Sample records for kerr hollow quarry

  1. Limestone quarrying and quarry reclamation in Britain

    NASA Astrophysics Data System (ADS)

    Gunn, J.; Bailey, D.

    1993-06-01

    Limestones have been worked for many thousands of years — initially for building stone and agricultural lime and more recently for a wide range of construction and industrial uses. In most industrialized countries limestone quarries represent the most visually obvious and, in both process and landform terms, the most dramatic anthropogenic impact on karst terrain. However, quarrying has, to date, received surprisingly little attention from karst scientists. Research in the English Peak District suggested that the postexcavation evolution of quarried limestone rock faces was in part a result of the methods used in their excavation, and this led to the development of a technique designed to reduce the visual and environmental impacts of modern quarries by “Landform replication. ” This involves the use of controlled “restoration blasting” techniques on quarried rock slopes to construct a landform sequence similar to that in the surrounding natural landscape. The constructed landforms are then partially revegetated using appropriate wildflower, grass, and/or tree species.

  2. INTERIOR VIEW, NORTH QUARRY, AN ACTIVE DOLOMITE QUARRY, LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, AN ACTIVE DOLOMITE QUARRY, LOOKING NORTH TO THE POWER PLANT OF THE HISTORIC THOMAS COKEWORKS SITE. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  3. Norwegian millstone quarry landscapes

    NASA Astrophysics Data System (ADS)

    Heldal, Tom; Meyer, Gurli; Grenne, Tor

    2013-04-01

    Rotary querns and millstones were used in Norway since just after the Roman Period until the last millstone was made in the 1930s. Throughout all this time millstone mining was fundamental for daily life: millstones were needed to grind grain, our most important food source. We can find millstone quarries in many places in the country from coast to mountain. Some of them cover many square kilometers and count hundreds of quarries as physical testimonies of a long and great production history. Other quarries are small and hardly visible. Some of this history is known through written and oral tradition, but most of it is hidden and must be reconstructed from the traces we can find in the landscape today. The Millstone project has put these quarry landscapes on the map, and conducted a range of case studies, including characterization of archaeological features connected to the quarrying, interpretation of quarrying techniques and evolution of such and establishing distribution and trade patterns by the aid of geological provenance. The project also turned out to be a successful cooperation between different disciplines, in particular geology and archaeology.

  4. Probabilistic prediction models for aggregate quarry siting

    USGS Publications Warehouse

    Robinson, G.R.; Larkins, P.M.

    2007-01-01

    Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.

  5. [Comparison of pregnancy outcomes Caesarean techniques: modified Misgav-Ladach, Pfannenstiel-Kerr and Kerr-half infraumbilical].

    PubMed

    Cardona-Osuna, M E; Avila-Vergara, M A; Peraza-Garay, F; Meneses-Valderrama, V; Flores-Pompa, E; Corrales-López, A

    2016-08-01

    In Mexico, the prevalence of caesarean section is 40.9% in the health sector, the techniques used are the traditional Pfannenstiel-Kerr and Kerr-half infraumbilical and little experience with this new technique Misgav-Ladach modified. To compare pregnancy outcomes (surgical and fetal extraction time, bleeding, postoperative pain, surgical wound infection, maternal and fetal death) caesarean section techniques modified Misgav-Ladach, Pfannenstiel-Kerr and infraumbilical. Clinical trial in primiparous women with term pregnancy treated at the Medical Unit of High Specialty 23 of the Mexican Social Security Institute, Monterrey, Nuevo Leon, Mexico. Misgav-Ladach caesarean Caesarean modified and Kerr, the latter subdivided into two groups: infraumbilical Pfannenstiel incision and incision half-Kerr two groups patients were randomized. 137 gilts were studied, with term pregnancy and BMI between 19 and 24.9 kg / m2. Caesarean modified Misgav-Ladach 68 patients and 69 classical Kerr (35 Pfannenstiel-Kerr and 34 infraumbilical) was performed. The surgical time in minutes was lower with modified Misgav-Ladach: 27.8 ± 8.0, Pfannenstiel-Kerr recorded 51.7 ± 12.1 and 12.0 ± infraumbilical media48.3 (p = 0.000). The time in seconds fetal extraction was lower in modified Misgav-Ladach: 96.2 ± 68.3, 474.9 ± Pfannenstiel-Kerr 294.1 and 423.2 ± 398.6 infraumbilical (p = 0.000). The trasoperatory milliliters bleeding was lower with modified Misgav-Ladach: 298.5 ± 57.3, 354.3 ± Pfannenstiel-Kerr 98.0 and 355.9 ± 110.6 infraumbilical (p = 0.001). Postoperative pain assessed with the visual analog scale in the first 24 hours was lower with modified Misgav-Ladach: 4.4 ± 1.9, 5.7 ± Pfannenstiel-Kerr and IK 2.1 6.1 ± 2.0 (p = 0.000). The start of the oral route and ambulation Nwas soon comparing modified Misgav-Ladach against Pfannenstiel-Kerr and Kerr-infraumbilical (p = 0.000). The prevalence of fever was 5.9% with modified Misgav-Ladach, 5.9% Pfannenstiel-Kerr and 32

  6. Post-Kerr black hole spectroscopy

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele

    2017-09-01

    One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.

  7. Anciet marble quarries in Lesvos island Greece

    NASA Astrophysics Data System (ADS)

    Mataragkas, M.; Mataragkas, D.

    2009-04-01

    ANCIENT MARBLE QUARRIES IN LESBOS ISLAND, GREECE Varti- Matarangas M.1 & Matarangas D. 1 Institute of Geological and Mining Exploration (IGME), Olympic Village, Entrance C, ACHARNAE 13677, GREECE myrsini@igme.gr , myrsini@otenet.g r A B S T R A C T Ten ancient marble quarries of Lesbos Island, most of them previously unknown, have been studied, in the frame of the research study on the ancient marble quarries in the Aegean Sea. In the present paper the geological, petrological and morphological features of the aforementioned quarries are examined. Concerning the six ancient quarries located in the areas of Tarti, Agia Paraskevi (Tsaf), Mageiras, Loutra, Latomi (Plomari) and Thermi, the authochthonous neopaleozoic unit constitutes their geological formation, while their hosting lithological formations are the included crystalline limestone lens like beds. In two ancient quarries in the areas Moria and Alyfanta, the geological formation is the authochthonous upper Triassic series and the hosting lithological formation the upper Triassic carbonate sequence, while in the areas of Akrasi-Abeliko and Karyni, the geological formation is the thrust Triassic unit and the lithological hosting formations are the included strongly deformed or not crystalline limestone lenticular beds. Furthermore, the petrographic features were also determined permitting the identification of the building stones that have been used.

  8. OVERALL VIEW OF QUARRY, FACING NORTH, WITH UNQUARRIED GRANITE OUTCROP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF QUARRY, FACING NORTH, WITH UN-QUARRIED GRANITE OUTCROP IN BACKGROUND - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  9. Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries

    NASA Astrophysics Data System (ADS)

    Poulain, Angélique; de Dreuzy, Jean-Raynald; Goderniaux, Pascal

    2018-04-01

    Pump storage hydroelectricity is an efficient way to temporarily store energy. This technique requires to store temporarily a large volume of water in an upper reservoir, and to release it through turbines to the lower reservoir, to produce electricity. Recently, the idea of using old flooded quarries as a lower reservoir has been evoked. However, these flooded quarries are generally connected to unconfined aquifers. Consequently, pumping or injecting large volumes of water, within short time intervals, will have an impact on the adjacent aquifers. Conversely, water exchanges between the quarry and the aquifer may also influence the water level fluctuations in the lower reservoir. Using numerical modelling, this study investigates the interactions between generic flooded open pit quarries and adjacent unconfined aquifers, during various pump-storage cyclic stresses. The propagation of sinusoidal stresses in the adjacent porous media and the amplitude of water level fluctuations in the quarry are studied. Homogeneous rock media and the presence of fractures in the vicinity of the quarry are considered. Results show that hydrological quarry - rock interactions must be considered with caution, when implementing pump - storage systems. For rock media characterized by high hydraulic conductivity and porosity values, water volumes exchanges during cycles may affect significantly the amplitude of the water level fluctuations in the quarry, and as a consequence, the instantaneous electricity production. Regarding the impact of the pump - storage cyclic stresses on the surrounding environment, the distance of influence is potentially high under specific conditions, and is enhanced with the occurrence of rock heterogeneities, such as fractures. The impact around the quarry used as a lower reservoir thus appears as an important constraining factor regarding the feasibility of pump - storage systems, to be assessed carefully if groundwater level fluctuations around the quarry

  10. EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ('THE OLD PIT') WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER. - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL

  11. EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ("THE OLD PIT") WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL

  12. Sinkhole development induced by underground quarrying, and the related hazard

    NASA Astrophysics Data System (ADS)

    Parise, M.; Delle Rose, M.

    2009-04-01

    Sinkholes are extremely widespread in Apulia, a very flat and carbonate region, that acted as the foreland during the phases of building up of the Southern Apenninic Chain in Miocene time. This is due to the presence of soluble rocks throughout the region, that highly predispose the area to this very subtle natural hazard. In addition to the natural setting, which favours their development, sinkholes may also be induced by anthropogenic activities. In the latter sense, underground quarrying represents one of the most dangerous activities in karst areas. Apulia has a long history of quarrying. Since the roman time, the local rocks, from the Cretaceous micritic limestones to the Quaternary calcarenites, have been intensely quarried and used as building and ornamental materials. In several settings of the region, the rocks with the best petrographic characteristics are located at depths ranging from a few to some tens of meters. This caused the opening of many underground quarries, and the development of a complex network of subterranean galleries. Underground quarrying had a great impulse at the turn between the XIX and the XX century, when a large number of quarries was opened. Later on, after the Second World War, most of the quarries were progressively abandoned, even because of the first signs of instability, both underground and at the ground surface. With time, the memory of the presence and development of the underground quarries was progressively lost, with severe repercussions on the safety of the land above the excavated areas. Lack of knowledge of the subterranean pattern of galleries, combined with the expansion of the built-up areas at the surface, resulted in increasing significantly the vulnerability of exposed elements at risk. Events such as the 29 March, 2007, at Gallipoli only by chance did not result in any casualties, when a 15-mt wide and 5-mt deep sinkhole opened in a few hours at a road crossing, above the site of an old underground quarry

  13. Landscape evolution by subglacial quarrying

    NASA Astrophysics Data System (ADS)

    Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.

    2014-05-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a

  14. Deep Impact Spots Quarry

    NASA Image and Video Library

    2005-04-27

    Taken on April 25, 2005, sixty-nine days before it gets up-close-and-personal with a comet, NASA Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles.

  15. Strength Characteristics of Quarry Dust in Replacement of Sand

    NASA Astrophysics Data System (ADS)

    Shyam Prakash, K.; Hanumantha Rao, Ch, Dr

    2017-08-01

    The replacement of natural fine aggregate by using quarry dust leads to consumption of generated quarry dust, the requirement of land fill area can be reduced and solves the natural sand scarcity problem. The sand availability as a fine aggregate at low cost which needs the reason to search as a alternative material. Even it causes saddle to dump the crusher dust at one place which causes environmental pollution. The chemical analysis, specific gravity, sieve analysis and compressive strength is identified for various percentage and grades of concrete by replacement of sand with quarry dust.

  16. New entropy formula for Kerr black holes

    NASA Astrophysics Data System (ADS)

    González, Hernán A.; Grumiller, Daniel; Merbis, Wout; Wutte, Raphaela

    2018-01-01

    We introduce a new entropy formula for Kerr black holes inspired by recent results for 3-dimensional black holes and cosmologies with soft Heisenberg hair. We show that also Kerr-Taub-NUT black holes obey the same formula.

  17. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  18. Innovations in energy: the story of Kerr-McaGee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, J.S.

    1979-01-01

    The history of the Kerr-McGee Corporation is a saga of American enterprise that began in Ada, Oklahoma, in 1929, when future Senator Robert S. Kerr and his brother-in-law, James L. Anderson, became partners in the Anderson and Kerr Drilling Company. Fifty years later Kerr-McGee's diversified, international operations truly justify Kerr-McGee President, Dean A. McGee's epithet, ''a natural resource company.'' Able to find other gifted people to work for him, Robert Kerr's company has been dominated by a series of extraordinary oil-industry personalities who made extraordinary and essential contributions - from roughnecks and drillers to lawyers and financiers. Much of hismore » history, based on first-person accounts, emphasizes human element in the exploitation of energy resources, describes the company's pioneering achievements in the inland and offshore oil industry (including the drilling of the first offshore well), the expansion into refining, manufacturing, and retailing and into the development of other natural resources (including uranium, coal, helium, boron, and potash), the corporate structure that sustained exploration and expansion, the financing of multimillion-dollar operations, the lawsuits (including the case of Karen Silkwood) in which the company has been involved from its earliest days, the relations between business and government exacerbated by Robert S. Kerr and the technological innovations that have been characteristic of Kerr-McGee. 90 references, 22 figures, 83 tables.« less

  19. INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF THE HISTORIC THOMAS FURNACES WITH ACTIVE DOLOMITE EXTRACTION ONGOING IN THE FOREGROUND. FURNACE FOUNDATION RUINS ARE PICTURED ON THE TOP LEDGE (CENTER LEFT) OF THE QUARRY. ALSO PICTURED IS THE HISTORIC THOMAS COKEWORKERS WITH (LEFT TO RIGHT) THE POWER PLANT, BOILER HOUSE, AND COKEWORKS. JUST SOUTH OF THE COKEWORKS, IS AN ACTIVE DOLOMITE CRUSHING, SIZING, AND SCREENING PLANT - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  20. INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING NORTH TOWARDS THE SITE OF THE HISTORIC THOMAS FURNACES WITH ACTIVE DOLOMITE EXTRACTION ONGOING IN THE FOREGROUND. FURNACE FOUNDATION RUINS ARE PICTURED ON THE TOP LEDGE (CENTER LEFT) OF THE QUARRY. ALSO PICTURED IS THE HISTORIC THOMAS COKEWORKS WITH (LEFT TO RIGHT) THE POWER PLANT, BOILER HOUSE, AND COKEWORKS. JUST SOUTH OF THE COKEWORKS IS AN ACTIVE DOLOMITE CRUSHING, SIZING, AND SCREENING PLANT. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  1. View of four large bore holes on top of quarry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of four large bore holes on top of quarry wall, facing northeast - Granite Hill Plantation, Quarry No. 4, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  2. Appearance of Keplerian discs orbiting Kerr superspinars

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2010-11-01

    We study optical phenomena related to the appearance of Keplerian accretion discs orbiting Kerr superspinars predicted by string theory. The superspinar exterior is described by standard Kerr naked singularity geometry breaking the black hole limit on the internal angular momentum (spin). We construct local photon escape cones for a variety of orbiting sources that enable us to determine the superspinars silhouette in the case of distant observers. We show that the superspinar silhouette depends strongly on the assumed edge where the external Kerr spacetime is joined to the internal spacetime governed by string theory and significantly differs from the black hole silhouette. The appearance of the accretion disc is strongly dependent on the value of the superspinar spin in both their shape and frequency shift profile. Apparent extension of the disc grows significantly with the growing spin, while the frequency shift grows with the descending spin. This behaviour differs substantially from the appearance of discs orbiting black holes enabling thus, at least in principle, to distinguish clearly the Kerr superspinars and black holes. In vicinity of a Kerr superspinar the non-escaped photons have to be separated to those captured by the superspinar and those being trapped in its strong gravitational field leading to self-illumination of the disc that could even influence its structure and cause self-reflection effect of radiation of the disc. The amount of trapped photons grows with descending superspinar spin. We thus can expect significant self-illumination effects in the field of Kerr superspinars with near-extreme spin a ~ 1.

  3. Air quality assessment on human well-being in the vicinity of quarry site

    NASA Astrophysics Data System (ADS)

    Ibrahim, W. H. W.; Marinie, E.; Yunus, J.; Asra, N.; Sukor, K. Mohd

    2018-02-01

    This study aims to investigate the variation of air pollutants associated with the quarry activities prior to classified distance from quarry site. Air pollutants were monitored with the use of instruments which are Rae System Multirae Lite Pumped (PGM-6208) to measure indoor air quality while TSI 8533 Dusttrack Drx Desktop Aerosol Monitor to measure outdoor air quality. Sampling will be replicated two times. The locations of quarry are at Bandar Saujana Putra and Taman Kajang Perdana 2, Selangor. The objectives of this study are to investigate the impact of quarry mining by preparing the suitable Indoor Air Quality Index and to prepare preventive measure for residential that caused from quarry mining activities. Both Qualitative and Quantitative approaches will be implemented in this study, which employed case study and interview survey. Both quarries identified previously will be the main case study. The Respondent’s interviews are from Local Authority and Quarry Management Staff while questionnaire surveys from selected residences. Measurement method will be used to measure the Particle Matter (PM2.5) for indoor and outdoor in selected resident’s area. However, this paper is primed to discuss the method used in this study. It is not only presents the beneficial information for future research on methodologies employed but also it is anticipated the benefit to environment which can increased residents’ well-being in the vicinity of quarry sites.

  4. Shadows of Kerr Black Holes with Scalar Hair.

    PubMed

    Cunha, Pedro V P; Herdeiro, Carlos A R; Radu, Eugen; Rúnarsson, Helgi F

    2015-11-20

    Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.

  5. INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON THE FIRST BENCH, POWDER HILLS ARE PRIMED FOR DOLOMITE EXTRACTION. ON THE SECOND BENCH, THE DRILL TEAM IS LAYING OUT THE NEXT SHOTS. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  6. Geological-Technical and Geo-engineering Aspects of Dimensional Stone Underground Quarrying

    NASA Astrophysics Data System (ADS)

    Fornaro, Mauro; Lovera, Enrico

    Underground exploitation of dimensional stones is not a novelty, being long since practised, as proved by a number of historical documents and by a certain number of ancient quarrying voids throughout the world. Anyway, so far, open cast quarrying has been the most adopted practice for the excavation of dimensional stones. One primary reason that led to this situation is of course connected to the lower production costs of an open cast exploitation compared to an underground one. This cheapness has been supported by geological and technical motives: on the one hand, the relative availability of surface deposits and, on the other, the development of technologies, which often can be used only outdoor. But, nowadays, general costs of quarrying activities should be re-evaluated because new, and often proper, restrictions have been strongly rising during recent years. As a consequence of both environmental and technical restrictions, pressure will more and more arise to reduce open cast quarrying and to promote underground exploitations. The trend is already well marked for weak rocks - for instance in the extractive basin of Carrara, where about one hundred quarries are active, 30 per cent is working underground, but also in Spain, Portugal and Greece the number of underground marble quarries is increasing - but not yet for hard rock quarrying, where only few quarries are working underground all around the world. One reason has to be found in cutting technologies traditionally used. In weak rocks, diamond wire saw and chain cutter are usable, with few adaptations, in underground spaces, while drilling and blasting, the traditional exploitation method for hard stone, is not easily usable in a confined space, where often only one free face is available. Many technicians and researchers agree that two technologies will probably open the door to underground quarrying in hard rocks: diamond wire and water jet. The first one is already available; the second should still be

  7. Sedimentology, stratigraphy, and depositional environment of the Crystal Geyser Dinosaur Quarry, east-central Utah

    USGS Publications Warehouse

    Suarez, M.B.; Suarez, C.A.; Kirkland, J.I.; Gonzalez, Luis A.; Grandstaff, D.E.; Terry, D.O.

    2007-01-01

    The Crystal Geyser Dinosaur Quarry, near Green River, Utah, is located at the base of the Lower Cretaceous (Barremian) Yellow Cat Member of the Cedar Mountain Formation. The quarry preserves a nearly monospecific accumulation of a new basal therizinosauroid, Falcarius utahensis. We used field descriptions and petrographic analysis to determine the depositional environment and development of the quarry strata. Results of these analyses suggest that the quarry represents multiple episodes of bone accumulation buried by spring and overbank flood deposits. Evidence for these previously undescribed spring deposits includes calcite macroscopic structures within the quarry strata - such as pisolites and travertine fragments - and calcite micromorphologies - including radial-fibrous, feather, and scandulitic dendrite morphologies and tufa clasts. At least two episodes of bone incorporation are preserved in the quarry based on their stratigraphic position and lithologic associations. The unique depositional setting in and around the Crystal Geyser Dinosaur Quarry appears to have been favorable for the preservation of vertebrate fossils and provides insight into early Cretaceous environments in North America. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

  8. Field evidence for control of quarrying by rock bridges in jointed bedrock

    NASA Astrophysics Data System (ADS)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  9. A procedure to evaluate environmental rehabilitation in limestone quarries.

    PubMed

    Neri, Ana Claudia; Sánchez, Luis Enrique

    2010-11-01

    A procedure to evaluate mine rehabilitation practices during the operational phase was developed and validated. It is based on a comparison of actually observed or documented practices with internationally recommended best practices (BP). A set of 150 BP statements was derived from international guides in order to establish the benchmark. The statements are arranged in six rehabilitation programs under three categories: (1) planning (2) operational and (3) management, corresponding to the adoption of the plan-do-check-act management systems model to mine rehabilitation. The procedure consists of (i) performing technical inspections guided by a series of field forms containing BP statements; (ii) classifying evidences in five categories; and (iii) calculating conformity indexes and levels. For testing and calibration purposes, the procedure was applied to nine limestone quarries and conformity indexes were calculated for the rehabilitation programs in each quarry. Most quarries featured poor planning practices, operational practices reached high conformity levels in 50% of the cases and management practices scored moderate conformity. Despite all quarries being ISO 14001 certified, their management systems pay low attention to issues pertaining to land rehabilitation and biodiversity. The best results were achieved by a quarry whose expansion was recently submitted to the environmental impact assessment process, suggesting that public scrutiny may play a positive role in enhancing rehabilitation practices. Conformity indexes and levels can be used to chart the evolution of rehabilitation practices at regular intervals, to establish corporate goals and for communication with stakeholders. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Studies on radon/thoron and their decay products in granite quarries around Bangalore city, India

    NASA Astrophysics Data System (ADS)

    Ningappa, C.; Sannappa, J.; Chandrashekara, M. S.; Paramesh, L.

    2009-08-01

    The radon survey was performed in granite quarries around Bangalore rural district and Bangalore city as part of a lung cancer epidemiological study. Long duration measurements of indoor and outdoor radon, thoron and their progenies concentrations were made around granite quarries of Bangalore rural district by using Solid State Nuclear Track Detector (SSNTD, LR-115, Type-II Plastic track detector) during summer and winter period (2006-07). The increase of radioactivity in granite quarries and inhalation dose to workers and populations near the quarries have been summarized. The higher concentrations of radon and thoron in granite quarries suggest radiation health effects on workers and public around the quarries is higher than permissible levels. The results are presented and analyzed with reference to ICRP limits.

  11. Initial data for two Kerr-like black holes.

    PubMed

    Dain, S

    2001-09-17

    We prove the existence of a family of initial data for the Einstein vacuum equation which can be interpreted as the data for two Kerr-like black holes in an arbitrary location and with spins pointing in arbitrary directions. We also provide a method to compute them. If the mass parameter of one of the black holes is zero, then this family reduces exactly to the Kerr initial data. The existence proof is based on a general property of the Kerr metric which can be used in other constructions as well. Further generalizations are also discussed.

  12. Newman-Penrose constants of the Kerr-Newman metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Xuefei; Shang Yu; Bai Shan

    The Newman-Unti formalism of the Kerr-Newman metric near future null infinity is developed, with which the Newman-Penrose constants for both the gravitational and electromagnetic fields of the Kerr-Newman metric are computed and shown to be zero. The multipole structure near future null infinity in the sense of Janis-Newman of the Kerr-Newman metric is then further studied. It is found that up to the 2{sup 4}-pole, modulo a constant dependent upon the order of the pole, these multipole moments agree with those of Geroch-Hansen multipole moments defined at spatial infinity.

  13. Multidisciplinary studies on ancient sandstone quarries of Western Sardinia (Italy).

    NASA Astrophysics Data System (ADS)

    Grillo, Silvana Maria; Del Vais, Carla; Naitza, Stefano

    2013-04-01

    The ancient coastal quarries of Mediterranean are increasingly considered geosites of multidisciplinary relevance. They are sites of historical-archaeological interest that show ancient techniques of stone extraction; they are significant for cultural heritage conservation and restoration, as sources of the stones used in ancient buildings and monuments; they are sites of geological relevance, as often retain important stratigraphic sections; they are also useful markers of secular changes in the sea level. A multisciplinary study is in progress on the ancient quarries of the Sinis region (western Sardinia island), integrating archaeological, geological, minero-petrographical data. In Sardinia, coastal quarries have been established from Punic and Roman times. Many of them exploited Quaternary sediments along the southern and western coasts of the island. They consist of middle-late Pleistocene marine conglomerates and carbonate sandstones, and of coastal (aeolian) carbonate sandstones. Sandstone blocks of different sizes have been widely used in ancient cities for buildings, defensive works, harbours, etc. Three main areas of stone extraction (San Giovanni di Sinis, Punta Maimoni, Is Arutas) have been so far recognized in the Sinis. GIS-supported mapping and documentation of the sites includes their geology and stratigraphy, the extension and layout of the quarries, and an evaluation of volumes of extracted rocks. Documented archaeological evidences include ancient extraction fronts, spoil heaps, working areas, working traces in the old fronts, transport routes of blocks, and traces of loading facilities. The study is aimed at reconstructing the relationships of the quarries with the urban areas of Sinis, as the ancient Punic-Roman city of Tharros. Consequently, a minero-petrographical characterization (optical microscopy, XRD) is performed on sandstones sampled in each quarry, and in historical buildings in Tharros and other centres of the region (Cabras

  14. The Kerr/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Hartman, Thomas; Song, Wei; Strominger, Andrew

    2009-12-01

    Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J=GM2) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge cL=(12J)/(ℏ). This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature TL=(1)/(2π) and conjugate energy given by the zero mode generator, L0, of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy Smicro=(2πJ)/(ℏ) for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy Smacro=(Area)/(4ℏG). The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge cL=(12J)/(ℏ), and, in particular, that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with cL˜2×1079.

  15. Groundwater maintenance at the vulcan materials quarry in Chattanooga, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.L.

    1985-01-01

    The Vulcan Materials Shallowford Road Quarry in Chattanooga, Tennessee is the largest active limestone quarry in the state. Currently it covers some 35 hectares with highwalls up to 100 m. Production is predominately from Middle Ordovician Limestone of the Stones River Group. The upper 60 m consists of medium-bedded gray limestone of the Pond Springs Formation, while the lower 40 m are in Lower Ordovician dolomites and limestones belonging to the Mascot Formation of the Knox Group. The present quarry began in 1951 and has been in continuous operation since that time. For several years the influx of groundwater intomore » the quarry was so great that over 11,355 liters per minute had to be removed by a series of pumps. A source of much of the groundwater was thought to be from Friar Branch which flowed near the present quarry site. At low water, several sinkholes were observed in the bottom of the stream. Several attempts were made (unsuccessfully) to fill these sinks. On July 17, 1984, a 184 m trench was dug along the north side of Friar Branch and fifty-one sections of 1.2 m diameter pipe were placed in the trench. Each 4 m section was made water tight and the water from Friar branch was then diverted into the pipe. Bulldozers scraped the dry bed of Friar Branch in an attempt to locate all major cavities and sinkholes. These were filled with grout and the bed of the creek was covered with about 7 to 8 cm of crushed rock and rolled. The entire stream was sealed with grout and then the stream was returned to its original course. The results was a marked reduction in groundwater seepage into the quarry.« less

  16. Introducing a new aspect in marble quarry rehabilitation in Greece

    NASA Astrophysics Data System (ADS)

    Kaliampakos, D. C.; Mavrikos, A. A.

    2006-06-01

    For many years the marble extraction sector of the Greek mining industry has been in conflict with the public, especially in terms of rehabilitation of marble quarry sites. One of the main reasons for that is that the marble extraction sector has been unable to adjust to the existing legislative guidelines for the rehabilitation, such as extensive backfilling and re-vegetation. In the majority of cases these methods fail due to erosion of the backfill soil and adverse climatic conditions. As a result the number of abandoned marble quarry sites is continuously increasing. The present paper suggests a different approach regarding the rehabilitation of marble quarries. More specifically, the paper questions the applicability, the effectiveness, and the social usefulness of the above-mentioned guidelines and suggests the establishment of new land-uses, which are based on an in-depth analysis of the area’s special features, by taking full advantage of its potentials. What is more, the rehabilitation scheme proposes that the new land-uses and the quarrying activity may co-exist and operate simultaneously for a long period of time.

  17. Deep Impact Spots Quarry

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Sixty-nine days before it gets up-close-and-personal with a comet, NASA's Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles. The image, taken on April 25, 2005, is the first of many comet portraits Deep Impact will take leading up to its historic comet encounter on July 4.

  18. Light cone structure near null infinity of the Kerr metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Shan; Shang Yu; Graduate School of Chinese Academy of Sciences, Beijing, 100080

    2007-02-15

    Motivated by our attempt to understand the question of angular momentum of a relativistic rotating source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then furthermore » developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr metric are also briefly discussed.« less

  19. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  20. Lung Function Impact from Working in the Pre-Revolution Libyan Quarry Industry

    PubMed Central

    Draid, Marwan M.; Ben-Elhaj, Khaled M.; Ali, Ashraf M.; Schmid, Kendra K.; Gibbs, Shawn G.

    2015-01-01

    The purpose of this study was to determine the lung impact from working within the Libyan quarry industry, and if the length of work impacted the degree of degradation. Eighty three workers from eight silica quarries in the Nafusa Mountains of Libya opted to participate. These quarries were working the upper cretaceous geological structure. Eighty-five individuals who lived in Gharyan City with no affiliation to quarry operations participated as controls. Spirometry variables evaluated were Forced Vital Capacity (FVC), Forced Expiratory Volume at 1.0 second (FEV1), FVC/FEV1 and Peak Expiratory Flow (PEF). Control and exposed groups had no differences in terms of height, weight, or smoking status (p = 0.18, 0.20, 0.98, respectively). Prior to adjustment for other variables, FVC, FEV1, and PEF are all significantly lower in the exposed group (p = 0.003, 0.009, 0.03, respectively). After adjustment for age, height, weight, and smoking status, there remain significant differences between the control and exposed groups for FVC, FEV1, and PEF. This analysis demonstrated that exposure to quarry dust has a detrimental effect on lung function, and that pre-revolution Libyan quarry workers were being exposed. This study shows that any exposure is harmful, as the reduction in lung function was not significantly associated with years of exposure. PMID:25961801

  1. Lung function impact from working in the pre-revolution Libyan quarry industry.

    PubMed

    Draid, Marwan M; Ben-Elhaj, Khaled M; Ali, Ashraf M; Schmid, Kendra K; Gibbs, Shawn G

    2015-05-07

    The purpose of this study was to determine the lung impact from working within the Libyan quarry industry, and if the length of work impacted the degree of degradation. Eighty three workers from eight silica quarries in the Nafusa Mountains of Libya opted to participate. These quarries were working the upper cretaceous geological structure. Eighty-five individuals who lived in Gharyan City with no affiliation to quarry operations participated as controls. Spirometry variables evaluated were Forced Vital Capacity (FVC), Forced Expiratory Volume at 1.0 second (FEV1), FVC/FEV1 and Peak Expiratory Flow (PEF). Control and exposed groups had no differences in terms of height, weight, or smoking status (p = 0.18, 0.20, 0.98, respectively). Prior to adjustment for other variables, FVC, FEV1, and PEF are all significantly lower in the exposed group (p = 0.003, 0.009, 0.03, respectively). After adjustment for age, height, weight, and smoking status, there remain significant differences between the control and exposed groups for FVC, FEV1, and PEF. This analysis demonstrated that exposure to quarry dust has a detrimental effect on lung function, and that pre-revolution Libyan quarry workers were being exposed. This study shows that any exposure is harmful, as the reduction in lung function was not significantly associated with years of exposure.

