolution that can provide a great efficiency of polynomial modelisation. In geodesy the accuracy of coordinates determination and network adjustment is very important, that's why instead of being limited to the linear models, we have to apply the non linear least squares resolution for the transformation problem between geodetic systems. This need, appears especially in the case of Nord-Sahara datum (Algeria), on wich the linear models are not much appropriate, because of the lack of information about the geoid's undulation. In this paper, we have fixed as main aim, to carry out the importance of using non linear least squares to improve the quality of geodetic adjustment and coordinates transformation and even the extent of his use. The algorithms carried out concerned the application of two models: three dimensions (global transformation) and the two-dimension one (local transformation) over huge area (Algeria). We compute coordinates transformation parameters and their Rms by both of the ordinary least squares and new algorithms, then we perform a statistical analysis in order to compare on the one hand between the linear adjustment with its two variants (local and global) and the non linear one. In this context, a set of 16 benchmark, have been integrated to compute the transformation parameters (3D and 2D). Different non linear optimization algorithms (Newton algorithm, Steepest Descent, and Levenberg-Marquardt) have been implemented to solve transformation problem. Conclusions and recommendations are given with respect to the suitability, accuracy and efficiency of each method. Key words: MRE's, Nord Sahara, global
A Family of Ellipse Methods for Solving Non-Linear Equations
ERIC Educational Resources Information Center
Gupta, K. C.; Kanwar, V.; Kumar, Sanjeev
2009-01-01
This note presents a method for the numerical approximation of simple zeros of a non-linear equation in one variable. In order to do so, the method uses an ellipse rather than a tangent approach. The main advantage of our method is that it does not fail even if the derivative of the function is either zero or very small in the vicinity of the…
Development and Application of Non-linear Friction Models for Metal Forming Simulation
NASA Astrophysics Data System (ADS)
Ma, Ninshu; Sugitomo, Nobuhiko
2011-08-01
Friction has a significant effect on the formability of stamping parts. A constant friction coefficient between stamping tools and blank is often employed in the metal forming simulating. In this presented work, several non-linear friction models which considers of the change of friction coefficient with contact pressure, sliding velocity, sliding distance, frictional work, plastic strain and temperature were developed using LS-DYNA customized friction subroutine. The validity was verified by numerical friction testing models and deep drawing model.
Non-linear dynamic analysis of a flexible rotor supported on porous oil journal bearings
NASA Astrophysics Data System (ADS)
Laha, S. K.; Kakoty, S. K.
2011-03-01
In the present paper, the non-linear dynamic analysis of a flexible rotor with a rigid disk under unbalance excitation mounted on porous oil journal bearings at the two ends is carried out. The system equation of motion is obtained by finite element formulation of Timoshenko beam and the disk. The non-linear oil-film forces are calculated from the solution of the modified Reynolds equation simultaneously with Darcy's equation. The system equation of motion is then solved by the Wilson- θ method. Bifurcation diagrams, Poincaré maps, time response, journal trajectories, FFT-spectrum, etc. are obtained to study the non-linear dynamics of the rotor-bearing system. The effect of various non-dimensional rotor-bearing parameters on the bifurcation characteristics of the system is studied. It is shown that the system undergoes Hopf bifurcation as the speed increases. Further, slenderness ratio, material properties of the rotor, ratio of disk mass to shaft mass and permeability of the porous bush are shown to have profound effect on the bifurcation characteristics of the rotor-bearing system.
The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions
NASA Astrophysics Data System (ADS)
Linander, Hampus; Nilsson, Bengt E. W.
2016-07-01
In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F = 0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.
Relativistic weak lensing from a fully non-linear cosmological density field
NASA Astrophysics Data System (ADS)
Thomas, D. B.; Bruni, M.; Wands, D.
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- and B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.
Defining the frame of minimum non-linear Hubble expansion variation
NASA Astrophysics Data System (ADS)
McKay, James H.; Wiltshire, David L.
2016-04-01
We characterize a cosmic rest frame in which the monopole variation of the spherically averaged non-linear Hubble expansion is most uniform, under arbitrary local Lorentz boosts of the central observer. Using the COMPOSITE sample of 4534 galaxies, we identify a degenerate set of candidate minimum non-linear variation frames, which includes the rest frame of the Local Group (LG) of galaxies, but excludes the standard cosmic microwave background (CMB) frame. Candidate rest frames defined by a boost from the LG frame close to the plane of the galaxy have a statistical likelihood similar to the LG frame. This may result from a lack of constraining data in the Zone of Avoidance. We extend our analysis to the Cosmicflows-2 (CF2) sample of 8162 galaxies. While the signature of a systematic boost offset between the CMB and LG frame averages is still detected, the spherically averaged non-linear expansion variation in all rest frames is significantly larger in the CF2 sample than would be reasonably expected. We trace this to the CF2 distances being reported without a correction for inhomogeneous distribution Malmquist bias. Systematic differences in the inclusion of the large SFI++ subsample into the COMPOSITE and CF2 catalogues are analysed. Our results highlight the importance of a careful treatment of Malmquist biases for future peculiar velocities studies, including tests of the hypothesis of Wiltshire et al. that a significant fraction of the CMB temperature dipole may be non-kinematic in origin.
Reservoir computing and extreme learning machines for non-linear time-series data analysis.
Butcher, J B; Verstraeten, D; Schrauwen, B; Day, C R; Haycock, P W
2013-02-01
Random projection architectures such as Echo state networks (ESNs) and Extreme Learning Machines (ELMs) use a network containing a randomly connected hidden layer and train only the output weights, overcoming the problems associated with the complex and computationally demanding training algorithms traditionally used to train neural networks, particularly recurrent neural networks. In this study an ESN is shown to contain an antagonistic trade-off between the amount of non-linear mapping and short-term memory it can exhibit when applied to time-series data which are highly non-linear. To overcome this trade-off a new architecture, Reservoir with Random Static Projections (R(2)SP) is investigated, that is shown to offer a significant improvement in performance. A similar approach using an ELM whose input is presented through a time delay (TD-ELM) is shown to further enhance performance where it significantly outperformed the ESN and R(2)SP as well other architectures when applied to a novel task which allows the short-term memory and non-linearity to be varied. The hard-limiting memory of the TD-ELM appears to be best suited for the data investigated in this study, although ESN-based approaches may offer improved performance when processing data which require a longer fading memory. PMID:23275138
Optimal Vibration Estimation of a Non-Linear Flexible Beam Mounted on a Rotating Compliant Hub
NASA Astrophysics Data System (ADS)
El-Sinawi, A.; Hamdan, M. N.
2003-01-01
To eliminate the need for sensor placement on rotating flexible beams such as turbine blades, helicopter rotors and like applications, a new approach has been developed based on the linear quadratic estimator (LQE) technique for estimating the vibration of any point on the span of a rotating flexible beam mounted on a compliant hub ( plant) in the presence of process and measurements noise. A non-linear model of the plant is utilized in this study to mimic the actual plant behavior. The corresponding plant dynamics of the LQE are in the form of a reduced order linear model constructed from the eigenvalues and eigenfuctions of a finite element dynamic model of the plant formulated in the state space. A virtual hub deflection (that mimics the actual measurement of the vertical hub deflection needed by the estimation process) is generated by the non-linear model of the plant. The LQE reconstructs the states of the plant, including transverse deflection of the beam at any point, from the measurements of the vertical deflection of the hub, assuming that it is the most accessible state for measurement. Estimated beam tip deflection obtained by the proposed technique is then compared to the tip deflection generated by the non-linear model and the results show good agreement.
a Frequency Domain Based NUMERIC-ANALYTICAL Method for Non-Linear Dynamical Systems
NASA Astrophysics Data System (ADS)
Narayanan, S.; Sekar, P.
1998-04-01
In this paper a multiharmonic balancing technique is used to develop certain algorithms to determine periodic orbits of non-liner dynamical systems with external, parametric and self excitations. Essentially, in this method the non-linear differential equations are transformed into a set of non-linear algebraic equations in terms of the Fourier coefficients of the periodic solutions which are solved by using the Newton-Raphson technique. The method is developed such that both fast Fourier transform and discrete Fourier transform algorithms can be used. It is capable of treating all types of non-linearities and higher dimensional systems. The stability of periodic orbits is investigated by obtaining the monodromy matrix. A path following algorithm based on the predictor-corrector method is also presented to enable the bifurcation analysis. The prediction is done with a cubic extrapolation technique with an arc length incrementation while the correction is done with the use of the least square minimisation technique. The under determined system of equations is solved by singular value decomposition. The suitability of the method is demonstrated by obtaining the bifurcational behaviour of rolling contact vibrations modelled by Hertz contact law.
Non-linear analysis and calculation of the performance of a shelving protection system by FEM
NASA Astrophysics Data System (ADS)
García Nieto, P. J.; del Coz Díaz, J. J.; Vilán Vilán, J. A.; Suárez Sierra, J. L.
2012-12-01
The aim of this paper consists on the study, analysis and calculation of the efficiency of a shelving protection system by means of the finite element method (FEM). These shelving protection systems are intended to prevent the eventual damage due to the impacts of transport elements in motion, such as: forklifts, dumpers, hand pallet trucks, and so on. The impact loads may threaten the structural integrity of the shelving system. The present structural problem is highly non-linear, due to the simultaneous presence of the following nonlinearities: material non-linearity (plasticity in this case), geometrical non-linearity (large displacements) and contact-type boundary conditions (between the rigid body and the protection system). A total of forty eight different FEM models are built varying the thickness of the steel plate (4, 5 and 6 mm), the impact height (0.1, 0.2, 0.3 and 0.4 meters) and the impact direction (head-on collision and side impact). Once the models are solved, the stress distribution, the overall displacements and the absorbed impact energy were calculated. In order to determine the best shelving protection's candidate, some constraints must be taken into account: the maximum allowable stress (235 MPa), the maximum displacement (0.05 m) and the absorbed impact energy (400 J according to the European Standard Rule PREN-15512). Finally, the most important results are shown and conclusions of this study are exposed.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
Non-linear analysis of PESA-Lo electrostatic analyzer data and solar wind temperature anisotropies
NASA Astrophysics Data System (ADS)
Djordjevic, B. Z.; Maruca, B.; Bale, S. D.; Wilson, L. B., III; Larson, D. E.
2015-12-01
In this study, non-linear fitting techniques are applied to ion measurements from the Wind spacecraft's PESA-Lo electrostatic analyzer. Previous studies have relied primarily on moments-analyses, which, although satisfactory for simple distributions and density calculations, often return unreasonable values for higher order moments (e.g., temperature) and fail to account for non-thermal effects (e.g., temperature anisotropy and beams) and multiple ion-species. A Levenberg-Marquadt non-linear algorithm is applied to the PESA-Lo data in order to calculate the characteristic parameters of the proton, alpha-particle, and beam distributions. This analysis is augmented with calibration data from the WIND Faraday cups and magnetic-field data from WIND/MFI. Preliminary results from this non-linear analysis indicate that it indeed provides higher-quality ion parameters than the existing moments-analysis. When this analysis is complete, the set of bulk-parameter values will be suitable for studies of microinstabilities in the solar wind and of possible correlation between magnetic field fluctuations and non-thermal properties of the ion distributions. Applications of thermodynamic principles, such as the Boltzmann H-theorem, will allow for further characterization of the non-thermal properties of the solar wind.
Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements
Besada-Portas, Eva; Lopez-Orozco, Jose A.; Lanillos, Pablo; de la Cruz, Jesus M.
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
Non-linear dynamics of a one-way clutch in belt-pulley systems
NASA Astrophysics Data System (ADS)
Zhu, Farong; Parker, R. G.