  2. [Investigation of noise hazards and hearing status of workers in outdoor quarries].

    PubMed

    Zhang, Guoying; Tang, Zhifeng; Yao, Yongping; Wang, Haiying

    2014-08-01

    To investigate the noise hazards in open quarries and to provide a basis for further control of noise hazards. An investigation was performed during 2010 to 2011 among all open quarries in Deqing County of Zhejiang Province, China. The investigation included basic information of the quarries, the occupational health situation and noise intensity at the workplace, and the hearing loss of workers exposed to noise in quarry enterprises. The hearing test results were evaluated based on the Diagnostic criteria of occupational noise-induced hearing loss (GBZ 49-2007). A total of 25 enterprises with open quarries were investigated, of which only 30.4% (17/56) workplaces met the national standard. The median noise level was 92.5 dB (A). Fifty-four (10.6%) out of 508 workers in the 25 enterprises were diagnosed with binaural hearing loss in the initial physical examination, with 18.3% (93/508) under surveillance. The rate of normal hearing among crushing workers, mechanists, drilling workers, and blasting workers ranged between 27.6% and 41.4%, which was significantly lower than that among workers exposed to slight noise hazards (80.0%) or other workers (63.7%) (P < 0.05). With increasing working years, the binaural hearing loss of crushing workers became serious. Serious occupational noise hazards existed in most jobs in open quarries, with crushing workers, mechanists, drilling workers, and blasting workers most seriously jeopardized. Among crushing workers, those working in the first-line or unprotected second?line positions suffered more than the others. Further measures should be taken by the supervision department and the enterprises to control the noise hazards in open quarries.

  3. Geohydrology of the Gallup's Quarry area, Plainfield, Connecticut

    USGS Publications Warehouse

    Melvin, Robert L.; Stone, Janet Radway; Craft, Patrick A.; Lane, John W.

    1995-01-01

    The geohydrology of the Gallup's Quarry area in Plainfield, Connecticut was characterized by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to provide a preliminary framework for future remedial efforts. Gallup's Quarry, an inactive sand and gravel pit, was the site of unregulated disposal of an unknown volume of chemical wastes from at least the summer of 1977 until January 1978. Existing information collected for the Connecticut Department of Environmental Protection during 1978-82 showed that ground water beneath Gallup's Quarry and adjacent land to the northwest was contaminated by organic and inorganic compounds. There is also some evidence for contamination of Mill Brook, which is located north and northwest of the disposal areas. Geologic mapping and subsurface data show that unconsolidated surficial materials up to 90 feet thick overlie fractured crystalline bedrock in most of the Gallup's Quarry area. The surficial materials consist primarily of stratified drift and till. Texture changes vertically and laterally within the stratified drift; grain size ranges from very coarse to fine. Till blankets the bedrock surface beneath the stratified drift and is a few feet to as much as 25 feet thick. Bedrock is exposed at land surface in a hill in the southeastern part of the quarry and slopes to depths of up to 90 feet beneath the area west and north of the disposal sites. The bedrock is a dark, fine-grained, fractured and jointed blastomylonite and hornblende gneiss of the Quinebaug Formation. It is likely that a west- northwest-trending fault is present in the bedrock beneath Gallup's Quarry; this fault, if present, may provide a preferential pathway for ground-water flow and contaminant transport. The principal horizontal direction of ground-water flow and movement of dissolved contaminants in the stratified drift was to the northwest of the waste-disposal areas toward Mill Brook in 1978. Estimates of average annual

  4. Respiratory symptoms and ventilatory functions among quarry workers in Edo state, Nigeria

    PubMed Central

    Isara, Alphonsus Rukevwe; Adam, Vincent Yakubu; Aigbokhaode, Adesuwa Queen; Alenoghena, Innocent Osi

    2016-01-01

    Introduction Workers in the quarry industries are exposed to hazards resulting from the inhalation of air borne particulates. The study determined the prevalence of respiratory symptoms and assessed ventilatory functions among quarry workers in Edo state, Nigeria. Methods Quarry workers (site workers and office workers) were interviewed using structured questionnaire. FEV1, FVC, FEV1/FVC and PEFR were measured using a KoKo Legend spirometer. Results A total of 113 quarry workers (76 exposure and 37 controls) were studied. The exposure group had significantly higher occurrence of chest tightness (35.5%) compared with 16.2% of the controls (p < 0.05). The occurrence of cough (23.7% versus 13.5%), sputum (21.1% versus 16.2%), and dyspnoea (7.9% versus 5.4%), were higher in exposure groups while wheeze (10.8% versus 10.5%) and nasal congestion (27.0% and 25.0%) were higher in the control groups. The mean (SD) FEV1, and FVC were significantly lower among the exposure compared with the control group; 2.77L (0.73) versus 3.14L (0.78), p < 0.05, and 3.48L (0.84) versus 3.89L (0.92), p < 0.05. In both groups, smokers had significantly lower mean (SD) FEV1, FVC and PEFR compared with non-smokers; 2.91L (0.77) versus 3.39L (0.69), p = 0.01, 3.61L (0.91) versus 4.26L (0.74), p < 0.05 and 6.56L (2.43) versus 7.98L (1.67), p < 0.05. Conclusion Chronic exposure to quarry dust is associated with respiratory symptoms and reduced lung function indices among quarry workers. The enforcement of the use of PPEs and periodic evaluation the lung function status of quarry workers is advocated. PMID:27347301

  5. Respiratory symptoms and ventilatory functions among quarry workers in Edo state, Nigeria.

    PubMed

    Isara, Alphonsus Rukevwe; Adam, Vincent Yakubu; Aigbokhaode, Adesuwa Queen; Alenoghena, Innocent Osi

    2016-01-01

    Workers in the quarry industries are exposed to hazards resulting from the inhalation of air borne particulates. The study determined the prevalence of respiratory symptoms and assessed ventilatory functions among quarry workers in Edo state, Nigeria. Quarry workers (site workers and office workers) were interviewed using structured questionnaire. FEV1, FVC, FEV1/FVC and PEFR were measured using a KoKo Legend spirometer. A total of 113 quarry workers (76 exposure and 37 controls) were studied. The exposure group had significantly higher occurrence of chest tightness (35.5%) compared with 16.2% of the controls (p < 0.05). The occurrence of cough (23.7% versus 13.5%), sputum (21.1% versus 16.2%), and dyspnoea (7.9% versus 5.4%), were higher in exposure groups while wheeze (10.8% versus 10.5%) and nasal congestion (27.0% and 25.0%) were higher in the control groups. The mean (SD) FEV1, and FVC were significantly lower among the exposure compared with the control group; 2.77L (0.73) versus 3.14L (0.78), p < 0.05, and 3.48L (0.84) versus 3.89L (0.92), p < 0.05. In both groups, smokers had significantly lower mean (SD) FEV1, FVC and PEFR compared with non-smokers; 2.91L (0.77) versus 3.39L (0.69), p = 0.01, 3.61L (0.91) versus 4.26L (0.74), p < 0.05 and 6.56L (2.43) versus 7.98L (1.67), p < 0.05. Chronic exposure to quarry dust is associated with respiratory symptoms and reduced lung function indices among quarry workers. The enforcement of the use of PPEs and periodic evaluation the lung function status of quarry workers is advocated.

  6. 7 CFR 330.301 - Stone and quarry products from certain areas in Canada.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Soil, Stone, And Quarry Products...

  7. Casimir energy in Kerr space-time

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2014-10-01

    We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.

  8. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  9. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    NASA Astrophysics Data System (ADS)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  10. Metric of two balancing Kerr particles in physical parametrization

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2015-11-01

    The present paper aims at elaborating a completely physical representation for the general 4-parameter family of the extended double-Kerr spacetimes describing two spinning sources in gravitational equilibrium. This involved problem is solved in a concise analytical form by using the individual Komar masses and angular momenta as arbitrary parameters, and the simplest equatorially symmetric specialization of the general expressions obtained by us yields the physical representation for the well-known Dietz-Hoenselaers superextreme case of two balancing identical Kerr constituents. The existence of the physically meaningful "black-hole-superextreme-object" equilibrium configurations permitted by the general solution may be considered as a clear indication that the spin-spin repulsion force might actually be by far stronger than expected earlier, when only the balance between two superextreme Kerr sources was thought possible. We also present the explicit analytical formulas relating the equilibrium states in the double-Kerr and double-Reissner-Nordström configurations.

  11. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  12. Kerr optical frequency combs: theory, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  13. Nanoscale Kerr Nonlinearity Enhancement Using Spontaneously Generated Coherence in Plasmonic Nanocavity

    PubMed Central

    Chen, Hongyi; Ren, Juanjuan; Gu, Ying; Zhao, Dongxing; Zhang, Junxiang; Gong, Qihuang

    2015-01-01

    The enhancement of the optical nonlinear effects at nanoscale is important in the on-chip optical information processing. We theoretically propose the mechanism of the great Kerr nonlinearity enhancement by using anisotropic Purcell factors in a double-Λ type four-level system, i.e., if the bisector of the two vertical dipole moments lies in the small/large Purcell factor axis in the space, the Kerr nonlinearity will be enhanced/decreased due to the spontaneously generated coherence accordingly. Besides, when the two dipole moments are parallel, the extremely large Kerr nonlinearity increase appears, which comes from the double population trapping. Using the custom-designed resonant plasmonic nanostructure which gives an anisotropic Purcell factor environment, we demonstrate the effective nanoscale control of the Kerr nonlinearity. Such controllable Kerr nonlinearity may be realized by the state-of-the-art nanotechnics and it may have potential applications in on-chip photonic nonlinear devices. PMID:26670939

  14. INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON THE FIRST BENCH, POWDER HILLS ARE PRIMED FOR DOLOMITE EXTRACTION. ON THE SECOND BENCH, THE DRILL TEAM IS LAYING OUT THE NEXT SHOTS. ON THE TOP BENCH, A 245 CATERPILLAR LOADER FILLS A 55-TON CATERPILLAR ROCK TRUCK WITH EXTRACTED DOLOMITE FOR TRANSPORT TO THE DOLOMITE CRUSHING AND SCREENING PLANT. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  15. Geomorphological records of diachronous quarrying activities along the ancient Appia route at the Aurunci Mountain pass (Central Italy)

    NASA Astrophysics Data System (ADS)

    Di Luzio, E.; Carfora, P.

    2018-04-01

    The topic of this research consists in the description of landscape modifications occurring from the 4th century BCE to the 19th century CE as a consequence of quarrying activities on carbonate slopes along a tract of the ancient Appia route crossing the central Apennine belt at the Aurunci Mountain pass (Lazio region, central Italy). The main objectives were to discern different quarrying phases and techniques, quantify quarrying activities and understand the role of quarrying in create morphological features. Multidisciplinary studies were completed including aerial photogrammetry, geoarchaeological field surveys, morphometric characterization of quarry areas, structural analysis of rock outcrops aided by terrestrial photogrammetry, GPS measurements. The results of this study show how the local geomorpological and tectonic setting determined which kinds of extractable rock material, i.e., rock blocks or breccias, were used for different purposes. Moreover, different phases of extraction were evidenced. A main Roman quarrying phase, lasting between the 4th century BCE and the 1st century CE, was recognized as taking place over eight quarry areas. These are delimited by sharp edges and have regular shapes, revealing in some cases a staircase-like morphological profile, and are characterized by similar volumes of extracted rock material. A later quarrying phase -the Bourbon Age, 19th century CE-is assumed to be evidenced instead by five quarries with a peculiar semi-elliptical shape and different volumes of carved material. Seven quarries were found to be of uncertain age. The quarry system described in this paper, together with geomorphological records of slope cuts, terraced surfaces, and the remains of retaining walls, represents a unique and important example of anthropogenic landscape modification in the territory of the central Apennines caused by the construction and maintenance of a Roman road over the centuries. This could be relevant for further studies on

  16. Perturbations of the Kerr spacetime in horizon-penetrating coordinates

    NASA Astrophysics Data System (ADS)

    Campanelli, Manuela; Khanna, Gaurav; Laguna, Pablo; Pullin, Jorge; Ryan, Michael P.

    2001-04-01

    We derive the Teukolsky equation for perturbations of a Kerr spacetime when the spacetime metric is written in either ingoing or outgoing Kerr-Schild form. We also write explicit formulae for setting up the initial data for the Teukolsky equation in the time domain in terms of a 3-metric and an extrinsic curvature. The motivation of this work is to have in place a formalism to study the evolution in the `close limit' of two recently proposed solutions to the initial-value problem in general relativity that are based on Kerr-Schild slicings. A perturbative formalism in horizon-penetrating coordinates is also very desirable in connection with numerical relativity simulations using black hole `excision'.

  17. Greybody factors and charges in Kerr/CFT

    DOE PAGES

    Cvetič, Mirjam; Larsen, Finn

    2009-09-01

    We compute greybody factors for near extreme Kerr black holes in D = 4 and D = 5. In D = 4 we include four charges so that our solutions can be continuously deformed to the BPS limit. In D = 5 we include two independent angular momenta so Left-Right symmetry is incorporated. We discuss the CFT interpretation of our emission amplitudes, including the overall frequency dependence and the dependence on all black hole parameters. We find that all additional parameters can be incorporated Kerr/CFT, with central charge independent of U(1) charges.

  18. Iron K α line of Kerr black holes with Proca hair

    NASA Astrophysics Data System (ADS)

    Zhou, Menglei; Bambi, Cosimo; Herdeiro, Carlos A. R.; Radu, Eugen

    2017-05-01

    We continue our study on the capabilities of present and future x-ray missions to test the nature of astrophysical black hole candidates via x-ray reflection spectroscopy and distinguish Kerr black holes from other solutions of 4-dimensional Einstein's gravity in the presence of a matter field. Here we investigate the case of Kerr black holes with Proca hair [1]. The analysis of a sample of these configurations suggests that even extremely hairy black holes can mimic the iron line profile of the standard Kerr black holes, and, at least for the configurations of our study, we find that current x-ray missions cannot distinguish these objects from Kerr black holes. This contrasts with our previous findings for the case of Kerr black holes with scalar (rather than Proca) hair [2], even though such comparison may be biased by the limited sample. Future x-ray missions can detect the presence of Proca hair, but a theoretical knowledge of the expected intensity profile (currently missing) can be crucial to obtain strong constraints.

  19. Ecological filtering and plant traits variation across quarry geomorphological surfaces: implication for restoration.

    PubMed

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.

  20. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Using a noise monitoring station in a small quarry located in an urban area.

    PubMed

    Wichers, Michiel; Iramina, Wilson Siguemasa; de Eston, Sérgio Médici; Ayres da Silva, Anna Luiza Marques

    2017-12-22

    Mining plays an important role in Brazilian exports. On the other hand, large urban centers like São Paulo, with approximately 21 million inhabitants, also demand an increasing domestic consumption of natural resources, such as construction aggregate. There are many quarries located in the surroundings of urban centers in Brazil, competing with the growth of urbanized areas. Such proximity leads to a series of conflicts involving quarries and surrounding communities, where the increase in noise levels is highlighted. Operations in quarries, in general, are intermittent. Noisier equipment, such as drilling rigs and primary crushers, operates only a few hours during the day, while other operations, such as screening and secondary and tertiary crushing, are more constant. This paper presents a study carried out in a quarry located near São Paulo, where in addition to conventional short term noise measurements at surrounding receptors, one noise monitoring station was installed, allowing to identify the noisiest moments during the quarry operating time. Through data transmitted by wireless technology, it was possible to follow the noise variations emitted from mining activities in real time and observe the noisiest events that were recorded for events that exceeded the established standards. A mobile application associated to this monitoring station facilitated the quarry's manager and employees to access immediately the monitoring information. Therefore, by using this system, it was possible to evaluate the effectiveness of noise reduction measures already taken and indicate what steps still need to be held.

  2. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  3. Gravitational collapse to a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano

    2017-07-01

    We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.

  4. Physical and mechanical properties of quarry dust waste incorporated into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Sarani, N. A.; Rahim, A. S. Abdul; Ismail, N.

    2017-04-01

    A large amount of quarry dust waste is dispose into landfills every year. This waste was obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. The increasing value of waste will have significant impact towards health and environment. Recycling such wastes by incorporating them into building materials is a practical solution for pollution problem. Therefore, this research was to examine the possibility of quarry dust to be incorporated in fired clay bricks. In this research, the composition and concentration of heavy metals were determined by using X-Ray Fluorescence Spectrometer (XRF). The research also consists of physical and mechanical properties of the fired clay bricks by utilizing quarry dust waste. Brick was manufactured by incorporating different percentages of quarry dust waste which are 0%, 10%, 20% and 30%. All bricks sample was tested with physical and mechanical properties which were density, shrinkage, initial rate of suction (IRS) and compressive strength of the fired bricks. Furthermore, the density and shrinkage were also in standard range. All physical and mechanical results were complied with the BS 3921:1985 standard. The comprehensive experimental work described in this research investigated the possibility of incorporating quarry dust into fired clay bricks. These materials could be an alternative low cost material for brick and at the same time provide a new disposal method for the waste.

  5. Handling of quarry waste from schist production at Oppdal, Norway

    NASA Astrophysics Data System (ADS)

    Willy Danielsen, Svein; Alnæs, Lisbeth; Azrague, Kamal; Suleng, Jon

    2017-04-01

    Handling of quarry waste from schist production at Oppdal, Norway Svein Willy Danielsen1), Lisbeth Alnæs2), Kamal Azrague2), Jon Suleng3) 1) Geomaterials Consultant, Trondheim Norway, 2) SINTEF, Trondheim, Norway, 3) AF Gruppen AS, Oppdal, Norway A significant amount of aggregate research in Norway has been focused on the recovery and use of surplus sizes from hard rock aggregate quarries. The use of sand sized quarry waste (QW) from crushing/processing has been motivated by the rapid depletion of traditional sand/gravel resources, increasing land-use conflicts, and the need to minimise QW deposits which for some quarries are becoming a critical factor for economy as well as for environmental reasons. With an annual aggregate production of 77 million tons, out of which approximately 83 % comes from hard rock, the annual volume of size < 4 mm will be of the order of 19 million tons. Converting this into construction aggregates is a major challenge in order to obtain satisfactory mass balance. This challenge is even bigger for quarries producing decorative stones. E.g. the quarrying and production of schist products for building purpose normally utilises as little as 10-15 % of the excavated rock. Oppdal in central Norway is a main supplier of schist products for flooring, roofing and decorative purpose. The high percentage of QW is due to strict requirements to the finished products, both regarding processing and the character of the parent rock. The need to deposit large amounts of QW is a serious setback for the quarry economy. Within a limited time horizon the volumes of QW can threaten the further exploitation by merely choking the quarry. On the opposite side - any process that can convert the QW into sellable products will give a tremendous added value for the producer. Besides, the area in question is about to drain out its available aggregate resources, having to rely on long-transported sand and gravel. This has consequences not only for the economy, but

  6. Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements

    NASA Astrophysics Data System (ADS)

    Cantwell, P. R.; Gibson, U. J.; Allwood, D. A.; Macleod, H. A. M.

    2006-11-01

    We have studied the increases in the longitudinal magneto-optic Kerr effect signal contrast that can be achieved by the application of optical overlayers on magnetic films. For simple coatings, a factor of ˜3 improvement in signal contrast is possible. Matching the optical impedance of the magnetic material improves the raw Kerr signal and also reduces the sample reflectivity, yielding a large Kerr angle. The contrast can be optimized by increasing the rotated Kerr reflectivity component while maintaining enough of the base reflectivity Fresnel component to produce a strong signal. Calculations and experimental results are presented for single layer ZrO2 dielectric coatings on Ni along with calculations for a three-layer Au -ZrO2-Ni structure. Incidence angle effects are also presented.

  7. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    NASA Astrophysics Data System (ADS)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  8. A geometric description of Maxwell field in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek; Smołka, Tomasz

    2016-06-01

    We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.

  9. Horizon geometry for Kerr black holes with synchronized hair

    NASA Astrophysics Data System (ADS)

    Delgado, Jorge F. M.; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    We study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin jH (which equals the total dimensionless spin, j ), the sphericity s and the horizon linear velocity vH are smaller than critical values, j(S ),s(S ),vH(S ), respectively. For the hairy BHs, we find that jHKerr BHs) differs from jH—is larger than unity.

  10. Effective stability against superradiance of Kerr black holes with synchronised hair

    NASA Astrophysics Data System (ADS)

    Degollado, Juan Carlos; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    Kerr black holes with synchronised hair [1,2] are a counter example to the no hair conjecture, in General Relativity minimally coupled to simple matter fields (with mass μ) obeying all energy conditions. Since these solutions have, like Kerr, an ergoregion it has been a lingering possibility that they are afflicted by the superradiant instability, the same process that leads to their dynamical formation from Kerr. A recent breakthrough [3] confirmed this instability and computed the corresponding timescales for a sample of solutions. We discuss how these results and other observations support two conclusions: 1) starting from the Kerr limit, the increase of hair for fixed coupling μM (where M is the BH mass) increases the timescale of the instability; 2) there are hairy solutions for which this timescale, for astrophysical black hole masses, is larger than the age of the Universe. The latter conclusion introduces the limited, but physically relevant concept of effective stability. The former conclusion, allows us to identify an astrophysically viable domain of such effectively stable hairy black holes, occurring, conservatively, for Mμ ≲ 0.25. These are hairy BHs that form dynamically, from the superradiant instability of Kerr, within an astrophysical timescale, but whose own superradiant instability occurs only in a cosmological timescale.

  11. Scattering of Dirac waves off Kerr black holes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata

    2000-10-01

    Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.

  12. Comparison of the occupational safety applications in marble quarries of Carrara (Italy) and Iscehisar (Turkey) by using Elmeri method.

    PubMed

    Ersoy, Metin; Yesilkaya, Liyaddin

    2016-01-01

    In this paper, a brief summary is given about marble quarries in Carrara (Italy) and Iscehisar (Turkey), the Elmeri method is introduced, work accidents that can happen in marble quarries and their causes besides work safety behaviours in fields are explained, and the Elmeri monitoring method is applied and analysed. For this reason, marble quarries are divided into seven in terms of working conditions and active six quarries both in Carrara and Iscehisar areas, and work safety behaviours are analysed. Analysis process is based on True-False method; there are 18 items in total under six main topics; three items on each topic. The safety index for each section and the main topics are also calculated. According to the calculated safety indexes, Carrara area marble quarries (65.08%) are safer than Iscehisar area marble quarries (46.01%).

  13. Schwarzschild and Kerr solutions of Einstein's field equation: An Introduction

    NASA Astrophysics Data System (ADS)

    Heinicke, Christian; Hehl, Friedrich W.

    2015-12-01

    Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution. The Schwarzschild solution is unique and its metric can be interpreted as the exterior gravitational field of a spherically symmetric mass. The Kerr solution is only unique if the multipole moments of its mass and its angular momentum take on prescribed values. Its metric can be interpreted as the exterior gravitational field of a suitably rotating mass distribution. Both solutions describe objects exhibiting an event horizon, a frontier of no return. The corresponding notion of a black hole is explained to some extent. Eventually, we present some generalizations of the Kerr solution.

  14. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  15. The superradiant instability regime of the spinning Kerr black hole

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-07-01

    Spinning Kerr black holes are known to be superradiantly unstable to massive scalar perturbations. We here prove that the instability regime of the composed Kerr-black-hole-massive-scalar-field system is bounded from above by the dimensionless inequality Mμ < m ṡ√{2(1 + γ) (1 -√ 1 -γ2) / -γ2 4γ2, where { μ , m } are respectively the proper mass and azimuthal harmonic index of the scalar field and γ ≡r- /r+ is the dimensionless ratio between the horizon radii of the black hole. It is further shown that this analytically derived upper bound on the superradiant instability regime of the spinning Kerr black hole agrees with recent numerical computations of the instability resonance spectrum.

  16. The Energy-Efficient Quarry: Towards improved understanding and optimisation of energy use and minimisation of CO2 generation in the aggregates industry.

    NASA Astrophysics Data System (ADS)

    Hill, Ian; White, Toby; Owen, Sarah

    2014-05-01

    Extraction and processing of rock materials to produce aggregates is carried out at some 20,000 quarries across the EU. All stages of the processing and transport of hard and dense materials inevitably consume high levels of energy and have consequent significant carbon footprints. The FP7 project "the Energy Efficient Quarry" (EE-Quarry) has been addressing this problem and has devised strategies, supported by modelling software, to assist the quarrying industry to assess and optimise its energy use, and to minimise its carbon footprint. Aggregate quarries across Europe vary enormously in the scale of the quarrying operations, the nature of the worked mineral, and the processing to produce a final market product. Nevertheless most quarries involve most or all of a series of essential stages; deposit assessment, drilling and blasting, loading and hauling, and crushing and screening. The process of determining the energy-efficiency of each stage is complex, but is broadly understood in principle and there are numerous sources of information and guidance available in the literature and on-line. More complex still is the interaction between each of these stages. For example, using a little more energy in blasting to increase fragmentation may save much greater energy in later crushing and screening, but also generate more fines material which is discarded as waste and the embedded energy in this material is lost. Thus the calculation of the embedded energy in the waste material becomes an input to the determination of the blasting strategy. Such feedback loops abound in the overall quarry optimisation. The project has involved research and demonstration operations at a number of quarries distributed across Europe carried out by all partners in the EE-Quarry project, working in collaboration with many of the major quarrying companies operating in the EU. The EE-Quarry project is developing a sophisticated modelling tool, the "EE-Quarry Model" available to the quarrying

  17. 75 FR 19989 - Final Environmental Impact Statement for Drought Management Planning at the Kerr Hydroelectric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Drought Management Planning at the Kerr Hydroelectric Project, Flathead Lake, MT AGENCY: Bureau of Indian... Impact Statement (FEIS) for Drought Management Planning at the Kerr Hydroelectric Project, Flathead Lake... drought management planning at the Kerr Hydroelectric Project no sooner than 30 days following the...

  18. Analysis of noise pollution in an andesite quarry with the use of simulation studies and evaluation indices.

    PubMed

    Kosała, Krzysztof; Stępień, Bartłomiej

    2016-01-01

    This paper presents the verification of two partial indices proposed for the evaluation of continuous and impulse noise pollution in quarries. These indices, together with the sound power of machines index and the noise hazard index at the workstation, are components of the global index of assessment of noise hazard in the working environment of a quarry. This paper shows the results of acoustic tests carried out in an andesite quarry. Noise generated by machines and from performed blasting works was investigated. On the basis of acoustic measurements carried out in real conditions, the sound power levels of machines and the phenomenon of explosion were determined and, based on the results, three-dimensional models of acoustic noise propagation in the quarry were developed. To assess the degree of noise pollution in the area of the quarry, the continuous and impulse noise indices were used.

  19. Constraints on two accretion disks centered on the equatorial plane of a Kerr SMBH

    NASA Astrophysics Data System (ADS)

    Pugliese, Daniela; Stuchlík, Zdeněk

    2017-12-01

    The possibility that two toroidal accretion configurations may be orbiting around a super–massive Kerr black hole has been addressed. Such tori may be formed during different stages of the Kerr attractor accretion history. We consider the relative rotation of the tori and the corotation or counterrotation of a single torus with respect to the Kerr attractor. We give classification of the couples of accreting and non–accreting tori in dependence on the Kerr black hole dimensionless spin. We demonstrate that only in few cases a double accretion tori system may be formed under specific conditions.

  20. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case ofmore » the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.« less

  1. Black and gray Helmholtz-Kerr soliton refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposalmore » of positive or negative lensing operations on soliton arrays at planar boundaries.« less

  2. Self-force correction to geodetic spin precession in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp

    2017-08-01

    We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.

  3. Noise Exposure and Hearing Capabilities of Quarry Workers in Ghana: A Cross-Sectional Study

    PubMed Central

    Gyamfi, Charles Kwame R.; Amankwaa, Isaac; Owusu Sekyere, Frank; Boateng, Daniel

    2016-01-01

    Introduction. Although quarry operations have high economic significance, the effects they cause to the workers in terms of excessive noise production cannot be overlooked. This cross-sectional study assessed the extent of noise exposure and its influence on hearing capabilities among quarry workers in Ashanti region. Methods. The study involved 400 workers randomly selected from five quarries in Ashanti region from April to June 2012. Data was collected using structured questionnaires, physical examination, and audiological assessments. A logistic regression model was fitted to assess independent predictors of hearing loss. Results. All the machines used at the various quarries produced noise that exceeded the minimum threshold with levels ranging from 85.5 dBA to 102.7 dBA. 176 (44%) of study respondents had hearing threshold higher than 25 dBA. 18% and 2% of these were moderately (41–55 dBA) and severely (71–90 dBA) impaired, respectively. Age, duration of work, and use of earplugs independently predicted the development of hearing loss. Use of earplugs showed a protective effect on the development of hearing loss (OR = 0.45; 95% CI = 0.25, 0.84). Conclusion. This study provides empirical evidence on the extent of damage caused to quarry workers as a result of excessive noise exposure. This will support the institution of appropriate protective measures to minimize this threat. PMID:26904137

  4. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2010-05-21

    We have theoretically demonstrated the large enhancement of the optical Kerr effect in a scheme of a nanomechanical resonator coupled to a quantum dot and shown that this phenomenon can be used to realize a fast optical Kerr switch by turning the control field on or off. Due to the vibration of the nanoresonator, as we pump on the strong control beam, the optical spectrum shows that the magnitude of this optical Kerr effect is proportional to the intensity of the control field. In this case, a fast and tunable optical Kerr switch can be implemented easily by an intensity-adjustable laser. Based on this tunable optical Kerr switch, we also provide a detection method to measure the frequency of the nanomechanical resonator in this coupled system.

  5. Logarithmic corrections to black hole entropy from Kerr/CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Furthermore, Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. We compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  6. Logarithmic corrections to black hole entropy from Kerr/CFT

    DOE PAGES

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew; ...

    2017-04-14

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Furthermore, Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. We compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  7. Identification of Quarries Rehabilitation Scenarios: A Case Study Within the Metropolitan Area of Bari (Italy)

    NASA Astrophysics Data System (ADS)

    Dal Sasso, Pasquale; Ottolino, Maria Antonella; Caliandro, Lucia Patrizia

    2012-06-01

    This paper addresses quarries rehabilitation issue within a Metropolitan Area. Areas where mining activity is carried out have been subjected to physical and environmental degradation linked both to pursue the building materials extraction and to the city expansion continuously asking for new areas to be developed with residential and service functions. These changes also occurred where environmental and landscape values are present. It has been therefore pointed out the issue of such areas redevelopment that, to be functionally reintegrated, must be consistently linked to the activities and the territorial local contexts characteristics. In this paper the quarries reuse issue is carried out through parameters identification able to define the quarries relationship with the neighboring towns and with their surroundings besides to identify their physical, environmental and landscaping characteristics. Quarry reuse alternatives have been identified among those consistent with the rehabilitation goals, as defined by the planning sector and internationally approved, while their selection is derived from the application of a two-step methodology: a multi-criteria analysis related to punctual parameters at a "site-specific" level, followed by a further territorial indicators checking over the wide area. This application has led to socially accepted results identifying the examined quarries for reuses ranging from agricultural-forestry and urban to functional or naturalistic. The proposed method has also proved to be suitable to address the abandoned quarries reuse problem with a systemic and consultative approach, as it is able to correlate the many variables present in the social and spatial complexity of the Metropolitan Areas.

  8. Managing the Research University: Clark Kerr and the University of California

    ERIC Educational Resources Information Center

    Soo, Mary; Carson, Cathryn

    2004-01-01

    In the 1950s and 1960s, Clark Kerr led the University of California's Berkeley campus, and then the University of California as a whole. Throughout these years, he developed a system of managerial strategies. This paper shows how Kerr's administrative views drew upon his background in industrial relations, his liberal theories of pluralistic…

  9. Robert S. Kerr Environmental Research Center

    EPA Science Inventory

    The Kerr Center, situated on 16 acres three miles south of Ada, Oklahoma, houses the Ground Water and Ecosystems Restoration Division (GWERD) of the National Risk Management Research Laboratory (NRMRL). The division develops strategies and technologies to protect and restore grou...

  10. Quasilocal energy and surface geometry of Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Yu, Chengjie; Liu, Jian-Liang

    2017-04-01

    We study the quasilocal energy (QLE) and the surface geometry for Kerr spacetime in the Boyer-Lindquist coordinates without taking the slow rotation approximation. We also consider in the region r ≤2 m , which is inside the ergosphere. For a certain region, r >rk(a ) , the Gaussian curvature of the surface with constant t , r is positive, and for r >√{3 }a the critical value of the QLE is positive. We found that the three curves: the outer horizon r =r+(a ), r =rk(a ) and r =√{3 }a intersect at the point a =√{3 }m /2 , which is the limit for the horizon to be isometrically embedded into R3. The numerical result indicates that the Kerr QLE is monotonically decreasing to the ADM m from the region inside the ergosphere to large r . Based on the second law of black hole dynamics, the QLE is increasing with respect to the irreducible mass Mir. From the results of Chen-Wang-Yau, we conclude that in a certain region, r >rh(a ), the critical value of the Kerr QLE is a global minimum.

  11. Ergosurfaces for Kerr black holes with scalar hair

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Radu, Eugen

    2014-06-01

    We have recently reported the existence of Kerr black holes with scalar hair in General Relativity minimally coupled to a massive, complex scalar field [C. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)]. These solutions interpolate between boson stars and Kerr black holes. The latter have a well-known topologically S2 ergosurface (ergosphere) whereas the former develop a S1×S1 ergosurface (ergotorus) in a region of parameter space. We show that hairy black holes always have an ergoregion, and that this region is delimited by either an ergosphere or an ergo-Saturn—i.e. a S2⊕(S1×S1) ergosurface. In the phase space of solutions, the ergotorus can either appear disconnected from the ergosphere or pinch off from it. We provide a heuristic argument, based on a measure of the size of the ergoregion, that superradiant instabilities—which are likely to be present—are weaker for hairy black holes than for Kerr black holes with the same global charges. We observe that Saturn-like, and even more remarkable, ergosurfaces should also arise for other rotating "hairy" black holes.

  12. Magneto-optical Kerr rotation and color in ultrathin lossy dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na

    2017-05-01

    Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.

  13. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    NASA Astrophysics Data System (ADS)

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  14. Routes to spatiotemporal chaos in Kerr optical frequency combs.

    PubMed

    Coillet, Aurélien; Chembo, Yanne K

    2014-03-01

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato-Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  15. Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources

    EIA Publications

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for worldwide oil and natural gas reserves and production of Anadarko, Kerr-McGee, and Western Gas Resources to inform discussions of Anadarko Petroleum Corp.'s proposed acquisition of both Kerr-McGee Corp. and Western Gas Resources Inc. for a total of $23.3 billion, which was announced June 23, 2006.

  16. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    NASA Astrophysics Data System (ADS)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  17. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    PubMed

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  18. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.

    PubMed

    Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten

    2017-06-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.

  19. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  20. Recycling of quarry waste as part of sustainable aggregate production: Norwegian and Italian point of view

    NASA Astrophysics Data System (ADS)

    Antonella Dino, Giovanna; Willy Danielsen, Svein; Chiappino, Claudia; Primavori, Piero; Engelsen, Christian John

    2016-04-01

    Resource preservation is one of the main challenges in Europe, together with waste management and recycling; recently several researchers are interested in the recovering of critical raw materials and secondary raw materials from landfill. Aggregate supply, even if it is not "critical" sensus stricto (s.s.), is one of the European priorities (low value but high volume needs). On the other side, the management of quarry waste , mainly from dimension stones, but also as fines from aggregate crushing, is still a matter of concern. Such materials are managed in different ways both locally and nationwide, and often they are landfilled, because of an unclear legislation and a general lack of data. Most of time the local authorities adopt the maximum precaution principle or the enterprises find it little profitable to recover them, so that the sustainable recycling of such material is not valued. Several studies have shown, depending on the material specific characteristics, the viability of recycling quarry waste into new raw materials used in glass and ceramic industries, precast concrete production, infrastructures etc. (Loudes et al. 2012, Dino&Marian 2015, Bozzola et al 2012, Dino et al. 2012, etc.). Thus, aggregate production may be one of the profitable ways to use quarry waste and is falling under the priority of EU (aggregate supply). Positive economic and environmental effects are likely to be achieved by systematic recycling of quarry waste planned by industries (industrial planning) and public authorities (national and local planning of aggregate exploitation). Today, the recycling level varies to a great extent and systematic recovery is not common among European Countries. In Italy and Norway no significant incentives on recycling or systematic approaches for local aggregate exploitation exist. The environmental consequences can be overexploitation of the natural resources, land take for the landfills, environmental contamination and landscape alteration by

  1. Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-01-01

    The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.

  2. Quarry waste management and recovery: first results connected to Carrara marble ravaneti (Italy)

    NASA Astrophysics Data System (ADS)

    Antonella Dino, Giovanna; Chiappino, Claudia; Rossetti, Piergiorgio

    2017-04-01

    Quarry waste (QW) represents a huge economic and environmental issue, due to loss of resources and to economic and environmental costs connected to waste management and landfilling activities. In many cases, valuable Raw Materials (RM) and Secondary Raw Materials (SRM) can be supplied by enhancing the QW recovery. In Italy large amounts of QW have been and still are dumped: such materials, if their quality (chemical, mineralogical, physical characteristics) and quantity are adequate, and if the impacts connected to their management are positive, can represent a valuable resource for SRM exploitation. Several dimension stone quarries have been and are interested by researches as for QW exploitation. Some researches show positive results, which are the basis for QW recovery (both from waste streams and from quarry dumps exploitation): a noticeable example is represented by Carrara marble waste. The Carrara quarry basin is characterized by ca. one hundred quarries for colored and white marble exploitation. The waste production can be summarized in: 80 Mm3 waste present in old quarry dumps (Ravaneti) and 3 Mm3/y of waste stream from quarrying activities. At present only 0.5 Mm3/y of QW is exploited for SRM production, causing a huge loss of resource. This has been the background for a preliminary research, on Carrara marble Ravaneti characterization, which was carried out thanks to the close cooperation between University of Torino, Società Apuana Marmi srl, and SET srl. In 2015, two QW dumping areas, Calocara and Lorano, were selected as representative for sampling activities. Three main sample categories were individuated based on granulometry (0.5-4 mm, 0-25 mm, 0-150 mm) to be characterized (size distribution, density, Atterberg limits, Los Angeles test, freezing and heat tests, flat and shape indexes, geochemistry, mineralogy). The results obtained are promising: the physical characterization shows an attitude for Carrara QW to be recovered as crushed materials

  3. Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime

    NASA Astrophysics Data System (ADS)

    Övgün, A.; Sakalli, I.

    2018-02-01

    In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.

  4. Behavior and Release of Nitrogen at Mines and Quarries in Nordic Conditions

    NASA Astrophysics Data System (ADS)

    Karlsson, Teemu; Neitola, Raisa; Jermakka, Johannes; Merta, Elina; Mroueh, Ulla-Maija

    2015-04-01

    The increased extraction of mineral resources and mining activities creates added pressure on the environmental issues and a proper water management in mining areas in Finland. Among others, nitrogen compounds released from explosives or from mining processes can have a detrimental effect on the environment. Thus, this project aimed at comprehensive understanding on the nitrogen issue in the extractive industry. The project collected essential data on nitrogen compounds present in the environments of mines and quarries, and generated better understanding of the discharge and behaviour of nitrogen compounds in mining areas. The sources and balances of explosives-originated nitrogen compounds at mines and quarries of different sizes were investigated and compared. Additionally, the focus was in 'nitrogen smudging' problem of waste rocks and the intensity, as well as evolution and chemical characteristics of their nitrogen contamination. According to the results, the total load of potential nitrogen to the environment depends on the scale and type of the activity as well as the type of explosives used. The main emission sources of nitrogen are process and dewatering waters. A lysimeter study showed that the explosives originated nitrogen content of left over stones from natural stone quarrying is relatively low and ca. half of the nitrogen is leached within the first weeks after detonation. The "nitrogen smudging" of natural stone quarrying left over stones is relatively low to begin with and enhanced by the rapid flushing by rainwater, thus the residues of explosives should not be considered to prevent the utilization of otherwise mineralogically inert waste rocks of good technical quality. The overall nitrogen management should take into account the background concentrations and sensitivity of the local ecosystem. The research project "Solution for Control of Nitrogen Discharges at Mines and Quarries, (MINIMAN)" was realized during years 2012-2014 as a cooperative

  5. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes.

    PubMed

    Kumar, Amit; Ng, Daphne H P; Wu, Yichao; Cao, Bin

    2018-05-28

    Re-naturalized quarry lakes are important ecosystems, which support complex communities of flora and fauna. Microorganisms associated with sediment and water form the lowest trophic level in these ecosystems and drive biogeochemical cycles. A direct comparison of microbial taxa in water and sediment microbial communities is lacking, which limits our understanding of the dominant functions that are carried out by the water and sediment microbial communities in quarry lakes. In this study, using the 16S rDNA amplicon sequencing approach, we compared microbial communities in the water and sediment in two re-naturalized quarry lakes in Singapore and elucidated putative functions of the sediment and water microbial communities in driving major biogeochemical processes. The richness and diversity of microbial communities in sediments of the quarry lakes were higher than those in the water. The composition of the microbial communities in the sediments from the two quarries was highly similar to one another, while those in the water differed greatly. Although the microbial communities of the sediment and water samples shared some common members, a large number of microbial taxa (at the phylum and genus levels) were prevalent either in sediment or water alone. Our results provide valuable insights into the prevalent biogeochemical processes carried out by water and sediment microbial communities in tropical granite quarry lakes, highlighting distinct microbial processes in water and sediment that contribute to the natural purification of the resident water.

  6. Mines, Quarries and Landscape. Visuality and Transformation

    NASA Astrophysics Data System (ADS)

    Jimeno, Carlos López; Torrijos, Ignacio Díez; González, Carmen Mataix

    2016-06-01

    In this paper a review of two basic concepts is carried out: scenery and landscape integration, proposing a new concept: "visuality", alternative to the classical "visibility" used in landscape studies related to mining activity, which explores the qualitative aspects that define the visual relationships between observer and environment. In relation to landscape integration studies, some reflections on substantive issues are made which induce certain prejudices at the time of addressing the issue of mining operations landscape integration, and some guidance and integration strategies are formulated. In the second part of the text, a new approach to the landscape integration of mines and quarries is raised, closely linked to the concept of visuality which are based on a basic goal: the re-qualification of the place, and give innovative answers to re-qualify the place and show how to catch the opportunity in the deep transformation generated by the development of mining activities. As a conclusion, a case study is presented in the last section, the landscape integration study conducted on marble exploitations Coto Pinos (Alicante, Spain), considered the largest ornamental rock quarry in Europe.

  7. Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.

    PubMed

    Dey, Prasanta Kumar; Ramcharan, Eugene K

    2008-09-01

    Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.

  8. How do Colluvial Hollows Fill?

    NASA Astrophysics Data System (ADS)

    Hales, T. C.; Parker, R.; Mudd, S. M.; Grieve, S. W. D.

    2016-12-01

    In humid, soil-mantled mountains shallow landslides commonly initiate in colluvial hollows, areas where convergent topography can lead to high pore pressures during storms. Immediately post-landslide initiation, a thin veneer of colluvial material accumulates by small-scale slumping from landslide headscarps. Thereafter colluvium accumulates in hollows primarily through creep-dominated processes like tree throw and animal burrowing, recording the hillslope sediment flux since the last landslide event. We measured the post-landslide hillslope sediment flux in 30 colluvial hollows in the southern Appalachians using radiocarbon measurements collected from soil pits excavated at the centre of steep, landslide-prone hollows. We collected material from the soil-saprolite/bedrock boundary at each location for radiocarbon dating and dated different chemical fractions of the soil (humic acid, humin, charcoal) in an attempt to bracket the "true" age of the soil. We calculated infilling rates of each hollow by measuring soil depths in cross-hollow transects and dividing this by the age of the hollow. The interquartile range of hollow basal ages is 2278-8184 cal. yrs B.P., demonstrating the long return period of landslides in most colluvial hollows. Hillslope erosion rates calculated assuming a linear diffusion transport law show that the transport coefficient (diffusivity) of the hollows varied by 4 orders of magnitude 10-5 to 10-1 m2 yr-1, despite the hollows being formed in regionally consistent geology and vegetation. Uncertainty in the dating and hollow geometry measurements can, at most, account for an order of magnitude of that variability. Our results show that hollows have a phase of rapid infilling that slows through time, consistent with previous observations. Despite this, the oldest hollows show several orders of magnitude variation in the transport coefficient, suggesting local, hollow scale variations in process significantly affect hillslope erosion rates.

  9. 7. WEST DAM STRUCTURE, LOOKING NORTHWEST. QUARRIES AT BOTTOM; OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEST DAM STRUCTURE, LOOKING NORTHWEST. QUARRIES AT BOTTOM; OUTLET STRUCTURE UNDER CONSTRUCTION CUTTING INTO HILL AT TOP OF PICTURE. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA

  10. Interior of Mess Hall, showing original columns and quarry tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Mess Hall, showing original columns and quarry tile floor - U.S. Naval Base, Pearl Harbor, Barracks & Mess Hall, Hornet Avenue between Liscome Bay & Enterprise Streets, Pearl City, Honolulu County, HI

  11. Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals.

    PubMed

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-08-03

    We consider the electromagnetic response of a topological Weyl semimetal (TWS) with a pair of Weyl nodes in the bulk and corresponding Fermi arcs in the surface Brillouin zone. We compute the frequency-dependent complex conductivities σαβ(ω) and also take into account the modification of Maxwell equations by the topological θ-term to obtain the Kerr and Faraday rotations in a variety of geometries. For TWS films thinner than the wavelength, the Kerr and Faraday rotations, determined by the separation between Weyl nodes, are significantly larger than in topological insulators. In thicker films, the Kerr and Faraday angles can be enhanced by choice of film thickness and substrate refractive index. We show that, for radiation incident on a surface with Fermi arcs, there is no Kerr or Faraday rotation but the electric field develops a longitudinal component inside the TWS, and there is linear dichroism signal. Our results have implications for probing the TWS phase in various experimental systems.

  12. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

    PubMed Central

    Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-01-01

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  13. A methodological framework to assess the socio-economic impact of underground quarries: A case study from Belgian Limburg.

    PubMed

    Sergeant, A; Poesen, J; Duchateau, P; Vranken, L

    2016-01-15

    This study developed a methodology to assess the socio-economic impact of the presence and collapse of underground limestone quarries. For this we rely on case study evidence from Riemst, a village located in Eastern Belgium and use both secondary and primary data sources. A sinkhole inventory as well as data about the prevention costs provided by the municipality was used. To estimate the recreational values of the quarries, visitor data was obtained from the tourist office of Riemst. Next, two surveys were conducted among inhabitants and four real estate agents and one notary. The direct and indirect damages were assessed using respectively the repair cost and production and real estate value losses. The total yearly direct and indirect damage equals €415000 (±€85000) and more than half of it can be attributed to the depreciation of real estate (€230000). The quarries have recreational, cultural-historical and ecological values and thus generate societal benefits. The yearly recreational value was at least €613000 in 2012 values. The ecological and cultural-historical values augment to €180000 per year (in 2012 values). Further, our study indicates that the gains from filling up the quarries below the houses located above an underground limestone quarry outweigh the costs in the case study area. The net gain from filling up the underground quarry ranges €38700 to €101700 per house. This is only the lower bound of the net gain from filling up these underground quarries since preventive filling makes future collapses less likely so that future direct repair costs will be most likely smaller. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Laser removal of graffiti from Pink Morelia Quarry

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Riveiro, A.; Sánchez-Castillo, A.; Comesaña, R.; del Val, J.; Lusquiños, F.; Pou, J.

    2013-11-01

    Morelia is an important city sited in Mexico. Its historical center reflects most of their culture and history, especially of the colonial period; in fact, it was appointed World Heritage Site by UNESCO. Sadly, there is a serious problem with graffiti in Morelia and its historical center is the worst affected since its delicate charming is definitely damaged. Hitherto, the conventional methods employed to remove graffiti from Pink Morelia Quarry (the most used building stone in Morelia) are quite aggressive to the appearance of the monuments, so actually, they are not a very good solution. In this work, we performed a study on the removal of graffiti from Pink Morelia Quarry by high power diode laser. We carried out an extensive experimental study looking for the optimal processing parameters, and compared a single-pass with a multi-pass method. Indeed, we achieved an effective cleaning without producing serious side effects in the stone. In conclusion, the multi-pass method emitting in continuous wave was revealed as the more effective operating modes to remove the graffiti.

  15. Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Ghahraman, Solookinejad; M, Panahi; E, Ahmadi; Seyyed, Hossein Asadpour

    2016-07-01

    In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.

  16. Simulation of the effects of nearby quarrying operations on ground-water flow at the South Well Field, Franklin County, Ohio

    USGS Publications Warehouse

    Nalley, Gregory M.; Haefner, Ralph J.

    1999-01-01

    The City of Columbus, Ohio, operates a municipal well field in southern Franklin County that is adjacent to a sand and gravel mining operation. Mining operations have the potential to alter ground-water flowpaths and change the sources of water to pumped wells. Previous ground-water-flow modeling of the area has shown that water pumped from the supply wells is derived from infiltration from nearby rivers and surrounding bedrock. Some of that water flows through existing quarries. Because water quality differs among these sources and is affected by the path along which water flows to the wells, five flow conditions were simulated to evaluate the influence of different mining scenarios on sources of water as related to the size and shape of contributing recharge areas (CRAs) to wells. The first simulation was based on a revision of an existing model by Schalk (1996). The second and third simulations included one in which a 20-foot layer of undisturbed aquifer material within the quarry above the bedrock is left intact, and another in which the 20-foot layer is removed. The fourth and fifth simulations included one in which the 20-foot layer of undisturbed aquifer material is left above the bedrock and the quarry is backfilled with fine- grained sand and silt (a byproduct of the mining operations), and another in which the 20-foot layer is removed before the quarry is backfilled with the fine-grained sand and silt. The results of the five model simulations indicate that the overall volumetric budgets among models change only slightly in response to changing conditions at the quarry. The most significant change is noted in the amount of water that the aquifers gained from constant head and river leakage. This change is due to the way the quarries were simulated and lower heads in the aquifers compared to those in simulations made with earlier models. Previously published model simulations showed that the 5-year CRAs did not extend into the area of the newest sand and

  17. Source of the Kerr-Newman solution as a gravitating bag model: 50 years of the problem of the source of the Kerr solution

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2016-01-01

    It is known that gravitational and electromagnetic fields of an electron are described by the ultra-extreme Kerr-Newman (KN) black hole solution with extremely high spin/mass ratio. This solution is singular and has a topological defect, the Kerr singular ring, which may be regularized by introducing the solitonic source based on the Higgs mechanism of symmetry breaking. The source represents a domain wall bubble interpolating between the flat region inside the bubble and external KN solution. It was shown recently that the source represents a supersymmetric bag model, and its structure is unambiguously determined by Bogomolnyi equations. The Dirac equation is embedded inside the bag consistently with twistor structure of the Kerr geometry, and acquires the mass from the Yukawa coupling with Higgs field. The KN bag turns out to be flexible, and for parameters of an electron, it takes the form of very thin disk with a circular string placed along sharp boundary of the disk. Excitation of this string by a traveling wave creates a circulating singular pole, indicating that the bag-like source of KN solution unifies the dressed and point-like electron in a single bag-string-quark system.

  18. Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin

    2013-04-01

    Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and

  19. Spinning BTZ black hole versus Kerr black hole: A closer look

    NASA Astrophysics Data System (ADS)

    Kim, Hongsu

    1999-03-01

    By applying Newman's algorithm, the AdS3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Bañados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in kind of ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such a transformation is found to exist. In these Kerr-Schild-type coordinates, a truly maximal extension of its global structure by analytically continuing to an ``antigravity universe'' region is carried out.

  20. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  1. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2017-12-01

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  2. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2017-12-29

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  3. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    NASA Astrophysics Data System (ADS)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  4. A Field of Hollows

    NASA Image and Video Library

    2015-04-01

    Mercury's hollows are among its most distinctive -- and unusual -- surface features. In this stunning view, we see a field of hollows in the western portion of the floor of Zeami impact basin. Hollows populate much of the rest of the basin's interior, with large concentrations several kilometers across occurring in the north and northeast parts of the floor. Individual hollows, however, can be as small as a couple of hundred meters in width. http://photojournal.jpl.nasa.gov/catalog/PIA19267

  5. 7. DETAIL, LOOKING SOUTH, INTERIOR OF SOUTH ARCH, SHOWING DRAINAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL, LOOKING SOUTH, INTERIOR OF SOUTH ARCH, SHOWING DRAINAGE HOLE IN THE WEST END OF THE SOUTH WALL AND VERTICAL QUARRY DRILLING HOLES ON THE STONE FACE - Mulladay Hollow Bridge, Spanning Mulladay Hollow Creek at County Road No.61, Eureka Springs, Carroll County, AR

  6. Quantification of Reduction in Forced Vital Capacity of Sand Stone Quarry Workers

    PubMed Central

    Singh, Suresh Kumar; Chowdhary, G. R.; Chhangani, V. D.; Purohit, Gopal

    2007-01-01

    This study assessed the reduction in forced vital capacity of lungs of sand stone quarry workers exposed to high respirable suspended particulate concentration. The sand stone quarry workers are engaged in different type of activities like drilling, loading and dressing. These different working places have different concentration of RSPM and these workers are exposed to different concentration of RSPM. It is found that exposure duration and exposure concentrations are main factors responsible to damage respiratory tract of worker. It is also revealed from the study that most of the workers are suffering from silicosis if the exposure duration is more than 15 years. PMID:18180540

  7. Closed Conformal Killing-Yano Tensor and Uniqueness of Generalized Kerr-NUT-de Sitter Spacetime

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi

    We classify all spacetimes with a rank-2 closed conformal Killing-Yano tensor. They give a generalization of Kerr-NUT-de Sitter spacetime. The Einstein condition is explicitly solved. The Kerr-NUT-de Sitter spacetime is obtained as a spacetime with a non-degenerate CKY tensor.

  8. Recent developments in laser-driven and hollow-core fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Digonnet, M. J. F.; Chamoun, J. N.

    2016-05-01

    Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.

  9. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  10. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  11. Hydrogeological features conditioning trophic levels of quarry lakes in western Po plain (north-western Italy)

    NASA Astrophysics Data System (ADS)

    De Luca, Domenico Antonio; Castagna, Sara; Lasagna, Manuela

    2013-04-01

    Quarry lakes occur in plains areas due to the extraction of alluvial sand and gravel used for grout and concrete in the construction industry. Excavation depths can reach and intersect the groundwater surface, thus creating a lake. Because of the need to optimize efficiency, the number of active open pit mines has increased in recent years; consequently, the global number of pit lakes will increase in coming decades (Castendyk and Eary 2009; Klapper and Geller 2001; Castro and Moore 2000). Similar to natural lakes, pit lakes are subject to eutrophication process, both during and after quarrying activity; during mining activity, the eutrophic level is strongly controlled by the excavation method. In the Piedmont territory (north-western Italy) there are 70 active quarry lakes, corresponding to approximately 0.1% of the entire plain area. Quarry lakes, located primarily along the main rivers occur in alluvial deposits of the plain area and have average depths between 20 and 30 m (maximum of 60 m deep) and surface areas between 3 and 30 hectares (Castagna 2008). The present study describes the trophic status of 23 active quarry lakes in the Piedmont plain that were evaluated by applying classifications from scientific literature. Currently, the majority of the studied quarry lakes may be defined as mesotrophic or eutrophic according to the trophic state classifications. Based on historic data, lake trophic levels have increased over time, during active mining. At the end of mining activity, further deterioration of water quality was expected, especially for smaller lakes with minimal oxygen stratification and higher levels of nutrients and algal growth. In addition, the paper focuses on the pit lake water quality and pit dimension; From an environmental perspective the excavation of quarry lakes with an appreciable size will likely result in a better safeguard of water quality and enhanced possibilities for lake end use after the cessation of mining. Piedmont quarry

  12. Physical Properties of the Double Kerr Solution

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Rebelo, Carmen

    We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.

  13. Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Wu, Yun-xiang; Zhu, Chang-hua; Pei, Chang-xing

    2016-09-01

    A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.

  14. Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Scheinfein, M. R.

    1993-12-01

    Surface and ultrathin-film magnetocrystalline anisotropy in epitaxial fcc Fe thin films grown on room-temperature Cu(100) single crystals has been investigated, in situ, by the combined surface magneto-optical Kerr effects (SMOKE). In polar, longitudinal, and transverse Kerr effects, the direction of the applied magnetic field must be distinguished from the direction of magnetization during the switching process. For arbitrary orientations of the magnetization and field axis relative to the optical scattering plane, any of the three Kerr effects may contribute to the detected signal. A general expression for the normalized light intensity sensed by a photodiode detector, involving all three combined Kerr effects, is obtained both in the ultrathin-film limit and for bulk, at general oblique incidence angles and with different orientations of the polarizer, modulator, and analyzer. This expression is used to interpret the results of fcc Fe/Cu(100) SMOKE measurements. For films grown at room temperature, polar and longitudinal Kerr-effect magnetization loops show that the easy axis of magnetization rotates from the (canted) out-of-plane direction to the in-plane direction at a thickness of about 4.7 monolayers. Transverse Kerr-effect measurements indicate that the in-plane easy axes are biaxial.

  15. Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments.

    PubMed

    Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen

    2011-08-01

    This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.

  16. Quarry blasts assessment and their environmental impacts on the nearby oil pipelines, southeast of Helwan City, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Adel M. E.; Mohamed, Abuo El-Ela A.

    2013-06-01

    Ground vibrations induced by blasting in the cement quarries are one of the fundamental problems in the quarrying industry and may cause severe damage to the nearby utilities and pipelines. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in quarries. The current paper presents the influence of the quarry blasts at the National Cement Company (NCC) on the two oil pipelines of SUMED Company southeast of Helwan City, by measuring the ground vibrations in terms of Peak Particle Velocity (PPV). The seismic refraction for compressional waves deduced from the shallow seismic survey and the shear wave velocity obtained from the Multi channel Analysis of Surface Waves (MASW) technique are used to evaluate the closest site of the two pipelines to the quarry blasts. The results demonstrate that, the closest site of the two pipelines is of class B, according to the National Earthquake Hazard Reduction Program (NEHRP) classification and the safe distance to avoid any environmental effects is 650 m, following the deduced Peak Particle Velocity (PPV) and scaled distance (SD) relationship (PPV = 700.08 × SD-1.225) in mm/s and the Air over Pressure (air blast) formula (air blast = 170.23 × SD-0.071) in dB. In the light of prediction analysis, the maximum allowable charge weight per delay was found to be 591 kg with damage criterion of 12.5 mm/s at the closest site of the SUMED pipelines.

  17. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  18. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes

    NASA Astrophysics Data System (ADS)

    Jiang, Jiachen; Bambi, Cosimo; Steiner, James F.

    2015-05-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole candidates is produced by the illumination of a cold accretion disk by a hot corona. In this framework, the activation of a new flaring region in the hot corona imprints a time variation on the iron line spectrum. Future X-ray facilities with high time resolution and large effective areas may be able to measure the so-called 2-dimensional transfer function; that is, the iron line profile detected by a distant observer as a function of time in response to an instantaneous flare from the X-ray primary source. This work is a preliminary study to determine if and how such a technique can provide more information about the spacetime geometry around the compact object than the already possible measurements of the time-integrated iron line profile. Within our simplified model, we find that a measurement of iron line reverberation can improve constraints appreciably given a sufficiently strong signal, though that most of the information is present in the time-integrated spectrum. Our aim is to test the Kerr metric. We find that current X-ray facilities and data are unable to provide strong tests of the Kerr nature of supermassive black hole candidates. We consider an optimistic case of 105 iron line photons from a next-generation data set. With such data, the reverberation model improves upon the spectral constraint by an order of magnitude.

  19. Kerr-McGee and the NRC: from Indian country to Silkwood to Gore.

    PubMed

    Baer, H

    1990-01-01

    By focusing upon the Nuclear Regulatory Commission's appraisal of the Kerr-McGee Corporation's safety record in the Four Corners area and at two facilities in Oklahoma, this article examines the political economy of nuclear regulation in American society. Particular attention is given to the agency's response to intervenor groups which protested various operations at Kerr-McGee facility in Gore, Oklahoma, both prior to and following the accidental rupture of a cylinder containing uranium hexafluoride. Despite a consistent record of violations and nuclear mishaps by Kerr-McGee, the Nuclear Regulatory Commission permitted the company to essentially monitor its own activities. Rather than protecting workers and the public from the hazards of the nuclear industry, state regulation attempts to legitimize and defuse public opposition to its endeavors.

  20. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Silvester, S. A.; Lowndes, I. S.; Hargreaves, D. M.

    2009-12-01

    The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community. The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions. The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.

  1. Testing the Kerr metric with the iron line and the KRZ parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Jiang, Jiachen; Bambi, Cosimo, E-mail: yyni13@fudan.edu.cn, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    The spacetime geometry around astrophysical black holes is supposed to be well approximated by the Kerr metric, but deviations from the Kerr solution are predicted in a number of scenarios involving new physics. Broad iron Kα lines are commonly observed in the X-ray spectrum of black holes and originate by X-ray fluorescence of the inner accretion disk. The profile of the iron line is sensitively affected by the spacetime geometry in the strong gravity region and can be used to test the Kerr black hole hypothesis. In this paper, we extend previous work in the literature. In particular: i )more » as test-metric, we employ the parametrization recently proposed by Konoplya, Rezzolla, and Zhidenko, which has a number of subtle advantages with respect to the existing approaches; ii ) we perform simulations with specific X-ray missions, and we consider NuSTAR as a prototype of current observational facilities and eXTP as an example of the next generation of X-ray observatories. We find a significant difference between the constraining power of NuSTAR and eXTP. With NuSTAR, it is difficult or impossible to constrain deviations from the Kerr metric. With eXTP, in most cases we can obtain quite stringent constraints (modulo we have the correct astrophysical model).« less

  2. Compact singularity-free Kerr-Newman-de Sitter instantons

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Hörzinger, Michael

    2017-04-01

    Generalizing the results in Chruściel and Hörzinger [J. High Energy Phys. 16 (2016) 1, 10.1007/JHEP04(2016)012], we construct further families of compact Einstein-Maxwell instantons associated with the Kerr-Newman metrics with a positive cosmological constant.