2005-01-01
One-way clutches are frequently used in the serpentine belt accessory drives of automobiles and heavy vehicles. The clutch plays a role similar to a vibration absorber in order to reduce belt/pulley vibration and noise and increase belt life. This paper analyzes a two-pulley system where the driven pulley has a one-way clutch between the pulley and accessory shaft that engages only for positive relative displacement between these components. The belt is modelled with linear springs that transmit torque from the driving pulley to the accessory pulley. The one-way clutch is modelled as a piecewise linear spring with discontinuous stiffness that separates the driven pulley into two degrees of freedom. The harmonic balance method combined with arclength continuation is employed to illustrate the non-linear dynamic behavior of the one-way clutch and determine the stable and unstable periodic solutions for given parameters. The results are confirmed by numerical integration and the bifurcation software AUTO. At the first primary resonance, most of the responses are aperiodic, including quasiperiodic and chaotic solutions. At the second primary resonance, the peak bends to the left with classical softening non-linearity because clutch disengagement decouples the pulley and the accessory over portions of the response period. The dependence on clutch stiffness, excitation amplitude, and inertia ratio between the pulley and accessory is studied to characterize the non-linear dynamics across a range of conditions.
Non-linear optics of nano-scale pentacene thin film
NASA Astrophysics Data System (ADS)
Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.
2016-07-01
We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ < 800 nm, whereas the normal dispersion was found at wavelength λ > 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.
NASA Astrophysics Data System (ADS)
Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun
2016-04-01
In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.
Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.
Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
The non-linear analysis of multi-support rotor-bearing systems
Kicinski, J.; Drozdowski, R.
1995-12-31
This paper contains selected parts of the simulation research of large rotor machines (200 MW power turbine-sets). These investigations were based on a non-linear theoretical model and the NLDW computer program, and were carried out in the Institute of Fluid-Flow Machinery of PAS. A trial has been performed of the optimization of system-dynamic properties, through the suitable selection of thermally deformed bearing-bush centers line -- the so called ``hot`` line -- (due to a rotor`s geodesic line), as well as the selection of the external fixing stiffness of bearing supports. Examples are also included of the orbits of selected system nodes for two differently powered turbine-sets. On this basis, an analysis of the stability of those turbines was achieved. A significant objective of this paper is also to point out some possibilities of applying the simulation research, based on a non-linear description of the system, to the diagnostics of rotor-machinery. Non-linear analysis facilitates the possibility of easily generating vibration spectra, as well as creating simulation waterfall graphs. These properties of nonlinear analysis create convenient conditions for gaining specific diagnostic information.
Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case
Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem
2015-01-01
In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on
Gallop, Robert J; Mode, Charles J; Sleeman, Candace K
2002-01-01
When comparing the performance of a stochastic model of an epidemic at two points in a parameter space, a threshold is said to have been crossed when at one point an epidemic develops with positive probability; while at the other there is a tendency for an epidemic to become extinct. The approach used to find thresholds in this paper was to embed a system of ordinary non-linear differential equations in a stochastic process, accommodating the formation and dissolution of marital partnerships in a heterosexual population, extra-marital sexual contacts, and diseases such as HIV/AIDS with stages. A symbolic representation of the Jacobian matrix of this system was derived. To determine whether this matrix was stable or non-stable at a particular parameter point, the Jacobian was evaluated at a disease-free equilibrium and its eigenvalues were computed. The stability or non-stability of the matrix was then determined by checking if all real parts of the eigenvalues were negative. By writing software to repeat this process for a selected set of points in the parameter space, it was possible to develop search engines for finding points in the parameter space where thresholds were crossed. The results of a set of Monte Carlo simulation experiments were reported which suggest that, by combining the stochastic and deterministic paradigms within a single formulation, it was possible to obtain more informative interpretations of simulation experiments than if attention were confined solely to either paradigm. PMID:11965260
Ma, Rongfei
2015-01-01
In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362
Kerr Black Hole Entropy and its Quantization
NASA Astrophysics Data System (ADS)
Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng
2016-08-01
By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.
Destroying Kerr-Sen black holes
NASA Astrophysics Data System (ADS)
Siahaan, Haryanto M.
2016-03-01
By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn into a naked singularity when it captures charged and spinning massive particles. A straightforward question then arises: do charged and rotating black holes in string theory possess the same property? In this paper we apply Wald's gedanken experiment, in his study on the possibility of destroying extremal Kerr-Newman black holes, to the case of (near-)extremal Kerr-Sen black holes. We find that feeding a test particle into a (near-)extremal Kerr-Sen black hole could lead to a violation of the extremal bound for the black hole.
Spatial Kerr soliton collisions at arbitrary angles.
Chamorro-Posada, P; McDonald, G S
2006-09-01
The theory of spatial Kerr solitons is extended to colliding beams that are neither almost-exactly copropagating nor almost-exactly counterpropagating. Our new Helmholtz formalism yields results that are consistent with the inherent symmetry of the collision process and that are not predicted by existing paraxial descriptions. Full numerical and approximate analytical results are presented. These show excellent agreement. In particular, Kerr solitons are found to be remarkably robust under nonparaxial collisions. PMID:17025766
Measurement-induced optical Kerr interaction
NASA Astrophysics Data System (ADS)
Sefi, Seckin; Vaibhav, Vishal; van Loock, Peter
2013-07-01
We present a method for implementing a weak optical Kerr interaction (single-mode Kerr Hamiltonian) in a measurement-based fashion using the common set of universal elementary interactions for continuous-variable quantum computation. Our scheme is a conceptually distinct alternative to the use of naturally occurring, weak Kerr nonlinearities or specially designed nonlinear media. Instead, we propose to exploit suitable off-line prepared quartic ancilla states together with beam splitters, squeezers, and homodyne detectors. For perfect ancilla states and ideal operations, our decompositions for obtaining the measurement-based Kerr Hamiltonian lead to a realization with near-unit fidelity. Nonetheless, even by using only approximate ancilla states in the form of superposition states of up to four photons, high fidelities are still attainable. Our scheme requires four elementary operations and its deterministic implementation corresponds to about 10 ancilla-based gate teleportations. We test our measurement-based Kerr interaction against an ideal Kerr Hamiltonian by applying them both to weak coherent states and single-photon superposition states.
Twofold hidden conformal symmetries of the Kerr-Newman black hole
Chen, C.-M.; Huang, Y.-M.; Sun, J.-R.; Wu, M.-F.; Zou, S.-J.
2010-09-15
In this paper, we suggest that there are two different individual two-dimensional conformal field theories (CFTs) holographically dual to the Kerr-Newman black hole, coming from the corresponding two possible limits - the Kerr/CFT and Reissner-Nordstroem/CFT correspondences, namely, there exist the Kerr-Newman/CFTs dualities. A probe scalar field at low frequencies turns out can exhibit two different two-dimensional conformal symmetries (named by J and Q pictures, respectively) in its equation of motion when the associated parameters are suitably specified. These twofold dualities are supported by the matchings of entropies, absorption cross sections, and real-time correlators computed from both the gravity and the CFT sides. Our results lead to a fascinating 'microscopic hair conjecture' - for each macroscopic hair parameter, in addition to the mass of a black hole in the Einstein-Maxwell theory, there should exist an associated holographic CFT{sub 2} description.
Non-linear Paradigm for Drift Wave - Zonal Flow interplay: coherence, chaos and turbulence
NASA Astrophysics Data System (ADS)
Zonca, Fulvio
2003-10-01
Non-linear equations for the slow space-time evolution of the radial drift wave (DW) envelope and zonal flow (ZF) amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent 4-wave drift wave-zonal flow modulation interaction model of Chen, Lin and White(chen00). For the sake of simplicity, in this work we assume electrostatic fluctuations; but our formalism is readily extended to electromagnetic fluctuations(chen01). In the local limit, i.e. neglecting equilibrium profile variations, the coherent 4-wave DW-ZF modulation interaction model has successfully demonstrated spontaneous generation of ZFs and non-linear DW/ITG-ZF dynamics in toroidal plasmas(chen00). The present work is an extension of previous analyses to allow both (slow) temporal and spatial variations of the DW/ITG radial envelope; thus, it naturally incorporates the effects of equilibrium variations; i.e., turbulence spreading and size-dependence of the saturated wave intensities and transport coefficients(lin99). This approach makes it possible to treat equilibrium profile variations and non-linear interactions on the same footing, assuming that coupling among different DWs on the shortest non-linear time scale is mediated by ZF only. At this level, the competition between linear drive/damping, DW spreading due to finite linear (and nonlinear) group velocity(lin02,chen02,kim02) and non-linear energy transfer between DWs and ZF, determines the saturation levels of the fluctuating fields. Despite the coherence of the underlying non-linear dynamics at this level, this system exhibits both chaotic behavior and intermittency, depending on system size and proximity to marginal stability(chen02). The present model can be further extended to include longer time-scale physics such as 3-wave interactions and collisionless damping of zonal flows. 9 chen00 Liu Chen, Zhihong Lin and Roscoe White, Phys. Plasmas 7, 3129, (2000). chen01 L. Chen, Z. Lin, R.B. White and
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters
NASA Astrophysics Data System (ADS)
Planelles, S.; Schleicher, D. R. G.; Bykov, A. M.
2015-05-01
The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 1015 M⊙ at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 105-108 M⊙ at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on intermediate cluster scales the self-similar model is in good agreement with the observations, deviations from such self-similarity are apparent in the core regions, where numerical simulations do not reproduce the current observational results. The latter indicates that the interaction of different feedback processes may not be correctly accounted for in current simulations. Both in the most massive clusters of galaxies as well as during the formation of the first objects in the Universe, turbulent structures and shock waves appear to be common, suggesting them to be ubiquitous in the non-linear regime.
Analysis of non linear partially standing waves from 3D velocity measurements
NASA Astrophysics Data System (ADS)
Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.
2003-04-01
Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.
NASA Astrophysics Data System (ADS)
Ravasi, Matteo; Vasconcelos, Ivan; Curtis, Andrew
2014-08-01
Source-receiver interferometric imaging can be used to synthesize a subsurface acoustic or elastic image, consisting of a zero-time, zero-offset response (or Green's function) between a colocated pseudo-source and pseudo-receiver placed at each point in the subsurface image. However, if the imaging process does not properly account for multiple reflections, and enclosing boundaries of sources and receivers are not available, the image shows artefacts, poorly illuminated areas and distorted image amplitudes. Here we demonstrate with numerical examples that two-sided non-linear imaging provides the best elastic pure-mode (PP and SS) and converted-mode (PS) images, having higher resolution and more uniform illumination than those obtained from both one-sided linear imaging and from other intermediate steps of imaging (e.g. non-linear one-sided, linear two-sided). We also propose practical approaches to construct the additional fields required by two-sided non-linear imaging without the need for a detailed velocity model and receivers (and/or sources) in the subsurface. Moreover, when conversions are used for imaging, `true-amplitude' images (here true-amplitude means properly retrieving amplitudes that represent the zero-time, zero-offset elastic response) should theoretically vanish because neither P-to-S or S-to-P conversions arise at zero-time and zero-offset. Applying a correction procedure that accounts for the polarity reversal in PS (or SP) single-shot images helps with their structural interpretation but results in an unphysical estimate of the subsurface response and uninterpretable amplitudes. This suggests that there are advantages in exploiting pure-mode SS reflections/transmissions, in addition to converted waves only, because they require no polarity correction and the resulting image contains meaningful amplitudes that are proportional to the local shear-wave properties of the medium.
The non-linear redshift-space power spectrum: Omega from redshift surveys
NASA Astrophysics Data System (ADS)
Fisher, Karl B.; Nusser, Adi
1996-03-01
We examine the anisotropies in the power spectrum by the mapping of real space to redshift space. Using the Zel'dovich approximation, we obtain an analytic expression for the non-linear redshift-space power spectrum in the distant observer limit. For a given unbiased galaxy distribution in redshift space, the anisotropies in the power spectrum depend on the parameter f(Omega)~=Omega^0.6, where Omega is the density parameter. We quantify these anisotropies by the ratio, R, of the quadrupole and monopole angular moments of the power spectrum. In contrast to linear theory, the Zel'dovich approximation predicts a decline in R with decreasing scale. This departure from linear theory is due to non-linear dynamics and is not a result of incoherent random velocities. The rate of decline depends strongly on Omega and the initial power spectrum. However, we find a scaling relation between the quantity R/R_lin (where R_lin is the linear theory value of R) and the dimensionless variable k/k_nl, where k_nl is a wavenumber determined by the scale of non-linear structures. The scaling is weakly dependent on the initial power spectrum and is in good agreement with a large N-body simulation. This universal scaling relation greatly extends the scales over which redshift distortions can be used as a probe of Omega. The scaling relation is in agreement with the observed quadrupole-to-monopole ratio from the 1.2-Jy IRAS survey, with a best estimate of Omega^0.6/b_lin=0.6+/-0.2 where b_lin is the linear bias parameter.
Towards a non-linear theory for fluid pressure and osmosis in shales
NASA Astrophysics Data System (ADS)
Droghei, Riccardo; Salusti, Ettore
2015-04-01
In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.
Distributed control of cluster synchronisation in networks with randomly occurring non-linearities
NASA Astrophysics Data System (ADS)
Hu, Aihua; Cao, Jinde; Hu, Manfeng; Guo, Liuxiao
2016-08-01
This paper is concerned with the issue of mean square cluster synchronisation in complex networks, which consist of non-identical nodes with randomly occurring non-linearities. In order to guarantee synchronisation, distributed controllers depending on the information from the neighbours in the same cluster are applied to each node, meanwhile, the control gains are supposed to be updated according to the given laws. Based on the Lyapunov stability theory, the sufficient synchronisation conditions are derived and proved theoretically. Finally, a numerical example is presented to demonstrate the effectiveness of the results.
A non-linear mathematical model for a three species ecosystem: Hippos in Lake Edward.
Bologna, Mauro; Chandía, Kristopher J; Flores, J C
2016-01-21
In this work we study a non-linear mathematical model based on three different interacting species. We apply our model to Lake Edward ecosystem consisting in hippos, tilapia fishes and human inhabitants. In this case, we estimate the values of the key parameters using actual data and show the reliability of the proposed model as a predictive tool. We also show, via numerical calculations and parameter values that the ecosystem associated to the lake is very far from reaching a stable equilibrium. Through our analysis we provide the conditions for a possible coexistence among the three species. PMID:26551152
Some non-linear interactions in polytropic gas cosmology: phase space analysis
NASA Astrophysics Data System (ADS)
Khurshudyan, Martiros
2015-11-01
There are various cosmological models with polytropic equation of state associated to dark energy. Polytropic EoS has important applications in astrophysics, therefore a study of it on cosmological framework continues to be interesting. From the other hand, there are various forms of interactions phenomenologically involved into the darkness of the universe able to solve important cosmological problems. This is a motivation for us to perform a phase space analysis of various cosmological scenarios where non-linear interacting polytropic gas models are involved. Dark matter is taken to be a pressureless fluid.
Numerical Dimension-Reduction Methods for Non-Linear Shell Vibrations
NASA Astrophysics Data System (ADS)
Foale, S.; Thompson, J. M. T.; McRobie, F. A.
1998-08-01
A number of methods are investigated for obtaining a low-dimensional dynamical system from a set of partial differential equations describing the non-linear vibrations of a shallow cylindrical panel under periodic axial forcing. In these approaches an initial (high-dimensional) spatial discretization of a (possibly irregular) domain is performed and a subsequent procedure is used to further reduce the resulting set of ordinary differential equations. In particular the results suggest that a numerical method based upon inertial manifold approximation is possible, but for the specific case studied, no advantage could be discerned over more direct dimension-reduction techniques.
NASA Astrophysics Data System (ADS)
Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.
2012-02-01
The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.
Lawson, Daniel J; Holtrop, Grietje; Flint, Harry
2011-07-01
Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. PMID:21681780
Higgs physics beyond the SM: The non-linear EFT approach
NASA Astrophysics Data System (ADS)
Brivio, I.
2016-07-01
Depending on whether electroweak physics beyond the Standard Model is based on a linear or on a non-linear implementation of the electroweak symmetry breaking, a linear or a chiral Effective Lagrangian is more appropriate. In this talk, the main low-energy signals that allow to recognize whether the observed Higgs scalar is a dynamical (composite) particle or rather an elementary one are presented, in a model-independent way. The patterns of effective couplings produced upon the assumption of specific composite Higgs models are also discussed.=1
Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading
NASA Astrophysics Data System (ADS)
Ribeiro, P.; Jansen, E.
2008-08-01
The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of temperature change, initial curvature, panel thickness and fibre orientation on the shells' dynamics.
YANG, C.; JIANG, W.; CHEN, D. -H.; ADIGA, U.; NG, E. G.; CHIU, W.
2009-01-01
Summary The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes. PMID:19250460
Fault detection in non-linear systems based on type-2 fuzzy logic
NASA Astrophysics Data System (ADS)
Safarinejadian, Behrooz; Ghane, Parisa; Monirvaghefi, Hossein
2015-02-01
This paper presents a new method for fault detection (FD) based on interval type-2 fuzzy sets. The main idea is based on a confident span using interval type-2 fuzzy systems. An estimate for upper and lower bounds of output has been taken using the designing of an optimal fuzzy system through clustering. Finally the method has been tested in two non-linear systems, a two-tank with a fluid flow and pH neutralisation process, and it is compared with a well-known method named ANFIS. Furthermore, the mathematical model and the results of simulations prove the effectiveness, usefulness and applications of our new method.
Comparison of Finite Element Non-Linear Beam Random Response with Experimental Results
NASA Astrophysics Data System (ADS)
Chen, R. R.; Mei, C.; Wolfe, HF
1996-09-01
A finite element formulation combined with the equivalent linearization technique and normal mode method is developed for the non-linear random response of beams subjected to acoustic and thermal loads applied simultaneously. To validate the present formulation and solution procedure, results are compared with the classical continuum solution and the Fokker-Planck-Kolmogorov equation solution. Comparison is also made with experimental data for a pre-stretched clamped beam. Random responses of thermally buckled simply supported beam, clamped beam and simply supported-clamped beam are presented. The comparison of the present simultaneously loaded response with the existing sequentially loaded results shows a significant difference between them.
Non-classical symmetries and invariant solutions of non-linear Dirac equations
NASA Astrophysics Data System (ADS)
Rocha, P. M. M.; Khanna, F. C.; Rocha Filho, T. M.; Santana, A. E.
2015-09-01
We apply Lie and non-classical symmetry methods to partial differential equations in order to derive solutions of the non-linear Dirac equation corresponding to the Gross-Neveu model in d = (1 + 1) and d = (2 + 1) space-time dimensions. For each d, we first identify sub-algebras of the Poincaré-Lie algebra and for each such sub-algebra, we calculate the invariant solution. Non-classical symmetries are also determined and used to derive new solutions for the Gross-Neveu model.
Non-linear Creep Analysis of Ceramic Specimen Using Finite Element Method
NASA Astrophysics Data System (ADS)
Saini, Jaswinder Singh; Khera, Saurabh
2016-07-01
In the present work the stress analysis of a ceramic tensile specimen is obtained. The effects of specimen geometry along with the pin loading are considered in the stress distribution calculations. Thereafter, the optimization based on a set of constraints is performed on the specimen with pinhole location, pinhole diameter, head width, neck radius and gauge length as its design variables. The work is then extended for the non-linear analysis for creep. A mathematical model is developed which is implemented using C++ code.
Synthesis of Non-linear Protein Dimers through a Genetically Encoded Thiol-ene Reaction
Torres-Kolbus, Jessica; Chou, Chungjung; Liu, Jihe; Deiters, Alexander
2014-01-01
Site-specific incorporation of bioorthogonal unnatural amino acids into proteins provides a useful tool for the installation of specific functionalities that will allow for the labeling of proteins with virtually any probe. We demonstrate the genetic encoding of a set of alkene lysines using the orthogonal PylRS/PylTCUA pair in Escherichia coli. The installed double bond functionality was then applied in a photoinitiated thiol-ene reaction of the protein with a fluorescent thiol-bearing probe, as well as a cysteine residue of a second protein, showing the applicability of this approach in the formation of heterogeneous non-linear fused proteins. PMID:25181502
Non-linear Creep Analysis of Ceramic Specimen Using Finite Element Method
NASA Astrophysics Data System (ADS)
Saini, Jaswinder Singh; Khera, Saurabh
2016-03-01
In the present work the stress analysis of a ceramic tensile specimen is obtained. The effects of specimen geometry along with the pin loading are considered in the stress distribution calculations. Thereafter, the optimization based on a set of constraints is performed on the specimen with pinhole location, pinhole diameter, head width, neck radius and gauge length as its design variables. The work is then extended for the non-linear analysis for creep. A mathematical model is developed which is implemented using C++ code.
Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.
2014-02-12
To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive
Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python
NASA Astrophysics Data System (ADS)
Newville, Matthew; Stensitzki, Till; Allen, Daniel B.; Rawlik, Michal; Ingargiola, Antonino; Nelson, Andrew
2016-06-01
Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.
Application of non-linear dynamics to the characterization of cardiac electrical instability
NASA Technical Reports Server (NTRS)
Kaplan, D. T.; Cohen, R. J.
1987-01-01
Beat-to-beat alternation in the morphology of the ECG has been previously observed in hearts susceptible to fibrillation. In addition, fibrillation has been characterized by some as a chaotic state. Period doubling phenomena, such as alternation, and the onset of chaos have been connected by non-linear dynamical systems theory. In this paper, we describe the use of a technique from nonlinear dynamics theory, the construction of a first return nap, to assess the susceptibility to fibrillation threshhold in canine experiments.
NASA Astrophysics Data System (ADS)
Gallagher, Kerry; Sambridge, Malcolm; Drijkoningen, Guy
In providing a method for solving non-linear optimization problems Monte Carlo techniques avoid the need for linearization but, in practice, are often prohibitive because of the large number of models that must be considered. A new class of methods known as Genetic Algorithms have recently been devised in the field of Artificial Intelligence. We outline the basic concept of genetic algorithms and discuss three examples. We show that, in locating an optimal model, the new technique is far superior in performance to Monte Carlo techniques in all cases considered. However, Monte Carlo integration is still regarded as an effective method for the subsequent model appraisal.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
Derivation of a non-linear ABBM model for the calculation of Barkhausen effect
NASA Astrophysics Data System (ADS)
Lee, S. J.; Zhu, B.; Lo, C. C. H.; Clatterbuck, D. M.; Jiles, D. C.
2001-04-01
The Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model can describe the dynamics of domain wall motion in a ferromagnetic material which is subjected to a smoothly varying external magnetic field. The assumptions of this model limit its use to experiments where the differential permeability and time derivative of applied field are constant. In this paper, the non-linear permeability of the sample is incorporated into the ABBM model by extracting the differential permeability at different points on the B,H plane from the Jiles-Atherton (J-A) hysteresis model.
Non-linear control of the ''clam'' wave energy device. Final report
Not Available
1983-09-01
A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.
Tunable Optical Limiting Action due to Non-linear Absorption in ZnO/Ag Nanocomposites
NASA Astrophysics Data System (ADS)
Radhu, S.; Vijayan, C.; Sandeep, Suchand; Philip, Reji
2011-07-01
ZnO/Ag nanocomposites with different silver concentration are successfully synthesized by solvothermal method. The characterization of the as- synthesized samples is done using XRD, UV-visible spectroscopy and HRTEM and the results indicate that the composites consist of silver nanoparticles attached to the ZnO nanoparticles. The optical non-linearity in these samples is studied using open aperture Z-scan technique and the experimental results agree well with a theoretical model involving two- photon absorption. It is found that the parameters of optical limiting can be tuned in a broad band by varying the silver concentration in the samples.
A Stochastic Cellular Automaton Model of Non-linear Diffusion and Diffusion with Reaction
NASA Astrophysics Data System (ADS)
Brieger, Leesa M.; Bonomi, Ernesto
1991-06-01
This article presents a stochastic cellular automaton model of diffusion and diffusion with reaction. The master equations for the model are examined, and we assess the difference between the implementation in which a single particle at a time moves (asynchronous dynamics) and one implementation in which all particles move simultaneously (synchronous dynamics). Biasing locally each particle's random walk, we alter the diffusion coefficients of the system. By appropriately choosing the biasing function, we can impose a desired non-linear diffusive behaviour in the model. We present an application of this model, adapted to include two diffusing species, two static species, and a chemical reaction in a prototypical simulation of carbonation in concrete.