  3. Assessment of Rock Slope Stability in Limestone Quarries in the Tournai's Region (Belgium) Using Structural Data

    NASA Astrophysics Data System (ADS)

    Tshibangu, Jean-Pierre; Deloge, K. Pierre-Alexandre; Deschamps, Benoît; Coudyzer, Christophe

    The Tournais region is characterised by famous outcrops of carboniferous limestone which is mined out for cement and raw material production. The four main quarries found in the Region, i.e. Gaurain-Ramecroix, Milieu, Antoing and Lemay; are owned by the three main cement producers in Belgium: Italcimenti, Holcim and CBR. The global production of limestone is about 20 millions tons per year, giving big pits with depths up to 150 m. With the growth of the pits, the quarries are approaching each other leading to the problem of managing the reserves contained in the separating walls and their mechanical stability. The limestone deposit is composed of different seams having varying thickness, chemical com- position and even mechanical properties. The deposit has an overall horizontal dip and is intersected by two main sets of discontinuities with a spacing of about 10 m or less. It is also crossed by a set of east to west faults but the quarries are implanted in the in between areas, so to not be crossed by these faults. The layers and specially the shallow ones are characterised by a typical karstic weathering giving open or filled cavities. This paper presents the global work quarried out in order to study the stability of the Lemays quarry. First a description of the orientation and spacing of discontinuities is presented, and an attempt made to correlate to the development of weathering. Mechanical laboratory tests have been performed and a qualification of the rock mass assessed. A coupled approach is then presented using a mining planning analysis and mechanical simulation (i.e. Finite Element method).

  4. Properties of the distorted Kerr black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Tzounis, Christos; Kunz, Jutta

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, aremore » always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J{sup 2}/M{sup 4} > 1 and yet avoid a naked singularity.« less

  5. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco

    2009-12-01

    Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical system that leads to a nonlinear Kerr effect in the system’s vacuum. The oscillating mirror at one edge of the optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant laser field is applied at the other edge to drive the cavity field in order to enhance the Kerr effect. We also propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a common oscillating mirror based on our effective Hamiltonian approach.

  6. Structural analysis of hollow blades: Torsional stress analysis of hollow fan blades for aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Ogawa, A.; Sofue, Y.; Isobe, T.

    1979-01-01

    A torsional stress analysis of hollow fans blades by the finite element method is presented. The fans are considered to be double circular arc blades, hollowed 30 percent, and twisted by a component of the centrifugal force by the rated revolution. The effects of blade hollowing on strength and rigidity are discussed. The effects of reinforcing webs, placed in the hollowed section in varying numbers and locations, on torsional rigidity and the convergence of stresses, are reported. A forecast of the 30 percent hollowing against torsional loadings is discussed.

  7. Kerr Reservoir LANDSAT experiment analysis for March 1981

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1982-01-01

    LANDSAT radiance data were used in an experiment conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. A mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. Except for secchi depth, the study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data encompass a mix of linear and nonlinear forms using only one LANDSAT band. Ratioing techniques did not improve the results since the initial design of the experiment minimized the errors against which this procedure is effective. Good correlations were found for total suspended solids, iron, turbidity, and secchi depth. Marginal correlations were discovered for nitrate and tannin + lignin. Quantification maps of Kerr Reservoir are presented for many of the water quality parameters using the developed algorithms.

  8. Volume Computation of a Stockpile - a Study Case Comparing GPS and Uav Measurements in AN Open Pit Quarry

    NASA Astrophysics Data System (ADS)

    Raeva, P. L.; Filipova, S. L.; Filipov, D. G.

    2016-06-01

    The following paper aims to test and evaluate the accuracy of UAV data for volumetric measurements to the conventional GNSS techniques. For this purpose, an appropriate open pit quarry has been chosen. Two sets of measurements were performed. Firstly, a stockpile was measured by GNSS technologies and later other terrestrial GNSS measurements for modelling the berms of the quarry were taken. Secondly, the area of the whole quarry including the stockpile site was mapped by a UAV flight. Having considered how dynamic our world is, new techniques and methods should be presented in numerous fields. For instance, the management of an open pit quarry requires gaining, processing and storing a large amount of information which is constantly changing with time. Fast and precise acquisition of measurements regarding the process taking place in a quarry is the key to an effective and stable maintenance. In other words, this means getting an objective evaluations of the processes, using up-to-date technologies and reliable accuracy of the results. Often legislations concerning mine engineering state that the volumetric calculations are to present ±3% accuracy of the whole amount. On one hand, extremely precise measurements could be performed by GNSS technologies, however, it could be really time consuming. On the other hand, UAV photogrammetry presents a fast, accurate method for mapping large areas and calculating stockpiles volumes. The study case was performed as a part of a master thesis.

  9. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  10. Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice

    NASA Astrophysics Data System (ADS)

    Bang, Do; Awano, Hiroyuki; Saito, Yuta; Tominaga, Junji

    2016-05-01

    We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.

  11. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect

    NASA Astrophysics Data System (ADS)

    Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John

    2013-11-01

    The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

  12. Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Nampalliwar, Sourabh; Cárdenas-Avendaño, Alejandro

    We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer function and the calculation of the local spectrum at any emission point in the disk. The transfer function only depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler boosting, and light bending). Our code computes the transfermore » function for a spacetime described by the Johannsen metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer functions and single line shapes in the Kerr metric are compared to those calculated from existing codes to check that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit the data with our new model to show the potential capabilities of current and future observations to constrain possible deviations from the Kerr metric.« less

  13. High resolution seismic tomography imaging of Ireland with quarry blast data

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  14. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  15. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  16. Testing different discrimination methods between microearthquakes and quarry blasts - a case study in Hungary

    NASA Astrophysics Data System (ADS)

    Kalocsai, Lilla; Kiszely, Márta; Süle, Bálint; Győri, Erzsébet

    2017-04-01

    Due to the development of seismological network, increasing number of events have been detected in the last years in Hungary. However about 50% of these shocks were quarry blasts. Therefore decontamination of catalogue for revealing the reliable natural seismicity has become an important task. We have studied the events occurring in the surroundings of Mecsek Hills. The goal of our research was to find the best method to separate earthquakes and quarry blasts. In the first step we have studied the diurnal distributions of the events. Because of different focal mechanisms, the waveforms and amplitudes of arriving phases of earthquakes and quarry blasts are different. We have tested the most typical parameter, the P and S amplitude ratio, which is often used for separation. The waveform similarities have been analyzed using cross-correlation matrix and dendrograms. The earthquakes and the blasts of different quarries have been arranged into different clusters. We have computed spectrograms and because the blasts were carried out by delay-fired technology we have computed binary spectrograms too. Computation of binary spectra is a useful visualization method to recognize the delay-fired explosions, because it emphasizes the long-duration modulations of the spectra. It is made from the original spectra by application of a filter that replaces the spectral amplitudes with a binary code, which simply reflects the local spectral highs and lows. The modulations were present in most of the spectra of blasts and in contrast to the earthquakes, the modulations have been observable until the end of the spectrogram. We also have studied the scalloping and steepness of the spectra.

  17. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  18. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  19. Revegetation in abandoned quarries with landfill stabilized waste and gravels: water dynamics and plant growth - a case study

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-liang; Feng, Jing-jing; Rong, Li-ming; Zhao, Ting-ning

    2017-11-01

    Large amounts of quarry wastes are produced during quarrying. Though quarry wastes are commonly used in pavement construction and concrete production, in situ utilization during ecological restoration of abandoned quarries has the advantage of simplicity. In this paper, rock fragments 2-3 cm in size were mixed with landfill stabilized waste (LSW) in different proportions (LSW : gravel, RL), which was called LGM. The water content, runoff and plant growth under natural precipitation were monitored for 2 years using a runoff plot experiment. LGM with a low fraction of LSW was compacted to different degrees to achieve an appropriate porosity; water dynamics and plant growth of compacted LGM were studied in a field experiment. The results showed the following: (1) LGM can be used during restoration in abandoned quarries as growing material for plants. (2) RL had a significant effect on the infiltration and water-holding capacity of LGM and thus influenced the retention of precipitation, water condition and plant growth. LGM with RL ranging from 8:1 to 3:7 was suitable for plant growth, and the target species grew best when RL was 5:5. (3) Compaction significantly enhanced water content of LGM with a low RL of 2:8, but leaf water content of plants was lower or unchanged in the more compacted plots. Moderate compaction was beneficial to the survival and growth of Robinia pseudoacacia L. Platycladus orientalis (L.) Franco and Medicago sativa L. were not significantly affected by compaction, and they grew better under a high degree of compaction, which was disadvantageous for the uppermost layer of vegetation.

  20. Propagation of a Pearcey-Gaussian-vortex beam in free space and Kerr media

    NASA Astrophysics Data System (ADS)

    Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei

    2016-12-01

    The propagation of a Pearcey-Gaussian-vortex beam (PGVB) has been investigated numerically in free space and Kerr media. In addition, we have done a numerical experiment for the beam in free space. A PGVB maintains the characteristics of auto-focusing, self-healing and form-invariance which are possessed by a Pearcey beam and a Pearcey-Gaussian beam. Due to the influence of the optical vortex, a bright speck occurs in front of the main lobe. Compared with a Pearcey beam and a Pearcey-Gaussian beam, a PGVB has the most remarkable intensity singularity and the phase singularity. It is worth noting that the impact of the vortex at the coordinate origins means that a PGVB in the vicinity carries no angular momentum or transverse energy flow. We have investigated and numerically simulated the transverse intensity of a PGVB in Kerr media. We find that the auto-focusing of a PGVB in a Kerr medium becomes stronger with increasing power.

  1. A Method of Effective Quarry Water Purifying Using Artificial Filtering Arrays

    NASA Astrophysics Data System (ADS)

    Tyulenev, M.; Garina, E.; Khoreshok, A.; Litvin, O.; Litvin, Y.; Maliukhina, E.

    2017-01-01

    The development of open pit mining in the large coal basins of Russia and other countries increases their negative impact on the environment. Along with the damage of land and air pollution by dust and combustion gases of blasting, coal pits have a significant negative impact on water resources. Polluted quarry water worsens the ecological situation on a much larger area than covered by air pollution and land damage. This significantly worsens the conditions of people living in cities and towns located near the coal pits, and complicates the subsequent restoration of the environment, irreversibly destroying the nature. Therefore, the research of quarry wastewater purifying is becoming an important mater for scholars of technical colleges and universities in the regions with developing open-pit mining. This paper describes the method of determining the basic parameters of the artificial filtering arrays formed on coal pits of Kuzbass (Western Siberia, Russia), and gives recommendations on its application.

  2. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  3. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  4. Algorithmic characterization results for the Kerr-NUT-(A)dS space-time. II. KIDs for the Kerr-(A)(de Sitter) family

    NASA Astrophysics Data System (ADS)

    Paetz, Tim-Torben

    2017-04-01

    We characterize Cauchy data sets leading to vacuum space-times with vanishing Mars-Simon tensor. This approach provides an algorithmic procedure to check whether a given initial data set (Σ ,hi j,Ki j) evolves into a space-time which is locally isometric to a member of the Kerr-(A)(dS) family.

  5. Critical exponents of extremal Kerr perturbations

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Zimmerman, Peter

    2018-05-01

    We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.

  6. Geology of the Carnegie museum dinosaur quarry site of Diplodocus carnegii, Sheep Creek, Wyoming

    USGS Publications Warehouse

    Brezinski, D.K.; Kollar, A.D.

    2008-01-01

    The holotype of Diplodocus carnegii Hatcher, 1901, consists of a partial skeleton (CM 84) that was recovered, along with a second partial skeleton of the same species (CM 94), from the upper 10 m of the Talking Rock facies of the Brushy Basin Member of the Morrison Formation exposed along Bone Quarry Draw, a tributary of Sheep Creek in Albany County, Wyoming. A composite measured section of the stratigraphic interval exposed adjacent to the quarry indicates that the Brushy Basin Member in this area is a stacked succession of lithofacies consisting of hackly, greenish gray, calcareous mudstone and greenish brown, dense, fine-grained limestone. The more erosion resistant limestone layers can be traced over many hundreds of meters. Thus, these strata do not appear to represent a highly localized deposit such as a stream channel, oxbow lake, or backwater pond. The Sheep Creek succession is interpreted as representing a clastic-dominated lake where high turbidity and sediment influx produced deposition of calcareous mudstone. During drier periods the lake's turbidity decreased and limestone and dolomite precipitation replaced mud deposition. Microkarsting at the top of some limestone/ dolomite layers suggests subaerial deposition may have prevailed during these dry episodes. The quarry of D. carnegii was excavated within the top strata of one of the numerous intervals of hackly, greenish gray, calcareous mudstone that represent an ephemeral freshwater lake. The quarry strata are directly overlain by 0.3 m of dolomite-capped limestone that was deposited shortly after interment of D. carnegii in the lake mudstones. The close vertical proximity of the overlying limestone to the skeleton's stratigraphic: level suggests that the animal's carcass may have been buried beneath the drying lake deposits during a period of decreased rainfall.

  7. Assessment of occupational exposure in a granite quarry and processing factory.

    PubMed

    Tejado, J J; Guillén, J; Baeza, A

    2016-09-01

    Workers in the granite industry face an occupational hazard: silicosis due to the crystalline silica present in inhalable dust. As granite can also present a variable, and occasionally significant, content of naturally occurring radionuclides, they may also face a radiological hazard. In order to assess the risk, a granite industry with a quarry and processing factory was selected to assess the occupational exposure. Three main potential pathways were observed: external irradiation, inhalation of granite dust, and radon exposure. The external dose rate was similar to that in a nearby farming area. A slight increment (0.016-0.076 mSv yr -1 ) was observed in the quarry and stockpile, due to quarry faces and granite blocks. The effective dose due to granite dust inhalation was 0.182  ±  0.009 mSv yr -1 in the worst case scenario (3 mg m -3 dust load in air and no use of filter masks). Thus, the mean value of the effective dose from these two pathways was 0.26 mSv yr -1 , lower than the reference level of 1 mSv yr -1 for the general population. The annual mean value of radon concentration in the indoor air was 33 Bq m -3 . However, during granite processing works the radon concentration can increase up to 216 Bq m -3 , due to mechanical operations (sawing, polishing, sanding, etc). This radon concentration was below the 600 Bq m -3 reference level for action in working places. Therefore, workers in this granite factory face no significant additional radiological exposure, and no-one needs to be designated as occupationally exposed and subject to individual dosimetry.

  8. Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2016-01-01

    We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.

  9. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  10. Naïve Chicks Prefer Hollow Objects

    PubMed Central

    Schill, Jana; Nencini, Andrea Maria; Vallortigara, Giorgio

    2016-01-01

    Biological predispositions influence approach and avoid responses from the time of birth or hatching. Neonates of species that require parental care (e.g. human babies and chicks of the domestic fowl) are attracted by stimuli associated with animate social partners, such as face-like configurations, biological motion and self-propulsion. The property of being filled is used as a cue of animacy by 8-month-old human infants but it is not known whether this reflects the effect of previous experience. We used chicks of the domestic fowl (Gallus gallus) to investigate whether the property of being filled vs. hollow elicits spontaneous or learned preferences. To this aim we tested preferences of naïve and imprinted chicks for hollow and closed cylinders. Contrary to our expectations, we documented an unlearned attraction for hollow stimuli. The preference for hollow stimuli decreased when chicks were imprinted on filled stimuli but did not increase when chicks were imprinted on hollow stimuli, suggesting that hollowness is not crucial to determine affiliative responses for imprinting objects. When chicks were imprinted on occluded stimuli that could be either filled or hollow, the preference for hollow stimuli emerged again, showing that imprinting does not disrupt the spontaneous preference for hollow objects. Further experiments revealed that hollow objects were mainly attractive by means of depth cues such as darker innards, more than as places to hide or as objects with high contrast. Our findings point to predisposed preferences for hollow objects, and suggest that early predispositions might be driven by factors different from animacy cues. PMID:27851773

  11. Enhanced magneto-optical Kerr effect at Fe/insulator interfaces

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Takahashi, Saburo; Maekawa, Sadamichi

    2017-12-01

    Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes the following two effects: (i) The diagonal component σx x of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component σx y of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio σx y/σx x . Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.

  12. Giant ultrafast Kerr effect in superconductors

    NASA Astrophysics Data System (ADS)

    Robson, Charles W.; Fraser, Kieran A.; Biancalana, Fabio

    2017-06-01

    We study the ultrafast Kerr effect and high-harmonic generation in superconductors by formulating a model for a time-varying electromagnetic pulse normally incident on a thin-film superconductor. It is found that superconductors exhibit exceptionally large χ(3 ) due to the progressive destruction of Cooper pairs, and display high-harmonic generation at low incident intensities, and the highest nonlinear susceptibility of all known materials in the THz regime. Our theory opens up avenues for accessible analytical and numerical studies of the ultrafast dynamics of superconductors.

  13. Asbestos exposure during quarrying and processing of serpentinites: a case study in Valmalenco, Central Alps, Northern Italy

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Rimoldi, B.

    2012-04-01

    Serpentinites are metamorphic rocks derived from ultramafics such as peridotites (lherzolites and/or harzburgites), with a typical mineralogical assemblage of antigorite, olivine, diopside and minor magnetite, chlorite and chrysotile. If the rock mass has good geotechnical properties, these stones are quarried because of their wide variety of green shades and outstanding technical properties. Excellent stones are produced in the Malenco Valley, Central Alps (northern Italy, Sondrio): here the geological set-up is dominated by the ultramafic Malenco massif (lower crust-mantle complex), exposed at the Penninic to Austroalpine boundary zone. Different processing operations give origin to valuable products like stoves, funeral monuments, design home appliances; important building element as roof slabs, tiles for floor and wall coverings constitute the main commercial line of production. In this area, good quality long fibre chrysotile asbestos was mined since the XIX century, till the seventies. The asbestos fissures (mostly slip-fiber) are well known in Valmalenco, associated to an important ENE-WSW striking fracture and hydrothermal vein system. Some actual serpentinite quarries "cross" at times tunnels of the old asbestos mines, because the fracture and vein system "guides" the extraction. At present time, this area represents an excellent example of naturally occurring asbestos (NOA). For these reasons, workers' exposure to asbestos during quarrying and processing cannot be ruled out, and must be assessed according to national laws. From 2004 to nowadays, the INAIL Regional Management of Lombardia, with the collaboration of University of Milan-Bicocca, carried out extensive monitoring campaigns both in quarries and in processing laboratories. More than 300 massive samples (rocks and veins) and 250 airborne dust samples were collected during the surveys. One of the main problems in the study of massive serpentinites is the accurate identification of the different

  14. Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2018-01-01

    An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

  15. Surface wave inversion of central Texas quarry blasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonner, J.L.; Goforth, T.T.

    1993-02-01

    Compressional and shear wave models of the upper crust in central Texas were obtained by inverting Rayleigh and Love waves recorded at the new W.M. Keck Foundation Seismological Observatory at Baylor University. The Keck Observatory, which became operational in April 1992, consists of a three-component, broadband Geotech seismometer located at a depth of 130 feet in a borehole 17 miles from the Baylor campus. The field station is solar powered, and the 140-dB dynamic range digital data are transmitted to the Baylor analysis lab via radio, where they are analyzed and archived. Limestone quarries located in all directions from themore » Keck Observatory detonate two to four tons of explosives per blast several times a week. Recordings of these blasts show sharp onsets of P and S waves, as well as dispersed Rayleigh and Love waves in the period band 1 to 3 seconds. Multiple filter analysis and phase matched filtering techniques were used to obtain high quality dispersion curves for the surface waves, and inversion techniques were applied to produce shear velocity models of the upper crust. A rapid increase in shear velocity at a depth of about 1.5 km is associated with the Ouachita Overthrust Belt. Portable seismic recording systems were placed at the quarries to monitor start times and initial wave forms. These data were combined with the Keck recordings to produce attenuation and compressional velocity models.« less

  16. Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2018-05-01

    A test fluid composed of relativistic collisionless neutral particles in the background of Kerr metric is expected to generate non-isotropic equilibrium configurations in which the corresponding stress-energy tensor exhibits pressure and temperature anisotropies. This arises as a consequence of the constraints placed on single-particle dynamics by Killing tensor symmetries, leading to a peculiar non-Maxwellian functional form of the kinetic distribution function describing the continuum system. Based on this outcome, in this paper the generation of Kerr-like metric by collisionless N -body systems of neutral matter orbiting in the field of a rotating black hole is reported. The result is obtained in the framework of covariant kinetic theory by solving the Einstein equations in terms of an analytical perturbative treatment whereby the gravitational field is decomposed as a prescribed background metric tensor described by the Kerr solution plus a self-field correction. The latter one is generated by the uncharged fluid at equilibrium and satisfies the linearized Einstein equations having the non-isotropic stress-energy tensor as source term. It is shown that the resulting self-metric is again of Kerr type, providing a mechanism of magnification of the background metric tensor and its qualitative features.

  17. Kerr-Newman black holes with string corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, Anthony M.; Larsen, Finn

    We study N = 2 supergravity with higher-derivative corrections that preserve the N = 2 supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.

  18. Kerr-Newman black holes with string corrections

    DOE PAGES

    Charles, Anthony M.; Larsen, Finn

    2016-10-26

    We study N = 2 supergravity with higher-derivative corrections that preserve the N = 2 supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.

  19. Seismic scattering attribute for sedimentary classification of nearshore marine quarries for a major beach nourishment project: Case study of Adriatic coastline, Regione Abruzzo (Italy)

    NASA Astrophysics Data System (ADS)

    Orlando, Luciana; Contini, Paolo; De Girolamo, Paolo

    2017-06-01

    Of fundamental importance for any major beach nourishment project using marine quarries is a correct sedimentary classification. The main purpose of such a classification is to identify sand with the appropriate features for beach nourishment. This task is more onerous when quarry sediments are heterogeneous and mixed with silt. This is typical of nearshore marine quarries. The presence of excess silt compromises the use of marine quarries because of the water turbidity that may be induced in the nourished beaches, especially when the beaches are protected by defense structures. Here we discuss the use of scattering amplitude of seismic data, acquired with a pinger source (2-10 kHz), to detect and classify the unconsolidated sediment of a marine quarry. A robust correlation was found between this seismic attribute and the silt content in the sediment. The scattering amplitude was numerically calculated from the seismic data and used to map slices of silt content at different depths. The results have been validated with sedimentary analysis of vibra- and rotary cores, and by the dredged material used for the beach nourishment. The marine quarry produced about 1.200.000 m3 of sand used to nourish eight different beach sites along the Adriatic coasts of the Regione Abruzzo (Italy). The large-scale sedimentary assessment of the area was based on seismic boomer data and the evaluation of the volume of dredged sediments on multibeam data surveyed before and after the exploitation of the quarry. The study shows that this approach is effective in sites with high lateral and vertical variations in the percentage of sand in the sediments.

  20. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    PubMed

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  1. Tori sequences as remnants of multiple accreting periods of Kerr SMBHs

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-03-01

    Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.

  2. Cosmic censorship conjecture in Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  3. Multiplicity of transmission coefficients in photonic crystal and split ring resonator waveguides with Kerr nonlinear impurities

    NASA Astrophysics Data System (ADS)

    Rai, Buddhi; McGurn, Arthur R.

    2015-02-01

    Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies

  4. The Mixed Legacy of Clark Kerr: A Personal View

    ERIC Educational Resources Information Center

    Lustig, Jeff

    2004-01-01

    The death of famed educator Clark Kerr last December evoked tributes and testimonials everywhere from the "New York Times" to local faculty bulletins. Architect of California's famous Master Plan of 1960, skilled labor mediator, first president of the University of California system, bete noir of the early student movement, and chair of…

  5. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  6. Ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser.

    PubMed

    Kowalevicz, A M; Schibli, T R; Kärtner, F X; Fujimoto, J G

    2002-11-15

    An ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser achieved by use of an extended cavity design is demonstrated. Mode-locking thresholds as low as 156 mW are achieved. Pulses with durations as short as 14 fs and bandwidths of >100 nm with output powers of ~15 mW at 50-MHz repetition rates are generated by only 200 mW of pump power. Reducing the pump power requirements to a factor of 10x less than required by most conventional Kerr-lens mode-locked lasers permits inexpensive, low-power pump lasers to be used. This will facilitate the development of low-cost, high-performance femtosecond Ti:Al(2)O(3) laser technology.

  7. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  8. Experimental Study of Hollow Formation

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Orlando, T. M.; Milliken, R. E.; Head, J. W.; Jones, B. M.; Anzures, B. A.

    2018-05-01

    Hollows are enigmatic features on the surface of Mercury caused by sublimation and/or space weathering. Here we propose a comprehensive experimental study in which candidate hollows materials are exposed to a range of relevant conditions.

  9. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  10. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  11. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    PubMed

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Specification aggregate quarry expansion: a case study demonstrating sustainable management of natural aggregate resources

    USGS Publications Warehouse

    Langer, William H.; Tucker, M.L.

    2003-01-01

    Many countries, provinces, territories, or states in the European Union, Australia, Canada, the United States, and elsewhere have begun implementing sustainability programs, but most of those programs stop short of sustainable management of aggregate resources. Sustainable practices do not always have to be conducted under the title of sustainability. This case study describes how Lafarge, a large multinational construction materials supplier, implemented the principles of sustainability even though there was an absence of existing local government policies or procedures addressing sustainable resource management. Jefferson County, Colorado, USA, is one of three counties in the six-county Denver, Colorado, region that has potentially available sources of crushed stone. Crushed stone comprises 30 percent of the aggregate produced in the area and plays a major role in regional aggregate resource needs. Jefferson County is home to four of the five crushed stone operations in the Denver region. Lafarge operates one of those four quarries. Lafarge recently proposed to expand its reserves by exchanging company-owned land for existing dedicated open space land adjacent to their quarry but owned by Jefferson County. A similar proposal submitted about 10 years earlier had been denied. Contrary to the earlier proposal, which was predicated on public relations, the new proposal was predicated on public trust. Although not explicitly managed under the moniker of sustainability, Lafarge used basic management principles that embody the tenets of sustainability. To achieve the goals of sustainable aggregate management where no governmental policies existed, Lafarge not only assumed their role of being a responsible corporate and environmental member of the community, but also assumed the role of facilitator to encourage and enable other stakeholders to responsibly resolve legitimate concerns regarding the Lafarge quarry proposal. Lafarge successfully presented an enlightened

  13. 55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. QUARRY TILE CUTTERS, SECOND FLOOR, NORTH WING. WORKERS PRESSED THE CUTTERS INTO SLABS OF CLAY, LIFTED THEM ONTO DRYING BOARDS AND PRESSED THE PLUNGERS TO RELEASE THE CUT TILES. REPRODUCTIONS CUTTERS ARE NOT USED IN PRODUCTION. WOODEN FORMS FOR PRODUCING CLAY SLABS WITH ROLLING PINS REST AGAINST THE WALL. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  14. Block Volume Estimation from the Discontinuity Spacing Measurements of Mesozoic Limestone Quarries, Karaburun Peninsula, Turkey

    PubMed Central

    Elci, Hakan; Turk, Necdet

    2014-01-01

    Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J v) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V b), the mean volumetric joint count (J vb) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V in) and volumetric joint count (J vi) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements. PMID:24696642

  15. Block volume estimation from the discontinuity spacing measurements of mesozoic limestone quarries, Karaburun Peninsula, Turkey.

    PubMed

    Elci, Hakan; Turk, Necdet

    2014-01-01

    Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J(v)) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V(b)), the mean volumetric joint count (J(vb)) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V(in)) and volumetric joint count (J(vi)) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements.

  16. Non-lead hollow point bullet

    DOEpatents

    Vaughn, Norman L.; Lowden, Richard A.

    2003-04-15

    The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.

  17. Evolution of the alteration process in time of granitic materials from Valdemorillo quarries used in built heritage, Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Alvarez de Buergo, M.; Fort, R.; Perez-Monserrat, E. M.

    2012-04-01

    Alteration of building materials used for heritage construction already starts in the quarries, where materials are subjected to both natural alteration and anthropic decay, this latter caused by the rock extracting, cutting and carving processes. Once the materials are placed in the building, they are exposed to other agents that accelerate their decay, especially if they are exposed to aggressive environments. Materials petrophysical properties tend to vary according to the alteration degree they have experienced, the longer they have been exposed to decay agents, the greater the properties change. Surface hardness of granitic rocks tend to diminish when they deteriorate, increasing its porosity, which usually is reflected on a decrease of the ultrasound propagation velocity measurements. Ultrasound velocity and surface hardness were measured in 200 monzogranite ashlars use to build the Assumption of Our Lady church (Valdemorillo, Madrid, Spain). Ultrasound velocity was measured using the indirect transmission mode, with 54 kHz frequency transductors, and surface hardness by means of the Schmidt hammer rebound tester. This monument was erected in different building stages. The starting point was a Mozarab or Visigoth defensive tower (8th century). Templars readapt it to a castle-convent (12th and 14th centuries), the tower being converted into a higher bell-tower. During the 14th-15th centuries the Cistercian Order made significant modifications of the complex, being the construction of the Chapter House one of the last enlargements during the 17th century. The quarries located in the surroundings of the monument were used for the first building stages. In the recent fronts of these quarries that have been used along the 20th century, ultrasound and hardness measurements were performed to obtain the values of these parameters in unaltered materials to compare them to those measured in ashlars from different constructive periods. A total of 50 recent front

  18. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  19. Comparative study of modified bitumen binder properties collected from mixing plant and quarry.

    NASA Astrophysics Data System (ADS)

    Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.

    2017-11-01

    Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.

  20. On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jørgen

    2011-05-01

    It is well known that the Kerr-NUT-AdS-dS black hole admits two linearly independent Killing vectors and possesses a hidden symmetry generated by a rank-2 Killing tensor. The near-horizon geometry of an extremal Kerr-NUT-AdS-dS black hole admits four linearly independent Killing vectors, and we show how the hidden symmetry of the black hole itself is carried over by means of a modified Killing-Yano potential which is given explicitly. We demonstrate that the corresponding Killing tensor of the near-horizon geometry is reducible as it can be expressed in terms of the Casimir operators formed by the four Killing vectors.

  1. Rotating Black Holes and the Kerr Metric

    NASA Astrophysics Data System (ADS)

    Kerr, Roy Patrick

    2008-10-01

    Since it was first discovered in 1963 the Kerr metric has been used by relativists as a test-bed for conjectures on worm-holes, time travel, closed time-like loops, and the existence or otherwise of global Cauchy surfaces. More importantly, it has also used by astrophysicists to investigate the effects of collapsed objects on their local environments. These two groups of applications should not be confused. Astrophysical Black Holes are not the same as the Kruskal solution and its generalisations.

  2. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Liu, Sheng; Department of Physics, University of Maryland, Baltimore County

    2015-02-02

    We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. Wemore » experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.« less

  3. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  4. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  5. Optical activity via Kerr nonlinearity in a spinning chiral medium

    NASA Astrophysics Data System (ADS)

    Khan, Anwar Ali; Bacha, Bakht Amin; Khan, Rahmat Ali

    2016-11-01

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology.

  6. Process for making hollow carbon spheres

    DOEpatents

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  7. Method to fabricate hollow microneedle arrays

    DOEpatents

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  8. Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav

    2018-04-01

    We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.

  9. The Electrospun Ceramic Hollow Nanofibers

    PubMed Central

    Davoudpour, Yalda; Habibi, Youssef; Elbahri, Mady

    2017-01-01

    Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate). In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D) nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use. PMID:29120403

  10. Radon-222 signatures of natural ventilation regimes in an underground quarry.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Crouzeix, Catherine; Morat, Pierre; Le Mouël, Jean Louis

    2004-01-01

    Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems.

  11. Effect of the Kerr Metric on Photosperic Radius Expansion in X Ray Burst

    NASA Astrophysics Data System (ADS)

    Kalita, S.; Barman, A.

    2017-12-01

    The main objective of this paper is to study general relativistic effects on the photospheric radius expansion during an X-ray burst. We examine how the Kerr metric causes a shift in the effective temperature and radiation flux with respect to the Schwarzschild values during mass accretion onto a neutron star or a black hole resulting in the X-ray burst. The spin of the compact object is used up to the maximal Kerr limit χ = 0.99 with different latitudes of accretion emission. The amplitude of temperature shift relative to the Schwarzschild case is found to be δ T/ T ≈ - (10-3 - 10-4) for the range χ = 0.1 - 0.99 at latitudes θ = 0o , 30o, 45o and 88o. The ratio of emission flux in the Kerr metric to that in the Schwarzschild metric, F(K)/F(S), is found to be less than unity. It goes up to a maximum of 0.9 for the lowest nonzero value of the spin parameter (i.e., 0.1). For the maximal Kerr limit, χ = 0.99 , it saturates near 0.8. This effect is more prominent towards the pole. This reduction in temperature and flux is found to be consistent with the absence of photospheric radius expansion in the X Ray burst LMXB 4U 1608-52, observed by NuSTAR. Although this is not uniquely ascribed to the metric, it is believed that the spacetime metric effect in the burst phenomena can be used as a probe for testing general relativity. Also, the shift in temperature or the radiation flux might have an observable signature in the element synthesis processes in such environments.

  12. Fragmentation, Cost and Environmental Effects of Plaster Stemming Method for Blasting at A Basalt Quarry

    NASA Astrophysics Data System (ADS)

    Cevizci, Halim

    2014-10-01

    In this study, the plaster stemming application for blasting at a basalt quarry is studied. Drill cuttings are generally used in open pits and quarries as the most common stemming material since these are most readily available at blast sites. However, dry drill cuttings eject very easily from blastholes without offering much resistance to blast energy. The plaster stemming method has been found to be better than the drill cuttings stemming method due to increased confinement inside the hole and better utilization of blast explosive energy in the rock. The main advantage of the new stemming method is the reduction in the cost of blasting. At a basalt quarry, blasting costs per unit volume of rock were reduced to 15% by increasing burden and spacing distances. In addition, better fragmentation was obtained by using the plaster stemming method. Blast trials showed that plaster stemming produced finer material. In the same blast tests, +30 cm size fragments were reduced to 47.3% of the total, compared to 32.6% in the conventional method of drill cuttings stemming. With this method of stemming, vibration and air shock values increased slightly due to more blast energy being available for rock breakage but generally these increased values were small and stayed under the permitted limit for blast damage criteria unless measuring distance is too close.

  13. Magneto-optical Kerr spectroscopy of noble metals

    NASA Astrophysics Data System (ADS)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the

  14. Hollow latex particles: synthesis and applications.

    PubMed

    McDonald, Charles J; Devon, Michael J

    2002-12-02

    One of the major developments in emulsion polymerization over the last two decades has been the ability to make hollow latex particles. This has contributed many fundamental insights into the synthesis and the development of structure in particles. Hollow latex particles also enhance the performance of industrial coatings and potentially are useful in other technologies such as microencapsulation and controlled release. Ever since the publication of the initial process patents describing these particles, there has been a global R&D effort to extend the synthetic techniques and applications. One prominent synthetic approach to hollow particles is based on osmotic swelling. This dominates the literature, and usually starts with the synthesis of a structured latex particle containing an ionizable core that is subsequently expanded with the addition of base. Fundamental to this approach are a sophisticated control of transport phenomena, chemical reactivity within the particle, and the thermoplastic properties of the polymer shell. Hydrocarbon encapsulation technology has also been employed to make hollow latex particles. One approach involves a dispersed ternary system that balances transport, conversion kinetics, and phase separation variables to achieve the hollow morphology. Other techniques, including the use of blowing agents, are also present in the literature. The broad range of approaches that affords particles with a hollow structure demonstrates the unique flexibility of the emulsion polymerization process.

  15. Perturbations of the Kerr black hole and the boundness of linear waves

    NASA Astrophysics Data System (ADS)

    Eskin, G.

    2010-11-01

    Artificial black holes (also called acoustic or optical black holes) are the black holes for the linear wave equation describing the wave propagation in a moving medium. They attracted a considerable interest of physicists who study them to better understand the black holes in general relativity. We consider the case of stationary axisymmetric metrics and we show that the Kerr black hole is not stable under perturbations in the class of all axisymmetric metrics. We describe families of axisymmetric metrics having black holes that are the perturbations of the Kerr black hole. We also show that the ergosphere can be determined by boundary measurements. Finally, we prove the uniform boundness of the solution in the exterior of the black hole when the event horizon coincides with the ergosphere.

  16. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes lessmore » cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.« less

  17. EPR, SEM and XRD investigation of ornamental limestone and marbles from some renowned Romanian quarries.

    NASA Astrophysics Data System (ADS)

    Covaci, D.; Costea, C.; Dumitras, D.; Duliu, O. G.

    2012-04-01

    Ornamental limestone and marble samples were collected and analysed by means of Electron Paramagnetic Resonance (EPR), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), in order to evidence any systematic peculiarities able to be used in further provenance studies as well as to get more detailed information regarding geochemistry and mineralogy of three of the most important deposits from Romania. In this respect, 20 samples of limestone (Arnota quarry, Capatani Mountains and Mateias South quarry, Iezer Mountains) and 9 of calci-dolomitic marble (Porumbacu de Sus quarry, Fagaras Mountains) were collected over a significant sampling area. EPR spectroscopy, primarily used to asset the degree of homogeneity of considered samples, evidenced, for both Arnota and Mateias South limestone, the presence of a typical six hyperfine lines spectrum of Mn2+ ions in calcite but no traces of Fe ferromagnetic clusters. A more careful investigation has showed that although within the same quarry, there were no significant differences regarding EPR spectra, the resonance lines were systematic narrower in the case of Mateias South samples which suggested a lower content of divalent manganese ions. The Porumbacu calci-dolomitic marble, presented a more intricate Mn2+ spectrum, consisting of a superposition of typical dolomitic and calcitic spectra. Again, the EPR spectra were almost identical, attesting, as in the previous cases, a relative uniform distribution of paramagnetic Mn2+ ions within quarry. In the case of SEM, scattered, back scattered and absorbed electron modes were used to visualise the mineral formations on the sample surfaces while an EDAX quantitative analysis was used to determine the content of the most abundant elements. Although, at a first inspection, both groups of limestone looked almost similar, displaying a great variety of randomly orientated micro-crystalline agglomeration, only in the case of Arnota samples, we have noticed the presence of

  18. U-series dating of the Late Pleistocene mammalian fauna from Wood Quarry (Steetley), Nottinghamshire, UK

    NASA Astrophysics Data System (ADS)

    Pike, A. W. G.; Eggins, S.; Grün, R.; Hedges, R. E. M.; Jacobi, R. M.

    2005-01-01

    We present the U-series dating of bones from Wood Quarry (Steetley Quarry Cave) using the diffusion-adsorption model to account for uranium uptake. The results give a weighted mean date of 66.8 ± 3.0 kyr, placing this assemblage within or just before Marine Oxygen Isotope Stage 4. The fauna is thought to correlate with the Banwell Bone Cave mammal assemblage-zone of the Early Devensian in Britain. Our results support the idea that this assemblage-zone immediately precedes the assemblage represented nearby at Pin Hole in Creswell Crags which is contemporary with the Mid-Devensian and correlates with MIS 3. Our dates, and dates for the Banwell Bone Cave mammal assemblage-zone from Stump Cross Cavern and evidence from other sites may indicate a longevity for this fauna.

  19. Quarries as educational resources - a research with students of a secondary school of Portugal

    NASA Astrophysics Data System (ADS)

    Filipe, Fernanda; Henriques, Maria Helena

    2015-04-01

    This work describes the results obtained in a research on science education involving 18 students of Biology and Geology of the 10th grade (15 years old) of the Secondary School of Figueiró dos Vinhos (Central Portugal). Framed on the curricular topic "Earth, a very special planet", the research included the conception, implementation and evaluation of an educational intervention aiming to answer the question: "How to stimulate meaningful and relevant learning about sustainable exploitation of geological resources, namely limestone?" The intervention occurred along 8 classes of 90 minutes each, which included practical work developed in small groups (3 students/each), and several activities both in the field and in the classroom (prior and after the fieldtrip). From the methodological point of view, this research is qualitative in nature, a study-case type, with data resulting from direct observation and content analysis of the answers presented by students to questionnaires (diagnostic and intervention assessment) and to worksheets, expressly created for the research. The main goal of the intervention was that the students, by developing practical activities centered upon a field trip to an abandoned limestone quarry located close to their homes, could learn to recognize the geological impacts arising from the exploitation of geological resources and acquire skills for collecting and processing relevant information about existing rules that control the operations in quarries, in order to develop critical thinking about the nature of exploitation of these types of resources, which may hinder the promotion of sustainable development. Concerning the intervention assessment, results reinforced the idea that quarries can provide an educational resource of great value for promoting substantive knowledge on geosciences, urgently needed and consistent with the development of critical and intervenient citizens, able to decide, at the right moment, how to behave

  20. ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Yun, Kiyun; Yoon, Suk-Jin

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integrationmore » step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.« less

  1. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    NASA Astrophysics Data System (ADS)

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico

    2016-04-01

    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same

  2. U.S. Environmental Protection Agency's Robert S. Kerr Environmental Research Center, Ada, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar-Nagy, S.; Voss, P.; Van Geet, O.

    2006-10-01

    U.S. EPA's Robert S. Kerr Environmental Research Center, Ada, Oklahoma, has reduced its annual energy consumption by 45% by upgrading its building mechanical system and incorporating renewable energy.

  3. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  4. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  5. 28,000 Hour Xenon Hollow Cathode LifeTest Results

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1997-01-01

    The International Space Station Plasma Contactor System requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. Critical components of the HCA include the hollow cathode and electron emitter. A series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify the hollow cathode design and contamination control protocols. The life test accumulated 27,800 hours of operation before failing to ignite. The hollow cathode exhibited relatively small changes in operating parameters over the course of the test. This life test is the longest duration test of a high current xenon hollow cathode reported to date.

  6. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs 4 Sb 12

    DOE PAGES

    Levenson-Falk, Eli M.; Schemm, E. R.; Aoki, Y.; ...

    2018-05-04

    Here, we present polar Kerr effect measurements of the filled skutterudite superconductor PrOs 4Sb 12. Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θ K develops below the superconducting transition, saturating at ~300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θ K(T) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at Tmore » C2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs 4Sb 12.« less

  7. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs 4 Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levenson-Falk, Eli M.; Schemm, E. R.; Aoki, Y.

    Here, we present polar Kerr effect measurements of the filled skutterudite superconductor PrOs 4Sb 12. Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θ K develops below the superconducting transition, saturating at ~300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θ K(T) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at Tmore » C2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs 4Sb 12.« less

  8. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs4Sb12

    NASA Astrophysics Data System (ADS)

    Levenson-Falk, E. M.; Schemm, E. R.; Aoki, Y.; Maple, M. B.; Kapitulnik, A.

    2018-05-01

    We present polar Kerr effect measurements of the filled skutterudite superconductor PrOs4 Sb12 . Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θK develops below the superconducting transition, saturating at ˜300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θK(T ) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at TC 2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs4 Sb12 .

  9. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  10. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  11. Kerr effect from diffractive skew scattering in chiral px +/- ipy superconductors

    NASA Astrophysics Data System (ADS)

    König, Elio; Levchenko, Alex

    We calculate the temperature dependent anomalous ac Hall conductance σH (Ω , T) for a two-dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4. We concentrate on a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors. This work was financially supported in part by NSF Grants No. DMR-1606517 and ECCS-1560732 and at U of Wisconsin by the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

  12. Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

    PubMed

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2016-09-02

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

  13. Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

    DOE PAGES

    Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt; ...

    2017-05-18

    We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.

  14. Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt

    We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.

  15. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girón-Sedas, J. A.; Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali; Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  16. Optical Kerr spatiotemporal dark extreme waves

    NASA Astrophysics Data System (ADS)

    Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio

    2018-02-01

    We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.

  17. Minimising Backbreak at the Dewan Cement Limestone Quarry Using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Muhammad, Khan; Shah, Akram

    2017-12-01

    Backbreak, defined as excessive breakage behind the last row of blastholes in blasting operations at a quarry, causes destabilisation of rock slopes, improper fragmentation, minimises drilling efficiency. In this paper an artificial neural network (ANN) is applied to predict backbreak, using 12 input parameters representing various controllable factors, such as the characteristics of explosives and geometrical blast design, at the Dewan Cement limestone quarry in Hattar, Pakistan. This ANN was trained with several model architectures. The 12-2-1 ANN model was selected as the simplest model yielding the best result, with a reported correlation coefficient of 0.98 and 0.97 in the training and validation phases, respectively. Sensitivity analysis of the model suggested that backbreak can be reduced most effectively by reducing powder factor, blasthole inclination, and burden. Field tests were subsequently carried out in which these sensitive parameters were varied accordingly; as a result, backbreak was controlled and reduced from 8 m to less than a metre. The resulting reduction in powder factor (kg of explosives used per m3 of blasted material) also reduced blasting costs.

  18. Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Sam R.; Barack, Leor; Wardell, Barry

    2011-10-15

    This is the second in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic 'puncture' based on the Detweiler-Whiting decomposition, (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m-modes in 2+1 dimensions with a finite-difference scheme, and (iv) reconstruction of the physical self-force from the mode sum. Here we report an implementation of themore » method to compute the scalar-field self-force along circular equatorial geodesic orbits around a Kerr black hole. This constitutes a first time-domain computation of the self-force in Kerr geometry. Our time-domain code reproduces the results of a recent frequency-domain calculation by Warburton and Barack, but has the added advantage of being readily adaptable to include the backreaction from the self-force in a self-consistent manner. In a forthcoming paper--the third in the series--we apply our method to the gravitational self-force (in the Lorenz gauge).« less

  19. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  20. Formation of Uniform Hollow Silica microcapsules

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Kim, Chanjoong

    2012-02-01

    Microcapsules are small containers with diameters in the range of 0.1 -- 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  1. Formation of Uniform Hollow Silica microcapsules

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  2. Microring embedded hollow polymer fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  3. Electrochemical system and method for electropolishing hollow metal bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    A method and system for electrochemically machining a hollow body of a metal or a metal alloy. An electrode is positioned within a hollow body including a metal or metal alloy, where the hollow body has a variable internal diameter. The hollow body is oriented vertically, with the electrode oriented vertically therein. The hollow body is at least partially filled with an aqueous, acidic electrolyte solution, the electrolyte solution being devoid of hydrofluoric acid and having a viscosity less than 15 cP. An electric current is passed between the hollow body and the electrode, where the electric current includes amore » plurality of anodic pulses and a plurality of cathodic pulses, and where the cathodic pulses are interposed between at least some of the anodic pulses.« less

  4. 77 FR 10472 - San Bernardino National Forest, Mountaintop Ranger District, California, Mitsubishi South Quarry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Cushenbury Cement Plant. Concurrent reclamation would be conducted throughout the life of the quarry and, at... the lead state agency under the California Environmental Quality Act (CEQA), address specific... grades of limestone to meet the feed requirement for the cement plant would not be adequate for the life...

  5. Nonlinear Kerr enhancement of the Sagnac effect in a coherently coupled array of optical microresonators

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Search, Christopher

    2013-03-01

    Optical gyroscopes based on the Sagnac effect are of great interest both theoretically and practically. Previously it has been suggested a nonlinear Kerr medium inserted into a ring resonator gyroscope can largely increase the rotation sensitivity due to an instability caused by the non-reciprocal self-phase and cross-phase modulations. Recently, coupled microresonator arrays such as Side-Coupled Integrated Spaced Sequence of Resonators (SCISSOR) and Coupled Resonator Optical Waveguides (CROW) have drawn interest as potential integrated gyroscopes due to the sensitivity enhancement resulting from distributed interference between resonators. Here we analyze a SCISSOR system, which consists of an array of microresonators evanescently coupled to two parallel bus waveguides in the presence of a strong intra-resonator Kerr nonlinearity. We show that the distributed interference in the waveguides combined with the nonlinearly enhanced Sagnac effect in the resonators can further improve the sensitivity compared with either a single resonator of equal footprint or SCISSOR without a Kerr nonlinearity. Numerical simulation shows that bistability in the SCISSOR occurs and the rotation sensitivity dIoutput/dω can go to infinity near the boundaries of the bistable region.

  6. Selection of site specific vibration equation by using analytic hierarchy process in a quarry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalayci, Ulku, E-mail: ukalayci@istanbul.edu.tr; Ozer, Umit, E-mail: uozer@istanbul.edu.tr

    This paper presents a new approach for the selection of the most accurate SSVA (Site Specific Vibration Attenuation) equation for blasting processes in a quarry located near settlements in Istanbul, Turkey. In this context, the SSVA equations obtained from the same study area in the literature were considered in terms of distance between the shot points and buildings and the amount of explosive charge. In this purpose, 11 different SSVA equations obtained from the study area in the past 12 years, forecasting capabilities according to designated new conditions, using 102 vibration records as test data obtained from the study areamore » was investigated. In this study, AHP (Analytic Hierarchy Process) was selected as an analysis method in order to determine the most accurate equation among 11 SSAV equations, and the parameters such as year, distance, charge, and r{sup 2} of the equations were used as criteria for AHP. Finally, the most appropriate equation was selected among the existing ones, and the process of selecting according to different target criteria was presented. Furthermore, it was noted that the forecasting results of the selected equation is more accurate than that formed using the test results. - Highlights: • The optimum Site Specific Vibration Attenuation equation for blasting in a quarry located near settlements was determined. • It is indicated that SSVA equations changing over the years don’t give always accurate estimates at changing conditions. • Selection of the blast induced SSVA equation was made using AHP. • Equation selection method was highlighted based on parameters such as charge, distance, and quarry geometry changes (year).« less

  7. A study for testing the Kerr metric with AGN iron line eclipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    2016-04-01

    Recently, two of us have studied iron line reverberation mapping to test black hole candidates, showing that the time information in reverberation mapping can better constrain the Kerr metric than the time-integrated approach. Motivated by this finding, here we explore the constraining power of another time-dependent measurement: an AGN iron line eclipse. An obscuring cloud passes between the AGN and the distant observer, covering different parts of the accretion disk at different times. Similar to the reverberation measurement, an eclipse might help to better identify the relativistic effects affecting the X-ray photons. However, this is not what we find. Inmore » our study, we employ the Johannsen-Psaltis parametrisation, but we argue that our conclusions hold in a large class of non-Kerr metrics. We explain our results pointing out an important difference between reverberation and eclipse measurements.« less

  8. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  9. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  10. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  11. SPRUCE Hollow Elevation Data for Experimental Plots Beginning in 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, N. A.; Sebestyen, S. D.

    2017-01-01

    This data set provides hollow elevation data for the 17 SPRUCE experimental plots in the S1 bog on the Marcell Experimental Forest. Hollows were selected for measurement by walking along each octagonal boardwalk segment in a plot and identifying where a hollow intersected the boardwalk. The vertical distance between the surface of the boardwalk (with a known elevation) and the surface of the hollow was measured and the absolute elevation (in meters amsl) of the hollow surface was calculated. The hollow elevation measurements were carried out in October 2015, May 2016, and October 2016. These measurements will be repeated annuallymore » or more frequently.« less

  12. An alternative theoretical model for an anomalous hollow beam.

    PubMed

    Cai, Yangjian; Wang, Zhaoying; Lin, Qiang

    2008-09-15

    An alternative and convenient theoretical model is proposed to describe a flexible anomalous hollow beam of elliptical symmetry with an elliptical solid core, which was observed in experiment recently (Phys. Rev. Lett, 94 (2005) 134802). In this model, the electric field of anomalous hollow beam is expressed as a finite sum of elliptical Gaussian modes. Flattopped beams, dark hollow beams and Gaussian beams are special cases of our model. Analytical propagation formulae for coherent and partially coherent anomalous hollow beams passing through astigmatic ABCD optical systems are derived. Some numerical examples are calculated to show the propagation and focusing properties of coherent and partially coherent anomalous hollow beams.

  13. Community Involvement Plan for Northeast Church Rock and Kerr-McGee Quivira Mine Sites

    EPA Pesticide Factsheets

    This Community Involvement Plan outlines opportunities for individual participation and meaningful information sharing regarding EPA’s activities in communities near Northeast Churchrock and Kerr-McGee Quivira Mine Sites.

  14. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  15. Method for producing small hollow spheres

    DOEpatents

    Hendricks, C.D.

    1979-01-09

    Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

  16. Method for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1979-01-09

    Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  17. Composite material hollow antiresonant fibers.

    PubMed

    Belardi, Walter; De Lucia, Francesco; Poletti, Francesco; Sazio, Pier J

    2017-07-01

    We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization and characterization of a composite silicon/glass-based hollow antiresonant fiber.

  18. Assessing the role of coastal characteristics in erosional process of rocky shores by boulder quarrying.

    NASA Astrophysics Data System (ADS)

    Causon Deguara, Joanna; Gauci, Ritienne

    2017-04-01

    Rocky coasts are considered as relatively stable coastlines, subject to erosional processes that change the landscape over long periods of time. Block quarrying is one such process, occurring when hydraulic pressure from wave impact dislodges boulders from within the outcropping bedrock. These dislodged boulders can be either deposited inland or dragged seaward by further wave action. This process can be evidenced from boulder deposits on the coast, as well as sockets and detachment scarps that are identified at the shoreline and in the backshore. This study seeks to identify the role of attributes such as aspect, geological structure and water depth have on erosion of rocky coasts through boulder quarrying processes. This is being done through observation of coastline morphology and an analysis of boulder accumulations and erosional features identified on a 3km stretch of rocky shore. The study area is situated on the SE coast of the Island of Malta (Central Mediterranean). The coastline being analysed generally trends NW - SE and consists of a series of limestone beds that dip slightly towards the NE. The boulder deposits observed along the site vary in size, quantity and position with respect to the shoreline. Whilst some areas exhibit large boulder accumulations, other areas are distinguished by the complete absence of such deposits. Taking into consideration the wave climate, the variable size, quantity and distribution of boulder accumulations observed along the site may indicate that geological structure and aspect play an important role in boulder dislodgment by wave action. Key words: rock coast, boulder quarrying, erosional process, Malta

  19. Regional economic impact study for the McClellan Kerr Arkansas River Navigation System.

    DOT National Transportation Integrated Search

    2015-10-01

    The McClellan-Kerr Arkansas River Navigation System (MKARNS), located in Oklahoma and : Arkansas, contains 440 miles of waterway and is a crucial part of the United States : transportation system. The MKARNS strategically connects the heartland of...

  20. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    PubMed Central

    Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio

    2010-01-01

    Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  1. Method of making a non-lead hollow point bullet

    DOEpatents

    Vaughn, Norman L.; Lowden, Richard A.

    2003-10-07

    The method of making a non-lead hollow point bullet has the steps of a) compressing an unsintered powdered metal composite core into a jacket, b) punching a hollow cavity tip portion into the core, c) seating an insert, the insert having a hollow point tip and a tail protrusion, on top of the core such that the tail protrusion couples with the hollow cavity tip portion, and d) swaging the open tip of the jacket.

  2. The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-10-01

    The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.

  3. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    PubMed

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Life as the Middle Child: A Conversation With Mary Margaret Kerr

    ERIC Educational Resources Information Center

    Teagarden, James M.; Zabel, Robert H.; Kaff, Marilyn S.

    2015-01-01

    As part of an ongoing oral history project, a conversation was held with Dr. Mary Margaret Kerr on the past, present, and possible future of the field of providing services to children with emotional-behavioral disorders. Dr. Wood stresses the increasing importance of providing an interdisciplinary approach to meet the needs for children or, as…

  5. Spectroscopy of Kerr black holes with Earth- and space-based interferometers

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2017-01-01

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through ``gravitational spectroscopy,'' i.e. the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z 3 . In contrast, eLISA-like detectors should carry out a few - or even hundreds - of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.

  6. Energy efficient engine shroudless, hollow fan blade technology report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.

    1981-01-01

    The Shroudless, Hollow Fan Blade Technology program was structured to support the design, fabrication, and subsequent evaluation of advanced hollow and shroudless blades for the Energy Efficient Engine fan component. Rockwell International was initially selected to produce hollow airfoil specimens employing the superplastic forming/diffusion bonding (SPF/DB) fabrication technique. Rockwell demonstrated that a titanium hollow structure could be fabricated utilizing SPF/DB manufacturing methods. However, some problems such as sharp internal cavity radii and unsatisfactory secondary bonding of the edge and root details prevented production of the required quantity of fatigue test specimens. Subsequently, TRW was selected to (1) produce hollow airfoil test specimens utilizing a laminate-core/hot isostatic press/diffusion bond approach, and (2) manufacture full-size hollow prototype fan blades utilizing the technology that evolved from the specimen fabrication effort. TRW established elements of blade design and defined laminate-core/hot isostatic press/diffusion bonding fabrication techniques to produce test specimens. This fabrication technology was utilized to produce full size hollow fan blades in which the HIP'ed parts were cambered/twisted/isothermally forged, finish machined, and delivered to Pratt & Whitney Aircraft and NASA for further evaluation.

  7. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    NASA Astrophysics Data System (ADS)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  8. The effect of damping on a quantum system containing a Kerr-like medium

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.; Sebawe Abdalla, M.; Obada, A.-S. F.

    2018-05-01

    An analytical description is given for a model which represents the interaction between Su(1,1) and Su(2) quantum systems taking into account Su(1,1)-cavity damping and Kerr medium properties. The analytic solution for the master equation of the density matrix is obtained. The examination of the effects of the damping parameter as well as the Kerr-like medium features is performed. The atomic inversion is discussed where the revivals and collapses phenomenon is realized at the considered period of time. Our study is extended to include the degree of entanglement where the system shows partial entanglement in all cases, however, disentanglement is also observed. The death and rebirth is seen in the system provided one selects the suitable values of the parameters. The correlation function of the system shows non-classical as well as classical behavior.

  9. Weakly charged generalized Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2017-08-01

    We find an explicit solution of the source free Maxwell equations in a generalized Kerr-NUT-(A)dS spacetime in all dimensions. This solution is obtained as a linear combination of the closed conformal Killing-Yano tensor hab, which is present in such a spacetime, and a derivative of the primary Killing vector, associated with hab. For the vanishing cosmological constant the obtained solution reduces to the Wald's electromagnetic field generated from the primary Killing vector.

  10. Kerr microscopy study of exchange-coupled FePt/Fe exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Hussain, Zaineb; Kumar, Dileep; Reddy, V. Raghavendra; Gupta, Ajay

    2017-05-01

    Magnetization reversal and magnetic microstructure of top soft magnetic layer (Fe) in exchange spring coupled L10 FePt/Fe is studied using high resolution Kerr microscopy. With remnant state of the hard magnetic layer (L10 FePt) as initial condition, magnetization loops along with magnetic domains are recorded for the top soft magnetic layer (Fe) using Kerr microscopy. Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. It is also observed that one can tune the magnitude of hysteresis shift by reaching the remanent state from different saturating fields (HSAT) and also by varying the angle between measuring field and HSAT. The hysteresis loops and magnetic domains of top soft Fe layer demonstrate unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of established model of exchange bias phenomena framed for field-cooled ferromagnetic - antiferromagnetic bilayer systems.

  11. Reducing the risk of the collapse of the soil by macro system modeling the slopes stability of the quarries

    NASA Astrophysics Data System (ADS)

    Klimova, E. V.; Semeykin, A. Yu

    2018-01-01

    The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.

  12. Developments in Hollow Graphite Fiber Technology

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)

    2002-01-01

    Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.

  13. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  14. Stone Quarrying, Crushing and Screening Facilities General Air Quality Permit Request for Coverage: US Silica - Parshall Transload Facility

    EPA Pesticide Factsheets

    Documents related to Request for Coverage under Stone Quarrying, Crushing, and Screening Facilities General Permit Indian Reservation, US Silica, Parshall Transload Facility, Fort Berthold Indian Reservation, North Dakota.

  15. Kerr nonlinearity and nonlinear absorption coefficient in a four-level M-model cylindrical quantum dot under the phenomenon of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Behroozian, B.; Askari, H. R.

    2018-07-01

    The Kerr nonlinearity and the nonlinear absorption coefficient in a four-level M-model of a GaAs cylindrical quantum dot (QD) with parabolic potential under electromagnetically induced transparency are investigated. By solving the density matrix equations in the steady-state, the third order susceptibility is obtained. Then, by using the real and imaginary parts of third order susceptibility, the Kerr nonlinearity and the nonlinear absorption coefficient, respectively, for this system are computed. The effects of the radius and height of the cylindrical QD are then investigated. In addition, the effects of the control laser fields on the Kerr nonlinearity and the nonlinear absorption coefficient are investigated.

  16. Repulsive Effect for Unbound High Energy Particles Along Rotation Axis in Kerr-Taub-NUT Spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Chen, Song-Bai

    2018-04-01

    We have investigated the acceleration of the unbound high energy particles moving along the rotation axis in the Kerr-Taub-NUT spacetime, and then study the dependence of the repulsive effects on the NUT charge for the particles in the spacetime. Whether the repulsive effects with the NUT charge become stronger depends on the Carter constant, the position and velocity of the particles themselves. We also present numerically the changes of the observable velocity and acceleration with the NUT charge for the unbound particles in the Kerr-Taub-NUT spacetime. Supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 17A124, and the Construct Program of Key Disciplines in Hunan Province

  17. A 200 W Hall thruster with hollow indented anode

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Sun, Hezhi; Wei, Liqiu; Li, Peng; Su, Hongbo; Peng, Wuji; Yu, Daren

    2017-10-01

    A hollow indented anode is proposed for increasing the neutral gas density in a discharge channel, in order to improve the performance of the thruster. The experimental results show that a hollow indented anode structure can effectively improve the performance, compared to a hollow straight anode under similar operating conditions, in terms of thrust, propellant utilization, ionization rate, and anode efficiency. Furthermore, simulations show that the indented anode can effectively increase the neutral gas density in a discharge channel and on the centerline of the channel, compared to a hollow straight anode. In addition, it can increase the ionization rate in the channel and the pre-ionization in the anode. Therefore, the hollow indented anode could be considered as an important design idea for improving thruster performance.

  18. An Atomic Lens Using a Focusing Hollow Beam

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Yin, Jian-Ping; Wang, Yu-Zhu

    2003-05-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2pi-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist wo of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  19. Determination of circulation and turbidity patterns in Kerr Lake from LANDSAT MSS imagery. [Kerr Lake, Virginia, North Carolina

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1981-01-01

    The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  20. The "House" in Half Hollow Hills

    ERIC Educational Resources Information Center

    Karnilow, Sheldon

    2006-01-01

    In this article, the author relates how he initiated a systemic improvement to Half Hollow Hills school district when he became its superintendent. He relates that although he came to Half Hollow Hills with a deep understanding of the models of systemic change, he did not bring with him a specific prescriptive plan for improvement. His plan for…

  1. Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

    NASA Astrophysics Data System (ADS)

    Kittipongvises, Suthirat

    2017-11-01

    Environmental impacts of the mineral extraction have been a public concern. Presently, there is widespread global interest in the area of mining and its sustainability that focused on the need to shift mining industry to a more sustainable framework. The aim of this study was to systematically assess all possible environmental and climate change related impacts of the limestone quarrying operation in Thailand. By considering the life cycle assessment method, the production processes were divided into three phases: raw material extraction, transportation, and comminution. Both IMPACT 2002+ and the Greenhouse Gas Protocol methods were used. Results of IMPACT 2002+ analysis showed that per 1 ton crushed limestone rock production, the total depletion of resource and GHGs emissions were 79.6 MJ and 2.76 kg CO2 eq., respectively. Regarding to the four damage categories, `resources' and `climate change' categories were the two greatest environmental impacts of the limestone rock production. Diesel fuel and electricity consumption in the mining processes were the main causes of those impacts. For climate change, the unit of CO2 eq. was expressed to quantify the total GHGs emissions. Estimated result was about 3.13 kg CO2 eq. per ton limestone rock product. The results obtained by the Greenhouse Gas Protocol were also similar to IMPACT 2002+ method. Electrical energy consumption was considered as the main driver of GHGs, accounting for approximately 46.8 % of total fossil fuel CO2 emissions. A final point should be noted that data uncertainties in environmental assessment over the complete life cycle of limestone quarrying operation have to be carefully considered.