Loizou, Philipos C.; Ma, Jianfen
2011-01-01
The conventional articulation index (AI) measure cannot be applied in situations where non-linear operations are involved and additive noise is present. This is because the definitions of the target and masker signals become vague following non-linear processing, as both the target and masker signals are affected. The aim of the present work is to modify the basic form of the AI measure to account for non-linear processing. This was done using a new definition of the output or effective SNR obtained following non-linear processing. The proposed output SNR definition for a specific band was designed to handle cases where the non-linear processing affects predominantly the target signal rather than the masker signal. The proposed measure also takes into consideration the fact that the input SNR in a specific band cannot be improved following any form of non-linear processing. Overall, the proposed measure quantifies the proportion of input band SNR preserved or transmitted in each band after non-linear processing. High correlation (r = 0.9) was obtained with the proposed measure when evaluated with intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted in four different real-world maskers. PMID:21877811
NASA Astrophysics Data System (ADS)
Li, Wangnan; Cai, Hongneng; Li, Chao
2014-11-01
This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.
NASA Astrophysics Data System (ADS)
Akcay, Sarp; Matzner, Richard A.
2011-04-01
It is now widely accepted that the universe as we understand it is accelerating in expansion and fits the de Sitter model rather well. As such, a realistic assumption of black holes must place them on a de Sitter background and not Minkowski as is typically done in general relativity. The most astrophysically relevant black hole is the uncharged, rotating Kerr solution, a member of the more general Kerr-Newman metrics. A generalization of the rotating Kerr black hole to a solution of the Einstein's equation with a cosmological constant Λ was discovered by Carter (1973 Les Astres Occlus ed B DeWitt and C M DeWitt (New York: Gordon and Breach)). It is typically referred to as the Kerr-de Sitter spacetime. Here, we discuss the horizon structure of this spacetime and its dependence on Λ. We recall that in a Λ > 0 universe, the term 'extremal black hole' refers to a black hole with angular momentum J > M2. We obtain explicit numerical results for the black hole's maximal spin value and get a distribution of admissible Kerr holes in the (Λ, spin) parameter space. We look at the conformal structure of the extended spacetime and the embedding of the 3-geometry of the spatial hypersurfaces. In analogy with Reissner-Nordström-de Sitter spacetime, in particular by considering the Kerr-de Sitter causal structure as a distortion of the Reissner-Nordström-de Sitter one, we show that spatial sections of the extended spacetime are 3-spheres containing two-dimensional topologically spherical sections of the horizons of Kerr holes at the poles. Depending on how a t = constant 3-space is defined, these holes may be seen as black or white holes (four possible combinations).
NASA Astrophysics Data System (ADS)
Veveakis, E.; Regenauer-Lieb, K.; Weinberg, R. F.
2014-01-01
The segregation of melt from a linear viscous matrix is traditionally described by McKenzie's compaction theory. This classical solution overlooks instabilities that arise when non-linear solid matrix behaviour is considered. Here we report a closed form 1-D solution obtained by extending McKenzie's theory to non-linear matrix behaviours. The new solution provides periodic stress singularities, acting as high porosity melt channels, to be the fundamental response of the compacted matrix. The characteristic length controlling the periodicity is still McKenzie's compaction length bar{δ}_c, adjusted for non-linear rheologies.
NASA Astrophysics Data System (ADS)
Łuczko, J.
2002-08-01
A geometrically non-linear model of the rotating shaft is introduced, which includes Kárman non-linearity, non-linear curvature effects, large displacements and rotations as well as gyroscopic effects. Through applying Timoshenko-type assumptions, the shear effects are also included in the model. Convenient matrix descriptions are used in order to facilitate the analysis based on Galerkin and continuation methods. The model is used to analyze the phenomenon of internal resonance. The influence of some of the system's parameters on the amplitude and frequency of self-excited vibration is investigated.
Soares Dos Santos, Marco P; Ferreira, Jorge A F; Simões, José A O; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters. PMID:26725842
Soares dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters. PMID:26725842
Webb-Robertson, Bobbie-Jo M.; Bunn, Amoret L.; Bailey, Vanessa L.
2011-01-01
Phospholipid fatty acids (PLFA) have been widely used to characterize environmental microbial communities, generating community profiles that can distinguish phylogenetic or functional groups within the community. The poor specificity of organism groups with fatty acid biomarkers in the classic PLFA-microorganism associations is a confounding factor in many of the statistical classification/clustering approaches traditionally used to interpret PLFA profiles. In this paper we demonstrate that non-linear statistical learning methods, such as a support vector machine (SVM), can more accurately find patterns related to uranyl nitrate exposure in a freshwater periphyton community than linear methods, such as partial least squares discriminant analysis. In addition, probabilistic models of exposure can be derived from the identified lipid biomarkers to demonstrate the potential model-based approach that could be used in remediation. The SVM probability model separates dose groups at accuracies of ~87.0%, ~71.4%, ~87.5%, and 100% for the four groups; Control (non-amended system), low-dose (amended at 10 µg U L-1), medium dose (amended at 100 µg U L-1), and high dose (500 µg U L-1). The SVM model achieved an overall cross-validated classification accuracy of ~87% in contrast to ~59% for the best linear classifier.
Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou
2016-05-01
The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, [Formula: see text] (0 < r < 1) near the Fermi energy [Formula: see text]. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to [Formula: see text]. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed. PMID:27045815
NASA Astrophysics Data System (ADS)
Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou
2016-05-01
The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, {ρ\\text{c}}(ω )\\propto |ω -{μ\\text{F}}{{|}r} (0 < r < 1) near the Fermi energy {μ\\text{F}} . At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r={{r}\\text{c}}<1 . Surprisingly, in the 2CK phase, different power-law scalings from the well-known \\sqrt{T} or \\sqrt{V} form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.
Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H
2015-02-23
The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other. PMID:25836428
NASA Astrophysics Data System (ADS)
Soares Dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.
2016-01-01
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.
NASA Astrophysics Data System (ADS)
Gómez-Ullate, D.; Lombardo, S.; Mañas, M.; Mazzocco, M.; Nijhoff, F.; Sommacal, M.
2009-11-01
may be found at www.iop.org/Journals/jphysa. Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'JPhysA Special Issue: Current Trends in Integrability and Non Linear Phenomena' Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, IOP Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. Please quote 'JPhysA Special Issue—Current Trends in Integrability and Non Linear Phenomena'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal.
NASA Astrophysics Data System (ADS)
Gómez-Ullate, D.; Lombardo, S.; Mañas, M.; Mazzocco, M.; Nijhoff, F.; Sommacal, M.
2009-12-01
may be found at www.iop.org/Journals/jphysa. Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'JPhysA Special Issue: Current Trends in Integrability and Non Linear Phenomena' Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, IOP Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. Please quote 'JPhysA Special Issue—Current Trends in Integrability and Non Linear Phenomena'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
NASA Astrophysics Data System (ADS)
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
NASA Astrophysics Data System (ADS)
Hornsby, W. A.; Migliano, P.; Buchholz, R.; Grosshauser, S.; Weikl, A.; Zarzoso, D.; Casson, F. J.; Poli, E.; Peeters, A. G.
2016-01-01
The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable {{Δ }\\prime}>0 current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as opposed to the electron diamagnetic direction in which it rotates when no turbulence is present. In addition, it is found that the mode rotation slows as the island grows in size.
Approximate Analytical Solutions for Primary Chatter in the Non-Linear Metal Cutting Model
NASA Astrophysics Data System (ADS)
Warmiński, J.; Litak, G.; Cartmell, M. P.; Khanin, R.; Wiercigroch, M.
2003-01-01
This paper considers an accepted model of the metal cutting process dynamics in the context of an approximate analysis of the resulting non-linear differential equations of motion. The process model is based upon the established mechanics of orthogonal cutting and results in a pair of non-linear ordinary differential equations which are then restated in a form suitable for approximate analytical solution. The chosen solution technique is the perturbation method of multiple time scales and approximate closed-form solutions are generated for the most important non-resonant case. Numerical data are then substituted into the analytical solutions and key results are obtained and presented. Some comparisons between the exact numerical calculations for the forces involved and their reduced and simplified analytical counterparts are given. It is shown that there is almost no discernible difference between the two thus confirming the validity of the excitation functions adopted in the analysis for the data sets used, these being chosen to represent a real orthogonal cutting process. In an attempt to provide guidance for the selection of technological parameters for the avoidance of primary chatter, this paper determines for the first time the stability regions in terms of the depth of cut and the cutting speed co-ordinates.
NASA Astrophysics Data System (ADS)
Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.
2015-09-01
One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.
Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P
2011-04-26
The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
NASA Astrophysics Data System (ADS)
Tetzlaff, D.; Soulsby, C.; Birkel, C.; Capell, R.; Speed, M.
2009-12-01
The non-linearities of catchment hydrological behaviour are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Such surface connectivity also controls the flux of microbiological pollutants (coliform bacteria) from areas of live stock grazing which can have serious health implications for potable water supplies. We report a nested catchment study where hydrological and tracer monitoring over a two year period has been coupled with regular sampling for faecal indicator organisms (FIOs). The study has been based in catchments with mixed landuse where FIOs are derived from livestock (sheep and cows) in agricultural land and wild animals (red deer) on moorlands. At all scales (3-1800km2), high levels of FIO were transient and episodic and strongly correlated with periods of high hydrological connectivity. We show how this non-linearity in connectivity can be captured within a dynamic hydrological model. The model was used, along with climate change predictions, to assess possible scenarios of change in connectivity and microbiological contamination in catchments with different land use.
Non-Linear Oscillation in Ionic Current Due to Size Effect in Glass Nanopipette
NASA Astrophysics Data System (ADS)
Takami, Tomohide; Deng, Xiao Long; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho
2012-11-01
We studied the size effect of the ionic current in glass pipette, and found an interesting 2.7 mHz oscillation at 50 nm. In this study, we would like to discuss the mechanism of the non-linear oscillation. Cation-rich layer with its Debye length λ exists in nanopipette, and its conductivity σd is lower than that in the central bulk layer σb in this study. The pressure difference ΔP = ΔcRT where Δc is the difference in concentrations between in and out of the pipette. Then, the ionic current I can be estimated by using Hagen-Poiseuille equation; I =π/8 η ΔcRT/l {σdr4 + (σb -σd) (λ - r) 2 (r2 + 2 rλ -λ2) } . (r : inner radius, l: pipette length, η: viscosity) The last term indicates the non-linear oscillation. Moreover, we roughly estimated λ = 2.08 ×(2r) 1 / 2. Then, the bulk layer appears appropriately when 2 r 50 nm, which causes the effective ionic current oscillation. This work was supported by KOSEF NRL Program grant funded by the Korea Government MEST (Grant No. 2010-0024525 and R0A-2008-000-20052-0), and WCU Program through the KOSEF funded by the MEST (Grant No. R31-2008-000-10057-0).
Application of Linear and Non-Linear Harmonic Methods for Unsteady Transonic Flow
NASA Astrophysics Data System (ADS)
Gundevia, Rayomand
This thesis explores linear and non-linear computational methods for solving unsteady flow. The eventual goal is to apply these methods to two-dimensional and three-dimensional flutter predictions. In this study the quasi-one-dimensional nozzle is used as a framework for understanding these methods and their limitations. Subsonic and transonic cases are explored as the back-pressure is forced to oscillate with known amplitude and frequency. A steady harmonic approach is used to solve this unsteady problem for which perturbations are said to be small in comparison to the mean flow. The use of a linearized Euler equations (LEE) scheme is good at capturing the flow characteristics but is limited by accuracy to relatively small amplitude perturbations. The introduction of time-averaged second-order terms in the Non-Linear Harmonic (NLH) method means that a better approximation of the mean-valued solution, upon which the linearization is based, can be made. The nonlinear time-accurate Euler solutions are used for comparison and to establish the regimes of unsteadiness for which these schemes fails. The usefulness of the LEE and NLH methods lie in the gains in computational efficiency over the full equations.