  2. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.

    2017-12-01

    In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

  3. Gravitoelectromagnetic perturbations of Kerr-Newman black holes: stability and isospectrality in the slow-rotation limit.

    PubMed

    Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2013-06-14

    The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.

  4. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  5. Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide

    NASA Astrophysics Data System (ADS)

    Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan

    2012-06-01

    Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).

  6. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s

    PubMed Central

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-01-01

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of −7 dB on transmission has shown very promising applicability to all-optical communication networks. PMID:25923653

  7. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s.

    PubMed

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-04-29

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.

  8. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polewko-Klim, A., E-mail: anetapol@uwb.edu.pl; Uba, S.; Uba, L.

    2014-07-15

    A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulationmore » technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.« less

  9. Geochronological and Taxonomic Revisions of the Middle Eocene Whistler Squat Quarry (Devil’s Graveyard Formation, Texas) and Implications for the Early Uintan in Trans-Pecos Texas

    PubMed Central

    Campisano, Christopher J.; Kirk, E. Christopher; Townsend, K. E. Beth; Deino, Alan L.

    2014-01-01

    The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b. PMID:24988115

  10. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik

    2018-02-01

    (BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.

  11. New data towards the development of a comprehensive taphonomic framework for the Late Jurassic Cleveland-Lloyd Dinosaur Quarry, Central Utah

    PubMed Central

    Warnock, Jonathan P.; Eberhart, Shawn L.; Clawson, Steven R.; Noto, Christopher R.

    2017-01-01

    The Cleveland-Lloyd Dinosaur Quarry (CLDQ) is the densest deposit of Jurassic theropod dinosaurs discovered to date. Unlike typical Jurassic bone deposits, it is dominated by the presence of Allosaurus fragilis. Since excavation began in the 1920s, numerous hypotheses have been put forward to explain the taphonomy of CLDQ, including a predator trap, a drought assemblage, and a poison spring. In an effort to reconcile the various interpretations of the quarry and reach a consensus on the depositional history of CLDQ, new data is required to develop a robust taphonomic framework congruent with all available data. Here we present two new data sets that aid in the development of such a robust taphonomic framework for CLDQ. First, x-ray fluorescence of CLDQ sediments indicate elevated barite and sulfide minerals relative to other sediments from the Morrison Formation in the region, suggesting an ephemeral environment dominated by periods of hypereutrophic conditions during bone accumulation. Second, the degree of abrasion and hydraulic equivalency of small bone fragments dispersed throughout the matrix were analyzed from CLDQ. Results of these analyses suggest that bone fragments are autochthonous or parautochthonous and are derived from bones deposited in the assemblage rather than transported. The variability in abrasion exhibited by the fragments is most parsimoniously explained by local periodic re-working and re-deposition during seasonal fluctuations throughout the duration of the quarry assemblage. Collectively, these data support previous interpretations that the CLDQ represents an attritional assemblage in a poorly-drained overbank deposit where vertebrate remains were introduced post-mortem to an ephemeral pond during flood conditions. Furthermore, while the elevated heavy metals detected at the Cleveland-Lloyd Dinosaur Quarry are not likely the primary driver for the accumulation of carcasses, they are likely the result of multiple sources; some metals may be

  12. The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-10-01

    Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.

  13. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  14. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  15. Hollow tin/chromium whiskers

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Vianco, Paul T.; Li, James C. M.

    2010-05-01

    Tin whiskers have been an engineering challenge for over five decades. The mechanism has not been agreed upon thus far. This experiment aimed to identify a mechanism by applying compressive stresses to a tin film evaporated on silicon substrate with an adhesion layer of chromium in between. A phenomenon was observed in which hollow whiskers grew inside depleted areas. Using focused ion beam, the hollow whiskers were found to contain both tin and chromium. At the bottom of the depleted areas, thin tin/tin oxide film remained over the chromium layer. It indicates that tin transport occurred along the interface between tin and chromium layers.

  16. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  17. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  18. New route for hollow materials

    NASA Astrophysics Data System (ADS)

    Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.

    2016-08-01

    Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures.

  19. Subwavelength dark hollow focus of spirally polarized axisymmetric Bessel-modulated Gaussian beam

    NASA Astrophysics Data System (ADS)

    Gao, X. M.; Zhan, Q. F.; Wang, Q.; Yun, M. J.; Guo, H. M.; Zhuang, S. L.

    2011-09-01

    Dark hollow focus plays an important role in many optical systems. In this paper, dark hollow focal shaping of spirally polarized axisymmetric Bessel-modulated Gaussian beam is investigated by vector diffraction theory in detail. Results show that the dark hollow focus can be altered considerably by beam parameter and spiral parameter that indicates polarization spiral degree. One dark hollow focus and two dark hollow foci pattern may occur for certain spiral parameter, and the transverse size of dark hollow focus can be less than the diffraction limit size of bright focus. In addition, there may also appear two triangle dark hollow foci that are connected by one dark line focus.

  20. Abandoned mines and their impact on the environment: Case studies from Franklin and Sterling Mines, NJ and Rondout Quarry, NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkas, M.M.; Nehru, C.E.

    1995-09-01

    Water logged abandoned mines have an impact on the environment. In this project we selected abandoned mines from two sets of different ore bodies to learn about their environmental impact. Franklin and Sterling Pb-Zn mines, NJ and the limestone quarry in Rondout formation, NY were selected as case study examples. In the Pb-Zn mines metalimestone is the country rock and in the Rondout quarry limestone is the country rock. Soil water samples from selected strategic locations were analyzed for toxic and related heavy metal elements such as Pb, Zn, Cd, Cr and U. The levels of concentrations of these elementsmore » varied from one location to another according to the chemistry of the ore body and the ground movement throughout the area. In particular Cd, Cr and U concentration were variable from Franklin to Sterling mine. However, in the Rondout limestone (cement) quarry, higher concentrations of Cr and lower concentrations of Pb and Zn were noted. We conclude that ore body chemistry, mine dumps and tailing contaminated ponds along with the ground water movement throughout the area have an impact on the ground water and nearby river/stream contaminant chemistry in the areas.« less

  1. Phase space information in a non-linear quantum system containing a Kerr-like medium through Su(1, 1)-algebraic treatment

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Baset A.

    2018-05-01

    Analytical description for a Su(2)-quantum system interacting with a damped Su(1, 1)-cavity, which is filled with a non-linear Kerr medium, is presented. The dynamics of non-classicality of Su(1, 1)-state is investigated via the negative part of the Wigner function. We show that the negative part depends on the unitary interaction and the Kerr-like medium and it can be disappeared by increasing the dissipation rate and the detuning parameter. The phase space information of the Husimi function and its Wehrl density is very sensitive not only to the coupling to the environment and the unitary interaction but also to the detuning as well as to the Kerr-like medium. The phase space information may be completely erased by increasing the coupling to the environment. The coherence loss of the Su(2)-state is investigated via the Husimi Wehrl entropy. If the effects of the detuning parameter or/and of the Kerr-like medium are combined with the damping effect, the damping effect of the coupling to the environment may be weaken, and the Wehrl entropy is delayed to reach its steady-state value. At the steady-state value, the phase space information and the coherence are quickly lost.

  2. Stone Quarrying, Crushing and Screening Facilities General Air Quality Permit Request for Coverage: Unimin Corporation - Unimin Flat Storage

    EPA Pesticide Factsheets

    Documents related to Request for Coverage under Stone Quarrying, Crushing and Screening Facilities General Permit, for the Unimin Corporation Silica Sand Rail Transloading Facility on the Fort Berhold Indian Reservation, North Dakota.

  3. Clark Kerr's Multiversity and Technology Transfer in the Modern American Research University

    ERIC Educational Resources Information Center

    Sigurdson, Kristjan T.

    2013-01-01

    In the early 1960s, Clark Kerr, the famed American educationalist and architect of the California public higher education system, took up the task of describing the emergent model of the contemporary American university. Multiversities, as he called them, were the large powerful American universities that packaged the provision of undergraduate,…

  4. Hollow proppants and a process for their manufacture

    DOEpatents

    Jones, A.H.; Cutler, R.A.

    1985-10-15

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2,250 and 125 [mu]m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 [mu]m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing. 6 figs.

  5. Hollow proppants and a process for their manufacture

    DOEpatents

    Jones, Arfon H.; Cutler, Raymond A.

    1985-01-01

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2250 and 125 .mu.m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 .mu.m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing.

  6. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser

    NASA Astrophysics Data System (ADS)

    Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming

    2017-03-01

    In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.

  7. BOX-DEATH HOLLOW ROADLESS AREA, UTAH.

    USGS Publications Warehouse

    Weir, Gordon W.; Lane, Michael

    1984-01-01

    Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.

  8. Higher-order Kerr effect and harmonic cascading in gases.

    PubMed

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano

    2012-11-15

    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.

  9. Hawking radiation by Kerr black holes and conformal symmetry.

    PubMed

    Agullo, Ivan; Navarro-Salas, José; Olmo, Gonzalo J; Parker, Leonard

    2010-11-19

    The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

  10. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  11. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    PubMed

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  12. Near horizon symmetry and entropy formula for Kerr-Newman (A)dS black holes

    NASA Astrophysics Data System (ADS)

    Setare, Mohammad Reza; Adami, Hamed

    2018-04-01

    In this paper we provide the first non-trivial evidence for universality of the entropy formula 4 πJ 0 + J 0 - beyond pure Einstein gravity in 4-dimensions. We consider the Einstein-Maxwell theory in the presence of cosmological constant, then write near horizon metric of the Kerr-Newman (A)dS black hole in the Gaussian null coordinate system. We consider near horizon fall-off conditions for metric and U(1) gauge field. We find asymptotic combined symmetry generator, consists of diffeomorphism and U(1) gauge transformation, so that it preserves fall-off conditions. Consequently, we find supertranslation, supperrotation and multiple-charge modes and then we show that the entropy formula is held for the Kerr-Newman (A)dS black hole. Supperrotation modes suffer from a problem. By introducing new combined symmetry generator, we cure that problem.

  13. Housing Shortages in Urban Regions: Aggressive Interactions at Tree Hollows in Forest Remnants

    PubMed Central

    Davis, Adrian; Major, Richard E.; Taylor, Charlotte E.

    2013-01-01

    Urbanisation typically results in a reduction of hollow-bearing trees and an increase in the density of particularly species, potentially resulting in an increased level of competition as cavity-nesting species compete for a limited resource. To improve understanding of hollow usage between urban cavity-nesting species in Australia, particularly parrots, we investigated how the hollow-using assemblage, visitation rate, diversity and number of interactions varied between hollows within urban remnant forest and continuous forest. Motion-activated video cameras were installed, via roped access to the canopy, and hollow usage was monitored at 61 hollows over a two-year period. Tree hollows within urban remnants had a significantly different assemblage of visitors to those in continuous forest as well as a higher rate of visitation than hollows within continuous forest, with the rainbow lorikeet making significantly more visitations than any other taxa. Hollows within urban remnants were characterised by significantly higher usage rates and significantly more aggressive interactions than hollows within continuous forest, with parrots responsible for almost all interactions. Within urban remnants, high rates of hollow visitation and both interspecific and intraspecific interactions observed at tree hollows suggest the number of available optimal hollows may be limiting. Understanding the usage of urban remnant hollows by wildlife, as well as the role of parrots as a potential flagship for the conservation of tree-hollows, is vital to prevent a decrease in the diversity of urban fauna, particularly as other less competitive species risk being outcompeted by abundant native species. PMID:23555657

  14. Spectral Clustering and Geomorphological Analysis on Mercury Hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Pajola, M.; Galluzzi, V.; Giacomini, L.; Carli, C.; Cremonese, G.; Marzo, G. A.; Massironi, M.; Roush, T.

    2018-05-01

    Characterization of hollows located in different craters to understand whether there is a similar trend from a compositional point of view, and whether a possible correlation exists between spectral behavior of hollows and geomorphological units.

  15. Computing the Entropy of Kerr-Newman Black Hole Without Brick Walls Method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of Kerr-Newman black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in Kerr-Newman black hole and are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the calculation, the constant λ introduced in the generalized uncertainty principle is related to polar angle θ in an axisymmetric space-time.

  16. The modified Misgav-Ladach versus the Pfannenstiel-Kerr technique for cesarean section: a randomized trial.

    PubMed

    Xavier, Pedro; Ayres-De-Campos, Diogo; Reynolds, Ana; Guimarães, Mariana; Costa-Santos, Cristina; Patrício, Belmiro

    2005-09-01

    Modifications to the classic cesarean section technique described by Pfannenstiel and Kerr have been proposed in the last few years. The objective of this trial was to compare intraoperative and short-term postoperative outcomes between the Pfannenstiel-Kerr and the modified Misgav-Ladach (MML) techniques for cesarean section. This prospective randomized trial involved 162 patients undergoing transverse lower uterine segment cesarean section. Patients were allocated to one of the two arms: 88 to the MML technique and 74 to the Pfannenstiel-Kerr technique. Main outcome measures were defined as the duration of surgery, analgesic requirements, and bowel restitution by the second postoperative day. Additional outcomes evaluated were febrile morbidity, postoperative antibiotic use, postpartum endometritis, and wound complications. Student's t, Mann-Whitney, and Chi-square tests were used for statistical analysis of the results, and a p < 0.05 was considered as the probability level reflecting significant differences. No differences between groups were noted in the incidence of analgesic requirements, bowel restitution by the second postoperative day, febrile morbidity, antibiotic requirements, endometritis, or wound complications. The MML technique took on average 12 min less to complete (p = 0.001). The MML technique is faster to perform and similar in terms of febrile morbidity, time to bowel restitution, or need for postoperative medications. It is likely to be more cost-effective.

  17. High Cigarette and Poly-Tobacco Use Among Workers in a Dusty Industry: New Jersey Quarry Workers.

    PubMed

    Graber, Judith M; Worthington, Karen; Almberg, Kirsten S; Meng, Qingyu; Rose, Cecile S; Cohen, Robert A

    2016-04-01

    Tobacco use is high among US extraction and construction workers, who can also incur occupational dust exposure. Information on different types of tobacco use among quarry/mine workers is sparse. During mandated training sessions, New Jersey quarry workers were surveyed about their tobacco use. Prevalence was calculated for single and multiple tobacco use by demographic and workplace characteristics; logistic regression was used to assess associations with smoking. Two hundred forty (97.1%) workers completed surveys. Among respondents, 41.7% [95% confidence interval (95% CI) 35.4 to 48.3] currently used any tobacco product of whom 28.1% smoked cigarettes. In multivariate analysis, positive associations with smoking included working as a contractor versus mine employee (odds ratio 2.32, 95% CI 1.01 to 5.36) and a usual job title of maintenance (odds ratio 2.02, 95% CI 0.87 to 4.94). Industry-specific information may be helpful in developing targeted tobacco-cessation programs.

  18. On the way of Friuli "yellow villages": the use of a calcareous-dolomitic sandstone in the surroundings of the quarrying area through the centuries.

    NASA Astrophysics Data System (ADS)

    Frangipane, Anna

    2017-04-01

    The role of local stone building material in cultural and technological heritage is based on the definition of the area of use, as related to ancient transportation networks, allowing the movement of heavy blocks from the quarries to the building sites. It is the case of the result of several surveys carried out for the detection of the architectural elements, dating from Middle Age to 20th century, made of a yellowish calcareous-dolomitic sandstone, which have been found, hidden among renovated buildings and new construction, in Friuli region (NE Italy). on the way between the quarrying piedmont western area and the towns of Udine and Spilimbergo. Starting from the definition of the quarrying area, the contribution give notice of such architectural elements (frames, columns, …), both in vernacular architecture and in relevant buildings, putting in evidence the period of their realisation and their technological features.

  19. Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Lee, J.-W.; Jeong, J.-R.; Kim, D.-H.; Ahn, J. S.; Kim, J.; Shin, S.-C.

    2000-10-01

    We have constructed a three-configurational surface magneto-optical Kerr effect system, which provides the simultaneous measurements of the "polar," "longitudinal," and "transverse" Kerr hysteresis loops at the position where deposition is carried out in an ultrahigh vacuum growth chamber. The present system enables in situ three-dimensional vectorial studies of ultrathin film magnetism with a submonolayer sensitivity. We present three-configurational hysteresis loops measured during the growth of Co films on Pd(111), glass, and Pd/glass substrates.

  20. Analysis of conditions and the concept of multidirectional revitalization of the dolomite quarry in Siewierz

    NASA Astrophysics Data System (ADS)

    Pawełczyk, Katarzyna

    2018-01-01

    The development of mining of rock raw materials in Poland has significantly contributed to economic growth and the quality of life of local communities. However, mining activity, besides a number of positive effects, also implies broadly understood changes in the environment and the formation of brownfields. Reclamation and redevelopment of post-industrial areas, and especially post-mining areas, is currently a huge environmental and socio-economic challenge. Revitalization of post-mining areas is particularly important for small towns and municipalities, where mining was one of the main pillars of development and prosperity. An example of such a municipality is Siewierz in Silesian Voivodship. In the paper analysis the conditions have been conducted and the concept of revitalization of dolomite quarry Górnicze Zakłady Dolomitowe S.A. has been proposed. The AHP method has been used to analyse and select the optimal method of revitalization. As a result of the analysis, the concept of multidirectional revitalization with socially, economically and environmentally beneficial functions has been created, maximizing the potential of the quarry.

  1. Effects of external magnetic field and out-of-plane strain on magneto-optical Kerr spectra in CrI3 monolayer.

    PubMed

    Guo, Guanxing; Bi, Gang; Cai, Chunfeng; Wu, Huizhen

    2018-07-18

    Magnetic semiconductors based on two-dimensional (2D) crystals have attracted attention owing to their intrinsic ferromagnetism and have potential for spintronic devices. Here, full-potential linearized augmented plane wave plus local orbitals method is used to explore the structural, electronic, magnetic, and magneto-optical properties of CrI 3 monolayer. Our first-principles calculations show that CrI 3 monolayer is a ferromagnetic indirect semiconductor with spin-up and spin-down band gaps of 1.23 and 1.90 eV, respectively, and a magnetic moment of 2.93 [Formula: see text] per Cr atom. Based on the macroscopic linear response theory, we systematically study the influences of external magnetic field and out-of-plane strain on the magneto-optical Kerr effect spectra in CrI 3 monolayer. The Kerr rotation of CrI 3 monolayer at 1.96 eV photon energy is [Formula: see text], which is consistent with the recent experiments. We find that the Kerr rotation reaches its maximum when the external magnetic field is perpendicular to CrI 3 plane, while it is almost zero on turning the magnetic field in the plane. This result as well as the sizable magnetocrystalline anisotropy energy (MAE) of 0.79 meV verifies that CrI 3 monolayer has a strong magnetic anisotropy with an out-of-plane easy axis. Further, applying out-of-plane compressive and tensile strain upon CrI 3 monolayer, we observe a redshift of the Kerr rotation spectra with the increase of the strain and the peak values of the Kerr rotation increase correspondingly. The rich electronic and magnetic properties, especially the magneto-optical spectra, render CrI 3 monolayer a promising 2D magnetic material for applications from sensing to data storage.

  2. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  3. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    PubMed

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  4. Noise-Induced Hearing Loss Among Quarry Workers in a North-Eastern State of Malaysia: A Study on Knowledge, Attitude and Practice

    PubMed Central

    Ismail, Ahmad Filza; Daud, Aziah; Ismail, Zaliha; Abdullah, Baharudin

    2013-01-01

    Objectives Noise is known to be one of the environmental and occupational hazards listed in the Factory and Machinery Act 1967. Quarries with loud deafening sounds from trucks and machineries pose the risk of noise-induced hearing loss to workers. This study was designed to assess the knowledge, attitude and practice towards noise-induced hearing loss and to determine the prevalence of noise-induced hearing loss and its associated factors among quarry workers in a north-eastern state of Malaysia. Methods A cross-sectional study was conducted at six quarries in a north-eastern state of Malaysia, with 97 consented respondents who answered a validated version of a questionnaire and underwent pure tone audiogram. The respondents were male, aged between 18 to 50 years, working in the quarry area for at least 6-months duration with no family history of ear diseases. Results The mean percentage scores of knowledge, attitude and practice were 44 (11), 70 (10) and 28 (16) percent, respectively. The prevalence of noise-induced hearing loss was found to be 57 (95% CI: 47, 67) with 46 (84%) having mild and moderate noise-induced hearing loss, and 34 (62%) involved both ears. Multiple logistic regressions showed that age and practice score were the associated factors with odd ratios of 1.1 (95% CI: 1.1, 1.2; p<0.001) and 0.9 (95% CI: 0.8, 1.0; p=0.008), respectively. Conclusion The knowledge, attitude and practice scores of the respondents were poor and the high prevalence of noise-induced hearing loss was contributed by factors such as poor practice and old age. PMID:24044059

  5. 3-Dimensional Colloidal Crystals From Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.

    2000-03-01

    We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.

  6. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures.

    PubMed

    Kim, Hyehyun; Lah, Myoung Soo

    2017-05-16

    Various fabrication strategies for hollow metal-organic framework (MOF) superstructures are reviewed and classified using various types of external templates and their properties. Hollow MOF superstructures have also been prepared without external templates, wherein unstable intermediates obtained during reactions convert to the final hollow MOF superstructures. Many hollow MOF superstructures have been fabricated using hard templates. After the core-shell core@MOF structure was prepared using a hard template, the core was selectively etched to generate a hollow MOF superstructure. Another approach for generating hollow superstructures is to use a solid reactant as a sacrificial template; this method requires no additional etching process. Soft templates such as discontinuous liquid/emulsion droplets and gas bubbles in a continuous soft phase have also been employed to prepare hollow MOF superstructures.

  7. Visual Analysis as a design and decision-making tool in the development of a quarry

    Treesearch

    Randall Boyd Fitzgerald

    1979-01-01

    In order to obtain local and state government approvals, an environmental impact analysis of the mining and reclamation of a proposed hard rock quarry was required. High visibility of the proposed mining area from the adjacent community required a visual impact analysis in the planning and design of the project. The Visual Analysis defined design criteria for the...

  8. Gravitational radiation from extreme Kerr black hole

    NASA Technical Reports Server (NTRS)

    Sasaki, Misao; Nakamura, Takashi

    1989-01-01

    Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.

  9. Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Dold, Dominic

    2017-03-01

    For any cosmological constant {Λ = -3/ℓ2 < 0} and any {α < 9/4}, we find a Kerr-AdS spacetime {({M}, g_{KAdS})}, in which the Klein-Gordon equation {Box_{g_{KAdS}}ψ + α/ℓ2ψ = 0} has an exponentially growing mode solution satisfying a Dirichlet boundary condition at infinity. The spacetime violates the Hawking-Reall bound {r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.

  10. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, M.; Yamamoto, Y.

    1987-11-01

    An alternative scheme for generating amplitude-squeezed states of photons based on unitary evolution which can properly be described by quantum mechanics is presented. This scheme is a nonlinear Mach-Zehnder interferometer containing an optical Kerr medium. The quasi-probability density (QPD) and photon-number distribution of the output field are calculated, and it is demonstrated that the reduced photon-number uncertainty and enhanced phase uncertainty maintain the minimum-uncertainty product. A self-phase-modulation of the single-mode quantized field in the Kerr medium is described based on localized operators. The spatial evolution of the state is demonstrated by QPD in the Schroedinger picture. It is shown that photon-number variance can be reduced to a level far below the limit for an ordinary squeezed state, and that the state prepared using this scheme remains a number-phase minimum-uncertainty state until the maximum reduction of number fluctuations is surpassed.

  11. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.

    PubMed

    Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi

    2013-05-22

    Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

  12. High performance methanol-oxygen fuel cell with hollow fiber electrode

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  13. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  14. Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis

    NASA Astrophysics Data System (ADS)

    Colao, F.; Fantoni, R.; Ortiz, P.; Vazquez, M. A.; Martin, J. M.; Ortiz, R.; Idris, N.

    2010-08-01

    To characterize historical building materials according to the geographic origin of the quarries from which they have been mined, the relative content of major and trace elements were determined by means of Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Fluorescence (XRF) techniques. 48 different specimens were studied and the entire samples' set was divided in two different groups: the first, used as reference set, was composed by samples mined from eight different quarries located in Seville province; the second group was composed by specimens of unknown provenance collected in several historical buildings and churches in the city of Seville. Data reduction and analysis on laser induced breakdown spectroscopy and X-ray fluorescence measurements was performed using multivariate statistical approach, namely the Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). A clear separation among reference sample materials mined from different quarries was observed in Principal Components (PC) score plots, then a supervised soft independent modeling of class analogy classification was trained and run, aiming to assess the provenance of unknown samples according to their elemental content. The obtained results were compared with the provenance assignments made on the basis of petrographical description. This work gives experimental evidence that laser induced breakdown spectroscopy measurements on a relatively small set of elements is a fast and effective method for the purpose of origin identification.

  15. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    PubMed

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  16. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  17. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  18. Hidden symmetries of the Kerr metric and Goldstone’s theorem

    NASA Astrophysics Data System (ADS)

    Penna, Robert F.

    2011-12-01

    Perturbations of the Kerr metric admit a spectrum of massless excitations, which we interpret as Goldstone modes coming from the metric’s broken spherical symmetry. The zero-frequency mode is related to the conformal Yano-Killing tensor which encodes Carter’s constant and the Killing vectors of the spacetime. The modes are described by a conformal field theory, which becomes two-dimensional Liouville theory in the near-horizon limit. Directly counting the quantum microstates of this theory reproduces the Bekenstein-Hawking area law.

  19. A novel approach for fabricating NiO hollow spheres for gas sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-03-01

    Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.

  20. Hollow Gaussian Schell-model beam and its propagation

    NASA Astrophysics Data System (ADS)

    Wang, Li-Gang; Wang, Li-Qin

    2008-03-01

    In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.

  1. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse momentsmore » than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.« less

  2. Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique

    NASA Astrophysics Data System (ADS)

    Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu

    2017-11-01

    We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.

  3. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  4. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  5. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  6. Quantum Statistical Properties of the Codirectional Kerr Nonlinear Coupler in Terms of su (2 ) Lie Group in Interaction with a Two-level Atom

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.

    2017-08-01

    The problem of the codirectional Kerr coupler has been considered several times from different point of view. In the present paper we introduce the interaction between a two-level atom and the codirectional Kerr nonlinear coupler in terms of su (2 ) Lie algebra. Under certain conditions we have adjusted the Kerr coupler and consequently we have managed to handle the problem. The wave function is obtained by using the evolution operator where the Heisnberg equation of motion is invoked to get the constants of the motion. We note that the Kerr parameter χ as well as the quantum number j plays the role of controlling the atomic inversion behavior. Also the maximum entanglement occurs after a short period of time when χ = 0. On the other hand for the entropy and the variance squeezing we observe that there is exchange between the quadrature variances. Furthermore, the variation in the quantum number j as well as in the parameter χ leads to increase or decrease in the number of fluctuations. Finally we examined the second order correlation function where classical and nonclassical phenomena are observed.

  7. Physical Processes in Hollow Cathode Discharge

    DTIC Science & Technology

    1989-12-01

    State University. Finally, many thanks to my wife, Kyoung -Sook and my son, Frederick Teut, for their love and being supportive for two and half years...recommended for all electron emission purposes. 46 REFERENCES 1. Kim Gunther, "Hollow Cathode Plasma Source" ( Spectra-Mat Hollow Cathode Manual...59 Dong 401 Ho Seoul, Republic of Korea 8. Maj. Kim , Jong-Ryul 1 Postal Code 500-00 Book-Gu, Du-Am Dong, 874-14 Kwang-Ju, Republic of Korea 9. Maj

  8. Extended test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.

  9. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInnes, Brett; Ong, Yen Chin, E-mail: matmcinn@nus.edu.sg, E-mail: yenchin.ong@nordita.org

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' massmore » E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.« less

  10. Experimental study on the strength parameter of Quarry Dust mixed Coconut Shell Concrete adding Coconut Fibre

    NASA Astrophysics Data System (ADS)

    Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.

    2017-07-01

    Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.

  11. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A and M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number,more » and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.« less

  12. Surficial geology of Shaver Hollow, Shenandoah National Park

    USGS Publications Warehouse

    Morgan, Benjamin A.

    1998-01-01

    At the request of Shenandoah National Park and the Department of Environmental Sciences at the University of Virginia, the US Geological Survey has completed an examination and map of the surficial deposits in Shaver Hollow. The work was carried out as part of the US Geological Survey - National Park Service cooperative agreement implemented in 1994. Shaver Hollow is a small, well defined drainage basin on the west slope of the Blue Ridge about 6.5 miles south of Thornton Gap and can be reached by trail from mile 37.9 on the Skyline Drive. The hollow is drained by the North Fork of Dry Run, and the watershed within the Shenandoah National park is only 2 square miles in area. The area has been the site of extensive investigations by faculty and students at the University of Virginia and by NPS scientists and investigators studying the interaction of atmosphere chemistry, water composition, and the biota of the hollow (Furman and others, written communication, 1997). Modeling of the chemistry of Dry Run surface water, based on atmospheric, biologic, and geologic data, has been attempted with limited success. Better understanding of the surficial deposits and the interaction of streams and springs with near surface materials is needed before more sophisticated models can be devised. Although the bedrock lithology was mapped at a small scale (1:62,000-scale; Gathright, 1976) no examination of the surficial deposits of the hollow was made. The description of deposits contained herein is based on field observations carried out in September - November, 1996. Also included with this report is a 1/12,000-scale map of the surficial geology of Shaver Hollow (figure 1).

  13. On the Kerr-AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Amado, Julián Barragán; da Cunha, Bruno Carneiro; Pallante, Elisabetta

    2017-08-01

    We review the relation between four-dimensional global conformal blocks and field propagation in AdS5. Following the standard argument that marginal perturbations should backreact in the geometry, we turn to the study of scalar fields in the generic Kerr-AdS5 geometry. On one hand, the result for scattering coefficients can be obtained exactly using the isomonodromy technique, giving exact expressions in terms of c = 1 chiral conformal blocks. On the other hand, one can use the analogy between the scalar field equations to the Level 2 null field Ward identity in two dimensional Liouville field theory to write approximate expressions for the same coefficients in terms of semi-classical chiral Liouville conformal blocks. Surprisingly, the conformal block thus constructed has a well-behaved interpretation in terms of Liouville vertex operators.

  14. Numerical implementation of equations for photon motion in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Bursa, Michal

    2017-12-01

    Raytracing is one of the essential tools for accurate modeling of spectra and variability of various astrophysical objects. It has a major importance in relativistic environments, where light endures to a number of relativistic effects. Because the trajectories of light rays in curved spacetimes, and in Kerr spacetime in particular, are highly non-trivial, we summarize the equations governing the motion of photon (or any other zero rest mass particle) and give analytic solution of the equations that can be further used in practical computer implementations.

  15. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  16. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  17. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  18. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  19. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  20. Method and apparatus for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D.

    1979-01-01

    Method and apparatus for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T.gtoreq.600.degree. C.). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  1. Fox Hollow Research Natural Area: guidebook supplement 44

    Treesearch

    Reid Schuller

    2013-01-01

    This guidebook describes Fox Hollow Research Natural Area (RNA), a 66-ha (163-ac) area that supports dry-site Douglas-fir (Pseudotsuga menziesii)–ponderosa pine (Pinus ponderosa) forest within the Oregon Coast Range ecoregion. Major forest plant associations represented at Fox Hollow RNA include Douglas-fir/salal/western...

  2. Mass balancing of hollow fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.

    1986-01-01

    A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

  3. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  4. Modified Hawking Radiation from a Kerr-Newman Black Hole due to Back-Reaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Gang; Liu, Wenbiao

    Hawking radiation from a general Kerr-Newman black hole is investigated using Damour-Ruffini's method. Considering the back-reaction of particle's energy, charge and angular momentum to the spacetime, we obtain a modified nonthermal spectrum. Maybe the information loss paradox can be explained, furthermore, the result is also consistent with the result obtained using Parikh and Wilczek's method.