The psychophysics of uneconomical choice: non-linear reward evaluation by a nectar feeder.
Nachev, Vladislav; Winter, York
2012-05-01
Uneconomical choices by humans or animals that evaluate reward options challenge the expectation that decision-makers always maximize the return currency. One possible explanation for such deviations from optimality is that the ability to sense differences in physical value between available alternatives is constrained by the sensory and cognitive processes for encoding profitability. In this study, we investigated the capacity of a nectarivorous bat species (Glossophaga commissarisi) to discriminate between sugar solutions with different concentrations. We conducted a two-alternative free-choice experiment on a population of wild electronically tagged bats foraging at an array of computer-automated artificial flowers that recorded individual choices. We used a Bayesian approach to fit individual psychometric functions, relating the strength of preferring the higher concentration option to the intensity of the presented stimulus. Psychometric analysis revealed that discrimination ability increases non-linearly with respect to intensity. We combined this result with a previous psychometric analysis of volume perception. Our theoretical analysis of choice for rewards that vary in two quality dimensions revealed regions of parameter combinations where uneconomic choice is expected. Discrimination ability may be constrained by non-linear perceptual and cognitive encoding processes that result in uneconomical choice. PMID:22045545
A sequential algorithm for the non-linear dual-sorption model of percutaneous drug absorption.
Gumel, A B; Kubota, K; Twizell, E H
1998-08-15
A sequential algorithm is developed for the non-linear dual-sorption model developed by Chandrasekaran et al. [1,2] which monitors pharmacokinetic profiles in percutaneous drug absorption. In the experimental study of percutaneous absorption, it is often observed that the lag-time decreases with the increase in the donor concentration when two or more donor concentrations of the same compound are used. The dual-sorption model has sometimes been employed to explain such experimental results. In this paper, it is shown that another feature observed after vehicle removal may also characterize the dual-sorption model. Soon after vehicle removal, the plots of the drug flux versus time become straight lines on a semilogarithmic scale as in the linear model, but the half-life is prolonged thereafter when the dual-sorption model prevails. The initial half-life after vehicle removal with a low donor concentration is longer than that with a higher donor concentration. These features, if observed in experiments, may be used as evidence to confirm that the dual-sorption model gives an explanation to the non-linear kinetic behaviour of a permeant. PMID:9727298
Hematite natural crystals: non-linear initial susceptibility at low temperature
NASA Astrophysics Data System (ADS)
Guerrero Suarez, S.; Martín-Hernández, F.
2016-04-01
Several works have reported that hematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain-size, foreign cations content, domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to hematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 K and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyze initial susceptiblity and magnetization behaviours below Morin transition. The magnetic moment study at low temperatura is completed with measurements of Zero Field Cooled- Field Cooled (ZFC-FC) and AC-susceptibility in a range from 5-300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in hematite-bearing rocks.
On the formation of shocks of electromagnetic plane waves in non-linear crystals
NASA Astrophysics Data System (ADS)
Christodoulou, Demetrios; Perez, Daniel Raoul
2016-08-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.
Non-linear time variant model intended for polypyrrole-based actuators
NASA Astrophysics Data System (ADS)
Farajollahi, Meisam; Madden, John D. W.; Sassani, Farrokh
2014-03-01
Polypyrrole-based actuators are of interest due to their biocompatibility, low operation voltage and relatively high strain and force. Modeling and simulation are very important to predict the behaviour of each actuator. To develop an accurate model, we need to know the electro-chemo-mechanical specifications of the Polypyrrole. In this paper, the non-linear time-variant model of Polypyrrole film is derived and proposed using a combination of an RC transmission line model and a state space representation. The model incorporates the potential dependent ionic conductivity. A function of ionic conductivity of Polypyrrole vs. local charge is proposed and implemented in the non-linear model. Matching of the measured and simulated electrical response suggests that ionic conductivity of Polypyrrole decreases significantly at negative potential vs. silver/silver chloride and leads to reduced current in the cyclic voltammetry (CV) tests. The next stage is to relate the distributed charging of the polymer to actuation via the strain to charge ratio. Further work is also needed to identify ionic and electronic conductivities as well as capacitance as a function of oxidation state so that a fully predictive model can be created.
Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics
NASA Astrophysics Data System (ADS)
Ochoa, D. A.; García, J. E.; Pérez, R.; Gomis, V.; Albareda, A.; Rubio-Marcos, F.; Fernández, J. F.
2009-01-01
Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O3 system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.
Mahfouz, Ahmed; van de Giessen, Martijn; van der Maaten, Laurens; Huisman, Sjoerd; Reinders, Marcel; Hawrylycz, Michael J; Lelieveldt, Boudewijn P F
2015-02-01
The Allen Brain Atlases enable the study of spatially resolved, genome-wide gene expression patterns across the mammalian brain. Several explorative studies have applied linear dimensionality reduction methods such as Principal Component Analysis (PCA) and classical Multi-Dimensional Scaling (cMDS) to gain insight into the spatial organization of these expression patterns. In this paper, we describe a non-linear embedding technique called Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) that emphasizes the local similarity structure of high-dimensional data points. By applying BH-SNE to the gene expression data from the Allen Brain Atlases, we demonstrate the consistency of the 2D, non-linear embedding of the sagittal and coronal mouse brain atlases, and across 6 human brains. In addition, we quantitatively show that BH-SNE maps are superior in their separation of neuroanatomical regions in comparison to PCA and cMDS. Finally, we assess the effect of higher-order principal components on the global structure of the BH-SNE similarity maps. Based on our observations, we conclude that BH-SNE maps with or without prior dimensionality reduction (based on PCA) provide comprehensive and intuitive insights in both the local and global spatial transcriptome structure of the human and mouse Allen Brain Atlases. PMID:25449901
Study of non-linear deformation of vocal folds in simulations of human phonation
NASA Astrophysics Data System (ADS)
Saurabh, Shakti; Bodony, Daniel
2014-11-01
Direct numerical simulation is performed on a two-dimensional compressible, viscous fluid interacting with a non-linear, viscoelastic solid as a model for the generation of the human voice. The vocal fold (VF) tissues are modeled as multi-layered with varying stiffness in each layer and using a finite-strain Standard Linear Solid (SLS) constitutive model implemented in a quadratic finite element code and coupled to a high-order compressible Navier-Stokes solver through a boundary-fitted fluid-solid interface. The large non-linear mesh deformation is handled using an elliptic/poisson smoothening technique. Supra-glottal flow shows asymmetry in the flow, which in turn has a coupling effect on the motion of the VF. The fully compressible simulations gives direct insight into the sound produced as pressure distributions and the vocal fold deformation helps study the unsteady vortical flow resulting from the fluid-structure interaction along the full phonation cycle. Supported by the National Science Foundation (CAREER Award Number 1150439).
Non-linear conductance in quantum point contacts of noble metals
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takayanagi, Kunio
2004-03-01
We studied the non-linear property of the electronic conductance of the noble metal nanocontact. Specimens were cleaned by Ar ion sputtering in UHV(`2 ˜10|7[Pa]) at room temperature. Current vs voltage curves (I-V curves) were obtained, while the metal contact was stretched by STM. The bias voltage at the contact was changed within 2V (using the triangle wave voltage 3`5kHz). Au, Pt, Ag and Cu quantum point contacts showed non-linear I-V curves. These metallic contacts presented the quantized conductance of the quantum unit G0(=2e2/h). I-V curves are fitted to a cubic function ( IaV+cV3 ). The value of c/a does not depend on the zero-bias conductance value, a. However, c/a values depend on metals (c/a ; Au=0.58 0.02, Ag=0.33 0.02, Cu= 0.40 0.03). The present result indicates that metals of lower resistance (higher mobility) give lower values of c/a.
Probing the mechanism of non-linear growth of polyelectrolyte multilayers
NASA Astrophysics Data System (ADS)
Selin, Victor; Ankner, John; Sukhishvili, Svetlana A.
We report a study of the non-linear growth of electrostatically assembled polyelectrolyte multilayer films (PEM). PEM films were assembled by the layer-by-layer (LbL) technique using poly(methacrylic acid) as a polyanion and quaternized poly-2-(dimethylamino)ethyl methacrylate as a polycation. During film build-up, the thickness evolution as well as water uptake of PEM films were measured by in situ ellipsometry, whereas neutron reflectometry was used to probe the evolution of film internal structure as a function of deposition time. First, we found that during non-linear growth, films remain in a highly swollen hydrogel-like state, but the swelling ratio demonstrated an odd/even effect, with much larger hydration of the PEM when the terminal layer was the polycation. Second, while polycation chains were able to diffuse into the bulk of the film with a diffusion constant several orders of magnitude lower than in their free, unbound state, polyanion invasion was limited to the film surface. The amounts of the polycation and the polyanion adsorbed per deposition cycle were also drastically different. We quantify chemical composition and water content in the film, and correlate these data with the depth polyelectrolyte chains penetrate within the film during PEM construction.
High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity
Haar, Gail ter
2008-06-24
In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients.
Non-linear methods for inferring lidar metrics using SPOT-5 textural data
NASA Astrophysics Data System (ADS)
Shamsoddini, A.; Trinder, J. C.; Turner, R.
2013-10-01
Although many studies have demonstrated the utility of airborne lidar for forest inventory, the acquisition and processing of the data can be cost prohibitive for small areas. In such cases, it may be possible to emulate lidar metrics using more affordable optical data. This study explored processing methods for predicting lidar metrics using SPOT-5 textural data. Multiple-linear regression (MLR) was compared with non-linear machine learning techniques including multi-layer perceptron (MLP) artificial neural networks (ANN), rational basis function (RBF) ANN and regression tree (RT). For this purpose, 11 grey level co-occurrence matrix (GLCM) indices were calculated for bands, band ratios and principal components (PCs) of SPOT-5 multispectral image. SPOT-5 metrics were correlated with 25 lidar metrics collected over a Pinus radiata plantation. After dimensionality reduction, random forest feature selection was applied to select the most relevant SPOT-5 textural attributes for inferring each lidar metric. The results showed that the non-linear methods including MLP and RBF methods are more promising for modelling lidar metrics using SPOT-5 data than MLR and RT.
NIMROD studies of RWM stability and non-linear evolution for NSTX equilibria
NASA Astrophysics Data System (ADS)
Becerra, A. L.; Hegna, C. C.; Sovinec, C. R.; Kruger, S. E.; King, J. R.; Sabbagh, S. A.
2015-11-01
We make use of the generalized thin resistive wall boundary condition recently implemented in NIMROD to study the linear and nonlinear RWM stability properties of a series of reconstructed NSTX equilibria. The boundary condition operates by matching the magnetic field inside the computational domain with external fields found using the Green's function method in the GRIN vacuum-field solver at the wall, and is valid for toroidal geometries with poloidal asymmetry as well as for cylindrical geometries. Time series of NSTX equilibrium reconstructions from two shots whose normalized betas span the no-wall limit are studied. The critical beta for RWM onset found by NIMROD is compared with the stability limit predicted by ideal MHD code DCON. Scans with varying wall parameters are also performed to demonstrate the approximately linear relationship between growth rate and wall resistivity, and to test the performance limits of the boundary condition. The stability of these equilibria for n>1 is also examined, with both linear and non-linear runs in preparation for examining the non-linear effects due to toroidal rotation. Research supported by U. S. DoE under grant no. DE-FG02-86ER53218.
Non-linear crustal corrections in high-resolution regional waveform seismic tomography
NASA Astrophysics Data System (ADS)
Marone, Federica; Romanowicz, Barbara
2007-07-01
We compare 3-D upper mantle anisotropic structures beneath the North American continent obtained using standard and improved crustal corrections in the framework of Non-linear Asymptotic Coupling Theory (NACT) applied to long period three component fundamental and higher mode surface waveform data. Our improved approach to correct for crustal structure in high-resolution regional waveform tomographic models goes beyond the linear perturbation approximation, and is therefore more accurate in accounting for large variations in Moho topography within short distances as observed, for instance, at ocean-continent margins. This improved methodology decomposes the shallow-layer correction into a linear and non-linear part and makes use of 1-D sensitivity kernels defined according to local tectonic structure, both for the forward computation and for the computation of sensitivity kernels for inversion. The comparison of the 3-D upper mantle anisotropic structures derived using the standard and improved crustal correction approaches shows that the model norm is not strongly affected. However, significant variations are observed in the retrieved 3-D perturbations. The largest differences in the velocity models are present below 250 km depth and not in the uppermost mantle, as would be expected. We suggest that inaccurate crustal corrections preferentially map into the least constrained part of the model and therefore accurate corrections for shallow-layer structure are essential to improve our knowledge of parts of the upper mantle where our data have the smallest sensitivity.
Efficient calculation of cosmological neutrino clustering in the non-linear regime
NASA Astrophysics Data System (ADS)
Archidiacono, Maria; Hannestad, Steen
2016-06-01
We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to l=2 in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than ~ 5% for masses up to ~ 1 eV and k lesssim 10 h/Mpc. The matter power spectrum can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum can be reliably calculated even in the non-linear regime by using the non-linear gravitational potential, sourced by dark matter overdensities, as it is derived from semi-analytic methods based on N-body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from N-body simulations that include cold dark matter and neutrinos as independent particles with different properties.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
Cauchy problem for non-linear systems of equations in the critical case
NASA Astrophysics Data System (ADS)
Kaikina, E. I.; Naumkin, P. I.; Shishmarev, I. A.
2004-12-01
The large-time asymptotic behaviour is studied for a system of non-linear evolution dissipative equations \\displaystyle u_t+\\mathscr N(u,u)+\\mathscr Lu=0, \\qquad x\\in\\mathbb R^n, \\quad t>0, \\displaystyle u(0,x)=\\widetilde u(x), \\qquad x\\in\\mathbb R^n, where \\mathscr L is a linear pseudodifferential operator \\mathscr Lu=\\overline{\\mathscr F}_{\\xi\\to x}(L(\\xi)\\widehat u(\\xi)) and the non-linearity \\mathscr N is a quadratic pseudodifferential operator \\displaystyle \\mathscr N(u,u)=\\overline{\\mathscr F}_{\\xi\\to x}\\sum_{k,l=1}^m\\int_{\\mathbb R^n}A^{kl}(t,\\xi,y)\\widehat u_k(t,\\xi-y)\\widehat u_l(t,y)\\,dy,where \\widehat u\\equiv\\mathscr F_{x\\to\\xi}u is the Fourier transform. Under the assumptions that the initial data \\widetilde u\\in\\mathbf H^{\\beta,0}\\cap\\mathbf H^{0,\\beta}, \\beta>n/2 are sufficiently small, where \\displaystyle \\mathbf H^{n,m}=\\{\\phi\\in\\mathbf L^2:\\Vert\\langle x\\rangle^m\\lang......\\phi(x)\\Vert _{\\mathbf L^2}<\\infty\\}, \\qquad \\langle x\\rangle=\\sqrt{1+x^2}\\,,is a Sobolev weighted space, and that the total mass vector \\displaystyle M=\\int\\widetilde u(x)\\,dx\
Linear and non-linear control techniques applied to actively lubricated journal bearings
NASA Astrophysics Data System (ADS)
Nicoletti, R.; Santos, I. F.
2003-03-01
The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.
Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity
Neri, Peter
2010-01-01
Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835
Haematite natural crystals: non-linear initial susceptibility at low temperature
NASA Astrophysics Data System (ADS)
Guerrero-Suarez, S.; Martín-Hernández, F.
2016-06-01
Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.
Non-linear boundary-layer receptivity due to distributed surface roughness
NASA Technical Reports Server (NTRS)
Amer, Tahani Reffet
1995-01-01
The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.
Characterization of atherosclerotic arterial tissue using multimodal non-linear optical microscopy
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.
2013-06-01
Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires a morpho-functional approach. Non-linear microscopy techniques have the potential to bridge this gap by providing morpho-functional information in a label-free way. Here we employed multiple non-linear microscopy techniques, including CARS, TPF, and SHG to provide intrinsic optical contrast from various tissue components in both arterial wall and atherosclerotic plaques. CARS and TPF microscopy were used to respectively image lipid depositions within plaques and elastin in the arterial wall. Cholesterol deposition in the lumen and collagen in the arterial wall were selectively imaged by SHG microscopy and distinguished by forward-backward SHG ratio. Image pattern analysis allowed characterizing collagen organization in different tissue regions. The presented method has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.
NASA Astrophysics Data System (ADS)
Richert, Ranko
2016-03-01
A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a "hump," i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, Ncorr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.
Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing . E-mail: xjq@mail.jlu.edu.cn; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin
2005-01-15
Both the homometal cluster [P(ph{sub 4})]{sub 2}[Mo{sub 2}O{sub 2}({mu}-S){sub 2}(S{sub 2}){sub 2}] (1) and [Mo{sub 2}O{sub 2}({mu}-S){sub 2}(Et{sub 2}dtc){sub 2}] (2) (Et{sub 2}dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10{sup -30}esu for (1) and 5.428x10{sup -30}esu for (2)
Monitoring Technical Conditions of Engineering Structures Using the Non-Linear Approach
NASA Astrophysics Data System (ADS)
Volkova, V. E.
2015-11-01
Conventional methods of monitoring technical condition are based on detection of damage in the structures of buildings or facilities during the entire period of their operation. In spite of considerable interest displayed to this issue and a significant number of publications, there is no unity of opinions. These methods differ from each other in the sets of values fixed for investigations, the techniques of their recording, transfer and further processing. Today's rules and regulations for structural designs expand the scope of application of the structures operating in the elastic-plastic stage. These damage-free structures originally display the nonlinear properties and can be adequately described only by the non-linear models. This paper presents a method for determining the type and level of non-linearity from the structural oscillations data for monitoring the change in the health of structures. It is shown that a plot of acceleration against the magnitude of the displacement represents the restoring force of a structure. If the structure is damaged during a new striking motion, the phase trajectories in plane “acceleration-displacement” will deviate from its healthy signature.
A new adaptive multiple modelling approach for non-linear and non-stationary systems
NASA Astrophysics Data System (ADS)
Chen, Hao; Gong, Yu; Hong, Xia
2016-07-01
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Global Spiral Arms Formation by Non-linear Interaction of Wakelets
NASA Astrophysics Data System (ADS)
Kumamoto, Jun; Noguchi, Masafumi
2016-05-01
The formation and evolution of galactic spiral arms is not yet clearly understood despite much analytic and numerical work. Recently, the new idea has been proposed that local density enhancements (wakelets) arising in the galactic disk connect with each other and make global spiral arms. However, the understanding of this mechanism is not yet sufficient. We analyze the interaction of wakelets by using N-body simulations, including perturbing point masses, which are heavier than individual N-body particles and act as the seeds for wakelets. Our simulation facilitates a more straightforward interpretation of numerical results than previous works by putting a certain number of perturbers in a well-motivated configuration. We detected a clear sign of non-linear interaction between wakelets, which make global spiral arms by connecting two adjacent wakelets. We found that the wavenumber of the strongest non-linear interaction depends on galactic disk mass and shear rate. This dependence is consistent with the prediction of a swing amplification mechanism and other previous results. Our results unify previous results that were consistent with each other.
Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites
NASA Astrophysics Data System (ADS)
Abdel-Baki, K.; Boitier, F.; Diab, H.; Lanty, G.; Jemli, K.; Lédée, F.; Garrot, D.; Deleporte, E.; Lauret, J. S.
2016-02-01
Due to their high potentiality for photovoltaic applications or coherent light sources, a renewed interest in hybrid organic perovskites has emerged for few years. When they are arranged in two dimensions, these materials can be considered as hybrid quantum wells. One consequence of the unique structure of 2D hybrid organic perovskites is a huge exciton binding energy that can be tailored through chemical engineering. We present experimental investigations of the exciton non-linearities by means of femtosecond pump-probe spectroscopy. The exciton dynamics is fitted with a bi-exponential decay with a free exciton life-time of ˜100 ps. Moreover, an ultrafast intraband relaxation (<150 fs) is also reported. Finally, the transient modification of the excitonic line is analyzed through the moment analysis and described in terms of reduction of the oscillator strength and linewidth broadening. We show that excitonic non-linearities in 2D hybrid organic perovskites share some behaviours of inorganic semiconductors despite their high exciton binding energy.
High Intensity Focused Ultrasound for Cancer Therapy—harnessing its non-linearity
NASA Astrophysics Data System (ADS)
ter Haar, Gail
2008-06-01
In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple—a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients.
A review on prognostic techniques for non-stationary and non-linear rotating systems
NASA Astrophysics Data System (ADS)
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Bystritsky, A; Nierenberg, A A; Feusner, J D; Rabinovich, M
2012-04-01
The goal of this article is to highlight the significant potential benefits of applying computational mathematical models to the field of psychiatry, specifically in relation to diagnostic conceptualization. The purpose of these models is to augment the current diagnostic categories that utilize a "snapshot" approach to describing mental states. We hope to convey to researchers and clinicians that non-linear dynamics can provide an additional useful longitudinal framework to understand mental illness. Psychiatric phenomena are complex processes that evolve in time, similar to many other processes in nature that have been successfully described and understood within deterministic chaos and non-linear dynamic computational models. Dynamical models describe mental processes and phenomena that change over time, more like a movie than a photograph, with multiple variables interacting over time. The use of these models may help us understand why and how current diagnostic categories are insufficient. They may also provide a new, more descriptive and ultimately more predictive approach leading to better understanding of the interrelationship between psychological, neurobiological, and genetic underpinnings of mental illness. PMID:22261550
Effects of anisotropy and stress on the non-linear magnetic susceptibility of ferromagnets
NASA Astrophysics Data System (ADS)
Melikhov, Yevgen; Hauser, Hans; Li, Lu; Jiles, David; Grossinger, Roland
2004-03-01
The magnetic susceptibility of ferromagnetic materials changes if mechanical stress is applied. This arises mainly because of the changes in the effective anisotropy arising from the magnetoelastic coupling. In order to correctly describe these changes theoretically by non-linear hysteresis modeling, the variation of these parameters with both anisotropy and stress must be understood. The interpretation of the underlying physics behind these variations as well as the means for determining the changes in theoretical parameters are important issues in hysteresis modeling. We report studies undertaken using two non-linear hysteresis models, namely the Jiles-Atherton model and the Hauser energetic model. The study examined the initial magnetization curve at low magnetic fields - where domain wall displacements are dominant and the anhysteretic (hysteresis-free) magnetization at high fields - where most of the magnetization processes taking place are reversible. The results were verified by comparison with experimental results taken on amorphous Co77B23 ribbon under applied tensile stress. This research was supported by the US DoE, office of Basic Energy Science, Materials Science Division. Ames Laboratory is operated for the US DoE by ISU under contract number W-7405-ENG-82.
Non-Linear Raman Scattering from Semiconducting GaP Nanowires
NASA Astrophysics Data System (ADS)
Gupta, A.; Wu, Jian; Eklund, P. C.
2008-03-01
Results of polarized micro-Raman scattering from LO and TO phonons in individual GaP nanowires (NWs) with different diameter and length are reported. The NW diameters were determined by Atomic Force Microscope (AFM) and length was measured by Scanning Electron Microscope (SEM). NWs with the same growth direction but variable length were prepared by cutting ˜40 μm long wires into segments using a Focused Ion Beam. The polar plots of the back scattered intensity ITO,LO(θ) from these segments were collected, where θ is the angle between the incident electric field and the NW axis. Interestingly, the shapes of these polar patterns depend on both the length and diameter of the NWs. The Raman scattering intensities for short wires (i.e., L<1μm) also exhibit a non-linear dependence on the incident laser power I0. The non-linearity increases with decreasing NW length and behaves as ˜I0^1.5 for the shortest wires measured so far (i.e., L˜500 nm). Our results strong suggest strong enhancement in the internal electric field via antenna effects. This work is supported by NSF NIRT, grant DMR-0304178.
Smith, P.A.
1993-12-31
In the safety assessment of nuclear waste repositories, sorption of radionuclides on the surfaces of colloids may significantly modify transport behavior where colloid concentration is sufficiently high. In the case of fractured geological media, colloids may be excluded from matrix pores, in which case radionuclides bound to them are not subject to the retarding effects of matrix diffusion and sorption onto matrix pore surfaces. A model is presented describing colloid facilitated transport through fractured media with non-linear sorption. A simple criterion is developed to predict when the presence of colloids will have a significant influence on transport and effects resulting from non-linearity of sorption are described. However, lack of comprehensive sorption data, as well as computational efficiency, mean that the use of a simplified transport model, with linear sorption both on pore surfaces and colloids, is desirable if it can be demonstrated to be conservative. A further criterion is developed to predict where such a model, with linear sorption calculated for the highest concentration encountered along the flow path, would be expected to yield conservative results.
The diffusive interface at low stability: the importance of non-linearity and turbulent entrainment
NASA Astrophysics Data System (ADS)
Rudels, Bert
1991-03-01
The diffusion and convection at low temperature at an interface separating a cold, low salinity upper layer from a warmer, more saline lower layer are examined. The densities of the layers are assumed equal and an approximate, non-linear equation of state is used. The vertical transports are determined from the molecular, diffusive fluxes through the interface. The diffusion creates instabilities at the interface, which convect into the layers. The transition from diffusion to convection is estimated from a Rayleigh number based upon the penetration depth of the density anomaly. The convection occurs as quasi-stationary plumes, maintained by inflow of lighter/denser water, driven by horizontal pressure gradients induced by the density redistribution. The turbulent energy produced in the layers is calculated from the terminal vertical velocity of the buoyant parcels and the horizontal and vertical length scales of the convection. The turbulent energy density is found to depend on layer depth and buoyancy fluxes through the interface cannot be used directly as estimates of the turbulence production. Both turbulent entrainment and the non-linear equation of state could be of less importance for the transport though a diffusive interface in the oceans than what is inferred from corresponding laboratory experiments.
Fast growing instabilities and non-linear saturated states in hybrid tokamak and RFP plasmas
NASA Astrophysics Data System (ADS)
Brunetti, Daniele; Graves, Jonathan; Cooper, Wilfred; Terranova, David; Wahlberg, Christer
2014-10-01
The stability of large scale m=1 helical displacements of tokamak and RFP plasmas with reversed shear are investigated using the 3D equilibrium code VMEC/ANIMEC and the non-linear initial value stability code XTOR. The non-linear amplitude of such saturated modes obtained with XTOR is compared both with the helical core structure resulting from VMEC/ANIMEC calculations, and with analytic predictions. For conditions where the magnetic shear is allowed to become small over a large portion of the plasma, resistive sidebands coupled to a core kink-like mode exhibit extremely fast growth. The sensitivity of the dependence of the growth rate upon the Lundquist number to two-fluid effects has been examined analytically and also numerically with the XTOR code. It is found that these additional non-MHD effects tend to moderately reduce the growth rate of resistive modes. A family of modes are obtained, including modes with novel scaling on Lundquist number, some of which rotate in the electron diamagnetic direction, and others in the ion diamagnetic direction. In ideal and resistive numerical simulations, qualitative agreement has been found between XTOR and analytical predictions in absence of non-MHD effec
Non-linear Collective Oscillations of Electrons in a Diamagnetic Kepler Trap
NASA Astrophysics Data System (ADS)
Godino, Joseph; Kunhardt, Erich; Carr, Wayne
2001-10-01
The Diamagnetic Kepler Trap is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. In an experimental arrangement with this configuration, we generate a system of electrons and ions by ionization of the neutral background gas that has a typical density of 10^12 particles per cubic centimeter. The lifetime of the trapped electrons is sufficiently long that we can observe collective oscillations. Here, we examine these oscillations by coupling a probe to the plasma and measuring the induced current. We find that as we deepen the potential energy well these oscillations progress through a sequence of linear, non-linear and chaotic behavior. Using the photographs of the light emission from the excited neutrals, we observe that the non-linearity of the collective oscillations results from an increase in the trapped electron density that moves in a direction parallel to the magnetic field lines. From the FFT of the induced current, we find that the transition from linearity to chaos occurs through intermittent fluctuations in the measured signal that are manifest in the broadening of the spectrum. Since the applied sphere voltage never collapses, the electrons remain trapped in the potential energy well and we conclude that the chaos results from a breakdown of the collective behavior into that of many individual singly trapped electrons.
NASA Astrophysics Data System (ADS)
El-Menoufi, Basem Kamal
2016-05-01
In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.
NASA Astrophysics Data System (ADS)
Norman, M. R.
2013-12-01
Differential Transforms (DTs), a core component of so-called "automatic" or "algorithmic" differentiation, offer significant flexibility and efficiency to any numerical method. The i-th and j-th DT, U(i,j), of a function, u(x,y), is simply U(i,j)=1/(i!j!)*∂(i+j)u/∂xi∂yj. Being a term in the Taylor series of u(x,y) makes the reverse transform trivial. This relation also computes initial DTs from known spatial derivatives. What is novel about DTs is how they simplify a complex PDE system, transforming most arithmetic, trigonometric, and other operators into simple recurrence relations in derivative space. This allows one to simply and quickly compute analytical derivatives of highly complex and non-linear functions. Consider a pseudo-conservation law system, u(x)t+f(u,x)x=s(u,x), for instance. The fluxes and source terms could be (and often are) highly complex, non-linear functions of the state vector and independent variables. Regardless of the spatial discretization (variational / finite-element, weak / finite-volume, or strong / finite-difference), one nearly always must resort to tensored quadrature to evaluate face fluxes and body source terms, and this treatment is expensive. However, if one uses DTs to analytically compute spatial derivatives of the flux and source terms, given spatial derivatives of u, then the fluxes and source terms are directly expanded as polynomials, allowing for significantly cheaper, quadrature-free integration, sampling, and differentiation with a single dot product. Besides being simpler, this also allows flexibility for Galerkin methods in particular to analytically and cheaply compute body integrals, which are often approximated inexactly with quadrature. Computing Nth-order DTs in D dimensions is of O(D2*N) complexity, and whether for transport or non-linear compressible Euler equations, they are cheaper to compute and integrate analytically than quadrature. Further, because time-dependent PDE systems relate spatial
Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.
2016-04-04
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less
NASA Astrophysics Data System (ADS)
Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.
2016-06-01
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker-Planck-Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker-Planck-Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.
Chi, Xianglin; Zhou, Jianhua; Shi, Ping; Liu, Chengyu
2016-02-01
The linear analysis for heart rate variability (HRV), including time domain method, frequency domain method and time-frequency analysis, has reached a lot of consensus. The non-linear analysis has also been widely applied in biomedical and clinical researches. However, for non-linear HRV analysis, especially for short-term non-linear HRV analysis, controversy still exists, and a unified standard and conclusion has not been formed. This paper reviews and discusses three short-term non-linear HRV analysis methods (fractal dimension, entropy and complexity) and their principles, progresses and problems in clinical application in detail, in order to provide a reference for accurate application in clinical medicine. PMID:27382764
HIGH SPEED KERR CELL FRAMING CAMERA
Goss, W.C.; Gilley, L.F.
1964-01-01
The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)
Kerr geodesics following the axis of symmetry
NASA Astrophysics Data System (ADS)
Gariel, J.; Santos, N. O.; Wang, Anzhong
2016-05-01
We present here the general expressions for the acceleration of massive test particles along the symmetry axis of the Kerr metric, and then study the main properties of this acceleration in different regions of the spacetime. In particular, we show that there exists a region near the black hole in which the gravitational field is repulsive. We provide possible physical interpretations about the role of this effect in terms of the different conserved parameters. The studies of these geodesics are important not only to understand better the structure of the Kerr spacetime but also to its use as a possible mechanism for the production of extragalactic jets. Our results are obtained with the help of expressing the geodesics of the Kerr spacetime in terms of the Weyl coordinates.
A non-Linear transport model for determining shale rock characteristics
NASA Astrophysics Data System (ADS)
Ali, Iftikhar; Malik, Nadeem
2016-04-01
Unconventional hydrocarbon reservoirs consist of tight porous rocks which are characterised by nano-scale size porous networks with ultra-low permeability [1,2]. Transport of gas through them is not well understood at the present time, and realistic transport models are needed in order to determine rock properties and for estimating future gas pressure distribution in the reservoirs. Here, we consider a recently developed non-linear gas transport equation [3], ∂p-+ U ∂p- = D ∂2p-, t > 0, (1) ∂t ∂x ∂x2 complimented with suitable initial and boundary conditions, in order to determine shale rock properties such as the permeability K, the porosity φ and the tortuosity, τ. In our new model, the apparent convection velocity, U = U(p,px), and the apparent diffusivity D = D(p), are both highly non-linear functions of the pressure. The model incorporate various flow regimes (slip, surface diffusion, transition, continuum) based upon the Knudsen number Kn, and also includes Forchchiemers turbulence correction terms. In application, the model parameters and associated compressibility factors are fully pressure dependent, giving the model more realism than previous models. See [4]. Rock properties are determined by solving an inverse problem, with model parameters adjustment to minimise the error between the model simulation and available data. It is has been found that the proposed model performs better than previous models. Results and details of the model will be presented at the conference. Corresponding author: namalik@kfupm.edu.sa and nadeem_malik@cantab.net References [1] Cui, X., Bustin, A.M. and Bustin, R., "Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications", Geofluids 9, 208-223 (2009). [2] Chiba R., Fomin S., Chugunov V., Niibori Y. and Hashida T., "Numerical Simulation of Non Fickian Diffusion and Advection in a Fractured Porous Aquifer", AIP Conference Proceedings 898, 75 (2007
Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects
NASA Technical Reports Server (NTRS)
Green Robert O.; Moreno, Jose F.
1996-01-01
AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially
NASA Astrophysics Data System (ADS)
Geris, Josie; Tetzlaff, Doerthe; McDonnell, Jeffrey; Soulsby, Chris
2014-05-01
Water partitioning between transpiration, evaporation and runoff is controlled by climatic and water storage characteristics; yet our current knowledge of varying dominant retention and partitioning mechanisms remains limited. For some forested catchments with clear seasonal distinctions, recent work has revealed the existence of partitioned ecohydrological systems where plant - and stream-water are sourced from different subsurface water stores. It is still unclear what the roles of non-linearities are in different water-energy regimes and how soil and vegetation properties might influence such partitioning of water stores. This study aims to better understand the spatio-temporal controls on water residence times and hydrological responses at the catchment scale in a northern headwater catchment in Scotland. Here, the climate is usually consistently wet with low evapotranspiration rates. Within this context however, the study period involved an exceptionally dry summer. We explored non-linearities and thresholds in catchment input-output relationships and investigated the role of soil-water-vegetation interactions on water partitioning, storage, and release along different hillslopes during contrasting hydro-climatic conditions. Different ecohydrological units included poorly draining soils in riparian zones and freely draining soils on hillslopes, and both forested and non-forested sites were considered. Soil moisture dynamics and stable water isotope signatures of different waters (precipitation, stream-, soil -, and plant xylem-water) were examined throughout the year (winter and during the growing season that included the relatively dry summer) to identify plant water use, assess water movement, and explore vegetation-water linkages. The results indicate that threshold behaviour in runoff responses at the catchment scale can be linked to apparent differences between soil water dynamics and residence times of different hydropedological units. Linear input
Laboratory Study of Non-linear Decay of a Kinetic Shear Alfvén Wave
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T. A.; Vincena, S. T.; Pribyl, P.; Lin, Y.; Sydora, R. D.; Rossi, G.