  5. Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain).

    PubMed

    del Río, L M; López, F; Esteban, F J; Tejado, J J; Mota, M; González, I; San Emeterio, J L; Ramos, A

    2006-12-22

    The industry of ornamental rocks, such as granites, represents one of the most important industrial activities in the region of Extremadura, SW Spain. A detailed knowledge of the intrinsic properties of this natural stone and its environmental evolution is a required goal in order to fully characterize its quality. In this work, two independent NDT acoustic techniques have been used to measure the acoustic velocity of longitudinal waves in different prismatic granitic-samples of industrial quarries. A low-frequency transceiver set-up, based on a high-voltage BPV Steinkamp instrument and two 50 kHz probes, has been used to measure pulse travel times by ultrasonic through-transmission testing. In complementary fashion, an Erudite MK3 test equipment with an electromagnetic vibrator and two piezoelectric sensors has also been employed to measure ultrasonic velocity by means of a resonance-based method, using the same types of granite varieties. In addition, a comprehensive set of physical/mechanical properties have also been analyzed, according to Spanish regulations in force, by means of alternative methods including destructive techniques such as strength, porosity, absorption, etc. A large number of samples, representing the most important varieties of granites from quarries of Extremadura, have been analyzed using the above-mentioned procedures. Some results obtained by destructive techniques have been correlated with those found using ultrasonic techniques. Our experimental setting allowed a complementary characterization of granite samples and a thorough validation of the different techniques employed, thus providing the industry of ornamental rocks with a non-destructive tool that will facilitate a more detailed insight on the properties of the rocks under study.

  6. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  7. Iron Kα line of Kerr black holes with scalar hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. Inmore » the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.« less

  8. Liquid molded hollow cell core composite articles

    NASA Technical Reports Server (NTRS)

    Bernetich, Karl R. (Inventor)

    2005-01-01

    A hollow core composite assembly 10 is provided, including a hollow core base 12 having at least one open core surface 14, a bondable solid film 22 applied to the open core surface 14, at least one dry face ply 30 laid up dry and placed on top of the solid film 22, and a liquid resin 32 applied to the at least one dry face ply 30 and then cured.

  9. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    PubMed

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  10. Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; Boutin, Samuel; Blais, Alexandre

    2017-04-01

    Photonic cat states stored in high-Q resonators show great promise for hardware efficient universal quantum computing. We propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use of a two-photon drive. Significantly, we show that this preparation is robust against single-photon loss. An outcome of this observation is that a two-photon drive can eliminate undesirable phase evolution induced by a Kerr nonlinearity. By exploiting the concept of transitionless quantum driving, we moreover demonstrate how non-adiabatic initialization of cat states is possible. Finally, we present a universal set of quantum logical gates that can be performed on the engineered eigenspace of such a two-photon driven resonator and discuss a possible realization using superconducting circuits. The robustness of the engineered subspace to higher-order circuit nonlinearities makes this implementation favorable for scalable quantum computation.

  11. A hollow definitive obturator fabrication technique for management of partial maxillectomy.

    PubMed

    Patil, Pravinkumar Gajanan; Patil, Smita Pravinkumar

    2012-11-01

    Maxillary obturator prosthesis is the most frequent treatment option for management of partial or total maxillectomy. Heavy weight of the obturators is often a dislocating factor. Hollowing the prosthesis to reduce its weight is the well established fact. The alternate technique to hollow-out the prosthesis has been described in this article which is a variation of previously described processing techniques. A pre-shaped wax-bolus was incorporated inside the flasks during packing of the heat-polymerized acrylic resin to automatically create the hollow space. The processing technique described is a single step flasking procedure to construct a closed-hollow-obturator prosthesis as a single unit. To best understand the technique, this article describes management of a patient who had undergone partial maxillectomy secondary to squamous cell carcinoma rehabilitated with a hollow-obturator prosthesis.

  12. Fast, optically controlled Kerr phase shifter for digital signal processing.

    PubMed

    Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H

    2013-05-01

    We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

  13. Nonlinear optics in hollow-core photonic bandgap fibers.

    PubMed

    Bhagwat, Amar R; Gaeta, Alexander L

    2008-03-31

    Hollow-core photonic-bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. In this review we summarize the nonlinear optics experiments that have been performed using these hollow-core fibers.

  14. Hollow atoms below, above, and at surface

    NASA Astrophysics Data System (ADS)

    Briand, Jean Pierre

    1993-12-01

    It is now quite obvious that, in most cases, when a highly charged ion approaches, or penetrates a surface, many electrons are captured in excited states of the projectile. The nature of the hollow atoms formed depends on the velocity of the ion, and whether or not capture has occurred above, below, or at the surface. I would like in this talk to discuss the nature, namely the electronic configuration of the hollow atoms formed in various circumstances. In the first two sections I shall summarize recent results, some of them are already published, or have been presented in other conferences. Section I will be devoted to the study of hollow atoms formed inside the surface, section II to those formed far from the surface. In a third section I will present some new results, obtained at very low velocities, on hollow atoms at surface. These results have been obtained through a large international collaboration: J.P. DESCLAUX, CEN, Grenoble; B. d'ETAT, G. GIARDINO, L. de BILLY, S. BARDIN, LPAN-Université P&M Curie, Paris; D. SCHNEIDER, M. BRIERE, M. CLARK, D. KNAPP, V. DECAUX, LLNL, Livermore-Californie; R. ALI, N. RENARD, M. STOCKLI, P. RICHARD, KSU, Manhattan-Kansas; A. BRENAC, G. LAMBOLLEY, AIM, Grenoble; J. FAURE, Laboratoire National Saturne, Saclay.

  15. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  16. Single-polarization hollow-core square photonic bandgap waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp

    Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less

  17. A Comparison of Fabrication Techniques for Hollow Retroreflectors

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Merkowitz, Stephen

    2014-01-01

    Despite the wide usage of hollow retroreflectors, there is limited literature involving their fabrication techniques and only two documented construction methods could be found. One consists of an adjustable fixture that allows for the independent alignment of each mirror, while the other consists of a modified solid retroreflector that is used as a mandrel. Although both methods were shown to produce hollow retroreflectors with arcsecond dihedral angle errors, a comparison and analysis of each method could not be found which makes it difficult to ascertain which method would be better suited to use for precision-aligned retroreflectors. Although epoxy bonding is generally the preferred method to adhere the three mirrors, a relatively new method known as hydroxide-catalysis bonding (HCB) presents several potential advantages over epoxy bonding. HCB has been used to bond several optical components for space-based missions, but has never been applied for construction of hollow retroreflectors. In this paper we examine the benefits and limitations of each bonding fixture as well as present results and analysis of hollow retroreflectors made using both epoxy and HCB techniques.

  18. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  19. Hollow fiber membranes and methods for forming same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer whichmore » includes the polysiloxane of the second composition.« less

  20. In situ Kerr and harmonic measurement in determining current-induced effective fields in MgO/CoFeB/Ta

    NASA Astrophysics Data System (ADS)

    Wong, Q. Y.; Gan, W. L.; Luo, F. L.; Lim, G. J.; Ang, C. C. I.; Tan, F. N.; Law, W. C.; Lew, W. S.

    2018-03-01

    A combination of the harmonic measurement and in situ Kerr imaging was used to experimentally determine the spin-orbit (SO) effective fields in a MgO/CoFeB/Ta structure. Here, we evaluate the SO effective fields through an analytical energy approach by transforming the anomalous Hall effect and planar Hall effect (PHE) voltage into a field dependency while imaging the magnetisation behaviour by differential Kerr microscopy. The analytical fitting to the measurement data indicates the significant coexistence of both a transverse field, {{H}T} , and longitudinal field, {{H}L} , in the longitudinal (H L  =  -12 Oe, H T  =  8 Oe per 106 A cm-2) and transverse (H L  =  -12 Oe, H T  =  -17 Oe per 106 A cm-2) measurement schemes, respectively, due to the PHE. Additionally, dendritic-like domains, indicating the influence of the interfacial Dzyaloshinskii-Moriya interaction (DMI) at the CoFeB/Ta interface, were observed by in situ Kerr imaging. Micromagnetic simulations confirm the dendritic domain formation and edge tilting of the magnetisation, as being due to the DMI.

  1. Hollow Blocks: How to Make and Use Them.

    ERIC Educational Resources Information Center

    Texas Child Care, 1993

    1993-01-01

    Provides detailed plans for the construction of 11-by-11-by-5.5-inch hollow wooden blocks that can be constructed with simple tools by child-care providers and parents. Children's play with hollow blocks, which can also be constructed half- and double-size, allows them to develop muscular coordination and assists in their social and emotional…

  2. Preparation of hollow magnetite microspheres and their applications as drugs carriers

    PubMed Central

    2012-01-01

    Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile. Graphical abstract Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications. PMID:22490731

  3. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  4. A hollow definitive obturator fabrication technique for management of partial maxillectomy

    PubMed Central

    Patil, Smita Pravinkumar

    2012-01-01

    Maxillary obturator prosthesis is the most frequent treatment option for management of partial or total maxillectomy. Heavy weight of the obturators is often a dislocating factor. Hollowing the prosthesis to reduce its weight is the well established fact. The alternate technique to hollow-out the prosthesis has been described in this article which is a variation of previously described processing techniques. A pre-shaped wax-bolus was incorporated inside the flasks during packing of the heat-polymerized acrylic resin to automatically create the hollow space. The processing technique described is a single step flasking procedure to construct a closed-hollow-obturator prosthesis as a single unit. To best understand the technique, this article describes management of a patient who had undergone partial maxillectomy secondary to squamous cell carcinoma rehabilitated with a hollow-obturator prosthesis. PMID:23236579

  5. On the competition of forces in the Kerr field

    NASA Astrophysics Data System (ADS)

    Semerak, O.

    1994-11-01

    'Rotosphere', where the component of 4-acceleration, radial relative to the symmetry axis, of the stationary observer depends on his angular velocity in a way going against our intuition, is demarcated in the Kerr spacetime. Stationary observers with extremal value of this acceleration ('extremelly accelerated observers') are introduced and their privileged relation to circular geodesics in the equatorial plane is found. Possible translation of the results into 'force' language is based on the definition of the 'centrifugal force' with respect to the zero-angular-momentum observers. It yields, in particular, a simple interpretation of the behavior of acceleration of the stationary observer in terms of gravitational, Coriolis and centrifugal forces.

  6. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  7. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  8. Radiation transport around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy David

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable

  9. Generation and propagation characteristics of a localized hollow beam

    NASA Astrophysics Data System (ADS)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  10. Overview of SBIR Phase II Work on Hollow Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.

  11. The crazy hollow formation (Eocene) of central Utah

    USGS Publications Warehouse

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  12. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect.

    PubMed

    Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2016-01-11

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central λ-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect.

  13. Sagnac delay in the Kerr-dS spacetime: Implications for Mach's principle

    NASA Astrophysics Data System (ADS)

    Karimov, R. Kh.; Izmailov, R. N.; Garipova, G. M.; Nandi, K. K.

    2018-02-01

    Relativistic twin paradox can have important implications for Mach's principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach's principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass M and cosmological constant Λ on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits M→ 0, spin a→ 0 and Λ → 0, while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.

  14. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres

    PubMed Central

    Chen, Fashen; Chen, Gen; Liu, Tao; Zhang, Ning; Liu, Xiaohe; Luo, Hongmei; Li, Junhui; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou

    2015-01-01

    Uniform gadolinium oxysulfate (Gd2O2SO4) hollow spheres were successfully fabricated by calcination of corresponding Gd-organic precursor obtained via a facile hydrothermal process. The Gd2O2SO4 hollow spheres have a mean diameter of approximately 550 nm and shell thickness in the range of 30–70 nm. The sizes and morphologies of as-prepared Gd2O2SO4 hollow spheres could be deliberately controlled by adjusting the experimental parameters. Eu-doped Gd2O2SO4 hollow spheres have also been prepared for the property modification and practical applications. The structure, morphology, and properties of as-prepared products were characterized by XRD, TEM, HRTEM, SEM and fluorescence spectrophotometer. Excited with ultraviolet (UV) pump laser, successful downconversion (DC) could be achieved for Eu-doped Gd2O2SO4 hollow spheres. PMID:26671661

  16. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    A hollow fiber device includes a hollow fiber bundle, comprising a plurality of hollow fibers, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fibers. In at least one of the tubesheets, the boreholes are formed radially. The hollow fiber device can be utilized in heat exchange, in gas/gas, liquid/liquid and gas/liquid heat transfer, in combined heat and mass transfer and in fluid separation assemblies and processes. The design disclosed herein is light weight and compact and is particularly advantageous whenmore » the pressure of a first fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less

  17. Method for selecting hollow microspheres for use in laser fusion targets

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  18. Two-dimensional Kerr-Fourier imaging of translucent phantoms in thick turbid media

    NASA Astrophysics Data System (ADS)

    Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.

    1995-06-01

    Translucent scattering phantoms hidden inside a 5.5-cm-thick Intralipid solution were imaged as a function of phantom scattering coefficients by the use of a picosecond time-and space-gated Kerr-Fourier imaging system. A 2-mm-thick translucent phantom with a 0.1% concentration (scattering coefficient) difference from the 55-mm-thick surrounding scattering host can be distinguished at a signal level of approximately 10-10 of the incidence illumination intensity.

  19. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  20. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge.

    PubMed

    Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan

    2017-06-11

    In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions.

  1. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    PubMed Central

    Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan

    2017-01-01

    In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions. PMID:28772999

  2. Hollow fibers - Their applications to the study of mammalian cell function

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Angeline, M.; Harkness, J.; Chu, M.; Grindleland, R.

    1984-01-01

    The use of hollow fiber technology in cell culture and transplantation is examined. The morphologies of encapsulated pituitary cells before and after implantation into the rat are defined. Implantation experiments using hollow fibers to study mammalian cell functions are described. Consideration is given to examining somatotroph, prolactin, prostrate, fibroblast, and retinal cell functions. These experiments demonstrate that hollow fiber technology is applicable for studying mammalian cell functions.

  3. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  4. Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents

    NASA Astrophysics Data System (ADS)

    Huang, Chienwen

    Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides

  5. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  6. Porous-wall hollow glass microspheres as carriers for biomolecules

    DOEpatents

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  7. Vegetation dynamics at a Mojave Desert restoration site, 1992 to 2007

    Treesearch

    Jeffrey E. Ott; E. Durant McArthur; Stewart C. Sanderson

    2011-01-01

    The Twist Hollow restoration site on BLM land near St. George, Utah, had been badly disturbed by sand mining, rock quarrying, dumping, off-road vehicles and target shooting prior to its closure and treatment. In December 1992 the site was sculpted and drill seeded with Indian ricegrass (Stipa hymenoides), sand dropseed (Sporobolus cryptandrus), galleta (Hilaria jamesii...

  8. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  9. Verification of antiferromagnetic exchange coupling at room temperature using polar magneto-optic Kerr effect in thin EuS/Co multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goschew, A., E-mail: alexander.goschew@fu-berlin.de; Scott, M.; Fumagalli, P.

    2016-08-08

    We report on magneto-optic Kerr measurements in polar geometry carried out on a series of thin Co/EuS multilayers on suitable Co/Pd-multilayer substrates. Thin Co/EuS multilayers of a few nanometers individual layer thickness usually have their magnetization in plane. Co/Pd multilayers introduce a perpendicular magnetic anisotropy in the Co/EuS layers deposited on top, thus making it possible to measure magneto-optic signals in the polar geometry in remanence in order to study exchange coupling. Magneto-optic Kerr-effect spectra and hysteresis loops were recorded in the visible and ultraviolet photon-energy range at room temperature. The EuS contribution to the magneto-optic signal is extracted atmore » 4.1 eV by combining hysteresis loops measured at different photon energies with polar magneto-optic Kerr-effect spectra recorded in remanence and in an applied magnetic field of 2.2 T. The extracted EuS signal shows clear signs of antiferromagnetic coupling of the Eu magnetic moments to the Co layers. This implies that the ordering temperature of at least a fraction of the EuS layers is above room temperature proving that magneto-optic Kerr-effect spectroscopy can be used here as a quasi-element-specific method.« less

  10. Synthesis and adsorption properties of hollow tubular alumina fibers

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Kazantsev, S. O.; Glazkova, E. A.

    2017-12-01

    In this study, composite glass fibers coated with alumina nanoplates and hollow tubular alumina fibers with a diameter of 400-500 nm are synthesized based on glass fiber templated hydrothermal strategy. Porous coatings on glass fibers and hollow fibers consist of cross-linked alumina nanoplates with the size of 100-200 nm and thickness of 2-5 nm. Their formation is attributed to the template-induced heterogeneous growth of alumina nanoplates on glass fibers of the B-06-F type. It is important that composite glass fibers and hollow tubular fibers have opposite surface charges and exhibit selective sorption characteristics towards anionic and cationic dyes.

  11. Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivadas, Nikhil; Okamoto, Satoshi; Xiao, Di

    2016-12-23

    In this paper, using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-optic effects without modifying the underlying magnetic structure. We further demonstrate the gate control of the magneto-optic Kerr effect (MOKE) in bilayer MnPSe 3 using first-principles calculations. Finally, the field-induced inversion symmetry breaking effect leads to gate-controllable MOKE, whose direction of rotation can be switched by the reversal of the gate voltage.

  12. Pair production of scalar dyons in Kerr-Newman black holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-06-01

    We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the J-, Q- and P-pictures respectively based on the threefold dyonic KN/CFTs dualities.

  13. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  14. A novel environmental restoration method for an abandoned limestone quarry with a deep open pit and steep palisades: a case study

    PubMed Central

    Wang, Hanxun; Bai, Xueliang; Shi, Lei

    2018-01-01

    In general, exploitation of rock materials, such as limestone or granite exploitation, can cause serious damage to the environment near a mine area. With economic development and the ever-increasing demand for ore resources, mining activities have induced very serious environmental issues in China. Therefore, environmental restoration work around mines in China is urgently required. This study explores the Chuankou open-pit limestone quarry in Tongchuan City, Shaanxi Province, Northwest China, as the engineering case. The environmental issues caused by over 40 years of limestone exploitation, including land degradation, land occupation, dust pollution and potential geological disasters, were investigated. Combining the characteristics of this quarry with a summary of previous studies on environmental restoration work, this paper proposes a novel and systematic method that was comprehensively carried out through engineering and revegetation measures. The engineering measure, that is, the construction of an artificial slope by using local abandoned construction materials, solved the environmental problems in this quarry and provided site conditions favourable for revegetation. The revegetation measure restored the local ecosystem. This method provides both a new idea for the sustainable development of a mining area and a useful reference for analogous engineering cases. PMID:29892461

  15. Scenario for Hollow Cathode End-Of-Life

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    2000-01-01

    Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.

  16. Direct investigation of collective phenomena in patterned Ising-like arrays using high-resolution Kerr microscopy

    NASA Astrophysics Data System (ADS)

    Fraleigh, Robert Douglas

    Magnetic systems with interacting ferromagnetic single-domain elements are a useful landscape to explore a wide range of fundamental and technological phenomena. In this dissertation, we consider a system of interacting ferromagnetic islands with perpendicular anisotropy. Islands are lithographically-defined to be single-domain and are arranged into large arrays with geometries that are geometrically frustrated and unfrustrated. We explore field-driven local and global magnetic switching behavior using a home-built diffraction-limited magneto-optical Kerr microscope wherein individual islands in each array are isolated, indexed, and tracked in the presence of an applied external field. Global and local switching behavior is directly accessed through analysis island switching fields in the presence of magnetic hysteresis loops. We first explore the considerations regarding lithographic definition of disconnected islands and deposition of Co/Pt multilayers with strong perpendicular anisotropy. The thickness and number of stacked Co/Pt bilayers as well as deposition method significantly affect the strength of perpendicular anisotropy. We find sputter deposition of a 8-stack bilayer of Co0.3 nm=Pt 1 nm optimizes strong perpendicular anisotropy with square hysteresis loops. Our experimental sample contains several sets of ordered arrays with varying geometry and inter-island spacing. Each island is single-domain with length scales amenable to Kerr imaging such that magnetic degrees of freedom are optically accessible. We next discuss the development, calibration, and operation of a home-built magneto-optical Kerr microscope. The Kerr microscope uses a xenon stabilized white light source, Glan-Thompson polarizers, and a 100x oil objective lens to illuminate a sample with linear polarized light. A cooled CCD camera receives the re ected light and transmits it to the computer in a sequence timed with the application of an external magnetic field. We use LabVIEW software to

  17. Stationary and transient thermal states of barometric pumping in the access pit of an underground quarry.

    PubMed

    Perrier, Frédéric; Le Mouël, Jean-Louis

    2016-04-15

    The transition zone between free and underground atmospheres hosts spectacular phenomena, as demonstrated by temperature measurements performed in the 4.6m diameter and 20m deep vertical access pit of an abandoned underground quarry located in Vincennes, near Paris. In summer, a stable stratification of the atmosphere is maintained, with coherent temperature variations associated with atmospheric pressure changes, with a barometric tide S2 larger than 0.1°C peak to peak. When the winter regime of turbulent cold air avalanches is initiated, stratification with pressure induced signals can be restored transiently in the upper part of the pit, while the lower part remains fully mixed and insensitive to pressure variations. The amplitude of the pressure to temperature transfer function increases with frequency below 5×10(-4)Hz, with values at 3×10(-5)Hz varying from 0.1°C·hPa(-1) at the bottom up to 2°C·hPa(-1) towards the top of the pit. These temperature variations are accounted for by cave breathing, which is pressure induced motion of air amplified by the large volume of the quarry. This understanding is supported by a numerical model including advective heat transport, heat diffusion, and heat exchange with the pit walls. Mean lifetime in the pit is of the order of 9 to 13h, and barometric pumping results in an effective ventilation rate of the quarry of the order of 10(-7)s(-1). This study illustrates the important role of barometric pumping in heat and matter transport between atmosphere and lithosphere. The resulting stationary and transient states, revealed in this pit, are probably a general feature of functioning interface systems, and therefore are an important aspect to consider in problems of contaminant transport, or the preservation of precious heritage such as rare ecosystems or painted caves. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hollow-core photonic-crystal fibres for laser dentistry.

    PubMed

    Konorov, Stanislav O; Mitrokhin, Vladimir P; Fedotov, Andrei B; Sidorov-Biryukov, Dmitrii A; Beloglazov, Valentin I; Skibina, Nina B; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M

    2004-04-07

    Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 microm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 microm and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 microm laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

  19. Electrically induced formation of uncapped, hollow polymeric microstructures

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.

    2006-11-01

    Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.

  20. Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion.

    PubMed

    Zhou, Liang; Zhuang, Zechao; Zhao, Huihui; Lin, Mengting; Zhao, Dongyuan; Mai, Liqiang

    2017-05-01

    Intricate hollow structures garner tremendous interest due to their aesthetic beauty, unique structural features, fascinating physicochemical properties, and widespread applications. Here, the recent advances in the controlled synthesis are discussed, as well as applications of intricate hollow structures with regard to energy storage and conversion. The synthetic strategies toward complex multishelled hollow structures are classified into six categories, including well-established hard- and soft-templating methods, as well as newly emerging approaches based on selective etching of "soft@hard" particles, Ostwald ripening, ion exchange, and thermally induced mass relocation. Strategies for constructing structures beyond multishelled hollow structures, such as bubble-within-bubble, tube-in-tube, and wire-in-tube structures, are also covered. Niche applications of intricate hollow structures in lithium-ion batteries, Li-S batteries, supercapacitors, Li-O 2 batteries, dye-sensitized solar cells, photocatalysis, and fuel cells are discussed in detail. Some perspectives on the future research and development of intricate hollow structures are also provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hollow microgels squeezed in overcrowded environments

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Brugnoni, M.; Rudov, A. A.; Houston, J. E.; Potemkin, I. I.; Richtering, W.

    2018-05-01

    We study how a cavity changes the response of hollow microgels with respect to regular ones in overcrowded environments. The structural changes of hollow poly(N-isopropylacrylamide) microgels embedded within a matrix of regular ones are probed by small-angle neutron scattering with contrast variation. The form factors of the microgels at increasing compressions are directly measured. The decrease of the cavity size with increasing concentration shows that the hollow microgels have an alternative way with respect to regular cross-linked ones to respond to the squeezing due to their neighbors. The structural changes under compression are supported by the radial density profiles obtained with computer simulations. The presence of the cavity offers to the polymer network the possibility to expand toward the center of the microgels in response to the overcrowded environment. Furthermore, upon increasing compression, a two step transition occurs: First the microgels are compressed but the internal structure is unchanged; then, further compression causes the fuzzy shell to collapse completely and reduce the size of the cavity. Computer simulations also allow studying higher compression degrees than in the experiments leading to the microgel's faceting.

  2. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation.more » The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less

  3. Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin

    NASA Astrophysics Data System (ADS)

    Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji

    2016-04-01

    There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2 +1 )D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2 +1 )D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.

  4. Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin.

    PubMed

    Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji

    2016-04-29

    There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2+1)D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2+1)D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.

  5. Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.

    PubMed

    Ademola, J A

    2012-02-01

    The potential occupational exposure in granite quarry industry due to the presence of naturally occurring radioactive material (NORM) has been investigated. The activity concentrations of (40)K, (226)Ra and (232)Th were determined using gamma-ray spectroscopy method. The annual effective dose of workers through different exposure pathways was determined by model calculations. The total annual effective dose varied from 21.48 to 33.69 μSv y(-1). Inhalation dose contributes the highest to the total effective dose. The results obtained were much lower than the intervention exemption levels (1.0 mSv y(-1)) given in the International Commission on Radiological Protection Publication 82.

  6. In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion

    NASA Astrophysics Data System (ADS)

    Wang, Yingchun; Yao, Aihua; Huang, Wenhai; Wang, Deping; zhou, Jun

    2011-07-01

    Hollow hydroxyapatite (HAP) microspheres with pores on their surfaces were prepared by converting Li 2O-CaO-B 2O 3 (LCB) glass microspheres in phosphate solution. The structure, phase composition, surface morphology, and porosity of the hollow HAP microspheres were characterized by SEM, SEM-EDS, XRD, FTIR, ICP-AES, and N 2 adsorption-desorption techniques. The formation and conversion mechanism of the hollow HAP microspheres during immersion process were discussed. The as-prepared microspheres consisted of calcium deficient carbonated hydroxyapatite, which is biomimetic. FTIR spectra indicated that the resulting apatite were B-type CO 3HAP, in which carbonate ions occupied the phosphate sites. After 600 °C heating treatment, hollow microspheres were completely composed of calcium deficient hydroxyapatite crystals including CO32-. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2-40 nm with the pore volume 0.5614 cm 3/g, and the mean pore size 10.5 nm, respectively. The results confirmed that LCB glass were transformed to hydroxyapatite without changing the external shape and dimension of the original glass object and the resulting microspheres possessed good hollow structures. Once immersed in phosphate solution, Ca-P-OH hydrates were in situ formed on the surface of the glass and precipitated in the position occupied by Ca 2+, while the pores were formed in the position occupied by Li + and B 3+. These hollow HAP microspheres with such structures may be used as promising drug delivery devices.

  7. Supercontinuum generation through DNA-filled hollow core fiber for broadband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cho, Youngho; Park, Byeongho; Oh, Juyeong; Seo, Min Ah; Lee, Kwanil; Kim, Chulki; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Kim, Hyung Min; Lee, Hyuk Jae; Oh, Kyunghwan; Yeom, Dong-Il; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    In this study, we successfully generated the large bandwidth of supercontinuum spectra through hollow fibers filled with DNA. Also, by observing that spectra bandwidth was the widest in the order of the hollow core fiber filled with DNA modified by copper ion, the hollow core fiber with only DNA, and the bulk hollow core fiber, we demonstrated that DNA material modified with copper ions can further enhance the spectral bandwidth of supercontinuum. As a result, we anticipate that the SCG as a broadband light source can be used in analytical methods to demonstrate a wide range of biological and environmental questions.

  8. Interference assembly and fretting wear analysis of hollow shaft.

    PubMed

    Han, Chuanjun; Zhang, Jie

    2014-01-01

    Fretting damage phenomenon often appears in the interference fit assembly. The finite element model of hollow shaft and shaft sleeve was established, and the equivalent stress and contact stress were computed after interference assembly. The assembly body of hollow shaft and shaft sleeve was in whirling bending load, and the contact status (sticking, sliding, and opening) and the distribution of stress along one typical contact line were computed under different loads, interferences, hollow degrees, friction coefficient, and wear quantity. Judgment formula of contact state was fixed by introducing the corrected coefficient k. The computation results showed that the "edge effect" appears in the contact surface after interference fit. The size of slip zone is unchanged along with the increase of bending load. The greater the interference value, the bigger the wear range. The hollow degree does not influence the size of stick zone but controls the position of the junction point of slip-open. Tangential contact stress increases with the friction coefficient, which has a little effect on normal contact stress. The relationship between open size and wear capacity is approximately linear.

  9. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; Spencer, James E.; /SLAC

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less

  10. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    PubMed

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Decay of Solutions of the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2006-06-01

    We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L ∞ loc. The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable ω on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.

  12. Magnetoelastic Properties of Magnetic Thin Films Using the Magnetooptic Kerr Effect

    NASA Astrophysics Data System (ADS)

    Mayo, Elizabeth; Lederman, David

    1998-03-01

    The magnetoelastic properties of Co and Fe thin films were measured using the magnetooptic Kerr effect (MOKE). Films were grown via magnetron sputtering on thin mica substrates. Magnetization loops were measured using MOKE with the magnetic field along different in-plane directions. Subsequently, the samples were mounted on a cylindrical sample holder, which imposed a well-defined strain to the film. This caused the magnetization loops to change dramatically due to the magnetoelastic coefficient of the thin film materials. The effects of the surface roughness and film thickness will also be discussed.

  13. Charging Characteristics of an Insulating Hollow Cylinder in Vacuum

    NASA Astrophysics Data System (ADS)

    Yamamoto, Osamu; Hayashi, Hirotaka; Wadahama, Toshihiko; Takeda, Daisuke; Hamada, Shoji; Ohsawa, Yasuharu

    This paper deals with charging characteristics of the inner surface of an insulating hollow cylinder in vacuum. We conducted measurements of electric field strength near the triple points on cathode by using an electrostatic probe. Also we conducted a computer simulation of charging based on the Secondary Electron Emission Avalanche (SEEA) mechanism. These results are compared with those obtained previously for solid cylinders. As a result, we have clarified that hollow cylinders acquire surface charge which is larger than that of solid cylinders. We have also found that charge controlling effect by roughening the inner surface, which have been proved effective to depress charging on the surface of solid cylinders in our previous studies, is limited for hollow cylinders.

  14. Next-generation hollow retroreflectors for lunar laser ranging.

    PubMed

    Preston, Alix; Merkowitz, Stephen

    2013-12-20

    The three retroreflector arrays put on the Moon 40 years ago by the Apollo astronauts and the French-built arrays on the Soviet Lunokhod rovers continue to be useful targets, and have provided the most stringent tests of the Strong Equivalence Principle and the time variation of Newton's gravitational constant, as well as valuable insight into the Moon's interior. However, the precision of the ranging measurements are now being limited by the physical size of the arrays and a new generation of retroreflectors is required to make significant advances over current capabilities. Large single-cube retroreflectors represent the most promising approach to overcoming current limitations, and hollow retroreflectors in particular have the potential to maintain their good optical performance over the nearly 300 K temperature swing that occurs during the lunar cycle. Typically, epoxies are used for aligning and bonding hollow retroreflectors, but their thermal stability will predominantly be limited by the difference of the coefficient of thermal expansion (CTE) between the epoxy and the glass. A relatively new bonding method known as hydroxide catalysis bonding (HCB) has been used to adhere complex optical components for space-based missions. HCB has an extremely thin bond, a low CTE, and a high breaking strength that makes it an ideal candidate for bonding hollow retroreflectors for lunar laser ranging (LLR). In this work, we present results of a feasibility study of bonded Pyrex and fused silica hollow retroreflectors using both epoxy and HCB methods, including the results of thermally cycling the hollow retroreflectors from 295 to 185 K. Finally, we discuss the potential for using these retroreflectors for future LLR.