2015-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. For example, a cascade of non-linearly interacting Alfvén waves is believed to play a key role in solar wind turbulence. At perpendicular length scales below the ion gyroradius, this takes the form of Kinetic Alfvén Waves (KAWs). Theoretical predictions show that these Alfvén waves may be unstable to various decay instabilities (e.g. [1,2]) even at very low amplitudes (δB/B<10-3) [2]. Given the turbulent nature of solar wind observations and limited spacecraft spacial resolution, laboratory experiments can play a vital role in exploring the key physics responsible. The present work, conducted at UCLA's Large Plasma Device (LAPD) represents the first fundamental laboratory study of the non-linear Alfvén wave interactions responsible for Alfvén wave decay instabilities. These experiments include the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of the Parametric Decay Instability [3]. More recently, laboratory efforts have focused on the non-linear decay of a KAW into daughter KAWs. In these experiments, a single high-frequency ω/Ωi~0.7 Alfvén wave is launched, resulting in three daughter modes with frequencies and wave numbers that suggest co-propagating KAWs produced by decay of the pump wave. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump mode amplitude. The decay is only observed when there is significant power in the right-hand circularly polarized pump branch; this branch has a phase speed different from the left hand mode at the ω/Ωi where the process is seen. Efforts are underway to fully characterize this set of experiments and compare with decay instabilities predicted by theory and simulations. [1] JV Hollweg, J. Geophys. Res. 99, 23 431 (1994). [2] YM Voitenko, Journal of plasma physics 60.03 (1998). [3] S Dorfman and T Carter, Phys. Rev. Lett. 110
Laboratory Observations Consistent with Non-linear Decay of a Kinetic Alfvén Wave
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T. A.; Vincena, S. T.; Sydora, R. D.; Lin, Y.; Pribyl, P.; Guice, D.; Rossi, G.; Klein, K. G.
2014-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. For example, a cascade of non-linearly interacting Alfvén waves is believed to play a key role in solar wind turbulence. At perpendicular length scales below the ion gyroradius, this takes the form of Kinetic Alfvén Waves (KAWs). Theoretical predictions show that these Alfvén waves may be unstable to various decay instabilities (e.g. [1,2]). In particular, theory predicts that a KAW may decay into two daughter KAWs even at very low amplitude (δB/B<10-3). Given the turbulent nature of solar wind observations and limited data-points, laboratory experiments may play a vital role in exploring the key physics responsible. The present work, conducted at UCLA's Large Plasma Device (LAPD) represents the first fundamental laboratory study of the non-linear Alfvén wave interactions responsible for Alfvén wave decay instabilities. These experiments include the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of the Parametric Decay Instability [3]. More recently, laboratory efforts have focused on the predicted non-linear decay of one KAW into two daughter KAWs. In these experiments, a single high-frequency ω/Ωi~0.7 Alfvén wave is launched, resulting in two daughter modes with frequencies and wave numbers that suggest co-propagating KAWs produced by decay of the pump wave. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump mode amplitude. Efforts are underway to fully characterize this set of experiments and compare with decay instabilities predicted by theory and simulations. [1] JV Hollweg, J. Geophys. Res. 99, 23 431 (1994).[2] YM Voitenko, Journal of plasma physics 60.03 (1998).[3] S Dorfman and T Carter, Phys. Rev. Lett. 110, 195001 (2013). Supported by DOE, NSF, and DOE FES and NASA Eddy Postdoctoral Fellowships
Analysis of structural seismic behaviour: from non stationary to non linear effects
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco; Monaco, Lisa
2014-05-01
The change in fundamental frequency of a building is considered the simplest way to detect the onset of damage. Several authors in the past proposed that the difference in periods that can be observed among ambient noise, earthquake weak-motion measurements can be attributed to transient non-linearity due to reversible modification of the building characteristic (e.g. the degree of coupling between frame and infill in reinforced concrete buildings). The necessity of effective and efficient seismic protection of vast and aging structures and infrastructure has increased markedly the interest in the development of structural monitoring techniques. Damage to any structure alters its dynamic properties and for that dynamic monitoring techniques enable the identification of damage by comparing pre and post seismic excitation characteristic. The principle parameters usually monitored are: fundamental period, damping factors and modal shapes. Several damage identification and localization techniques are based on variations in these parameters (see, e.g Ponzo et al. 2010 and reference therein). Non Destructive Evaluation (NDE) methods can be rank on four different levels with the higher levels requiring increased quality and quantity of available information. The most common methods are therefore related to Level 1, due to their simplified and economic implementation. These methods are based mainly upon the variation of vibration frequencies and/or variations in Equivalent Viscous Damping associated with these vibration modes. It is important to underline however that although the presence of damage will lead to alterations in vibration modes the opposite does not necessarily hold true. Two types of frequency variation can be distinguished; long time period variations (due to variations in temperature, foundation soil moisture content etc.) and short period variations (for example due to a seismic event). For short period variations, changes in frequency can be attributed
NASA Astrophysics Data System (ADS)
Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra
2016-03-01
A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.
Kumar, P; Kumar, Dinesh; Rai, K N
2016-08-01
In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. PMID:27503734
Appearance of Keplerian discs orbiting Kerr superspinars
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2010-11-01
We study optical phenomena related to the appearance of Keplerian accretion discs orbiting Kerr superspinars predicted by string theory. The superspinar exterior is described by standard Kerr naked singularity geometry breaking the black hole limit on the internal angular momentum (spin). We construct local photon escape cones for a variety of orbiting sources that enable us to determine the superspinars silhouette in the case of distant observers. We show that the superspinar silhouette depends strongly on the assumed edge where the external Kerr spacetime is joined to the internal spacetime governed by string theory and significantly differs from the black hole silhouette. The appearance of the accretion disc is strongly dependent on the value of the superspinar spin in both their shape and frequency shift profile. Apparent extension of the disc grows significantly with the growing spin, while the frequency shift grows with the descending spin. This behaviour differs substantially from the appearance of discs orbiting black holes enabling thus, at least in principle, to distinguish clearly the Kerr superspinars and black holes. In vicinity of a Kerr superspinar the non-escaped photons have to be separated to those captured by the superspinar and those being trapped in its strong gravitational field leading to self-illumination of the disc that could even influence its structure and cause self-reflection effect of radiation of the disc. The amount of trapped photons grows with descending superspinar spin. We thus can expect significant self-illumination effects in the field of Kerr superspinars with near-extreme spin a ~ 1.
Normal-dispersion microresonator Kerr frequency combs
NASA Astrophysics Data System (ADS)
Xue, Xiaoxiao; Qi, Minghao; Weiner, Andrew M.
2016-06-01
Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.
A Non-Linear Approach to Spacecraft Trajectory Control in the Vicinity of a Libration Point
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Sanner, Robert M.
2001-01-01
An expanding interest in mission design strategies that exploit libration point regions demands the continued development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. This paper discusses the development of a non-linear, station-keeping, control algorithm for trajectories in the vicinity of a libration point. The control law guarantees exponential convergence, based on a Lyaponov analysis. Controller performance is evaluated using FreeFlyer(R) and MATLAB(R) for a spacecraft stationed near the L2 libration point in the Earth-Moon system, tracking a pre-defined reference trajectory. Evaluation metrics are fuel usage and tracking accuracy. Simulation results are compared with a linear-based controller for a spacecraft tracking the same reference trajectory. Although the analysis is framed in the context of station-keeping, the control algorithm is equally applicable to a formation flying problem with an appropriate definition of the reference trajectory.
Non-linear dynamic interactions of a Jeffcott rotor with preloaded snubber ring
NASA Astrophysics Data System (ADS)
Pavlovskaia, E. E.; Karpenko, E. V.; Wiercigroch, M.
2004-09-01
A two-degrees-of-freedom model of a Jeffcott rotor with a preloaded snubber ring subjected to out-of-balance excitation has been developed. The purely impact interactions have been investigated. The rotor makes intermittent contacts with the preloaded snubber ring and as a consequence it can be in one of five different contact regimes, which boundaries have been found analytically. The current location of the snubber ring has been determined using the principle of the minimum elastic energy in the snubber ring. Consequently a non-linear piecewise smooth dynamical system has been obtained and studied numerically. The results in form of bifurcation diagrams, phase portraits and Poincaré maps show significant differences for the cases with and without preloading.
Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator
NASA Astrophysics Data System (ADS)
Labadze, G.; Dukalski, M.; Blanter, Ya. M.
2016-08-01
We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classically, the behavior of the non-driven mode is reminiscent of that of a parametrically driven linear oscillator: it exhibits a threshold behavior, with the amplitude of this mode below the threshold being exactly zero. Quantum-mechanically, we were able to access the dynamics of this mode below the classical parametric threshold. We show that whereas the mean displacement of this mode is still zero, the mean squared displacement is finite and at the threshold corresponds to the occupation number of 1/2. This finite displacement of the non-driven mode can serve as an experimentally verifiable quantum signature of quantum motion.
Scanning Electron Microscope Calibration Using a Multi-Image Non-Linear Minimization Process
NASA Astrophysics Data System (ADS)
Cui, Le; Marchand, Éric
2015-04-01
A scanning electron microscope (SEM) calibrating approach based on non-linear minimization procedure is presented in this article. A part of this article has been published in IEEE International Conference on Robotics and Automation (ICRA), 2014. . Both the intrinsic parameters and the extrinsic parameters estimations are achieved simultaneously by minimizing the registration error. The proposed approach considers multi-images of a multi-scale calibration pattern view from different positions and orientations. Since the projection geometry of the scanning electron microscope is different from that of a classical optical sensor, the perspective projection model and the parallel projection model are considered and compared with distortion models. Experiments are realized by varying the position and the orientation of a multi-scale chessboard calibration pattern from 300× to 10,000×. The experimental results show the efficiency and the accuracy of this approach.
Modeling and analysis of aircraft non-linear components for harmonics analysis
Karimi, K.J.; Voss, J.
1995-12-31
Modern commercial aircraft Electric Power Systems (EPS) include many nonlinear components which produce harmonics. The addition of all the current harmonics could result in a power system with unacceptable levels of voltage distortion. It is important to be able to predict the levels of voltage distortion at early program stages to correct any potential problems and avoid costly redesigns. In this paper the nature and sources of harmonic producing equipment are described. These sources of harmonics and their effect on aircraft power system operation are described. Models for various aircraft non-linear components are developed in this paper. These component models are used in a model of the Boeing 777 EPS which is used to calculate voltage harmonics for various airplane configurations and flight conditions. A description of this model and the models used for various components are given. Tests performed to validate these models are described. Comparison of experimental results with analytical model predictions are given.
Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source
Newman, Gregory A.; Commer, Michael
2006-11-16
Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.
The massive O(N) non-linear sigma model at high orders
NASA Astrophysics Data System (ADS)
Bijnens, Johan; Carloni, Lisa
2011-02-01
We extend our earlier work on the massive O(N) non-linear sigma model to other observables. We derive expressions at leading order in the large N expansion at all orders in the loop expansion for the decay constant, vacuum expectation value, meson-meson scattering and the scalar and vector form factors. This is done using cactus diagram resummation using a generalized gap equation and other recursion relations. For general N we derive the expressions for the n-th-loop-order leading logarithms (M/Flog (/M))n, up to five loops for the decay constant and vacuum expectation value (VEV) and up to four loops for meson-meson scattering, the scalar and vector form factors. We also quote our earlier result for the mass. The large N results do not give a good approximation for the case N=3. We use our results to study the convergence of the perturbative series and compare with elastic unitarity.
Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures
Liberatore, Laura; Tocci, Cesare; Masiani, Renato
2008-07-08
In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building in which the r.c. internal frames are replaced with masonry walls.
Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet
NASA Astrophysics Data System (ADS)
Khan, Masood; Rahman, Masood ur
2015-08-01
The objective of the present work is to analyze the two-dimensional boundary layer flow and heat transfer of a modified second grade fluid over a non-linear stretching sheet of constant surface temperature. The modelled momentum and energy equations are deduced to a system of ordinary differential equations by employing suitable transformations in boundary layer region and integrated numerically by fourth and fifth order Runge-Kutta Fehlberg method. Additionally, the analytic solutions of the governing problem are presented for some special cases. The secured results make it clear that the power-law index reduces both the momentum and thermal boundary layers. While the incremented values of the generalized second grade parameter leads to an increase in the momentum boundary layer and a decrease in the thermal boundary layer. To see the validity of the present results we have made a comparison with the previously published results as a special case with an outstanding compatibility.