  15. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  16. Floodplain/wetlands assessment for the interceptor trench field study near the Weldon Spring Quarry, Weldon Spring Site, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lonkhuyzen, R.A.

    1999-12-15

    The US Department of Energy proposes to construct a groundwater interceptor trench near the Weldon Spring Quarry at the Weldon Spring Site in Missouri. The trench would be located near two palustrine wetland areas. Impacts to wetland hydrology and biotic communities are expected to be negligible. No long-term adverse impacts to floodplains are expected.

  17. Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Univ. of Tennessee, Knoxville, TN; ...

    2016-11-15

    We report that the coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes, because the symmetric microporous shells combine with the hollow space to promote gas transport and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.

  18. BOOK REVIEW Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2011-02-01

    General relativity is arguably the most beautiful scientific theory ever conceived but its status within mainstream physics has vacillated since it was proposed in 1915. It began auspiciously with the successful explanation of the precession of Mercury and the dramatic confirmation of light-bending in the 1919 solar eclipse expedition, which turned Einstein into an overnight celebrity. Though little noticed at the time, there was also Karl Schwarzschild's discovery of the spherically symmetric solution in 1916 (later used to predict the existence of black holes) and Alexander Friedmann's discovery of the cosmological solution in 1922 (later confirmed by the discovery of the cosmic expansion). Then for 40 years the theory was more or less forgotten, partly because most physicists were turning their attention to the even more radical developments of quantum theory but also because the equations were too complicated to solve except in situations involving special symmetries or very weak gravitational fields (where general relativity is very similar to Newtonian theory). Furthermore, it was not clear that strong gravitational fields would ever arise in the real universe and, even if they did, it seemed unlikely that Einstein's equations could then be solved. So research in relativity became a quiet backwater as mainstream physics swept forward in other directions. Even Einstein lost interest, turning his attention to the search for a unified field theory. This book tells the remarkable story of how the tide changed in 1963, when the 28-year-old New Zealand mathematician Roy Kerr discovered an exact solution of Einstein's equations which represents a rotating black hole, thereby cracking the code of the title. The paper was just a few pages long, it being left for others to fill in the extensive beautiful mathematics which underlay the result, but it ushered in a golden age of relativity and is now one of the most cited works in physics. Coincidentally, Kerr

  19. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    PubMed

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental evaluation of stresses in spherically hollow balls

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1974-01-01

    An analysis was undertaken to evaluate stresses within spherically hollow ball bearings proportioned for 40, 50, and 60% mass reductions. Strain gage rosettes were used to determine principal strains and stresses in the steel ball models statically loaded in various orientations. Dimensionless results are reported for the balls under flate plate contact loads. Similitude considerations permit these results to be applied to calculate stresses in hollow ball bearings proportioned to these mass reductions.

  1. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-04-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  2. Particle levitation and guidance in hollow-core photonic crystal fiber.

    PubMed

    Benabid, Fetah; Knight, J; Russell, P

    2002-10-21

    We report the guidance of dry micron-sized dielectric particles in hollow core photonic crystal fiber. The particles were levitated in air and then coupled to the air-core of the fiber using an Argon ion laser beam operating at a wavelength of 514 nm. The diameter of the hollow core of the fiber is 20 m . A laser power of 80 mW was sufficient to levitate a 5 m diameter polystyrene sphere and guide it through a ~150 mm long hollow-core crystal photonic fiber. The speed of the guided particle was measured to be around 1 cm/s.

  3. Superradiant instabilities in the Kerr-mirror and Kerr-AdS black holes with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.

    2018-04-01

    It has been recently observed that a scalar field with Robin boundary conditions (RBCs) can trigger both a superradiant and a bulk instability for a Bañados-Teitelboim-Zanelli (BTZ) black hole (BH) [1]. To understand the generality and scrutinize the origin of this behavior, we consider here the superradiant instability of a Kerr BH confined either in a mirrorlike cavity or in anti-de Sitter (AdS) space, triggered also by a scalar field with RBCs. These boundary conditions are the most general ones that ensure the cavity/AdS space is an isolated system and include, as a particular case, the commonly considered Dirichlet boundary conditions (DBCs). Whereas the superradiant modes for some RBCs differ only mildly from the ones with DBCs, in both cases, we find that as we vary the RBCs the imaginary part of the frequency may attain arbitrarily large positive values. We interpret this growth as being sourced by a bulk instability of both confined geometries when certain RBCs are imposed to either the mirrorlike cavity or the AdS boundary, rather than by energy extraction from the BH, in analogy with the BTZ behavior.

  4. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  5. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  6. Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching.

    PubMed

    Wang, Zhiyu; Luan, Deyan; Li, Chang Ming; Su, Fabing; Madhavi, Srinivasan; Boey, Freddy Yin Chiang; Lou, Xiong Wen

    2010-11-17

    Despite the significant advancement in making hollow structures, one unsolved challenge in the field is how to engineer hollow structures with specific shapes, tunable compositions, and desirable interior structures. In particular, top-down engineering the interiors inside preformed hollow structures is still a daunting task. In this work, we demonstrate a facile approach for the preparation of a variety of uniform hollow structures, including Cu(2)O@Fe(OH)(x) nanorattles and Fe(OH)(x) cages with various shapes and dimensions by template-engaged redox etching of shape-controlled Cu(2)O crystals. The composition can be readily modulated at different structural levels to generate other interesting structures such as Cu(2)O@Fe(2)O(3) and Cu@Fe(3)O(4) rattles, as well as Fe(2)O(3) and Fe(3)O(4) cages. More remarkably, this strategy enables top-down engineering the interiors of hollow structures as demonstrated by the fabrication of double-walled nanorattles and nanoboxes, and even box-in-box structures. In addition, this approach is also applied to form Au and MnO(x) based hollow structures.

  7. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  8. Relation of historical quarrying, material utilization and performance on buildings in Eastern Finland

    NASA Astrophysics Data System (ADS)

    Luodes, Nike M.; Pirinen, Heikki

    2016-04-01

    Finland might seem to have lower stone heritage compared to other southern European countries, but it has been the main exporter of dimension stone to the majestic buildings that made St.Petersburg a recognized cultural heritage. In Finland, though, the stone seems undervalued. The only dramatic and predominant stone buildings are those of agencies and administrations located in the towns, where the stone has been used to impress and symbolize value. Romantic style used massive bossy stone in building's full height and created fine traditional carvings. Otherwise the communities have mainly built settlements in contact with the nature, with materials easily available and of low cost, following architectonical trends of the periods and producing interesting stone details. During the past years, research has been conducted on historical buildings interconnecting scientific and artistic approach to evaluate material durability and cultural relevance of the artifacts. Generally until mid 20th century the stone has been traditionally used massive for basements and walls. The materials still present good mechanical characteristics and most often the weathering level after hundreds of years of exposure had reached only the first millimeters from the curst. Instead the old methodology for deposit exploitation has left visible signs on the buildings. Some examples are visible from Kuopio. The exploitation of small, easy-to-reach surface deposits, even if planned by local experts, has affected quality and appearance of historical buildings. As an example the excavation of shallow quarries where also weathered crop was kept as a product has characterized the basement of the Niirala school that presents change in colors due to original material more than to weathering on site. Fissuring is also visible on a couple of blocks while marks on the rocks depict the old excavation method. Most often the deposits had been in the vicinities, frequently hidden by further construction

  9. Silk-regulated hierarchical hollow magnetite/carbon nanocomposite spheroids for lithium-ion battery anodes.

    PubMed

    Sheng, Weiqin; Zhu, Guobin; Kaplan, David L; Cao, Chuanbao; Zhu, Hesun; Lu, Qiang

    2015-03-20

    Hierarchical olive-like structured carbon-Fe3O4 nanocomposite particles composed of a hollow interior and a carbon coated surface are prepared by a facile, silk protein-assisted hydrothermal method. Silk nanofibers as templates and carbon precursors first regulate the formation of hollow Fe2O3 microspheres and then they are converted into carbon by a reduction process into Fe3O4. This process significantly simplifies the fabrication and carbon coating processes to form complex hollow structures. When tested as anode materials for lithium-ion batteries, these hollow carbon-coated particles exhibit high capacity (900 mAh g(-1)), excellent cycle stability (180 cycles) and rate performance due to their unique hierarchical hollow structure and carbon coating.

  10. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  11. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range.

    PubMed

    Lin, Guoping; Chembo, Yanne K

    2015-01-26

    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above 109. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion (GVD). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the GVD of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar GVD, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to push the zero-dispersion wavelength of fluorite crystals towards the mid-infrared (mid-IR) range, thereby allowing for efficient Kerr comb generation in that spectral range. We show that barium fluoride is the most interesting crystal in this regard, due to its zero dispersion wavelength (ZDW) at 1.93 μm and an optimal dispersion profile in the mid-IR regime. We expect our results to facilitate the design of different platforms for Kerr frequency comb generations in both telecommunication and mid-IR spectral ranges.

  12. Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, Mieszko

    2017-01-01

    In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.

  13. Mesoporous hollow spheres from soap bubbling.

    PubMed

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  15. Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity

    NASA Astrophysics Data System (ADS)

    Han, Lu; Gao, Chuanbo; Wu, Xiaowei; Chen, Qianru; Shu, Peng; Ding, Zhiguang; Che, Shunai

    2011-04-01

    Silica hollow spheres with different shell porosity were simply synthesized with micelle and emulsion dual templating route. Various anionic surfactants, such as palmitic acid (C 16AA), N-acyl- L-phenylalanine (C 18Phe), N-palmitoyl- L-alanine (C 16AlaA) and oleic acid (OA) have been used as templates, and 3-aminopropyl-triethoxysilane (APES) and tetraethyl orthosilicate (TEOS) have been used as co-structure directing agent (CSDA) and silica source, respectively. The circle lamellar layer structure and mesopores vertical to the silica hollow spheres surface are believed to originate from the initial formation of amphiphilic carboxylic acid oil drop, which afterwards self-assemble to form the shell of hollow spheres and its mesostructure upon addition of CSDA and silica source. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The particle diameter and the hollow structure have been controlled by choosing different templates and by manipulating synthesis gel composition. The average particle diameter of the mesoporous silica hollow spheres were controlled in the range of 80-220 nm with constant shell thickness of ˜20 nm and constant mesopore size of ˜4 nm. Besides, the formation of the silica hollow spheres has been investigated in detail with reaction time. These mesoporous silica hollow spheres would have potential applications on catalysis, bimolecular encapsulation, adsorption, drug release, etc.

  16. Unraveling the Chemical Nature of the 3D "Hollow" Hybrid Halide Perovskites.

    PubMed

    Spanopoulos, Ioannis; Ke, Weijun; Stoumpos, Constantinos C; Schueller, Emily C; Kontsevoi, Oleg Y; Seshadri, Ram; Kanatzidis, Mercouri G

    2018-05-02

    The newly introduced class of 3D halide perovskites, termed "hollow" perovskites, has been recently demonstrated as light absorbing semiconductor materials for fabricating lead-free perovskite solar cells with enhanced efficiency and superior stability. Hollow perovskites derive from three-dimensional (3D) AMX 3 perovskites ( A = methylammonium (MA), formamidinium (FA); M = Sn, Pb; X = Cl, Br, I), where small molecules such as ethylenediammonium cations ( en) can be incorporated as the dication without altering the structure dimensionality. We present in this work the inherent structural properties of the hollow perovskites and expand this class of materials to the Pb-based analogues. Through a combination of physical and spectroscopic methods (XRD, gas pycnometry, 1 H NMR, TGA, SEM/EDX), we have assigned the general formula (A) 1- x ( en) x (M) 1-0.7 x (X) 3-0.4 x to the hollow perovskites. The incorporation of en in the 3D perovskite structure leads to massive M and X vacancies in the 3D [ MX 3 ] framework, thus the term hollow. The resulting materials are semiconductors with significantly blue-shifted direct band gaps from 1.25 to 1.51 eV for Sn-based perovskites and from 1.53 to 2.1 eV for the Pb-based analogues. The increased structural disorder and hollow nature were validated by single crystal X-ray diffraction analysis as well as pair distribution function (PDF) analysis. Density functional theory (DFT) calculations support the experimental trends and suggest that the observed widening of the band gap is attributed to the massive M and X vacancies, which create a less connected 3D hollow structure. The resulting materials have superior air stability, where in the case of Sn-based hollow perovskites it exceeds two orders of temporal magnitude compared to the conventional full perovskites of MASnI 3 and FASnI 3 . The hollow perovskite compounds pose as a new platform of promising light absorbers that can be utilized in single junction or tandem solar cells.

  17. Hopfield-Kerr model and analogue black hole radiation in dielectrics

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2017-11-01

    In the context of the interaction between the electromagnetic field and a dielectric dispersive lossless medium, we present a nonlinear version of the relativistically covariant Hopfield model, which is suitable for the description of a dielectric Kerr perturbation propagating in a dielectric medium. The nonlinearity is introduced in the Lagrangian through a self-interacting term proportional to the fourth power of the polarization field. We find an exact solution for the nonlinear equations describing a propagating perturbation in the dielectric medium. Furthermore, the presence of an analogue Hawking effect, as well as the thermal properties of the model, are discussed, confirming and improving the results achieved in the scalar case.

  18. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  19. Theoretical prediction of low-density hexagonal ZnO hollow structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  20. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  1. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  2. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids.

    PubMed

    Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim

    2017-10-06

    Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.

  3. Stress Related Fracturing in Dimension Stone Quarries

    NASA Astrophysics Data System (ADS)

    Hamdi Deliormanli, Ahmet; Maerz, Norbert H.

    2016-10-01

    In Missouri, the horizontal stresses (pressures) in the near surface rock are uncommonly high. While the vertical stresses in rock are simply a function of the weight of the overlying rock, near surface stresses can be many times higher. The near surface horizontal stresses can be in excess of 5 times greater than the vertical stresses. In this research, Flatjack method was used to measure horizontal stress in Red Granite Quarry in Missouri. The flat jack method is an approved method of measuring ground stresses. A saw cut is used to “relax” the stress in the ground by allowing the rock to deform inwards the cut. A hydraulic flat jack is used to inflate the slot; to push the rock back to its stressed position, as measured by a strain gauge on either side of the slot. The pressure in the jack, when the rock is exactly back to its original position, is equal to the ground stress before the saw cut was made. According to the results, present production direction for each pit is not good because the maximum stress direction is perpendicular with production direction. This case causes unintentional breakage results in the loss rock. The results show that production direction should be changed.

  4. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  5. Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N

    1998-11-30

    An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)

  6. Intrinsic and Extrinsic Origins of the Polar Kerr Effect in a Chiral p-WAVE Superconductor

    NASA Astrophysics Data System (ADS)

    Goryo, Jun

    Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + ipy-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsic (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.

  7. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    PubMed

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  8. Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.

    PubMed

    Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei

    2015-01-01

    The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.

  9. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments.

    PubMed

    Perrodin, Yves; Donguy, Gilles; Bazin, Christine; Volatier, Laurence; Durrieu, Claude; Bony, Sylvie; Devaux, Alain; Abdelghafour, Mohammed; Moretto, Robert

    2012-08-01

    The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the "substances" approach derived from the European methodology for assessing new substances placed on the market, and the "matrix" approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, …). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments "1" and "2" presented a low risk for the peripheral aquatic ecosystems while sediment "3

  10. Microanalysis of extended-test xenon hollow cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Patterson, Michael J.

    1991-01-01

    Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.

  11. Oscar Renda Contracting Inc. Navajo Nation Crushing/Screening Operation: Coverage Under General Air Quality Permit for Stone Quarrying, Crushing and Screening Facilities

    EPA Pesticide Factsheets

    Documents related to approved request for coverage under the Stone Quarrying, Crushing and Screening Facilities General Permit for Oscar Renda Contracting Inc. Navajo Nation Crushing/Screening Operation located in McKinley and San Juan Counties, NM.

  12. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.

    PubMed

    Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin

    2004-06-22

    CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.

  13. A Combined Remote Sensing-Numerical Modelling Approach to the Stability Analysis of Delabole Slate Quarry, Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide

    2016-04-01

    Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D

  14. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with thesemore » waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.« less

  15. Use of a Combination of Vertical and Horizontal Boreholes in Massive Blasting of Benches in the Surface Quarry Rodež

    NASA Astrophysics Data System (ADS)

    Tori, Matija; Vajović, Stanojle; Goleš, Niko; Muhić, Elvir; Peternel, Miha

    2017-12-01

    This article deals with the extraction of minerals (limestone/marl/flysch) in the quarry Rodež, which is located in western Slovenia. During the extraction of minerals in a quarry, drilling and blasting of benches are used. The focus of the article is on the analysis of the parameters related to drilling and blasting in surface excavations when using a combination of explosions and introducing horizontal wells along with vertical holes in the bench. On the basis of the analysis of basic parameters through a combination of drilling horizontal wells and charging those with the ammonal + Anfex explosive, analyses of effects of seismic disturbances on potentially affected buildings have also been conducted. The article is connected to and deals exclusively with the basic parameters of drilling and blasting, with the introduction of horizontal drilling and with the analysis of seismic measurements of threatened buildings in accordance with the German standard German Institute for Standardisation (DIN) 4150 during the use of a new method of blasting.

  16. Coexistence of Multiple Nonlinear States in a Tristable Passive Kerr Resonator

    NASA Astrophysics Data System (ADS)

    Anderson, Miles; Wang, Yadong; Leo, François; Coen, Stéphane; Erkintalo, Miro; Murdoch, Stuart G.

    2017-07-01

    Passive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics, including bistability, pattern formation, and localized dissipative structures (solitons). Their conceptual simplicity has for several decades offered an unprecedented window into nonlinear cavity dynamics, providing insights into numerous systems and applications ranging from all-optical memory devices to microresonator frequency combs. Yet despite the decades of study, a recent theoretical work has surprisingly alluded to an entirely new and unexplored paradigm in the regime where nonlinearly tilted cavity resonances overlap with one another [T. Hansson and S. Wabnitz, J. Opt. Soc. Am. B 32, 1259 (2015), 10.1364/JOSAB.32.001259]. We use synchronously driven fiber ring resonators to experimentally access this regime and observe the rise of new nonlinear dissipative states. Specifically, we observe, for the first time to the best of our knowledge, the stable coexistence of temporal Kerr cavity solitons and extended modulation instability (Turing) patterns, and perform real-time measurements that unveil the dynamics of the ensuing nonlinear structure. When operating in the regime of continuous wave tristability, we further observe the coexistence of two distinct cavity soliton states, one of which can be identified as a "super" cavity soliton, as predicted by Hansson and Wabnitz. Our experimental findings are in excellent agreement with theoretical analyses and numerical simulations of the infinite-dimensional Ikeda map that governs the cavity dynamics. The results from our work reveal that experimental systems can support complex combinations of distinct nonlinear states, and they could have practical implications to future microresonator-based frequency comb sources.

  17. Predicting hollow viscus injury in blunt abdominal trauma with computed tomography.

    PubMed

    Bhagvan, Savitha; Turai, Matthew; Holden, Andrew; Ng, Alexander; Civil, Ian

    2013-01-01

    Evaluation of blunt abdominal trauma is controversial. Computed tomography (CT) of the abdomen is commonly used but has limitations, especially in excluding hollow viscus injury in the presence of solid organ injury. To determine whether CT reports alone could be used to direct operative treatment in abdominal trauma, this study was undertaken. The trauma database at Auckland City Hospital was accessed for patients who had abdominal CT and subsequent laparotomy during a five-year period. The CT scans were reevaluated by a consultant radiologist who was blinded to operative findings. The CT findings were correlated with the operative findings. Between January 2002 and December 2007, 1,250 patients were evaluated for blunt abdominal injury with CT. A subset of 78 patients underwent laparotomy, and this formed the study group. The sensitivity and specificity of CT scan in predicting hollow viscus injury was 55.33 and 92.06 % respectively. The positive and negative predictive values were 61.53 and 89.23 % respectively. Presence of free fluid in CT scan was sensitive in diagnosing hollow viscus injury (90 %). Specific findings for hollow viscus injuries on CT scan were free intraperitoneal air (93 %), retroperitoneal air (100 %), oral contrast extravasation (100 %), bowel wall defect (98 %), patchy bowel enhancement (97 %), and mesenteric abnormality (94 %). CT alone cannot be used as a screening tool for hollow viscus injury. The decision to operate in hollow viscus injury has to be based on mechanism of injury and clinical findings together with radiological evidence.

  18. Spectral Clustering of Hermean craters hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, Alice; Pajola, Maurizio; Cremonese, Gabriele; Carli, Cristian; Marzo, Giuseppe; Roush, Ted

    2017-04-01

    The Mercury Dual Imaging System (MDIS, Hawkins et al., 2007) onboard NASA MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft, provided high-resolution images of "hollows", i.e. shallow, irregular, rimless, flat-floored depressions with bright interiors and halos, often found on crater walls, rims, floors and central peaks (Blewett et al., 2011, 2013). The formation mechanism of these features was suggested to be related to the depletion of subsurface volatiles (Blewett et al., 2011, Vaughan et al., 2012). To understand the hollows' mineralogical composition, which can provide new insights on Mercury's surface characterization, we applied a spectral clustering method to different craters where hollows are present. We chose, as first test case, the 20 km wide Dominici crater due to previous multiple spectral detection (Vilas et al., 2016). We used the MDIS WAC dataset covering Dominici crater with a scale of 935 m/pixel through eight filters, ranging from 0.433 to 0.996 μm. First, the images have been photometrically corrected using the Hapke parameters (Hapke et al., 2002) derived in Domingue et al. (2015). We then applied a statistical clustering over the entire dataset based on a K-means partitioning algorithm (Marzo et al., 2006). This approach was developed and evaluated by Marzo et al. (2006, 2008, 2009) and makes use of the Calinski and Harabasz criterion (Calinski, T., Harabasz, J., 1974) to identify the intrinsically natural number of clusters, making the process unsupervised. The natural number of ten clusters was identified and spectrally separates the Dominici surrounding terrains from its interior, as well as the two hollows from their edges. The units located on the brightest part of the south wall/rim of Dominici crater clearly present a wide absorption band between 0.558 and 0.828 μm. Hollows surrounding terrains typically present a red slope in the VNIR with a possible weak absorption band centered at 0.748

  19. Hysteresis and memory factor of the Kerr effect in blue phases

    NASA Astrophysics Data System (ADS)

    Nordendorf, Gaby; Lorenz, Alexander; Hoischen, Andreas; Schmidtke, Jürgen; Kitzerow, Heinz; Wilkes, David; Wittek, Michael

    2013-11-01

    The performance of a polymer-stabilized blue phase system based on a nematic host with large dielectric anisotropy and a chiral dopant with high helical twisting power is investigated and the influence of the reactive monomer composition on the electro-optic characteristics is studied. Field-induced birefringence with a Kerr coefficient greater than 1 nm V-2 can be achieved in a large temperature range from well below 20 °C to above 55 °C. The disturbing influences of electro-optic hysteresis and memory effects can be reduced by diligent choice of the composition and appropriate electric addressing.

  20. Hidden instabilities in the Ti:sapphire Kerr lens mode-locked laser.

    PubMed

    Kovalsky, M G; Hnilo, A A; González Inchauspe, C M

    1999-11-15

    It is experimentally shown that pulse-to-pulse instabilities in the output of Kerr lens mode-locked Ti:sapphire lasers are usual and that they can affect some of the pulse variables (e.g., the spot size) and not others (e.g., pulse duration and energy). These instabilities are not detectable in the averaged signals (such as the autocorrelation of the pulse) that are customarily used for controlling the laser. But, if they are present but are disregarded, these instabilities have undesirable consequences in almost any application. A simple way to detect and eliminate the instabilities is described.

  1. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  2. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  3. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.

    PubMed

    Testa, Alison C; Hane, James K; Ellwood, Simon R; Oliver, Richard P

    2015-03-11

    The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against

  5. An external template-free route to uniform semiconducting hollow mesospheres and their use in photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Di; Wang, Mengye; Zou, Bin; Zhang, Gu Ling; Lin, Zhiqun

    2015-07-01

    Solid amorphous TiO2 mesospheres were synthesized by controlled hydrolysis of Ti-containing precursors. Subsequently, solid TiO2 mesospheres were exploited as scaffolds and subjected to a one-step external template-free hydrothermal treatment, yielding intriguing hollow anatase TiO2 mesospheres. The synthetic protocol was optimized by investigating the effect of buffer reagents and fluoride ions on the formation of hollow TiO2 spheres. The diameter of hollow mesospheres, ranging from 308 to 760 nm, can be readily tailored by varying the precursor concentration. The average thickness of a shell composed of TiO2 nanocrystals was approximately 40 nm with a mean crystal size of 12.4-20.0 nm. Such hollow TiO2 mesospheres possessed a large surface area and were employed in photocatalytic degradation of methylene blue under UV irradiation. Interestingly, the synthetic conditions were found to exert a significant influence on the photocatalytic ability of hollow TiO2 mesospheres. The correlation between the degradation ability of hollow TiO2 mesospheres and the precursor concentration as well as the hydrothermal time was scrutinized. The optimal photocatalytic performance of hollow TiO2 mesospheres was identified.Solid amorphous TiO2 mesospheres were synthesized by controlled hydrolysis of Ti-containing precursors. Subsequently, solid TiO2 mesospheres were exploited as scaffolds and subjected to a one-step external template-free hydrothermal treatment, yielding intriguing hollow anatase TiO2 mesospheres. The synthetic protocol was optimized by investigating the effect of buffer reagents and fluoride ions on the formation of hollow TiO2 spheres. The diameter of hollow mesospheres, ranging from 308 to 760 nm, can be readily tailored by varying the precursor concentration. The average thickness of a shell composed of TiO2 nanocrystals was approximately 40 nm with a mean crystal size of 12.4-20.0 nm. Such hollow TiO2 mesospheres possessed a large surface area and were employed

  6. An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2005-12-01

    We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs.

  7. (2 + 1)-dimensional bright optical solitons in metamaterials with Kerr, power and parabolic law nonlinearities

    NASA Astrophysics Data System (ADS)

    Boubir, Badreddine

    2018-06-01

    In this paper, we investigate the dynamics of bright optical solitons in nonlinear metamaterials governed by a (2 + 1)-dimensional nonlinear Schrödinger equation. Three types of nonlinearities have been considered, Kerr law, power law and parabolic law. We based on the solitary wave ansatz method to find these optical soliton solutions. All necessary parametric conditions for their existence are driven.

  8. Thin-walled reinforcement lattice structure for hollow CMC buckets

    DOEpatents

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  9. Magneto-optical Kerr effect of a Ni2.00Mn1.16Ga0.84 single crystal across austenite and intermartensite transitions

    NASA Astrophysics Data System (ADS)

    Fikáček, Jan; Heczko, Oleg; Kopecký, Vít; Kaštil, Jiří; Honolka, Jan

    2018-04-01

    We carried out magneto-optical Kerr effect (MOKE) and magnetization measurements on a single crystal of Ni2.00Mn1.16Ga0.84, which is a magnetic shape memory material with application potential for actuator devices or for energy recuperation. Up to the time of our study, there had been reports of MOKE measurements in polar geometry. Against earlier predictions, we show that surface magnetic states of the martensite and the austenite can be also probed efficiently via longitudinal MOKE. A single-variant magnetic state prepared at room temperature is characterized by square-shaped ferromagnetic hysteresis loops yielding coercive fields, which are key material properties for future applications. Temperature dependencies of Kerr rotation were found to be linearly proportional to magnetization for martensitic phases. After passing through an inter-martensitic structural transition below room temperature in zero magnetic field, the coercive fields are more than doubled in comparison with the room temperature values. Above room temperature where an austenite structure is formed, MOKE signals are dominated by quadratic contributions and the magnitude of Kerr rotation drops due to changes in the electronic and magnetic domains structure.

  10. The Experience of Implementation of Innovative Technology of Quarry Waste Water Purifying in Kuzbass Open Pit

    NASA Astrophysics Data System (ADS)

    Lesin, Yu V.; Hellmer, M. C.

    2016-08-01

    Among all industries in Kuzbass (Western Siberia, Russia) the coal industry provides the most environmental threat. However, the construction of new and maintenance of existing open pit mines do not often correspond to the tasks of improving the environmental safety of surface mining. So the article describes the use of innovative quarry waste water purifying technology implemented in Kuzbass open pit mine «Shestaki». This technology is based on using artificial filter arrays made of overburden rock.

  11. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    NASA Astrophysics Data System (ADS)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  12. The Dynamics of a Five-level (Double Λ)-type Atom Interacting with Two-mode Field in a Cross Kerr-like Medium

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.

    2018-04-01

    In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.

  13. Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Young, C; Chan, J

    2007-07-12

    A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{submore » 4}.« less

  14. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Rand, Lauren P. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  15. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  16. Improvement of on/off ratio in single-shot multichannel demultiplexing by using an optical Kerr gate of a squarylium dye J aggregate film

    NASA Astrophysics Data System (ADS)

    Sato, Yasuhiro; Furuki, Makoto; Tian, Minquan; Iwasa, Izumi; Pu, Lyong Sun; Tatsuura, Satoshi

    2002-04-01

    We demonstrated ultrafast single-shot multichannel demultiplexing by using a squarylium dye J aggregate film as an optical Kerr medium. High efficiency and fast recovery of the optical Kerr responses were achieved when a signal-pulse wavelength was close to the absorption peak of the J aggregate film with off-resonant excitation. The on/off ratio in demultiplexing of 1 Tb/s signals was improved to be approximately 5. By introducing time delay to both horizontal and vertical directions, we succeeded in directly observing the conversion of 1 Tb/s serial signals into two-dimensionally arranged parallel signals.

  17. Is the Kerr black hole a super accelerator?

    NASA Astrophysics Data System (ADS)

    Krasnikov, S.; Skvortsova, M. V.

    2018-02-01

    A number of long-standing puzzles, such as the origin of extreme-energy cosmic rays, could perhaps be solved if we found a mechanism for effectively transferring energy from black holes to particles and, correspondingly, accelerating the latter to (unboundedly, as long as we neglect the back reaction) large velocities. As of today the only such candidate mechanism in the case of the nonextreme Kerr black hole is colliding a particle that freely falls from infinity with a particle whose trajectory is subject to some special requirements to fulfil which it has to be suitably corrected by auxiliary collisions. In the present paper we prove that—at least when the relevant particles move in the equatorial plane and experience a single correcting collision—this mechanism does not work too. The energy of the final collision becomes unboundedly high only when the energies of the incoming particles do.

  18. Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles.

    PubMed

    Zou, Hua; Wu, Shishan; Shen, Jian

    2008-09-16

    This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".

  19. Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics

    NASA Astrophysics Data System (ADS)

    Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.

    2016-10-01

    The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.

  20. One-pot template-free synthesis of uniform-sized fullerene-like magnetite hollow spheres

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Zhang, Yue; Liu, Zheng; Zhou, Xinrui; Zhang, Xinmei; Zeng, Lintao

    2015-11-01

    Uniform-sized Fe3O4 hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The reaction time and DPA amount play important roles in the formation of the magnetite hollow spheres. The structures of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results show that the single-crystalline Fe3O4 hollow spheres are composed of well-aligned magnetite nanoparticles (NPs). The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (Ms) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations.