Sample records for kerr-gauss-bonnet black holes

  1. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.

    PubMed

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2011-04-15

    We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.

  2. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  3. Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia

    2017-07-01

    We explore the constraints boundary causality places on the allowable Gauss-Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss-Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss-Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss-Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes.

  4. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.

    2018-06-01

    In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.

  5. Quintessence background for 5D Einstein-Gauss-Bonnet black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Amir, Muhammed; Maharaj, Sunil D.

    2017-08-01

    As we know that the Lovelock theory is an extension of the general relativity to the higher-dimensions, in this theory the first- and the second-order terms correspond to general relativity and the Einstein-Gauss-Bonnet gravity, respectively. We obtain a 5D black hole solution in Einstein-Gauss-Bonnet gravity surrounded by the quintessence matter, and we also analyze their thermodynamical properties. Owing to the quintessence corrected black hole, the thermodynamic quantities have also been corrected except for the black hole entropy, and a phase transition is achievable. The phase transition for the thermodynamic stability is characterized by a discontinuity in the specific heat at r=r_C, with the stable (unstable) branch for r < (>) r_C.

  6. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  7. On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology [Formula: see text].

    PubMed

    Dadhich, Naresh; Pons, Josep M

    We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.

  8. Scalar hair around charged black holes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Grandi, Nicolás; Landea, Ignacio Salazar

    2018-02-01

    We explore charged black hole solutions in Einstein-Gauss-Bonnet gravity in five dimensions, with a charged scalar hair. We interpret such hairy black holes as the final state of the superradiant instability previously reported for this system. We explore the relation of the hairy black hole solutions with the nonbackreacting quasibound states and scalar clouds, as well as with the boson star solutions.

  9. Regular black holes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Singh, Dharm Veer; Maharaj, Sunil D.

    2018-05-01

    Einstein-Gauss-Bonnet theory, a natural generalization of general relativity to a higher dimension, admits a static spherically symmetric black hole which was obtained by Boulware and Deser. This black hole is similar to its general relativity counterpart with a curvature singularity at r =0 . We present an exact 5D regular black hole metric, with parameter (k >0 ), that interpolates between the Boulware-Deser black hole (k =0 ) and the Wiltshire charged black hole (r ≫k ). Owing to the appearance of the exponential correction factor (e-k /r2), responsible for regularizing the metric, the thermodynamical quantities are modified, and it is demonstrated that the Hawking-Page phase transition is achievable. The heat capacity diverges at a critical radius r =rC, where incidentally the temperature is maximum. Thus, we have a regular black hole with Cauchy and event horizons, and evaporation leads to a thermodynamically stable double-horizon black hole remnant with vanishing temperature. The entropy does not satisfy the usual exact horizon area result of general relativity.

  10. Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin

    2018-02-01

    We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.

  11. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Ma, Hong; Li, Jin

    2018-04-01

    In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

  12. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brihaye, Yves; Hartmann, Betti

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field thatmore » possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.« less

  13. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  14. Dilaton field released under collision of dilatonic black holes with Gauss-Bonnet term

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Ro, Daeho

    2017-08-01

    We investigate the upper limit of the gravitational radiation released upon the collision of two dilatonic black holes by analyzing the Gauss-Bonnet term. Dilatonic black holes have a dilaton hair coupled with this term. Using the laws of thermodynamics, the upper limit of the radiation is obtained, which reflected the effects of the dilaton hair. The amount of radiation released is greater than that emitted by a Schwarzschild black hole due to the contribution from the dilaton hair. In the collision, most of the dilaton hair can be released through radiation, where the energy radiated by the dilaton hair is maximized when the horizon of one black hole is minimized for a fixed second black hole.

  15. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.

    PubMed

    Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele

    2018-03-30

    We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

  16. Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996), 10.1103/PhysRevD.54.5049] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.

  17. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-03-01

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f (ϕ ) . We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f (ϕ ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f (ϕ ).

  18. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories.

    PubMed

    Antoniou, G; Bakopoulos, A; Kanti, P

    2018-03-30

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f(ϕ). We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f(ϕ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f(ϕ).

  19. Physical process first law and increase of horizon entropy for black holes in Einstein-Gauss-Bonnet gravity.

    PubMed

    Chatterjee, Ayan; Sarkar, Sudipta

    2012-03-02

    We establish the physical process version of the first law by studying small perturbations of a stationary black hole with a regular bifurcation surface in Einstein-Gauss-Bonnet gravity. Our result shows that when the stationary black hole is perturbed by a matter stress energy tensor and finally settles down to a new stationary state, the Wald entropy increases as long as the matter satisfies the null energy condition.

  20. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2014-08-01

    We study the triple points and phase diagrams in the extended phase space of the charged Gauss-Bonnet black holes in d-dimensional anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is the thermodynamic volume of the black holes. Employing the equation of state T=T(v,P), we demonstrate that the information of the phase transition and behavior of the Gibbs free energy are potential encoded in the T-v (T-rh) line with fixed pressure P. We get the phase diagrams for the charged Gauss-Bonnet black holes with different values of the charge Q and dimension d. The result shows that the small/large black hole phase transitions appear for any d, which is reminiscent of the liquid/gas transition of a Van der Waals type. Moreover, the interesting thermodynamic phenomena, i.e., the triple points and the small/intermediate/large black hole phase transitions are observed for d=6 and Q ∈(0.1705,0.1946).

  1. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    NASA Astrophysics Data System (ADS)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  2. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2011-01-15

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, itmore » extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.« less

  3. Energy-dependent topological anti-de Sitter black holes in Gauss-Bonnet Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Behnamifard, H.; Bahrami-Asl, B.

    2018-03-01

    Employing higher-curvature corrections to Einstein-Maxwell gravity has garnered a great deal of attention motivated by the high-energy regime in the quantum nature of black hole physics. In addition, one may employ gravity's rainbow to encode quantum gravity effects into black hole solutions. In this paper, we regard an energy-dependent static spacetime with various topologies and study its black hole solutions in the context of Gauss-Bonnet Born-Infeld (GB-BI) gravity. We study the thermodynamic properties and examine the first law of thermodynamics. Using a suitable local transformation, we endow the Ricci-flat black hole solutions with a global rotation and study the effects of rotation on thermodynamic quantities. We also investigate thermal stability in a canonical ensemble by calculating the heat capacity. We obtain the effects of various parameters on the horizon radius of stable black holes. Finally, we discuss a second-order phase transition in the extended phase space thermodynamics and investigate the critical behavior.

  4. Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes

    NASA Astrophysics Data System (ADS)

    Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.

    2018-06-01

    Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.

  5. Conserved charges of black holes in Weyl and Einstein-Gauss-Bonnet gravities

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2014-11-01

    An off-shell generalization of the Abbott-Deser-Tekin (ADT) conserved charge was recently proposed by Kim et al. They achieved this by introducing off-shell Noether currents and potentials. In this paper, we construct the crucial off-shell Noether current by the variation of the Bianchi identity for the expression of EOM, with the help of the property of Killing vector. Our Noether current, which contains an additional term that is just one half of the Lie derivative of a surface term with respect to the Killing vector, takes a different form in comparison with the one in their work. Then we employ the generalized formulation to calculate the quasi-local conserved charges for the most general charged spherically symmetric and the dyonic rotating black holes with AdS asymptotics in four-dimensional conformal Weyl gravity, as well as the charged spherically symmetric black holes in arbitrary dimensional Einstein-Gauss-Bonnet gravity coupled to Maxwell or nonlinear electrodynamics in AdS spacetime. Our results confirm those obtained through other methods in the literature.

  6. Causal structures in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Izumi, Keisuke

    2014-08-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity; i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on nonstationary solutions with (D-2)-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB≥0 for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light. However, if the geometrical null energy condition is violated, gravitons can propagate faster than light. Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold, classical gravitons can escape from the "black hole" defined with null curves. That is, the causal structures become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating black holes.

  7. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2018-03-01

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  8. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories.

    PubMed

    Doneva, Daniela D; Yazadjiev, Stoytcho S

    2018-03-30

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  9. Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term

    NASA Astrophysics Data System (ADS)

    Deruelle, Nathalie; Merino, Nelson; Olea, Rodrigo

    2018-05-01

    We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole.

  10. Thermodynamic instability of topological black holes in Gauss-Bonnet gravity with a generalized electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.

    2014-12-01

    Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.

  11. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.

  12. Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo

    2011-03-15

    We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, wemore » derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.« less

  13. Post-Kerr black hole spectroscopy

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele

    2017-09-01

    One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.

  14. Charged Rényi entropies in CFTs with Einstein-Gauss-Bonnet holographic duals

    NASA Astrophysics Data System (ADS)

    Pastras, Georgios; Manolopoulos, Dimitrios

    2014-11-01

    We calculate the Rényi entropy S q ( μ, λ), for spherical entangling surfaces in CFT's with Einstein-Gauss-Bonnet-Maxwell holographic duals. Rényi entropies must obey some interesting inequalities by definition. However, for Gauss-Bonnet couplings λ, larger than specific value, but still allowed by causality, we observe a violation of the inequality , which is related to the existence of negative entropy black holes, providing interesting restrictions in the bulk theory. Moreover, we find an interesting distinction of the behaviour of the analytic continuation of S q ( μ, λ) for imaginary chemical potential, between negative and non-negative λ.

  15. New entropy formula for Kerr black holes

    NASA Astrophysics Data System (ADS)

    González, Hernán A.; Grumiller, Daniel; Merbis, Wout; Wutte, Raphaela

    2018-01-01

    We introduce a new entropy formula for Kerr black holes inspired by recent results for 3-dimensional black holes and cosmologies with soft Heisenberg hair. We show that also Kerr-Taub-NUT black holes obey the same formula.

  16. Noncommutative geometry inspired Einstein–Gauss–Bonnet black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.

    2018-04-01

    Low energy limits of a string theory suggests that the gravity action should include quadratic and higher-order curvature terms, in the form of dimensionally continued Gauss–Bonnet densities. Einstein–Gauss–Bonnet is a natural extension of the general relativity to higher dimensions in which the first and second-order terms correspond, respectively, to general relativity and Einstein–Gauss–Bonnet gravity. We obtain five-dimensional (5D) black hole solutions, inspired by a noncommutative geometry, with a static spherically symmetric, Gaussian mass distribution as a source both in the general relativity and Einstein–Gauss–Bonnet gravity cases, and we also analyzes their thermodynamical properties. Owing the noncommutative corrected black hole, the thermodynamic quantities have also been modified, and phase transition is shown to be achievable. The phase transitions for the thermodynamic stability, in both the theories, are characterized by a discontinuity in the specific heat at r_+=rC , with the stable (unstable) branch for r < (>) rC . The metric of the noncommutative inspired black holes smoothly goes over to the Boulware–Deser solution at large distance. The paper has been appended with a calculation of black hole mass using holographic renormalization.

  17. Properties of the instantaneous ergo surface of a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Pelavas, Nicos; Neary, Nicholas; Lake, Kayll

    2001-04-01

    {This paper explores properties of the instantaneous ergo surface of a Kerr black hole. The surface area is evaluated in closed form. In terms of the mass (m) and angular velocity (a), to second order in a, the area of the ergo surface is given by 16πm2 + 4πa2 (compared to the familiar 16πm2-4πa2 for the event horizon). Whereas the total curvature of the instantaneous event horizon is 4π, on the ergo surface it ranges from 4π (for a = 0) to 0 (for a = m) due to conical singularities on the axis (θ = 0,π) of deficit angle 2π(1-(1-(a/m)2)1/2). A careful application of the Gauss-Bonnet theorem shows that the ergo surface remains topologically spherical. Isometric embeddings of the ergo surface in Euclidean 3-space are defined for 0≤a/m≤1 (compared to 0≤a/m≤(3)1/2/2 for the horizon).

  18. Iron Kα line of Kerr black holes with scalar hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. Inmore » the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.« less

  19. Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotti, Gustavo; Instituto de Fisica Enrique Gaviola, CONICET, Cordoba; Oliva, Julio

    2010-07-15

    The classification of a certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum is performed in d{>=}5 dimensions. The class of metrics under consideration is such that the spacelike section is a warped product of the real line and an arbitrary base manifold. It is shown that for a generic value of the Gauss-Bonnet coupling, the base manifold must be necessarily Einstein, with an additional restriction on its Weyl tensor for d>5. The boundary admits a wider class of geometries only in the special case when the Gauss-Bonnet coupling is such that the theory admits a unique maximallymore » symmetric solution. The additional freedom in the boundary metric enlarges the class of allowed geometries in the bulk, which are classified within three main branches, containing new black holes and wormholes in vacuum.« less

  20. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Saavedra, Joel; Övgün, Ali

    2017-09-01

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing.

  1. Deformation of extremal black holes from stringy interactions

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Stein, Leo C.

    2018-04-01

    Black holes are a powerful setting for studying general relativity and theories beyond GR. However, analytical solutions for rotating black holes in beyond-GR theories are difficult to find because of the complexity of such theories. In this paper, we solve for the deformation to the near-horizon extremal Kerr metric due to two example string-inspired beyond-GR theories: Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons theory. We accomplish this by making use of the enhanced symmetry group of NHEK and the weak-coupling limit of EdGB and dCS. We find that the EdGB metric deformation has a curvature singularity, while the dCS metric is regular. From these solutions, we compute orbital frequencies, horizon areas, and entropies. This sets the stage for analytically understanding the microscopic origin of black hole entropy in beyond-GR theories.

  2. Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A.

    2018-04-01

    We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.

  3. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  4. Asymptotically flat black holes in Horndeski theory and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr

    We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which ismore » Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.« less

  5. Ergosurfaces for Kerr black holes with scalar hair

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Radu, Eugen

    2014-06-01

    We have recently reported the existence of Kerr black holes with scalar hair in General Relativity minimally coupled to a massive, complex scalar field [C. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)]. These solutions interpolate between boson stars and Kerr black holes. The latter have a well-known topologically S2 ergosurface (ergosphere) whereas the former develop a S1×S1 ergosurface (ergotorus) in a region of parameter space. We show that hairy black holes always have an ergoregion, and that this region is delimited by either an ergosphere or an ergo-Saturn—i.e. a S2⊕(S1×S1) ergosurface. In the phase space of solutions, the ergotorus can either appear disconnected from the ergosphere or pinch off from it. We provide a heuristic argument, based on a measure of the size of the ergoregion, that superradiant instabilities—which are likely to be present—are weaker for hairy black holes than for Kerr black holes with the same global charges. We observe that Saturn-like, and even more remarkable, ergosurfaces should also arise for other rotating "hairy" black holes.

  6. Iron K α line of Kerr black holes with Proca hair

    NASA Astrophysics Data System (ADS)

    Zhou, Menglei; Bambi, Cosimo; Herdeiro, Carlos A. R.; Radu, Eugen

    2017-05-01

    We continue our study on the capabilities of present and future x-ray missions to test the nature of astrophysical black hole candidates via x-ray reflection spectroscopy and distinguish Kerr black holes from other solutions of 4-dimensional Einstein's gravity in the presence of a matter field. Here we investigate the case of Kerr black holes with Proca hair [1]. The analysis of a sample of these configurations suggests that even extremely hairy black holes can mimic the iron line profile of the standard Kerr black holes, and, at least for the configurations of our study, we find that current x-ray missions cannot distinguish these objects from Kerr black holes. This contrasts with our previous findings for the case of Kerr black holes with scalar (rather than Proca) hair [2], even though such comparison may be biased by the limited sample. Future x-ray missions can detect the presence of Proca hair, but a theoretical knowledge of the expected intensity profile (currently missing) can be crucial to obtain strong constraints.

  7. Cosmic censorship conjecture in Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  8. Logarithmic corrections to black hole entropy from Kerr/CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Furthermore, Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. We compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  9. Logarithmic corrections to black hole entropy from Kerr/CFT

    DOE PAGES

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew; ...

    2017-04-14

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Furthermore, Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. We compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  10. Gravitational collapse to a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano

    2017-07-01

    We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.

  11. Initial data for two Kerr-like black holes.

    PubMed

    Dain, S

    2001-09-17

    We prove the existence of a family of initial data for the Einstein vacuum equation which can be interpreted as the data for two Kerr-like black holes in an arbitrary location and with spins pointing in arbitrary directions. We also provide a method to compute them. If the mass parameter of one of the black holes is zero, then this family reduces exactly to the Kerr initial data. The existence proof is based on a general property of the Kerr metric which can be used in other constructions as well. Further generalizations are also discussed.

  12. Spinning BTZ black hole versus Kerr black hole: A closer look

    NASA Astrophysics Data System (ADS)

    Kim, Hongsu

    1999-03-01

    By applying Newman's algorithm, the AdS3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Bañados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in kind of ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such a transformation is found to exist. In these Kerr-Schild-type coordinates, a truly maximal extension of its global structure by analytically continuing to an ``antigravity universe'' region is carried out.

  13. The superradiant instability regime of the spinning Kerr black hole

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-07-01

    Spinning Kerr black holes are known to be superradiantly unstable to massive scalar perturbations. We here prove that the instability regime of the composed Kerr-black-hole-massive-scalar-field system is bounded from above by the dimensionless inequality Mμ < m ṡ√{2(1 + γ) (1 -√ 1 -γ2) / -γ2 4γ2, where { μ , m } are respectively the proper mass and azimuthal harmonic index of the scalar field and γ ≡r- /r+ is the dimensionless ratio between the horizon radii of the black hole. It is further shown that this analytically derived upper bound on the superradiant instability regime of the spinning Kerr black hole agrees with recent numerical computations of the instability resonance spectrum.

  14. Kerr-Newman black holes with string corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, Anthony M.; Larsen, Finn

    We study N = 2 supergravity with higher-derivative corrections that preserve the N = 2 supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.

  15. Kerr-Newman black holes with string corrections

    DOE PAGES

    Charles, Anthony M.; Larsen, Finn

    2016-10-26

    We study N = 2 supergravity with higher-derivative corrections that preserve the N = 2 supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.

  16. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  17. Scalar field collapse in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  18. Scattering of Dirac waves off Kerr black holes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata

    2000-10-01

    Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.

  19. Black hole solutions in d = 5 Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Radu, Eugen

    2013-11-01

    The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.

  20. Perturbations of the Kerr black hole and the boundness of linear waves

    NASA Astrophysics Data System (ADS)

    Eskin, G.

    2010-11-01

    Artificial black holes (also called acoustic or optical black holes) are the black holes for the linear wave equation describing the wave propagation in a moving medium. They attracted a considerable interest of physicists who study them to better understand the black holes in general relativity. We consider the case of stationary axisymmetric metrics and we show that the Kerr black hole is not stable under perturbations in the class of all axisymmetric metrics. We describe families of axisymmetric metrics having black holes that are the perturbations of the Kerr black hole. We also show that the ergosphere can be determined by boundary measurements. Finally, we prove the uniform boundness of the solution in the exterior of the black hole when the event horizon coincides with the ergosphere.

  1. Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Yapeng; Sun Peng; Zhang Jianhui

    2011-06-15

    Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect themore » so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.« less

  2. Gravitational radiation from extreme Kerr black hole

    NASA Technical Reports Server (NTRS)

    Sasaki, Misao; Nakamura, Takashi

    1989-01-01

    Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.

  3. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes lessmore » cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.« less

  4. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    NASA Astrophysics Data System (ADS)

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  5. Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-01-01

    The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.

  6. Gauss-Bonnet chameleon mechanism of dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Yusaku; Nojiri, Shin'ichi

    2009-05-15

    As a model of the current accelerated expansion of the Universe, we consider a model of the scalar-Einstein-Gauss-Bonnet gravity. This model includes the propagating scalar modes, which might give a large correction to the Newton law. In order to avoid this problem, we propose an extension of the chameleon mechanism where the scalar mode becomes massive due to the coupling with the Gauss-Bonnet term. Since the Gauss-Bonnet invariant does not vanish near the Earth or in the Solar System, even in the vacuum, the scalar mode is massive even in the vacuum and the correction to the Newton law couldmore » be small. We also discuss the possibility that the model could describe simultaneously the inflation in the early Universe, in addition to the current accelerated expansion.« less

  7. Superradiance of charged black holes in Einstein–Gauss–Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Fierro, Octavio; Grandi, Nicolás; Oliva, Julio

    2018-05-01

    In this paper we show that electrically charged black holes in Einstein–Gauss–Bonnet gravity suffer from a superradiant instability. It is triggered by a charged scalar field that fulfils Dirichlet boundary conditions at a mirror located outside the horizon. As in general relativity, the unstable modes exist provided that the mirror is located beyond a critical radius, making the instability a long wavelength one. We explore the effects of the Gauss–Bonnet corrections on the critical radius and find evidence that the critical radius decreases as the Gauss–Bonnet coupling α increases. Due to the, up to date, lack of an analytic rotating solution for Einstein–Gauss–Bonnet theory, this is the first example of a superradiant instability in the presence of higher curvature terms in the action.

  8. Radiation transport around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy David

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable

  9. Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

    PubMed

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2016-09-02

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

  10. Hawking radiation by Kerr black holes and conformal symmetry.

    PubMed

    Agullo, Ivan; Navarro-Salas, José; Olmo, Gonzalo J; Parker, Leonard

    2010-11-19

    The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

  11. Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofinas, Georgios; Olea, Rodrigo

    2006-10-15

    A finite action principle for Einstein-Gauss-Bonnet anti-de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, andmore » to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti-de Sitter spacetime in all odd dimensions.« less

  12. Bounce universe from string-inspired Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Makarenko, Andrey N.; Myagky, Alexandr N.

    2015-04-01

    We explore cosmology with a bounce in Gauss-Bonnet gravity where the Gauss-Bonnet invariant couples to a dynamical scalar field. In particular, the potential and and Gauss-Bonnet coupling function of the scalar field are reconstructed so that the cosmological bounce can be realized in the case that the scale factor has hyperbolic and exponential forms. Furthermore, we examine the relation between the bounce in the string (Jordan) and Einstein frames by using the conformal transformation between these conformal frames. It is shown that in general, the property of the bounce point in the string frame changes after the frame is movedmore » to the Einstein frame. Moreover, it is found that at the point in the Einstein frame corresponding to the point of the cosmological bounce in the string frame, the second derivative of the scale factor has an extreme value. In addition, it is demonstrated that at the time of the cosmological bounce in the Einstein frame, there is the Gauss-Bonnet coupling function of the scalar field, although it does not exist in the string frame.« less

  13. Anisotopic inflation with a non-abelian gauge field in Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiri, Sayantani, E-mail: sayantani.lahiri@gmail.com

    2017-01-01

    In presence of Gauss-Bonnet corrections, we study anisotropic inflation aided by a massless SU(2) gauge field where both the gauge field and the Gauss-Bonnet term are non-minimally coupled to the inflaton. In this scenario, under slow-roll approximations, the anisotropic inflation is realized as an attractor solution with quadratic forms of inflaton potential and Gauss-Bonnet coupling function. We show that the degree of anisotropy is proportional to the additive combination of two slow-roll parameters of the theory. The anisotropy may become either positive or negative similar to the non-Gauss-Bonnet framework, a feature of the model for anisotropic inflation supported by amore » non-abelian gauge field but the effect of Gauss-Bonnet term further enhances or suppresses the generated anisotropy.« less

  14. Effective stability against superradiance of Kerr black holes with synchronised hair

    NASA Astrophysics Data System (ADS)

    Degollado, Juan Carlos; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    Kerr black holes with synchronised hair [1,2] are a counter example to the no hair conjecture, in General Relativity minimally coupled to simple matter fields (with mass μ) obeying all energy conditions. Since these solutions have, like Kerr, an ergoregion it has been a lingering possibility that they are afflicted by the superradiant instability, the same process that leads to their dynamical formation from Kerr. A recent breakthrough [3] confirmed this instability and computed the corresponding timescales for a sample of solutions. We discuss how these results and other observations support two conclusions: 1) starting from the Kerr limit, the increase of hair for fixed coupling μM (where M is the BH mass) increases the timescale of the instability; 2) there are hairy solutions for which this timescale, for astrophysical black hole masses, is larger than the age of the Universe. The latter conclusion introduces the limited, but physically relevant concept of effective stability. The former conclusion, allows us to identify an astrophysically viable domain of such effectively stable hairy black holes, occurring, conservatively, for Mμ ≲ 0.25. These are hairy BHs that form dynamically, from the superradiant instability of Kerr, within an astrophysical timescale, but whose own superradiant instability occurs only in a cosmological timescale.

  15. Linear perturbations of black holes: stability, quasi-normal modes and tails

    NASA Astrophysics Data System (ADS)

    Zhidenko, Alexander

    2009-03-01

    Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.

  16. The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-10-01

    Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.

  17. Spectroscopy of Kerr black holes with Earth- and space-based interferometers

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2017-01-01

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through ``gravitational spectroscopy,'' i.e. the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z 3 . In contrast, eLISA-like detectors should carry out a few - or even hundreds - of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.

  18. Higher order corrections to holographic black hole chemistry

    NASA Astrophysics Data System (ADS)

    Sinamuli, Musema; Mann, Robert B.

    2017-10-01

    We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.

  19. Properties of the distorted Kerr black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Tzounis, Christos; Kunz, Jutta

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, aremore » always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J{sup 2}/M{sup 4} > 1 and yet avoid a naked singularity.« less

  20. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  1. Rotating Black Holes and the Kerr Metric

    NASA Astrophysics Data System (ADS)

    Kerr, Roy Patrick

    2008-10-01

    Since it was first discovered in 1963 the Kerr metric has been used by relativists as a test-bed for conjectures on worm-holes, time travel, closed time-like loops, and the existence or otherwise of global Cauchy surfaces. More importantly, it has also used by astrophysicists to investigate the effects of collapsed objects on their local environments. These two groups of applications should not be confused. Astrophysical Black Holes are not the same as the Kruskal solution and its generalisations.

  2. Black holes and stars in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Charmousis, Christos; Lehébel, Antoine

    2016-08-01

    We review black hole and star solutions for Horndeski theory. For non-shift symmetric theories, black holes involve a Kaluza-Klein reduction of higher dimensional Lovelock solutions. On the other hand, for shift symmetric theories of Horndeski and beyond Horndeski, black holes involve two classes of solutions: those that include, at the level of the action, a linear coupling to the Gauss-Bonnet term and those that involve time dependence in the galileon field. We analyze the latter class in detail for a specific subclass of Horndeski theory, discussing the general solution of a static and spherically symmetric spacetime. We then discuss stability issues, slowly rotating solutions as well as black holes coupled to matter. The latter case involves a conformally coupled scalar field as well as an electromagnetic field and the (primary) hair black holes thus obtained. We review and discuss the recent results on neutron stars in Horndeski theories.

  3. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, J.; Banijamali, A.; Milani, F.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  4. On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jørgen

    2011-05-01

    It is well known that the Kerr-NUT-AdS-dS black hole admits two linearly independent Killing vectors and possesses a hidden symmetry generated by a rank-2 Killing tensor. The near-horizon geometry of an extremal Kerr-NUT-AdS-dS black hole admits four linearly independent Killing vectors, and we show how the hidden symmetry of the black hole itself is carried over by means of a modified Killing-Yano potential which is given explicitly. We demonstrate that the corresponding Killing tensor of the near-horizon geometry is reducible as it can be expressed in terms of the Casimir operators formed by the four Killing vectors.

  5. Black-Hole Solutions to Einstein's Equations in the Presence of Matter and Modifications of Gravitation in Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Goutéraux, B.

    2010-11-01

    In this thesis, we wish to examine the black-hole solutions of modified gravity theories inspired by String Theory or Cosmology. Namely, these modifications will take the guise of additional gauge and scalar fields for the so-called Einstein-Maxwell-Dilaton theories with an exponential Liouville potential; and of extra spatial dimensions for Einstein-Gauss-Bonnet theories. The black-hole solutions of EMD theories as well as their integrability are reviewed. One of the main results is that a master equation is obtained in the case of planar horizon topology, which allows to completely integrate the problem for s special relationship between the couplings. We also classify existing solutions. We move on to the study of Gauss-Bonnet black holes, focusing on the six-dimensional case. It is found that the Gauss-Bonnet coupling exposes the Weyl tensor of the horizon to the dynamics, severely restricting the Einstein spaces admissible and effectively lifting some of the degeneracy on the horizon topology. We then turn to the study of the thermodynamic properties of black holes, in General Relativity as well as in EMD theories. For the latter, phase transitions may be found in the canonical ensemble, which resemble the phase transitions for Reissner-Nordström black holes. Generically, we find that the thermodynamic properties (stability, order of phase transitions) depend crucially on the values of the EMD coupling constants. Finally, we interpret our planar EMD solutions holographically as Infra-Red geometries through the AdS/CFT correspondence, taking into account various validity constraints. We also compute AC and DC conductivities as applications to Condensed Matter Systems, and find some properties characteristic of strange metal behaviour.

  6. Noether symmetries in Gauss-Bonnet-teleparallel cosmology.

    PubMed

    Capozziello, Salvatore; De Laurentis, Mariafelicia; Dialektopoulos, Konstantinos F

    2016-01-01

    A generalized teleparallel cosmological model, [Formula: see text], containing the torsion scalar T and the teleparallel counterpart of the Gauss-Bonnet topological invariant [Formula: see text], is studied in the framework of the Noether symmetry approach. As [Formula: see text] gravity, where [Formula: see text] is the Gauss-Bonnet topological invariant and R is the Ricci curvature scalar, exhausts all the curvature information that one can construct from the Riemann tensor, in the same way, [Formula: see text] contains all the possible information directly related to the torsion tensor. In this paper, we discuss how the Noether symmetry approach allows one to fix the form of the function [Formula: see text] and to derive exact cosmological solutions.

  7. Thermodynamics of hairy black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  8. The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-10-01

    The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.

  9. Computing the Entropy of Kerr-Newman Black Hole Without Brick Walls Method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of Kerr-Newman black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in Kerr-Newman black hole and are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the calculation, the constant λ introduced in the generalized uncertainty principle is related to polar angle θ in an axisymmetric space-time.

  10. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}.more » The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.« less

  11. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInnes, Brett; Ong, Yen Chin, E-mail: matmcinn@nus.edu.sg, E-mail: yenchin.ong@nordita.org

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' massmore » E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.« less

  12. Resurgence and hydrodynamic attractors in Gauss-Bonnet holography

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben

    2018-04-01

    We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.

  13. Algebraically special resonances of the Kerr-black-hole-mirror bomb

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2013-12-01

    A corotating bosonic field interacting with a spinning Kerr black hole can extract rotational energy and angular momentum from the hole. This intriguing phenomenon is known as superradiant scattering. As pointed out by Press and Teukolsky, the black-hole-field system can be made unstable (explosive) by placing a reflecting mirror around the black hole, which prevents the extracted energy from escaping to infinity. This composed black-hole-mirror-field bomb has been studied extensively by many researchers. It is worth noting, however, that most former studies of the black-hole bomb phenomenon have focused on the specific case of confined scalar (spin-0) fields. In the present study we explore the physical properties of the higher-spin (electromagnetic and gravitational) black-hole bombs. It is shown that this composed system is amenable to an analytic treatment in the physically interesting regime of rapidly rotating black holes. In particular, we prove that the composed black-hole-mirror-field bomb is characterized by the unstable resonance frequency ω=mΩH+is·2πTBH (here s and m are, respectively, the spin parameter and the azimuthal harmonic index of the field, and ΩH and TBH are, respectively, the angular-velocity and the temperature of the rapidly spinning black hole). Our results provide evidence that the higher-spin (electromagnetic and gravitational) black-hole-mirror bombs are much more explosive than the extensively studied scalar black-hole-mirror bomb. In particular, it is shown here that the instability growth rates that characterize the higher-spin black-hole bombs are 2 orders of magnitude larger than the instability growth rate of the scalar black-hole bomb.

  14. Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, Mieszko

    2017-01-01

    In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.

  15. Observing the contour profile of a Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Lan, X. G.; Pu, J.

    2018-06-01

    In this paper, the shadow and the corresponding naked singularity cast by a Kerr-Sen black hole are studied. It is found that the shadow of a rotating black hole would be a dark zone surrounded by a deformed circle, and the shadow is distorted more away from a circle when the black hole approaches the extremal case. Besides, it is shown that the mean radius of the shadow decreases and distortion parameter increases with the increasing of charge, respectively. However, the mean radius and the distortion parameter vary complicatedly with the change of spin parameter. In the beginning, both observables decrease rapidly with the increasing of specific angular momentum, nevertheless, they increase slightly in the latter part. These results show that there would be a significant effect of the spin on the shadows, which would be of great importance for probing the nature of the black hole.

  16. Brane universes with Gauss-Bonnet-induced-gravity

    NASA Astrophysics Data System (ADS)

    Brown, Richard A.

    2007-04-01

    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a “dark energy” field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density “Big-Bang” and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.

  17. Shadows of Kerr Black Holes with Scalar Hair.

    PubMed

    Cunha, Pedro V P; Herdeiro, Carlos A R; Radu, Eugen; Rúnarsson, Helgi F

    2015-11-20

    Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.

  18. Phase space of modified Gauss-Bonnet gravity.

    PubMed

    Carloni, Sante; Mimoso, José P

    2017-01-01

    We investigate the evolution of non-vacuum Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f ( R ) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss-Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations.

  19. Is the Kerr black hole a super accelerator?

    NASA Astrophysics Data System (ADS)

    Krasnikov, S.; Skvortsova, M. V.

    2018-02-01

    A number of long-standing puzzles, such as the origin of extreme-energy cosmic rays, could perhaps be solved if we found a mechanism for effectively transferring energy from black holes to particles and, correspondingly, accelerating the latter to (unboundedly, as long as we neglect the back reaction) large velocities. As of today the only such candidate mechanism in the case of the nonextreme Kerr black hole is colliding a particle that freely falls from infinity with a particle whose trajectory is subject to some special requirements to fulfil which it has to be suitably corrected by auxiliary collisions. In the present paper we prove that—at least when the relevant particles move in the equatorial plane and experience a single correcting collision—this mechanism does not work too. The energy of the final collision becomes unboundedly high only when the energies of the incoming particles do.

  20. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics

    NASA Astrophysics Data System (ADS)

    Czinner, Viktor G.; Iguchi, Hideo

    2017-12-01

    Thermodynamics of rotating black holes described by the Rényi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Rényi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Rényi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence.

  1. Collapsing spherical star in Scalar-Einstein-Gauss-Bonnet gravity with a quadratic coupling

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Soumya

    2018-04-01

    We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-Bonnet term, a self-interaction potential and an additional perfect fluid distribution alongwith the scalar field, we investigate different possibilities regarding the outcome of the collapsing scalar field. The strength of the coupling and choice of the self-interaction potential serves as the pivotal initial conditions of the models presented. The high degree of non-linearity in the equation system is taken care off by using a method of invertibe point transformation of anharmonic oscillator equation, which has proven itself very useful in recent past while investigating dynamics of minimally coupled scalar fields.

  2. A no-short scalar hair theorem for rotating Kerr black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-06-01

    If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.

  3. Black hole hair formation in shift-symmetric generalised scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi

    2017-03-01

    A linear coupling between a scalar field and the Gauss-Bonnet invariant is the only known interaction term between a scalar and the metric that: respects shift symmetry; does not lead to higher order equations; inevitably introduces black hole hair in asymptotically flat, 4-dimensional spacetimes. Here we focus on the simplest theory that includes such a term and we explore the dynamical formation of scalar hair. In particular, we work in the decoupling limit that neglects the backreaction of the scalar onto the metric and evolve the scalar configuration numerically in the background of a Schwarzschild black hole and a collapsing dust star described by the Oppenheimer-Snyder solution. For all types of initial data that we consider, the scalar relaxes at late times to the known, static, analytic configuration that is associated with a hairy, spherically symmetric black hole. This suggests that the corresponding black hole solutions are indeed endpoints of collapse.

  4. Collision of an innermost stable circular orbit particle around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Kimura, Masashi

    2011-01-01

    We derive a general formula for the center-of-mass (CM) energy for the near-horizon collision of two particles of the same rest mass on the equatorial plane around a Kerr black hole. We then apply this formula to a particle which plunges from the innermost stable circular orbit (ISCO) and collides with another particle near the horizon. It is found that the maximum value of the CM energy Ecm is given by Ecm/(2m0)≃1.40/1-a*24 for a nearly maximally rotating black hole, where m0 is the rest mass of each particle and a* is the nondimensional Kerr parameter. This coincides with the known upper bound for a particle which begins at rest at infinity within a factor of 2. Moreover, we also consider the collision of a particle orbiting the ISCO with another particle on the ISCO and find that the maximum CM energy is then given by Ecm/(2m0)≃1.77/1-a*26. In view of the astrophysical significance of the ISCO, this result implies that particles can collide around a rotating black hole with an arbitrarily high CM energy without any artificial fine-tuning in an astrophysical context if we can take the maximal limit of the black hole spin or a*→1. On the other hand, even if we take Thorne’s bound on the spin parameter into account, highly or moderately relativistic collisions are expected to occur quite naturally, for Ecm/(2m0) takes 6.95 (maximum) and 3.86 (generic) near the horizon and 4.11 (maximum) and 2.43 (generic) on the ISCO for a*=0.998. This implies that high-velocity collisions of compact objects are naturally expected around a rapidly rotating supermassive black hole. Implications to accretion flows onto a rapidly rotating black hole are also discussed.

  5. Investigations of black-hole spectra: Purely-imaginary modes and Kerr ringdown radiation

    NASA Astrophysics Data System (ADS)

    Zalutskiy, Maxim P.

    When black holes are perturbed they give rise to characteristic waves that propagate outwards carrying information about the black hole. In the linear regime these waves are described in terms of quasinormal modes (QNM). Studying QNM is an important topic which may provide a connection to the quantum theory of gravity in addition to their astrophysical applications. Quasinormal modes correspond to complex frequencies where the real part represents oscillation and the imaginary part represents damping. We have developed a new code for calculating QNM with high precision and accuracy, which we applied to the Schwarzschild and Kerr geometries. The high accuracy of our calculations was a significant improvement over prior work, allowing us to compute QNM much closer to the negative imaginary axis (NIA) than it was possible before. The existence of QNM on the NIA has remained poorly understood, but our high accuracy studies have highlighted the importance of understanding their nature. In this work we show how the purely-imaginary modes can be calculated with the help of the theory of confluent Heun polynomials with the conclusion that all modes on the NIA correspond to polynomial solutions. We also show that certain types of these modes correspond to Kerr QNM. Finally, using our highly accurate QNM data we model the ringdown, a remnant black hole's decaying radiation. Ringdown occurs in the final stages of such violent astrophysical events as supernovae and black hole collisions. We use our model to analyse the ringdown waveforms from the publicly available binary black hole coalescence catalog maintained by the SXS collaboration. In our analysis we use a number of methods: Fourier transform, multi-mode nonlinear fitting and waveform overlap. Both our fitting and overlap approach allow inclusion of many modes in the ringdown model with the goal being to extract information about the nature of the astrophysical source of the ringdown signal.

  6. Hawking radiation of charged Dirac particles from a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Liu, Wenbiao

    2008-05-01

    Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy, angular momentum, and charge.

  7. The Gauss-Bonnet operator of an infinite graph

    NASA Astrophysics Data System (ADS)

    Anné, Colette; Torki-Hamza, Nabila

    2015-06-01

    We propose a general condition, to ensure essential self-adjointness for the Gauss-Bonnet operator , based on a notion of completeness as Chernoff. This gives essential self-adjointness of the Laplace operator both for functions and 1-forms on infinite graphs. This is used to extend Flanders result concerning solutions of Kirchhoff's laws.

  8. Quasinormal modes of black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Yoshida, Daiske; Soda, Jiro

    2016-02-01

    We study quasinormal modes of black holes in Lovelock gravity. We formulate the WKB method adapted to Lovelock gravity for the calculation of quasinormal frequencies (QNFs). As a demonstration, we calculate various QNFs of Lovelock black holes in seven and eight dimensions. We find that the QNFs show remarkable features depending on the coefficients of the Lovelock terms, the species of perturbations, and spacetime dimensions. In the case of the scalar field, when we increase the coefficient of the third order Lovelock term, the real part of QNFs increases, but the decay rate becomes small irrespective of the mass of the black hole. For small black holes, the decay rate ceases to depend on the Gauss-Bonnet term. In the case of tensor type perturbations of the metric field, the tendency of the real part of QNFs is opposite to that of the scalar field. The QNFs of vector type perturbations of the metric show no particular behavior. The behavior of QNFs of the scalar type perturbations of the metric field is similar to the vector type. However, available data are rather sparse, which indicates that the WKB method is not applicable to many models for this sector.

  9. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  10. Horizon geometry for Kerr black holes with synchronized hair

    NASA Astrophysics Data System (ADS)

    Delgado, Jorge F. M.; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    We study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin jH (which equals the total dimensionless spin, j ), the sphericity s and the horizon linear velocity vH are smaller than critical values, j(S ),s(S ),vH(S ), respectively. For the hairy BHs, we find that jHKerr BHs) differs from jH—is larger than unity.

  11. Dynamics of oscillating relativistic tori around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Font, José A.; Rezzolla, Luciano; Montero, Pedro J.

    2005-02-01

    We present a comprehensive numerical study of the dynamics of relativistic axisymmetric accretion tori with a power-law distribution of specific angular momentum orbiting in the background space-time of a Kerr black hole. By combining general relativistic hydrodynamics simulations with a linear perturbative approach we investigate the main dynamical properties of these objects over a large parameter space. The astrophysical implications of our results extend and improve two interesting results that have been recently reported in the literature. First, the induced quasi-periodic variation of the mass quadrupole moment makes relativistic tori of nuclear matter densities, as those formed during the last stages of binary neutron star mergers, promising sources of gravitational radiation, potentially detectable by interferometric instruments. Secondly, p-mode oscillations in relativistic tori of low rest-mass densities could be used to explain high-frequency quasi-periodic oscillations observed in X-ray binaries containing a black hole candidate under conditions more generic than those considered so far.

  12. Near horizon symmetry and entropy formula for Kerr-Newman (A)dS black holes

    NASA Astrophysics Data System (ADS)

    Setare, Mohammad Reza; Adami, Hamed

    2018-04-01

    In this paper we provide the first non-trivial evidence for universality of the entropy formula 4 πJ 0 + J 0 - beyond pure Einstein gravity in 4-dimensions. We consider the Einstein-Maxwell theory in the presence of cosmological constant, then write near horizon metric of the Kerr-Newman (A)dS black hole in the Gaussian null coordinate system. We consider near horizon fall-off conditions for metric and U(1) gauge field. We find asymptotic combined symmetry generator, consists of diffeomorphism and U(1) gauge transformation, so that it preserves fall-off conditions. Consequently, we find supertranslation, supperrotation and multiple-charge modes and then we show that the entropy formula is held for the Kerr-Newman (A)dS black hole. Supperrotation modes suffer from a problem. By introducing new combined symmetry generator, we cure that problem.

  13. Addendum to ''Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeone, Claudio

    2011-04-15

    Thin-shell wormholes are constructed starting from the exotic branch of the Wiltshire spherically symmetric solution of Einstein-Gauss-Bonnet gravity. The energy-momentum tensor of the shell is studied, and it is shown that configurations supported by matter satisfying the energy conditions exist for certain values of the parameters. Differing from the previous result associated with the normal branch of the Wiltshire solution, this is achieved for small positive values of the Gauss-Bonnet parameter and for vanishing charge.

  14. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes

    NASA Astrophysics Data System (ADS)

    Jiang, Jiachen; Bambi, Cosimo; Steiner, James F.

    2015-05-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole candidates is produced by the illumination of a cold accretion disk by a hot corona. In this framework, the activation of a new flaring region in the hot corona imprints a time variation on the iron line spectrum. Future X-ray facilities with high time resolution and large effective areas may be able to measure the so-called 2-dimensional transfer function; that is, the iron line profile detected by a distant observer as a function of time in response to an instantaneous flare from the X-ray primary source. This work is a preliminary study to determine if and how such a technique can provide more information about the spacetime geometry around the compact object than the already possible measurements of the time-integrated iron line profile. Within our simplified model, we find that a measurement of iron line reverberation can improve constraints appreciably given a sufficiently strong signal, though that most of the information is present in the time-integrated spectrum. Our aim is to test the Kerr metric. We find that current X-ray facilities and data are unable to provide strong tests of the Kerr nature of supermassive black hole candidates. We consider an optimistic case of 105 iron line photons from a next-generation data set. With such data, the reverberation model improves upon the spectral constraint by an order of magnitude.

  15. Speed of gravitational waves and black hole hair

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-04-01

    The recent detection of GRB 170817A and GW170817 constrains the speed of gravity waves cT to be that of light, which severely restricts the landscape of modified gravity theories that impact the cosmological evolution of the Universe. In this work, we investigate the presence of black hole hair in the remaining viable cosmological theories of modified gravity that respect the constraint cT=1 . We focus mainly on scalar-tensor theories of gravity, analyzing static, asymptotically flat black holes in Horndeski, Beyond Horndeski, Einstein-scalar-Gauss-Bonnet, and Chern-Simons theories. We find that in all of the cases considered here, theories that are cosmologically relevant and respect cT=1 do not allow for hair, or have negligible hair. We further comment on vector-tensor theories including Einstein-Yang-Mills, Einstein-Aether, and generalized Proca theories, as well as bimetric theories.

  16. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2017-12-01

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  17. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2017-12-29

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  18. Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-05-01

    The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.

  19. Competing s-wave orders from Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hong; Fu, Yun-Chang; Nie, Zhang-Yu

    2018-01-01

    In this paper, the holographic superconductor model with two s-wave orders from 4 + 1 dimensional Einstein-Gauss-Bonnet gravity is explored in the probe limit. At different values of the Gauss-Bonnet coefficient α, we study the influence of tuning the mass and charge parameters of the bulk scalar field on the free energy curve of condensed solution with signal s-wave order, and compare the difference of tuning the two different parameters while the changes of the critical temperature are the same. Based on the above results, it is indicated that the two free energy curves of different s-wave orders can have one or two intersection points, where two typical phase transition behaviors of the s + s coexistent phase, including the reentrant phase transition near the Chern-Simons limit α = 0.25, can be found. We also give an explanation to the nontrivial behavior of the Tc- α curves near the Chern-Simons limit, which might be heuristic to understand the origin of the reentrant behavior near the Chern-Simons limit.

  20. Advection-dominated Accretion Flow around a Kerr Black Hole

    NASA Astrophysics Data System (ADS)

    Manmoto, T.

    2000-05-01

    The effects of the spin of central black holes on the structure and the spectrum of optically thin, advection-dominated accretion flows (ADAFs) around rotating supermassive black holes are investigated. The global two-temperature structure of ADAFs in the Kerr metric is obtained numerically by solving the full relativistic hydrodynamical equations including the energy equations for the ions and for the electrons. The advected fraction of the dissipated energy is not treated as a parameter and the detailed radiation processes are calculated self-consistently. We find that the two-temperature structure of ADAFs is accurately calculated by setting the advected fraction of the dissipated energy to be unity. We find that the particles are hotter when a is positive than when a=0, while the particles are cooler when a is negative than when a=0. The changes in a have less effect on the electron temperature than on the ion temperature. The spectra of the emitted photons are also calculated by solving the equations of the general relativistic optics. The entire part of the spectra is enhanced when a is positive, while the entire part of the spectra is reduced when a is negative, in comparison with the case of a=0. The spectrum of the synchrotron photons and the Comptonized synchrotron photons are modified more largely by the black hole spin and the inclination angle than the spectrum of the bremsstrahlung photons. The effect of the inclination angle on the spectra increases as the value of a increases. In the case of a=-0.95, the inclination has little effect on the shape of the spectrum. The spectrum of Sgr A* from the radio band to the X-ray band is nicely reproduced with the model of an ADAF around a high-spin black hole. The existence of a high-spin black hole at the Galactic center is not ruled out by the ADAF model.

  1. A mystery of black-hole gravitational resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hod, Shahar; The Hadassah Academic College, Jerusalem 91010

    More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T{sub BH}≫1 (here ω and T{sub BH} are respectively the characteristic quasinormal resonant frequencymore » of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).« less

  2. Modified Hawking Radiation from a Kerr-Newman Black Hole due to Back-Reaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Gang; Liu, Wenbiao

    Hawking radiation from a general Kerr-Newman black hole is investigated using Damour-Ruffini's method. Considering the back-reaction of particle's energy, charge and angular momentum to the spacetime, we obtain a modified nonthermal spectrum. Maybe the information loss paradox can be explained, furthermore, the result is also consistent with the result obtained using Parikh and Wilczek's method.

  3. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  4. General aspects of Gauss-Bonnet models without potential in dimension four

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com

    In the present work, the isotropic and homogenous solutions with spatial curvature k =0 of four dimensional Gauss-Bonnet models are characterized. The main assumption is that the scalar field φ which is coupled to the Gauss-Bonnet term has no potential [1]–[2]. Some singular and some eternal solutions are described. The evolution of the universe is given in terms of a curve γ=( H (φ), φ) which is the solution of a polynomial equation P ( H {sup 2}, φ)=0 with φ dependent coefficients. In addition, it is shown that the initial conditions in these models put several restrictions on themore » evolution. For instance, an universe initially contracting will be contracting always for future times and an universe that is expanding was always expanding at past times. Thus, there are no cyclic cosmological solutions for this model. These results are universal, that is, independent on the form of the coupling f (φ) between the scalar field and the Gauss-Bonnet term. In addition, a proof that at a turning point φ-dot →0 a singularity necessarily emerges is presented, except for some specific choices of the coupling. This is valid unless the Hubble constant H → 0 at this point. This proof is based on the Raychaudhuri equation for the model. The description presented here is in part inspired in the works [3]–[4]. However, the mathematical methods that are implemented are complementary of those in these references, and they may be helpful for study more complicated situations in a future.« less

  5. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    NASA Astrophysics Data System (ADS)

    Barlow, Nathaniel S.; Weinstein, Steven J.; Faber, Joshua A.

    2017-07-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math. 70 21-48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations.

  6. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersedmore » in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.« less

  7. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  8. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  9. Pair production of scalar dyons in Kerr-Newman black holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-06-01

    We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the J-, Q- and P-pictures respectively based on the threefold dyonic KN/CFTs dualities.

  10. Gravitoelectromagnetic perturbations of Kerr-Newman black holes: stability and isospectrality in the slow-rotation limit.

    PubMed

    Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2013-06-14

    The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.

  11. Logarithmic black hole entropy corrections and holographic Rényi entropy

    NASA Astrophysics Data System (ADS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  12. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  13. Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Nampalliwar, Sourabh; Cárdenas-Avendaño, Alejandro

    We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer function and the calculation of the local spectrum at any emission point in the disk. The transfer function only depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler boosting, and light bending). Our code computes the transfermore » function for a spacetime described by the Johannsen metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer functions and single line shapes in the Kerr metric are compared to those calculated from existing codes to check that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit the data with our new model to show the potential capabilities of current and future observations to constrain possible deviations from the Kerr metric.« less

  14. Multipole moments of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.

    General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metricmore » depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.« less

  15. Hamiltonian formalism for Perturbed Black Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.

  16. Deflection of light by black holes and massless wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Sarkar, Nayan; Rahaman, Farook; Banerjee, Ayan; Hansraj, Sudan

    2018-04-01

    Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely `scalar charge'. These black hole reduce to the standard Schwarzschild black hole solutions when the scalar charge is zero and the mass is positive. In addition, a parameter λ in the metric characterizes so-called `hair'. The geodesic equations are used to examine the behavior of the deflection angle in four relevant cases of the parameter λ . Then, by introducing a simple coordinate transformation r^λ =S+v^2 into the black hole metric, we were able to find a massless wormhole solution of Einstein-Rosen (ER) (Einstein and Rosen, Phys Rev 43:73, 1935) type with scalar charge S. The programme is then repeated in terms of the Gauss-Bonnet theorem in the weak field limit after a method is established to deal with the angle of deflection using different domains of integration depending on the parameter λ . In particular, we have found new analytical results corresponding to four special cases which generalize the well known deflection angles reported in the literature. Finally, we have established the time delay problem in the spacetime of black holes and wormholes, respectively.

  17. Gravitational waves from extreme mass ratio inspirals around bumpy black holes

    NASA Astrophysics Data System (ADS)

    Moore, Christopher J.; Chua, Alvin J. K.; Gair, Jonathan R.

    2017-10-01

    The space based interferometer LISA will be capable of detecting the gravitational waves emitted by stellar mass black holes or neutron stars slowly inspiralling into the supermassive black holes found in the centre of most galaxies. The gravitational wave signal from such an extreme mass ratio inspiral (EMRI) event will provide a unique opportunity to test whether the spacetime metric around the central black hole is well described by the Kerr solution. In this paper a variant of the well studied ‘analytic kludge’ model for EMRIs around Kerr black holes is extended to a family of parametrically deformed bumpy black holes which preserve the basic symmetries of the Kerr metric. The new EMRI model is then used to quantify the constraints that LISA observations of EMRIs may be able to place on the deviations, or bumps, on the Kerr metric.

  18. Shadow of noncommutative geometry inspired black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi

    2015-08-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter a/M{sub 0} with M{sub 0} black hole mass and inclination angle i, the dimensionless noncommutative parameter √θ/M{sub 0} is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter √θ/M{sub 0}, while the distortion increases with it. Compared to the Kerr black hole, the parameter √θ/M{sub 0} increases the deformation of the shadow. This may offer a way to distinguish noncommutativemore » geometry inspired black hole from Kerr one via astronomical instruments in the near future.« less

  19. Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

    PubMed

    Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels

    2014-10-17

    For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

  20. Separability of black holes in string theory

    NASA Astrophysics Data System (ADS)

    Keeler, Cynthia; Larsen, Finn

    2012-10-01

    We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.

  1. Scalarized hairy black holes

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Yazadjiev, Stoytcho

    2015-05-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  2. STU black holes and SgrAstar

    NASA Astrophysics Data System (ADS)

    Cvetič, M.; Gibbons, G. W.; Pope, C. N.

    2017-08-01

    The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmological term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.

  3. Constraining the spin and the deformation parameters from the black hole shadow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, Naoki; Li, Zilong; Bambi, Cosimo, E-mail: tsukamoto@fudan.edu.cn, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    2014-06-01

    Within 5–10 years, very-long baseline interferometry (VLBI) facilities will be able to directly image the accretion flow around SgrA*, the super-massive black hole candidate at the center of the Galaxy, and observe the black hole ''shadow''. In 4-dimensional general relativity, the no-hair theorem asserts that uncharged black holes are described by the Kerr solution and are completely specified by their mass M and by their spin parameter a. In this paper, we explore the possibility of distinguishing Kerr and Bardeen black holes from their shadow. In Hioki and Maeda (2009), under the assumption that the background geometry is described bymore » the Kerr solution, the authors proposed an algorithm to estimate the value of a/M by measuring the distortion parameter δ, an observable quantity that characterizes the shape of the shadow. Here, we try to extend their approach. Since the Hioki-Maeda distortion parameter is degenerate with respect to the spin and possible deviations from the Kerr solution, one has to measure another quantity to test the Kerr black hole hypothesis. We study a few possibilities. We find that it is extremely difficult to distinguish Kerr and Bardeen black holes from the sole observation of the shadow, and out of reach for the near future. The combination of the measurement of the shadow with possible accurate radio observations of a pulsar in a compact orbit around SgrA* could be a more promising strategy to verify the Kerr black hole paradigm.« less

  4. Hidden symmetries for ellipsoid-solitonic deformations of Kerr-Sen black holes and quantum anomalies

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2013-02-01

    We prove the existence of hidden symmetries in the general relativity theory defined by exact solutions with generic off-diagonal metrics, nonholonomic (non-integrable) constraints, and deformations of the frame and linear connection structure. A special role in characterization of such spacetimes is played by the corresponding nonholonomic generalizations of Stackel-Killing and Killing-Yano tensors. There are constructed new classes of black hole solutions and we study hidden symmetries for ellipsoidal and/or solitonic deformations of "prime" Kerr-Sen black holes into "target" off-diagonal metrics. In general, the classical conserved quantities (integrable and not-integrable) do not transfer to the quantized systems and produce quantum gravitational anomalies. We prove that such anomalies can be eliminated via corresponding nonholonomic deformations of fundamental geometric objects (connections and corresponding Riemannian and Ricci tensors) and by frame transforms.

  5. Overspinning a Kerr black hole: The effect of the self-force

    NASA Astrophysics Data System (ADS)

    Colleoni, Marta; Barack, Leor

    2015-05-01

    We study the scenario in which a massive particle is thrown into a rapidly rotating Kerr black hole in an attempt to spin it up beyond its extremal limit, challenging weak cosmic censorship. We work in black-hole perturbation theory, and focus on nonspinning, uncharged particles sent in on equatorial orbits. We first identify the complete parameter-space region in which overspinning occurs when backreaction effects from the particle's self-gravity are ignored. We find, in particular, that overspinning can be achieved only with particles sent in from infinity. Gravitational self-force effects may prevent overspinning by radiating away a sufficient amount of the particle's angular momentum ("dissipative effect"), and/or by increasing the effective centrifugal repulsion, so that particles with suitable parameters never get captured ("conservative effect"). We analyze the full effect of the self-force, thereby completing previous studies by Jacobson and Sotiriou (who neglected the self-force) and by Barausse, Cardoso and Khanna (who considered the dissipative effect on a subset of orbits). Our main result is an inequality, involving certain self-force quantities, which describes a necessary and sufficient condition for the overspinning scenario to be overruled. This "censorship" condition is formulated on a certain one-parameter family of geodesics in the limit of an extremal Kerr geometry. We find that the censorship condition is insensitive to the dissipative effect (within the first-order self-force approximation used here), except for a subset of perfectly fine-tuned orbits, for which a separate censorship condition is derived. We do not obtain here the self-force input needed to evaluate either of our two conditions, but discuss the prospects for producing the necessary data using state-of-the-art numerical codes.

  6. Expanded solutions of force-free electrodynamics on general Kerr black holes

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Wang, Jiancheng

    2017-07-01

    In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.

  7. On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Wilson, Mitsuru

    2017-01-01

    We construct a differential calculus over the noncommutative 4-sphere in the framework of pseudo-Riemannian calculi, and show that for every metric in a conformal class of perturbations of the round metric, there exists a unique metric and torsion-free connection. Furthermore, we find a localization of the projective module corresponding to the space of vector fields, which allows us to formulate a Chern-Gauss-Bonnet type theorem for the noncommutative 4-sphere.

  8. Scalar fields in black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  9. Testing general relativity's no-hair theorem with x-ray observations of black holes

    NASA Astrophysics Data System (ADS)

    Hoormann, Janie K.; Beheshtipour, Banafsheh; Krawczynski, Henric

    2016-02-01

    Despite its success in the weak gravity regime, general relativity (GR) has yet to be verified in the regime of strong gravity. In this paper, we present the results of detailed ray-tracing simulations aiming at clarifying if the combined information from x-ray spectroscopy, timing, and polarization observations of stellar mass and supermassive black holes can be used to test GR's no-hair theorem. The latter states that stationary astrophysical black holes are described by the Kerr family of metrics, with the black hole mass and spin being the only free parameters. We use four "non-Kerr metrics," some phenomenological in nature and others motivated by alternative theories of gravity, and study the observational signatures of deviations from the Kerr metric. Particular attention is given to the case when all the metrics are set to give the same innermost stable circular orbit in quasi-Boyer-Lindquist coordinates. We give a detailed discussion of similarities and differences of the observational signatures predicted for black holes in the Kerr metric and the non-Kerr metrics. We emphasize that even though some regions of the parameter space are nearly degenerate even when combining the information from all observational channels, x-ray observations of very rapidly spinning black holes can be used to exclude large regions of the parameter space of the alternative metrics. Although it proves difficult to distinguish between the Kerr and non-Kerr metrics for some portions of the parameter space, the observations of very rapidly spinning black holes like Cyg X-1 can be used to rule out large regions for several black hole metrics.

  10. Simulations of high-spin black-hole binaries

    NASA Astrophysics Data System (ADS)

    Scheel, Mark; Lovelace, Geoffrey

    2014-03-01

    Black holes can in principle have spins up to the Kerr limit a = 1 , and some (highly uncertain) estimates from X-ray binaries yield a > 0 . 98 . Because binaries with highly-spinning black holes may be detectable by LIGO, it is important to be able to simulate and understand these systems. We present binary black hole simulations with large spins, including a generic, precessing simulation with a spin of a > 0 . 99 on one of the black holes. We discuss some of the difficulties with simulating high-spin black holes and how to overcome them.

  11. The Dynamics of a Viscous Gas Ring around a Kerr Black Hole

    NASA Astrophysics Data System (ADS)

    Riffert, H.

    2000-01-01

    The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.

  12. STU black holes and SgrA{sup *}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetič, M.; Gibbons, G.W.; Pope, C.N., E-mail: cvetic@physics.upenn.edu, E-mail: gwg1@cam.ac.uk, E-mail: pope@physics.tamu.edu

    The equations of null geodesics in the STU family of rotating black hole solutions of supergravity theory, which may be considered as deformations of the vacuum Kerr metric, are completely integrable. We propose that they be used as a foil to test, for example, with what precision the gravitational field external to the black hole at the centre of our galaxy is given by the Kerr metric. By contrast with some metrics proposed in the literature, the STU metrics satisfy by construction the dominant and strong energy conditions. Our considerations may be extended to include the effects of a cosmologicalmore » term. We show that these metrics permit a straightforward calculation of the properties of black hole shadows.« less

  13. Linearized stability of extreme black holes

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Khanna, Gaurav

    2018-03-01

    Extreme black holes have been argued to be unstable, in the sense that under linearized gravitational perturbations of the extreme Kerr spacetime the Weyl scalar ψ4 blows up along their event horizons at very late advanced times. We show numerically, by solving the Teukolsky equation in 2 +1 D , that all algebraically independent curvature scalar polynomials approach limits that exist when advanced time along the event horizon approaches infinity. Therefore, the horizons of extreme black holes are stable against linearized gravitational perturbations. We argue that the divergence of ψ4 is a consequence of the choice of a fixed tetrad, and that in a suitable dynamical tetrad all Weyl scalars, including ψ4, approach their background extreme Kerr values. We make similar conclusions also for the case of scalar field perturbations of extreme Kerr.

  14. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black

  15. Geometry of deformed black holes. I. Majumdar-Papapetrou binary

    NASA Astrophysics Data System (ADS)

    Semerák, O.; Basovník, M.

    2016-08-01

    Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.

  16. Particle motion and Penrose processes around rotating regular black hole

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.

  17. Black Hole Magnetospheres

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-01

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  18. On choosing the start time of binary black hole ringdowns

    NASA Astrophysics Data System (ADS)

    Bhagwat, Swetha; Okounkova, Maria; Ballmer, Stefan W.; Brown, Duncan A.; Giesler, Matthew; Scheel, Mark A.; Teukolsky, Saul A.

    2018-05-01

    The final stage of a binary black hole merger is ringdown, in which the system is described by a Kerr black hole with quasinormal mode perturbations. It is far from straightforward to identify the time at which the ringdown begins. Yet determining this time is important for precision tests of the general theory of relativity that compare an observed signal with quasinormal mode descriptions of the ringdown, such as tests of the no-hair theorem. We present an algorithmic method to analyze the choice of ringdown start time in the observed waveform. This method is based on determining how close the strong field is to a Kerr black hole (Kerrness). Using numerical relativity simulations, we characterize the Kerrness of the strong-field region close to the black hole using a set of local, gauge-invariant geometric and algebraic conditions that measure local isometry to Kerr. We produce a map that associates each time in the gravitational waveform with a value of each of these Kerrness measures; this map is produced by following outgoing null characteristics from the strong and near-field regions to the wave zone. We perform this analysis on a numerical relativity simulation with parameters consistent with GW150914—the first gravitational-wave detection. We find that the choice of ringdown start time of 3 ms after merger used in the GW150914 study [B. P. Abbott et al. (Virgo Collaboration and LIGO Scientific Collaboration), Phys. Rev. Lett. 116, 221101 (2016)., 10.1103/PhysRevLett.116.221101] to test general relativity corresponds to a high dimensionless perturbation amplitude of ˜7.5 ×10-3 in the strong-field region. This suggests that in higher signal-to-noise detections, one would need to start analyzing the signal at a later time for studies that depend on the validity of black hole perturbation theory.

  19. Spacetime and orbits of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-15

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation ismore » zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.« less

  20. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  1. Spinning boson stars and Kerr black holes with scalar hair: The effect of self-interactions

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.

    2016-05-01

    Self-interacting boson stars (BSs) have been shown to alleviate the astrophysically low maximal mass of their nonself-interacting counterparts. We report some physical features of spinning self-interacting BSs, namely their compactness, the occurrence of ergo-regions and the scalar field profiles, for a sample of values of the coupling parameter. The results agree with the general picture that these BSs are comparatively less compact than the nonself-interacting ones. We also briefly discuss the effect of scalar self-interactions on the properties of Kerr black holes with scalar hair.

  2. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces

    NASA Astrophysics Data System (ADS)

    Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini

    We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.

  3. Black hole ringdown echoes and howls

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroyuki; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro

    2017-07-01

    Recently the possibility of detecting echoes of ringdown gravitational waves from binary black hole mergers was shown. The presence of echoes is expected if the black hole is surrounded by a mirror that reflects gravitational waves near the horizon. Here, we present slightly more sophisticated templates motivated by a waveform which is obtained by solving the linear perturbation equation around a Kerr black hole with a complete reflecting boundary condition in the stationary traveling wave approximation. We estimate that the proposed template can bring about a 10% improvement in the signal-to-noise ratio.

  4. Black Holes, Hidden Symmetry and Complete Integrability: Brief Review

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    This chapter contains a brief review of the remarkable properties of higher dimensional rotating black holes with the spherical topology of the horizon. We demonstrate that these properties are connected with and generated by a special geometrical object, the Principal Conformal Killing-Yano tensor (PCKYT). The most general solution, describing such black holes, Kerr-NUT-ADS metric, admits this structure. Moreover a solution of the Einstein Equations with (or without) a cosmological constant which possesses PCKYT is the Kerr-NUT-ADS metric. This object (PCKYT) is responsible for such remarkable properties of higher dimensional rotating black holes as: (i) complete integrability of geodesic equations and (ii) complete separation of variables of the important field equations.

  5. Black holes with surrounding matter in scalar-tensor theories.

    PubMed

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P

    2013-09-13

    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  6. “Kerrr” black hole: The lord of the string

    NASA Astrophysics Data System (ADS)

    Smailagic, Anais; Spallucci, Euro

    2010-04-01

    Kerrr in the title is not a typo. The third “r” stands for regular, in the sense of pathology-free rotating black hole. We exhibit a long search-for, exact, Kerr-like, solution of the Einstein equations with novel features: (i) no curvature ring singularity; (ii) no “anti-gravity” universe with causality violating time-like closed world-lines; (iii) no “super-luminal” matter disk. The ring singularity is replaced by a classical, circular, rotating string with Planck tension representing the inner engine driving the rotation of all the surrounding matter. The resulting geometry is regular and smoothly interpolates among inner Minkowski space, borderline de Sitter and outer Kerr universe. The key ingredient to cure all unphysical features of the ordinary Kerr black hole is the choice of a “non-commutative geometry inspired” matter source as the input for the Einstein equations, in analogy with spherically symmetric black holes described in earlier works.

  7. Black holes, hidden symmetries, and complete integrability

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2017-11-01

    The study of higher-dimensional black holes is a subject which has recently attracted vast interest. Perhaps one of the most surprising discoveries is a realization that the properties of higher-dimensional black holes with the spherical horizon topology and described by the Kerr-NUT-(A)dS metrics are very similar to the properties of the well known four-dimensional Kerr metric. This remarkable result stems from the existence of a single object called the principal tensor. In our review we discuss explicit and hidden symmetries of higher-dimensional Kerr-NUT-(A)dS black hole spacetimes. We start with discussion of the Killing and Killing-Yano objects representing explicit and hidden symmetries. We demonstrate that the principal tensor can be used as a "seed object" which generates all these symmetries. It determines the form of the geometry, as well as guarantees its remarkable properties, such as special algebraic type of the spacetime, complete integrability of geodesic motion, and separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations. The review also contains a discussion of different applications of the developed formalism and its possible generalizations.

  8. Black holes, hidden symmetries, and complete integrability.

    PubMed

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David

    2017-01-01

    The study of higher-dimensional black holes is a subject which has recently attracted vast interest. Perhaps one of the most surprising discoveries is a realization that the properties of higher-dimensional black holes with the spherical horizon topology and described by the Kerr-NUT-(A)dS metrics are very similar to the properties of the well known four-dimensional Kerr metric. This remarkable result stems from the existence of a single object called the principal tensor. In our review we discuss explicit and hidden symmetries of higher-dimensional Kerr-NUT-(A)dS black hole spacetimes. We start with discussion of the Killing and Killing-Yano objects representing explicit and hidden symmetries. We demonstrate that the principal tensor can be used as a "seed object" which generates all these symmetries. It determines the form of the geometry, as well as guarantees its remarkable properties, such as special algebraic type of the spacetime, complete integrability of geodesic motion, and separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations. The review also contains a discussion of different applications of the developed formalism and its possible generalizations.

  9. Are black holes springlike?

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  10. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.

    PubMed

    Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E

    2015-04-17

    We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.

  11. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R., E-mail: knozari@umz.ac.ir, E-mail: t.azizi@umz.ac.ir, E-mail: rezakord@ipm.ir

    2009-10-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.

  12. Ricci-Gauss-Bonnet holographic dark energy

    NASA Astrophysics Data System (ADS)

    Saridakis, Emmanuel N.

    2018-03-01

    We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.

  13. Can black hole superradiance be induced by galactic plasmas?

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.; Herdeiro, Carlos A. R.

    2018-05-01

    Highly spinning Kerr black holes with masses M = 1- 100M⊙ are subject to an efficient superradiant instability in the presence of bosons with masses μ ∼10-10-10-12eV. We observe that this matches the effective plasma-induced photon mass in diffuse galactic or intracluster environments (ωpl ∼10-10-10-12eV). This suggests that bare Kerr black holes within galactic or intracluster environments, possibly even including the ones produced in recently observed gravitational wave events, are unstable to formation of a photon cloud that may contain a significant fraction of the mass of the original black hole. At maximal efficiency, the instability timescale for a massive vector is milliseconds, potentially leading to a transient rate of energy extraction from a black hole in principle as large as ∼1055ergs-1. We discuss possible astrophysical effects this could give rise to, including a speculative connection to Fast Radio Bursts.

  14. Stationary black holes with stringy hair

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-01-01

    We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.

  15. Lux in obscuro II: photon orbits of extremal AdS black holes revisited

    NASA Astrophysics Data System (ADS)

    Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin

    2017-12-01

    A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.

  16. Geometrothermodynamics for black holes and de Sitter space

    NASA Astrophysics Data System (ADS)

    Kurihara, Yoshimasa

    2018-02-01

    A general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g., via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr-Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black holes.

  17. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    NASA Astrophysics Data System (ADS)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  18. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  19. The current ability to test theories of gravity with black hole shadows

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  20. On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Fathizadeh, Farzad; Gabriel, Olivier

    2016-02-01

    The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.

  1. How well can ultracompact bodies imitate black hole ringdowns?

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Pappas, George

    2018-02-01

    The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.

  2. On the simplest binary system of rotating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manko, V. S.; Rodchenko, E. D.; Sadovnikov, B. I.

    Exact axisymmetric stationary solution of the Einstein equations describing a system of two counter-rotating identical Kerr black holes is worked out in a physical parametrization within the framework of the Ernst formalism and analytically extended double-Kerr solution. The derivation of the limiting case of extreme constituents is also discussed.

  3. REVIEWS OF TOPICAL PROBLEMS: "Magnetized" black holes

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gal'tsov, D. V.

    1989-01-01

    Physical aspects of the theory of black holes in an external electromagnetic field are reviewed. The "magnetized" black hole model is currently widely discussed in astrophysics because it provides a basis for the explanation of the high energy activity of galactic cores and quasars. The particular feature of this model is that it predicts unusual "gravimagnetic" phenomena that arise as a result of a natural combination of effects in electrodynamics and gravitation, namely, the appearance of an inductive potential difference during the rotation of a black hole in a magnetic field, the drift of a black hole in an external electromagnetic field, the change in the chemical potential of the event horizon, the creation of an effective ergosphere of a black hole in a magnetic field, and so on. Questions relating to the description of electromagnetic fields in Kerr space-time are examined, including their influence on the space-time metric, the interaction between a rotating charged black hole and an external electromagnetic field, the motion of charged particles near "magnetized" black holes, including their spontaneous and stimulated emission, and the influence of magnetic fields on quantum-mechanical processes in black holes.

  4. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng; You, Li

    2011-02-01

    We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordström black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.

  5. Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology

    NASA Astrophysics Data System (ADS)

    Sberna, Laura; Pani, Paolo

    2017-12-01

    It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.

  6. BOOK REVIEW Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2011-02-01

    General relativity is arguably the most beautiful scientific theory ever conceived but its status within mainstream physics has vacillated since it was proposed in 1915. It began auspiciously with the successful explanation of the precession of Mercury and the dramatic confirmation of light-bending in the 1919 solar eclipse expedition, which turned Einstein into an overnight celebrity. Though little noticed at the time, there was also Karl Schwarzschild's discovery of the spherically symmetric solution in 1916 (later used to predict the existence of black holes) and Alexander Friedmann's discovery of the cosmological solution in 1922 (later confirmed by the discovery of the cosmic expansion). Then for 40 years the theory was more or less forgotten, partly because most physicists were turning their attention to the even more radical developments of quantum theory but also because the equations were too complicated to solve except in situations involving special symmetries or very weak gravitational fields (where general relativity is very similar to Newtonian theory). Furthermore, it was not clear that strong gravitational fields would ever arise in the real universe and, even if they did, it seemed unlikely that Einstein's equations could then be solved. So research in relativity became a quiet backwater as mainstream physics swept forward in other directions. Even Einstein lost interest, turning his attention to the search for a unified field theory. This book tells the remarkable story of how the tide changed in 1963, when the 28-year-old New Zealand mathematician Roy Kerr discovered an exact solution of Einstein's equations which represents a rotating black hole, thereby cracking the code of the title. The paper was just a few pages long, it being left for others to fill in the extensive beautiful mathematics which underlay the result, but it ushered in a golden age of relativity and is now one of the most cited works in physics. Coincidentally, Kerr

  7. Rotating black hole solutions in relativistic analogue gravity

    NASA Astrophysics Data System (ADS)

    Giacomelli, Luca; Liberati, Stefano

    2017-09-01

    Simulation and experimental realization of acoustic black holes in analogue gravity systems have lead to a novel understanding of relevant phenomena such as Hawking radiation or superradiance. We explore here the possibility of using relativistic systems for simulating rotating black hole solutions and possibly get an acoustic analogue of a Kerr black hole. In doing so, we demonstrate a precise relation between nonrelativistic and relativistic solutions and provide a new class of vortex solutions for relativistic systems. Such solutions might be used in the future as a test bed in numerical simulations as well as concrete experiments.

  8. How fast can a black hole rotate?

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2015-11-01

    Kerr black holes (BHs) have their angular momentum, J, bounded by their mass, M: Jc ≤ GM2. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, vH. The vH bound is simply that vH cannot exceed the velocity of light. We verify the vH bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the vH bound.

  9. Is there a relation between the 2D Causal Set action and the Lorentzian Gauss-Bonnet theorem?

    NASA Astrophysics Data System (ADS)

    Benincasa, Dionigi M. T.

    2011-07-01

    We investigate the relation between the two dimensional Causal Set action, Script S, and the Lorentzian Gauss-Bonnet theorem (LGBT). We give compelling reasons why the answer to the title's question is no. In support of this point of view we calculate the causal set inspired action of causal intervals in some two dimensional spacetimes: Minkowski, the flat cylinder and the flat trousers.

  10. Hawking radiation from rotating black holes and gravitational anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Keiju; Soda, Jiro

    2006-08-15

    We study the Hawking radiation from Rotating black holes from the gravitational anomalies point of view. First, we show that the scalar field theory near the Kerr black hole horizon can be reduced to the 2-dimensional effective theory. Then, following Robinson and Wilczek, we derive the Hawking flux by requiring the cancellation of gravitational anomalies. We also apply this method to Hawking radiation from higher dimensional Myers-Perry black holes. In the appendix, we present the trace anomaly derivation of Hawking radiation to argue the validity of the boundary condition at the horizon.

  11. Black Hole Spin Evolution and Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Chen, W.; Cui, W.; Zhang, S. N.

    1999-04-01

    We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.

  12. Superradiant instabilities in the Kerr-mirror and Kerr-AdS black holes with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.

    2018-04-01

    It has been recently observed that a scalar field with Robin boundary conditions (RBCs) can trigger both a superradiant and a bulk instability for a Bañados-Teitelboim-Zanelli (BTZ) black hole (BH) [1]. To understand the generality and scrutinize the origin of this behavior, we consider here the superradiant instability of a Kerr BH confined either in a mirrorlike cavity or in anti-de Sitter (AdS) space, triggered also by a scalar field with RBCs. These boundary conditions are the most general ones that ensure the cavity/AdS space is an isolated system and include, as a particular case, the commonly considered Dirichlet boundary conditions (DBCs). Whereas the superradiant modes for some RBCs differ only mildly from the ones with DBCs, in both cases, we find that as we vary the RBCs the imaginary part of the frequency may attain arbitrarily large positive values. We interpret this growth as being sourced by a bulk instability of both confined geometries when certain RBCs are imposed to either the mirrorlike cavity or the AdS boundary, rather than by energy extraction from the BH, in analogy with the BTZ behavior.

  13. Quasi-Normal Modes of Stars and Black Holes.

    PubMed

    Kokkotas, Kostas D; Schmidt, Bernd G

    1999-01-01

    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.

  14. Gravitational tension, spacetime pressure and black hole volume

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.; Sanchioni, Marco

    2016-09-01

    We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.

  15. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Baocheng; Graduate University of Chinese Academy of Sciences, Beijing 100049; Cai Qingyu, E-mail: qycai@wipm.ac.cn

    2011-02-15

    Research Highlights: > Information is found to be encoded and carried away by Hawking radiations. > Entropy is conserved in Hawking radiation. > We thus conclude no information is lost. > The dynamics of black hole may be unitary. - Abstract: We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstroem black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling throughmore » a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.« less

  16. Testing General Relativity with the Reflection Spectrum of the Supermassive Black Hole in 1H0707-495.

    PubMed

    Cao, Zheng; Nampalliwar, Sourabh; Bambi, Cosimo; Dauser, Thomas; García, Javier A

    2018-02-02

    Recently, we have extended the x-ray reflection model relxill to test the spacetime metric in the strong gravitational field of astrophysical black holes. In the present Letter, we employ this extended model to analyze XMM-Newton, NuSTAR, and Swift data of the supermassive black hole in 1H0707-495 and test deviations from a Kerr metric parametrized by the Johannsen deformation parameter α_{13}. Our results are consistent with the hypothesis that the spacetime metric around the black hole in 1H0707-495 is described by the Kerr solution.

  17. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  18. Equilibrium configurations of a charged fluid around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Trova, Audrey; Schroven, Kris; Hackmann, Eva; Karas, Vladimír; Kovář, Jiří; Slaný, Petr

    2018-05-01

    Equilibrium configurations of electrically charged perfect fluid surrounding a central rotating black hole endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field are presented. Following our previous studies considering the central black hole to be nonrotating, we show that in the rotating case conditions for the configurations existence change according to the spin of the black hole. We focus our attention on the charged fluid in rigid rotation, which can form toroidal configurations centered in the equatorial plane or the ones hovering above the black hole, along the symmetry axis. We conclude that a nonzero value of spin changes the existence conditions and the morphology of the solutions significantly. In the case of fast rotation, the morphology of the structures is close to an oblate shape.

  19. Scattering of Cosmic Strings by Black Holes:. Loop Formation

    NASA Astrophysics Data System (ADS)

    Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude Michel

    We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a string loop. The segment of the string which enters the ergo-sphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect, chopping off a loop. We find that the formation of a loop, via such a mechanism, is a rare event. It will only arise in a small region of the collision phase space, which depends on the string velocity, the impact parameter and the black hole angular momentum. We conclude that, generically, a long cosmic string is simply scattered, or captured, by a nearby rotating black hole.

  20. Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes.

    PubMed

    East, William E; Pretorius, Frans

    2017-07-28

    We study the growth and saturation of the superradiant instability of a complex, massive vector (Proca) field as it extracts energy and angular momentum from a spinning black hole, using numerical solutions of the full Einstein-Proca equations. We concentrate on a rapidly spinning black hole (a=0.99) and the dominant m=1 azimuthal mode of the Proca field, with real and imaginary components of the field chosen to yield an axisymmetric stress-energy tensor and, hence, spacetime. We find that in excess of 9% of the black hole's mass can be transferred into the field. In all cases studied, the superradiant instability smoothly saturates when the black hole's horizon frequency decreases to match the frequency of the Proca cloud that spontaneously forms around the black hole.

  1. Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Loaiza, E.

    2016-09-01

    We study the phase space for a scalar-tensor string inspired model of dark energy with nonminimal kinetic and Gauss-Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which gives rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from a matter or radiation dominated universe to a dark energy dominated universe. Trajectories were found in the phase space departing from unstable or saddle fixed points and arriving at the stable scalar field dominated point corresponding to late-time accelerated expansion.

  2. Black holes thermodynamics in a new kind of noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Amorim, R. G. G.; Ulhoa, S. C.

    Motivated by the energy-dependent metric in gravity’s rainbow, we will propose a new kind of energy-dependent noncommutative geometry. It will be demonstrated that like gravity’s rainbow, this new noncommutative geometry is described by an energy-dependent metric. We will analyze the effect of this noncommutative deformation on the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and this new energy-dependent noncommutative metrics using an energy-dependent Moyal star product. We will also analyze the thermodynamics of these new noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature for these black hole solutions. It will be demonstrated that, for these deformed solutions, black remnants cannot form. This is because these corrections increase rather than reduce the temperature of the black holes.

  3. Appearance of Keplerian discs orbiting Kerr superspinars

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2010-11-01

    We study optical phenomena related to the appearance of Keplerian accretion discs orbiting Kerr superspinars predicted by string theory. The superspinar exterior is described by standard Kerr naked singularity geometry breaking the black hole limit on the internal angular momentum (spin). We construct local photon escape cones for a variety of orbiting sources that enable us to determine the superspinars silhouette in the case of distant observers. We show that the superspinar silhouette depends strongly on the assumed edge where the external Kerr spacetime is joined to the internal spacetime governed by string theory and significantly differs from the black hole silhouette. The appearance of the accretion disc is strongly dependent on the value of the superspinar spin in both their shape and frequency shift profile. Apparent extension of the disc grows significantly with the growing spin, while the frequency shift grows with the descending spin. This behaviour differs substantially from the appearance of discs orbiting black holes enabling thus, at least in principle, to distinguish clearly the Kerr superspinars and black holes. In vicinity of a Kerr superspinar the non-escaped photons have to be separated to those captured by the superspinar and those being trapped in its strong gravitational field leading to self-illumination of the disc that could even influence its structure and cause self-reflection effect of radiation of the disc. The amount of trapped photons grows with descending superspinar spin. We thus can expect significant self-illumination effects in the field of Kerr superspinars with near-extreme spin a ~ 1.

  4. Charged Dirac Particles' Hawking Radiation via Tunneling of Both Horizons and Thermodynamics Properties of Kerr-Newman-Kasuya-Taub-NUT-AdS Black Holes

    NASA Astrophysics Data System (ADS)

    Ali, M. Hossain; Sultana, Kausari

    2013-12-01

    We investigate Hawking radiation of electrically and magnetically charged Dirac particles from a dyonic Kerr-Newman-Kasuya-Taub-NUT-Anti-de Sitter (KNKTN-AdS) black hole by considering thermal characters of both the outer and inner horizons. We apply Damour-Ruffini method and membrane method to calculate the temperature and the entropy of the inner horizon of the KNKTN-AdS black hole. The inner horizon admits thermal character with positive temperature and entropy proportional to its area. The inner horizon entropy contributes to the total entropy of the black hole in the context of Nernst theorem. Considering conservation of energy, charges, angular momentum, and the back-reaction of emitting particles to the spacetime, we obtain the emission spectra for both the inner and outer horizons. The total emission rate is obtained as the product of the emission rates of the inner and outer horizons. It deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor and can bring some information out. The result thus can be treated as an explanation to the information loss paradox.

  5. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  6. Hawking Tunneling Radiation of Black Holes in de Sitter and ANTI-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Li, Hui-Ling; Yang, Shu-Zheng; Chen, De-You

    Applying Parikh-Wilczek's semiclassical quantum tunneling method, we investigate the tunneling radiation characteristics of a torus-like black hole and Kerr-Newman-Kausya de Sitter black hole. Both black holes have the cosmological constant Λ, but a torus-like black hole is in anti-de Sitter spacetime and the other black hole is in de Sitter spacetime. The derived results show that the tunneling rate is related to the change of Bekenstein-Hawking entropy, and the factual radiated spectrum is not precisely thermal, but is consistent with an underlying unitary theory, which gives a might explanation to the paradox of black hole information lost.

  7. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  8. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  9. Negative specific heat of black-holes from fluid-gravity correspondence

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Swastik; Shankaranarayanan, S.

    2017-04-01

    Black holes in asymptotically flat space-times have negative specific heat—they get hotter as they loose energy. A clear statistical mechanical understanding of this has remained a challenge. In this work, we address this issue using fluid-gravity correspondence which aims to associate fluid degrees of freedom to the horizon. Using linear response theory and the teleological nature of event horizon, we show explicitly that the fluctuations of the horizon-fluid lead to negative specific heat for a Schwarzschild black Hole. We also point out how the specific heat can be positive for Kerr-Newman or AdS black holes. Our approach constitutes an important advance as it allows us to apply the canonical ensemble approach to study thermodynamics of asymptotically flat black hole space-times.

  10. Collisional Penrose process near the horizon of extreme Kerr black holes.

    PubMed

    Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida

    2012-09-21

    Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.

  11. Effects of spatial curvature and anisotropy on the asymptotic regimes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Pavluchenko, Sergey A.; Toporensky, Alexey

    2018-05-01

    In this paper we address two important issues which could affect reaching the exponential and Kasner asymptotes in Einstein-Gauss-Bonnet cosmologies—spatial curvature and anisotropy in both three- and extra-dimensional subspaces. In the first part of the paper we consider the cosmological evolution of spaces that are the product of two isotropic and spatially curved subspaces. It is demonstrated that the dynamics in D=2 (the number of extra dimensions) and D ≥ 3 is different. It was already known that for the Λ -term case there is a regime with "stabilization" of extra dimensions, where the expansion rate of the three-dimensional subspace as well as the scale factor (the "size") associated with extra dimensions reaches a constant value. This regime is achieved if the curvature of the extra dimensions is negative. We demonstrate that it takes place only if the number of extra dimensions is D ≥ 3. In the second part of the paper we study the influence of the initial anisotropy. Our study reveals that the transition from Gauss-Bonnet Kasner regime to anisotropic exponential expansion (with three expanding and contracting extra dimensions) is stable with respect to breaking the symmetry within both three- and extra-dimensional subspaces. However, the details of the dynamics in D=2 and D ≥ 3 are different. Combining the two described effects allows us to construct a scenario in D ≥ 3, where isotropization of outer and inner subspaces is reached dynamically from rather general anisotropic initial conditions.

  12. TESTING GRAVITY WITH QUASI-PERIODIC OSCILLATIONS FROM ACCRETING BLACK HOLES: THE CASE OF THE EINSTEIN–DILATON–GAUSS–BONNET THEORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria

    Quasi-periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting black holes are associated with phenomena occurring near the horizon. Future very large area X-ray instruments will be able to measure QPO frequencies with very high precision, thus probing this strong-field region. Using the relativistic precession model, we show the way in which QPO frequencies could be used to test general relativity (GR) against those alternative theories of gravity which predict deviations from the classical theory in the strong-field and high-curvature regimes. We consider one of the best-motivated high-curvature corrections to GR, namely, the Einstein–Dilaton–Gauss–Bonnet theory, and show thatmore » a detection of QPOs with the expected sensitivity of the proposed ESA M-class mission LOFT would set the most stringent constraints on the parameter space of this theory.« less

  13. Neutron star solutions with curvature induced scalarization in the extended Gauss-Bonnet scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2018-04-01

    In the present paper we study models of neutron stars in a class of extended scalar-tensor Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is exited only in the strong curvature regime. We show that in the framework of the ESTGB theories under consideration there exist new neutron star solutions which are formed via spontaneous scalarization of the general relativistic neutron stars. In contrast to the spontaneous scalarization in the standard scalar-tensor theories which is induced by the presence of matter, in our case the scalarization is induced by the spacetime curvature.

  14. Phase-transition Theory of Kerr Black Holes in the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Gong, Xiao-Bo; Wu, Jian-Sheng

    2017-02-01

    For a Kerr black hole (KBH) with spin J and mass M in a steady electromagnetic field, a special Wald vacuum solution (WVS) has been found in the case of the no-source uniform field. For WVS, the Meissner effect (ME) occurs only in the the extreme KBH, where M2/J = 1, in this case, the magnetic field is totally excluded from the event horizon (EH) of KBH. However, WVS does not consider the Hawking radiation (HR) but treats KBH as an absolutely black body. If HR is added , researchers believe that the condition is not so restricted and it is possible for ME to occur in the less-extreme case. How less is the “less-extreme case”? This paper tries to answer this question. Since the Hawking temperature TH of KBH defined by HR is proportional to the surface gravity κ at the EH, this question is actually about the so-called existence/non-existence of ME (ME/NME) or superconducting phase transition. In this paper, we study the connection between the superconductivity of KBH-EH and the existence of Weyl fermion. Using thermodynamic formulas and the KBH state equation, we prove that the inherent-parameter condition for ME to occur is {M}2/J≤slant {ɛ }c=1.5 in force-free fields whether it be in the simple axisymmetric vacuum zero source case or in the non-zero source case, which can be described by the nonlinear Grad-Shafranov equation. We suggest that this is a second-order phase transition and calculate the critical exponents δ = 1 and η = 1/2 for the specific heat diverging at constant J.

  15. Hawking radiation from dilatonic black holes via anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Qingquan; Cai Xu; Wu Shuangqing

    2007-03-15

    Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes withmore » arbitrary coupling constant {alpha}, and that from the rotating Kaluza-Klein ({alpha}={radical}(3)) as well as the Kerr-Sen ({alpha}=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed.« less

  16. Thermodynamics of novel charged dilatonic BTZ black holes

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2017-10-01

    In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  17. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  18. Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo L.

    2011-09-01

    In this thesis we accomplish two goals: We construct a two dimensional conformal field theory (CFT), in the form of a Liouville theory, in the near horizon limit for three and four dimensions black holes. The near horizon CFT assumes the two dimensional black hole solutions that were first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and later expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two dimensions black holes admit a Diff( S1) or Witt subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. These charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking entropy of the four and three dimensions black holes via the Cardy formula (Blote et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two dimensions CFT's energy momentum tensor is anomalous, i.e. its trace is nonzero. However, In the horizon limit the energy momentum tensor becomes holomorphic equaling the Hawking flux of the four and three dimensions black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamics and statistical quantities for the non local effective action approach. We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS) black hole, given by its two dimensional analogue a la Robinson and Wilczek, is asymptotically AdS 2 and dual to a one dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy-momentum-tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy's Formula. Our derived central charge also agrees with the near extremal Kerr/CFT Correspondence in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its

  19. Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.

  20. Black hole and cosmos with multiple horizons and multiple singularities in vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Yu, Shuang; Shen, You-Gen

    2018-05-01

    A stationary and spherically symmetric black hole (e.g., Reissner-Nordström black hole or Kerr-Newman black hole) has, at most, one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? The de Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves or the black hole continuum spectrum.

  1. An exact solution for a rotating black hole in modified gravity

    NASA Astrophysics Data System (ADS)

    Filippini, Francesco; Tasinato, Gianmassimo

    2018-01-01

    Exact solutions describing rotating black holes can offer important tests for alternative theories of gravity, motivated by the dark energy and dark matter problems. We present an analytic rotating black hole solution for a class of vector-tensor theories of modified gravity, valid for arbitrary values of the rotation parameter. The new configuration is characterised by parametrically large deviations from the Kerr-Newman geometry, controlled by non-minimal couplings between vectors and gravity. It has an oblate horizon in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger ergosphere than black holes in General Relativity (GR) with the same asymptotic properties. We analytically investigate the features of the innermost stable circular orbits for massive objects on the equatorial plane, and show that stable orbits lie further away from the black hole horizon with respect to rotating black holes in GR. We also comment on possible applications of our findings for the extraction of rotational energy from the black hole.

  2. I-Love-Q relations for gravastars and the approach to the black-hole limit

    NASA Astrophysics Data System (ADS)

    Pani, Paolo

    2015-12-01

    The multipole moments and the tidal Love numbers of neutron stars and quark stars satisfy certain relations which are almost insensitive to the star's internal structure. A natural question is whether the same relations hold for different compact objects and how they possibly approach the black-hole limit. Here we consider "gravastars," which are hypothetical compact objects sustained by their internal vacuum energy. Such solutions have been proposed as exotic alternatives to the black-hole paradigm because they can be as compact as black holes and exist in any mass range. By constructing slowly rotating, thin-shell gravastars to quadratic order in the spin, we compute the moment of inertia I , the mass quadrupole moment Q , and the tidal Love number λ in exact form. The I -λ -Q relations of a gravastar are dramatically different from those of an ordinary compact star, but the black-hole limit is continuous; i.e., these quantities approach their Kerr counterparts when the compactness is maximum. Therefore, such relations can be used to discern a gravastar from an ordinary compact star but not to break the degeneracy with the black-hole case. Based on these results, we conjecture that the full multipolar structure and the tidal deformability of a spinning, ultracompact gravastar are identical to those of a Kerr black hole. The approach to the black-hole limit is nonpolynomial, thus differing from the critical behavior recently found for strongly anisotropic neutron stars.

  3. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less

  4. Perfect relativistic magnetohydrodynamics around black holes in horizon penetrating coordinates

    NASA Astrophysics Data System (ADS)

    Cherubini, Christian; Filippi, Simonetta; Loppini, Alessandro; Moradi, Rahim; Ruffini, Remo; Wang, Yu; Xue, She-Sheng

    2018-03-01

    Plasma accreting processes on black holes represent a central problem for relativistic astrophysics. In this context, here we specifically revisit the classical Ruffini-Wilson work developed for analytically modeling via geodesic equations the accretion of perfect magnetized plasma on a rotating Kerr black hole. Introducing the horizon penetrating coordinates found by Doran 25 years later, we revisit the entire approach studying Maxwell invariants, electric and magnetic fields, volumetric charge density and electromagnetic total energy. We finally discuss the physical implications of this analysis.

  5. Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yi; Buonanno, Alessandra; Racine, Etienne

    2011-03-15

    We generalize the factorized resummation of multipolar waveforms introduced by Damour, Iyer, and Nagar to spinning black holes. For a nonspinning test particle spiraling a Kerr black hole in the equatorial plane, we find that factorized multipolar amplitudes which replace the residual relativistic amplitude f{sub lm} with its lth root, {rho}{sub lm}=f{sub lm}{sup 1/l}, agree quite well with the numerical amplitudes up to the Kerr-spin value q{<=}0.95 for orbital velocities v{<=}0.4. The numerical amplitudes are computed solving the Teukolsky equation with a spectral code. The agreement for prograde orbits and large spin values of the Kerr black-hole can be furthermore » improved at high velocities by properly factoring out the lower-order post-Newtonian contributions in {rho}{sub lm}. The resummation procedure results in a better and systematic agreement between numerical and analytical amplitudes (and energy fluxes) than standard Taylor-expanded post-Newtonian approximants. This is particularly true for higher-order modes, such as (2,1), (3,3), (3,2), and (4,4), for which less spin post-Newtonian terms are known. We also extend the factorized resummation of multipolar amplitudes to generic mass-ratio, nonprecessing, spinning black holes. Lastly, in our study we employ new, recently computed, higher-order post-Newtonian terms in several subdominant modes and compute explicit expressions for the half and one-and-half post-Newtonian contributions to the odd-parity (current) and even-parity (odd) multipoles, respectively. Those results can be used to build more accurate templates for ground-based and space-based gravitational-wave detectors.« less

  6. Star motion around rotating black hole in the Galactic Center in real time

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav; Nazarova, Natalia

    2017-12-01

    The Event Horizon Telescope team intends by the 2020 to resolve the shadow of supermassive black hole SgrA* in the Galactic Center. It would be the first attempt for direct identification of the enigmatic black hole. In other words, it would be the first experimental verification of the General Relativity in the strong field limit. There is a chance to find a star moving on the relativistic orbit close to this black hole. We present the animated numerical model of the gravitational lensing of a star (or any other lighting probe), moving around rotating Kerr black hole in the Galactic Center and viewed by the distant observer.

  7. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  8. Greybody factors and charges in Kerr/CFT

    DOE PAGES

    Cvetič, Mirjam; Larsen, Finn

    2009-09-01

    We compute greybody factors for near extreme Kerr black holes in D = 4 and D = 5. In D = 4 we include four charges so that our solutions can be continuously deformed to the BPS limit. In D = 5 we include two independent angular momenta so Left-Right symmetry is incorporated. We discuss the CFT interpretation of our emission amplitudes, including the overall frequency dependence and the dependence on all black hole parameters. We find that all additional parameters can be incorporated Kerr/CFT, with central charge independent of U(1) charges.

  9. Electromagnetic jets from stars and black holes

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Rodriguez, Maria J.

    2016-02-01

    We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.

  10. Holographic butterfly velocities in brane geometry and Einstein-Gauss-Bonnet gravity with matters

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2018-03-01

    In the first part of the paper we generalize the butterfly velocity formula to anisotropic spacetime. We apply the formula to evaluate the butterfly velocities in M-branes, D-branes, and strings backgrounds. We show that the butterfly velocities in M2-branes, M5-branes and the intersection M 2 ⊥ M 5 equal to those in fundamental strings, D4-branes and the intersection F 1 ⊥ D 4 backgrounds, respectively. These observations lead us to conjecture that the butterfly velocity is generally invariant under a double-dimensional reduction. In the second part of the paper, we study the butterfly velocity for Einstein-Gauss-Bonnet gravity with arbitrary matter fields. A general formula is obtained. We use this formula to compute the butterfly velocities in different backgrounds and discuss the associated properties.

  11. Influence of the geometric configuration of accretion flow on the black hole spin dependence of relativistic acoustic geometry

    NASA Astrophysics Data System (ADS)

    Tarafdar, Pratik; Das, Tapas K.

    Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity κ with the Kerr parameter a. The κ-a relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the κ-a relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.

  12. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  13. A periodic table for black hole orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Janna; Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, New York 10027; Perez-Giz, Gabe

    2008-05-15

    Understanding the dynamics around rotating black holes is imperative to the success of future gravitational wave observatories. Although integrable in principle, test-particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbitmore » is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multileaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.« less

  14. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  15. The Kerr/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Hartman, Thomas; Song, Wei; Strominger, Andrew

    2009-12-01

    Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J=GM2) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge cL=(12J)/(ℏ). This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature TL=(1)/(2π) and conjugate energy given by the zero mode generator, L0, of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy Smicro=(2πJ)/(ℏ) for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy Smacro=(Area)/(4ℏG). The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge cL=(12J)/(ℏ), and, in particular, that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with cL˜2×1079.

  16. On stable exponential cosmological solutions with non-static volume factor in the Einstein-Gauss-Bonnet model

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.; Ernazarov, K. K.

    2017-01-01

    A (n + 1)-dimensional gravitational model with cosmological constant and Gauss-Bonnet term is studied. The ansatz with diagonal cosmological metrics is adopted and solutions with exponential dependence of scale factors: ai ˜ exp (vit), i = 1, …, n, are considered. The stability analysis of the solutions with non-static volume factor is presented. We show that the solutions with v 1 = v 2 = v 3 = H > 0 and small enough variation of the effective gravitational constant G are stable if certain restriction on (vi ) is obeyed. New examples of stable exponential solutions with zero variation of G in dimensions D = 1 + m + 2 with m > 2 are presented.

  17. Nearly extremal apparent horizons in simulations of merging black holes

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Scheel, Mark A.; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilágyi, Béla; Chu, Tony; Demos, Nicholas; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Afshari, Nousha

    2015-03-01

    The spin angular momentum S of an isolated Kerr black hole is bounded by the surface area A of its apparent horizon: 8π S≤slant A, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses M and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to S/{{M}2}=0.994. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality 8π S\\lt A is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also evaluate the Booth-Fairhurst extremality, whose value for a given apparent horizon depends on the scaling of the horizon’s null normal vectors. In particular, we introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst’s extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al (2008 Phys. Rev. D 78 084017), we construct quasiequilibrium binary-black hole initial data with ‘overspun’ marginally trapped surfaces with 8π S\\gt A. We show that the overspun surfaces are indeed superextremal: our lower bound on their Booth-Fairhurst extremality exceeds unity. However, we confirm that these superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with 8π S\\lt A. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole.

  18. Spacetime completeness of non-singular black holes in conformal gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: grzerach@gmail.com

    We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new typesmore » of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring singularity in a finite amount of their proper time or of their affine parameter. Finally, we discuss the Raychaudhuri equation in a co-covariant theory and we show that the expansion parameter for congruences of both types of geodesics (for massless and massive particles) never reaches minus infinity. Actually, the null geodesics become parallel at the r =0 point in the Schwarzschild spacetime (the origin) and the focusing of geodesics is avoided. The arguments of regularity of curvature invariants, geodesic completeness, and finiteness of geodesics' expansion parameter ensure us that we are dealing with singularity-free and geodesically-complete black hole spacetimes.« less

  19. Penrose pair production as a power source of quasars and active galactic nuclei. [black hole mechanisms

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Leiter, D.

    1979-01-01

    Penrose pair production in massive canonical Kerr black holes (those with a/M equal to 0.998) is proposed as a way to explain the nature of the vast fluctuating energy production associated with active galactic nuclei and quasars. It is assumed that a Kerr black hole with a mass of the order of 100 million solar masses lies at the center of an active nucleus and that an accretion disk is formed. Penrose pair production in the inner ergosphere of such a massive canonical Kerr black hole is analyzed. The results indicate that: (1) particle pairs are ejected within a 40 deg angle relative to the equator; (2) the particle energy is of the order of 1 GeV per pair; (3) the pressure of the electron-positron relativistic gas is proportional to the electron-positron number density; (4) pair production may occur in bursts; and (5) the overall lifetime of an active nucleus would depend on the time required to exhaust the disk of its matter content. A test of the theory is suggested which involves observation of the 0.5-MeV pair-annihilation gamma rays that would be generated by annihilating particle pairs.

  20. Dynamics of marginally trapped surfaces in a binary black hole merger: Growth and approach to equilibrium

    NASA Astrophysics Data System (ADS)

    Gupta, Anshu; Krishnan, Badri; Nielsen, Alex B.; Schnetter, Erik

    2018-04-01

    The behavior of quasilocal black hole horizons in a binary black hole merger is studied numerically. We compute the horizon multipole moments, fluxes, and other quantities on black hole horizons throughout the merger. These lead to a better qualitative and quantitative understanding of the coalescence of two black holes: how the final black hole is formed, initially grows, and then settles down to a Kerr black hole. We calculate the rate at which the final black hole approaches equilibrium in a fully nonperturbative situation and identify a time at which the linear ringdown phase begins. Finally, we provide additional support for the conjecture that fields at the horizon are correlated with fields in the wave zone by comparing the in-falling gravitational wave flux at the horizon to the outgoing flux as estimated from the gravitational waveform.

  1. Black hole superradiance and polarization-dependent bending of light

    NASA Astrophysics Data System (ADS)

    Plascencia, Alexis D.; Urbano, Alfredo

    2018-04-01

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  2. Cosmological reconstructed solutions in extended teleparallel gravity theories with a teleparallel Gauss-Bonnet term

    NASA Astrophysics Data System (ADS)

    de la Cruz-Dombriz, Álvaro; Farrugia, Gabriel; Levi Said, Jackson; Sáez-Chillón Gómez, Diego

    2017-12-01

    In the context of extended teleparallel gravity theories with a 3  +  1 dimensions Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological solutions. In particular when applied to a Friedmann-Lemaître-Robertson-Walker geometry in four-dimensional spacetime with standard fluids exclusively. We study different types of gravitational Lagrangians and reconstruct solutions provided by analytical expressions for either the cosmological scale factor or the Hubble parameter. We also show that it is possible to find Lagrangians of this type without a cosmological constant such that the behaviour of the ΛCDM model is precisely mimicked. The new Lagrangians may also lead to other phenomenological consequences opening up the possibility for new theories to compete directly with other extensions of General Relativity.

  3. A Rigorous Treatment of Energy Extraction from a Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2009-05-01

    The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.

  4. Constraints on two accretion disks centered on the equatorial plane of a Kerr SMBH

    NASA Astrophysics Data System (ADS)

    Pugliese, Daniela; Stuchlík, Zdeněk

    2017-12-01

    The possibility that two toroidal accretion configurations may be orbiting around a super–massive Kerr black hole has been addressed. Such tori may be formed during different stages of the Kerr attractor accretion history. We consider the relative rotation of the tori and the corotation or counterrotation of a single torus with respect to the Kerr attractor. We give classification of the couples of accreting and non–accreting tori in dependence on the Kerr black hole dimensionless spin. We demonstrate that only in few cases a double accretion tori system may be formed under specific conditions.

  5. General nonextremal rotating charged Gödel black holes in minimal five-dimensional gauged supergravity.

    PubMed

    Wu, Shuang-Qing

    2008-03-28

    I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.

  6. Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Yildiran, Deniz; Donmez, Orhan

    In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case

  7. Spin precession in a black hole and naked singularity spacetimes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Kocherlakota, Prashant; Joshi, Pankaj S.

    2017-02-01

    We propose here a specific criterion to address the existence or otherwise of Kerr naked singularities, in terms of the precession of the spin of a test gyroscope due to the frame dragging by the central spinning body. We show that there is indeed an important characteristic difference in the behavior of gyro spin precession frequency in the limit of approach to these compact objects, and this can be used, in principle, to differentiate the naked singularity from a black hole. Specifically, if gyroscopes are fixed all along the polar axis up to the horizon of a Kerr black hole, the precession frequency becomes arbitrarily high, blowing up as the event horizon is approached. On the other hand, in the case of naked singularity, this frequency remains always finite and well behaved. Interestingly, this behavior is intimately related to and is governed by the geometry of the ergoregion in each of these cases, which we analyze here. One intriguing behavior that emerges is, in the Kerr naked singularity case, the Lense-Thirring precession frequency (ΩLT ) of the gyroscope due to frame-dragging effect decreases as (ΩLT∝r ) after reaching a maximum, in the limit of r =0 , as opposed to r-3 dependence in all other known astrophysical cases.

  8. Black holes and gravitational waves in models of minicharged dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Vitor; Perimeter Institute for Theoretical Physics,31 Caroline Street North Waterloo, Ontario N2L 2Y5; Macedo, Caio F.B.

    In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole’s charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the finalmore » black hole’s charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burst of low-frequency dark photons which might provide a possible electromagnetic counterpart to black-hole mergers in these scenarios.« less

  9. A mathematical form of force-free magnetosphere equation around Kerr black holes and its application to Meissner effect

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Bo; Liao, Yi; Xu, Zhao-Yi

    2016-09-01

    Based on the Lagrangian of the steady axisymmetric force-free magnetosphere (FFM) equation around Kerr black holes (KBHs), we find that the FFM equation can be rewritten in a new form as f,rr / (1 -μ2) +f,μμ / Δ + K (f (r , μ) , r , μ) = 0, where μ = - cos ⁡ θ. With coordinate transformation, the above equation can be given as s,yy +s,zz + D (s (y , z) , y , z) = 0. Using this form, we prove that the Meissner effect is not possessed by a KBH-FFM with the condition dω / dAϕ ⩽ 0 and Hϕ (dHϕ / dAϕ) ⩾ 0, here Aϕ is the ϕ component of the vector potential A → , ω is the angular velocity of magnetic fields and Hϕ corresponds to twice the poloidal electric current.

  10. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  11. Thermodynamics of new black hole solutions in the Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    In the present work, thermodynamics of the new black hole solutions to the four-dimensional Einstein-Maxwell-dilaton gravity theory have been studied. The dilaton potential, as the solution to the scalar field equations, has been constructed out by a linear combination of three Liouville-type potentials. Three new classes of charged dilatonic black hole solutions, as the exact solutions to the coupled equations of gravitational, electromagnetic and scalar fields, have been introduced. The conserved charge and mass of the new black holes have been calculated by utilizing Gauss's electric law and Abbott-Deser mass proposal, respectively. Also, the temperature, entropy and the electric potential of these new classes of charged dilatonic black holes have been calculated, making use of the geometrical approaches. Through a Smarr-type mass formula, the intensive parameters of the black holes have been calculated and validity of the first law of black hole thermodynamics has been confirmed. A thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. The heat capacity of the new black holes has been calculated and the points of type one- and type two-phase transitions as well as the ranges at which the new charged dilatonic black holes are locally stable have been determined, precisely.

  12. The Distribution and Annihilation of Dark Matter Around Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2015-01-01

    We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.

  13. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, Jose P. S.; Zanchin, Vilson T.; Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia, 166, 09210-170, Santo Andre, Sao Paulo

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regularmore » black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.« less

  14. Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem

    NASA Astrophysics Data System (ADS)

    De Luca, L.; Friesecke, G.

    2018-02-01

    We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential V(r)=+∞ if r<1, -1 if r=1, 0 if r>1. This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss-Bonnet theorem (Knill in Elem Math 67:1-7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential V(r)=r^{-6}-2r^{-12}, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

  15. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    NASA Astrophysics Data System (ADS)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  16. ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Yun, Kiyun; Yoon, Suk-Jin

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integrationmore » step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.« less

  17. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  18. The Extreme Spin of the Black Hole in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffre E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2005-01-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observatIOns. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these.results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum.spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-I contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamIcal model, we find a* > 0.92 (3(sigma)). In our analysis, we include the uncertainties in black hole mass orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.

  19. The Extreme Spin of the Black Hole in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole s accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamical model, we find a. > 0.92 (3 ). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk s low luminosity.

  20. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  1. Estimation of bipolar jets from accretion discs around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  2. Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect

    NASA Astrophysics Data System (ADS)

    Okawa, Hirotada; Cardoso, Vitor

    2014-11-01

    Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.

  3. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  4. Black and gray Helmholtz-Kerr soliton refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposalmore » of positive or negative lensing operations on soliton arrays at planar boundaries.« less

  5. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-05-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while ablack hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β , whose radius decreases with increase of the value of the parameter β . Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole.

  6. Gravitational lensing of a star by a rotating black hole

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.; Nazarova, N. O.

    2017-11-01

    The gravitational lensing of a finite star moving around a rotating Kerr black hole has been numerically simulated. Calculations for the direct image of the star and for the first and second light echoes have been performed for the star moving with an orbital period of 3.22 h around the supermassive black hole SgrA* at the center of the Galaxy. The time dependences for the observed position of the star on the celestial sphere, radiation flux from the star, frequency of detected radiation, and major and minor semiaxes of the lensed image of the star have been calculated and plotted. The detailed observation of such lensing requires a space interferometer such as the Russian Millimetron project.

  7. The Future of Black Hole Astrophysics in the LIGO-VIRGO-LPF Era

    NASA Astrophysics Data System (ADS)

    Blandford, Roger; Anantua, Richard

    2017-05-01

    There is a resurgence of interest in black holes sparked by the LIGO-VIRGO detection of stellar black hole mergers and recent astronomical investigations of jets and accretion disks which probe the spacetime geometry of black holes with masses ranging from a few times the mass of the sun to tens of billions of solar masses. Many of these black holes appear to be spinning rapidly. Some new approaches are described to studying how accreting black holes function as cosmic machines paying special attention to observations of AGN jets, especially with VLBI and γ-ray telescopes. It is assumed that these jets are powered by the electromagnetic extraction of the spin energy of their associated black holes, which are described by the Kerr metric, and that they become simpler and more electromagnetically dominated as the event horizon is approached. The major uncertainty in these models is in describing acceleration and transport of relativistic electrons and positrons and simple phenomenological prescriptions are proposed. The application of these ideas to M87 and 3C279 is outlined and the prospects for learning more, especially from the Event Horizon Telescope and the Cerenkov Telescope Array, are discussed. The main benefit of a better understanding of black hole astrophysics to the LISA mission should be a firmer understanding of the source demographics.

  8. Spin and mass of the supermassive black hole in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru

    2015-12-15

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for themore » present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.« less

  9. Exploiting the hidden symmetry of spinning black holes: conservation laws and numerical tests

    NASA Astrophysics Data System (ADS)

    Witzany, Vojtěch

    2018-01-01

    The Kerr black hole is stationary and axisymmetric, which leads to conservation of energy and azimuthal angular momentum along the orbits of free test particles in its vicinity, but also to conservation laws for the evolution of continuum matter fields. However, the Kerr space-time possesses an additional 'hidden symmetry', which exhibits itself in an unexpected conserved quantity along geodesics known as the Carter constant. We investigate the possibility of using this hidden symmetry to obtain conservation laws and other identities that could be used to test astrophysical simulations of the evolution of matter fields near spinning black holes. After deriving such identities, we set up a simple numerical toy model on which we demonstrate how they can detect the violations of evolution equations in a numerical simulation. Even though one of the expressions we derive is in the form of a conservation law, we end up recommending an equivalent but simpler expression that is not in the form of a conservation law for practical implementation.

  10. Strong-field tidal distortions of rotating black holes. III. Embeddings in hyperbolic three-space

    NASA Astrophysics Data System (ADS)

    Penna, Robert F.; Hughes, Scott A.; O'Sullivan, Stephen

    2017-09-01

    In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass μ much smaller than black hole mass M ), but can be used for arbitrary bound orbits and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean three-space, E3. Such visualizations illustrate interesting and important information about horizon dynamics. Unfortunately, we could not visualize black holes with spin parameter a*>√{3 }/2 ≈0.866 : such holes cannot be globally embedded into E3. In this paper, we overcome this difficulty by showing how to embed the horizons of tidally distorted Kerr black holes in a hyperbolic three-space, H3. We use black hole perturbation theory to compute the Gaussian curvatures of tidally distorted event horizons, from which we build a two-dimensional metric of their distorted horizons. We develop a numerical method for embedding the tidally distorted horizons in H3. As an application, we give a sequence of embeddings into H3 of a tidally interacting black hole with spin a*=0.9999 . A small-amplitude, high-frequency oscillation seen in previous work shows up particularly clearly in these embeddings.

  11. Decoding Mode-mixing in Black-hole Merger Ringdown

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  12. Are LIGO's Black Holes Made from Smaller Black Holes?

    NASA Astrophysics Data System (ADS)

    Fishbach, Maya; Holz, Daniel; Farr, Ben; LIGO Collaboration

    2017-01-01

    We consider the hierarchical merger model for the formation of stellar mass black holes (such as the binary black holes observable by LIGO). In the hierarchical merger model, each black hole in a black hole binary is the result of a merger of two lesser black holes from a previous generation, and the previous generation's black holes may themselves be merger products of an even earlier generation. We apply the formulas of Hofmann, Barausse and Rezzolla (2016) to show that if black holes form in this hierarchical merger scenario, their spin magnitudes follow a certain probability distribution. We demonstrate how to compare this spin distribution to LIGO spin measurements in order to constrain the hierarchical merger scenario.

  13. Dance of Two Monster Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    than two dozen ground-based optical telescopes and the Swift/XRT satellite to observe OJ 287 in this time frame. The outburst occurred right on schedule, peaking on 5 December 2015, and the results of the observing campaign are now presented in a study led by Mauri Valtonen (University of Turku).Optical photometry of OJ 287 from October to December 2015, showing the outburst that resulted from the secondary black hole crossing the disk. [Valtonen et al. 2016]Because the secondary black holes orbit is affected by the spin of the primary black hole, Valtonen and collaborators were able to use the timing of the outburst to measure the spin of OJ 287s primary black hole to remarkably high precision. They find that its Kerr parameter is 0.313 0.01 which means its spinning at about a third of the maximum rate allowed by general relativity.The outburst timing also confirmed several general-relativistic properties of the system, including its loss of energy to gravitational waves. Remarkably, the energy lost as the secondary black hole punches through the accretion disk is still ten thousand times smaller than the amount of energy it loses through gravitational waves!The observations from this outburst have provided important black-hole measurements and tests of general relativity which are especially relevant in this new era of gravitational wave detections. And we may be able to perform still more tests on the secondarys next pass through the disk, which should occur in 2019.BonusCheck out this awesome animation of the orbits in a system similar to OJ 287! The secondarys orbit precesses around the primary due to general-relativistic effects. The sound you hearis an audio representation of the increasing frequency as the two black holes inspiral. You can find more information about this animation here. [Steve Drasco Curt Cutler]CitationM. J. Valtonen et al 2016 ApJ 819 L37. doi:10.3847/2041-8205/819/2/L37

  14. Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes

    NASA Astrophysics Data System (ADS)

    Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Miller, John C.

    2017-08-01

    We propose an approximate approach for studying the relativistic regime of stellar tidal disruptions by rotating massive black holes. It combines an exact relativistic description of the hydrodynamical evolution of a test fluid in a fixed curved space-time with a Newtonian treatment of the fluid's self-gravity. Explicit expressions for the equations of motion are derived for Kerr space-time using two different coordinate systems. We implement the new methodology within an existing Newtonian smoothed particle hydrodynamics code and show that including the additional physics involves very little extra computational cost. We carefully explore the validity of the novel approach by first testing its ability to recover geodesic motion, and then by comparing the outcome of tidal disruption simulations against previous relativistic studies. We further compare simulations in Boyer-Lindquist and Kerr-Schild coordinates and conclude that our approach allows accurate simulation even of tidal disruption events where the star penetrates deeply inside the tidal radius of a rotating black hole. Finally, we use the new method to study the effect of the black hole spin on the morphology and fallback rate of the debris streams resulting from tidal disruptions, finding that while the spin has little effect on the fallback rate, it does imprint heavily on the stream morphology, and can even be a determining factor in the survival or disruption of the star itself. Our methodology is discussed in detail as a reference for future astrophysical applications.

  15. Black-hole entropy and thermodynamics from symmetries

    NASA Astrophysics Data System (ADS)

    Silva, Sebastián

    2002-08-01

    Given a boundary of spacetime preserved by a Diff(S1) sub-algebra, we propose a systematic method to compute the zero mode and the central extension of the associated Virasoro algebra of charges. Using these values in the Cardy formula, we may derive an associated statistical entropy to be compared with the Bekenstein-Hawking result. To illustrate our method, we study in detail the BTZ and the rotating Kerr-adS4 black holes (at spatial infinity and on the horizon). In both cases, we are able to reproduce the area law with the correct factor of 1/4 for the entropy. We also recover within our framework the first law of black-hole thermodynamics. We compare our results with the analogous derivations proposed by Carlip and others. Although similar, our method differs in the computation of the zero mode. In particular, the normalization of the ground state is automatically fixed by our construction.

  16. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment

    NASA Astrophysics Data System (ADS)

    Crisnejo, Gabriel; Gallo, Emanuel

    2018-06-01

    We apply the Gauss-Bonnet theorem to the study of light rays in a plasma medium in a static and spherically symmetric gravitational field and also to the study of timelike geodesics followed for test massive particles in a spacetime with the same symmetries. The possibility of using the theorem follows from a correspondence between timelike curves followed by light rays in a plasma medium and spatial geodesics in an associated Riemannian optical metric. A similar correspondence follows for massive particles. For some examples and applications, we compute the deflection angle in weak gravitational fields for different plasma density profiles and gravitational fields.

  17. On non-exponential cosmological solutions with two factor spaces of dimensions m and 1 in the Einstein-Gauss-Bonnet model with a Λ-term

    NASA Astrophysics Data System (ADS)

    Ernazarov, K. K.

    2017-12-01

    We consider a (m + 2)-dimensional Einstein-Gauss-Bonnet (EGB) model with the cosmological Λ-term. We restrict the metrics to be diagonal ones and find for certain Λ = Λ(m) class of cosmological solutions with non-exponential time dependence of two scale factors of dimensions m > 2 and 1. Any solution from this class describes an accelerated expansion of m-dimensional subspace and tends asymptotically to isotropic solution with exponential dependence of scale factors.

  18. Scalar Hairy Black Holes in Four Dimensions are Unstable

    NASA Astrophysics Data System (ADS)

    Ganchev, Bogdan; Santos, Jorge E.

    2018-04-01

    We present a numerical analysis of the stability properties of the black holes with scalar hair constructed by Herdeiro and Radu. We prove the existence of a novel gauge where the scalar field perturbations decouple from the metric perturbations, and analyze the resulting quasinormal mode spectrum. We find unstable modes with characteristic growth rates which for uniformly small hair are almost identical to those of a massive scalar field on a fixed Kerr background.

  19. Scalar Hairy Black Holes in Four Dimensions are Unstable.

    PubMed

    Ganchev, Bogdan; Santos, Jorge E

    2018-04-27

    We present a numerical analysis of the stability properties of the black holes with scalar hair constructed by Herdeiro and Radu. We prove the existence of a novel gauge where the scalar field perturbations decouple from the metric perturbations, and analyze the resulting quasinormal mode spectrum. We find unstable modes with characteristic growth rates which for uniformly small hair are almost identical to those of a massive scalar field on a fixed Kerr background.

  20. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.

    PubMed

    Page, Don N; Shoom, Andrey A

    2015-04-10

    Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime.

  1. Algebraically special space-time in relativity, black holes, and pulsar models

    NASA Technical Reports Server (NTRS)

    Adler, R. J.; Sheffield, C.

    1973-01-01

    The entire field of astronomy is in very rapid flux, and at the center of interest are problems relating to the very dense, rotating, neutron stars observed as pulsars. the hypothesized collapsed remains of stars known as black holes, and quasars. Degenerate metric form, or Kerr-Schild metric form, was used to study several problems related to intense gravitational fields.

  2. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  3. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  4. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; KubizÅák, David; Santos, Jorge E.

    2018-06-01

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  5. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.

    PubMed

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E

    2018-06-08

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  6. Dark matter cosmic string in the gravitational field of a black hole

    NASA Astrophysics Data System (ADS)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  7. A geometric description of Maxwell field in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek; Smołka, Tomasz

    2016-06-01

    We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.

  8. Validity of black hole complementarity in the BTZ black hole

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    Based on the gedanken experiment for black hole complementarity in the Schwarzschild black hole, we calculate the energy required to duplicate information in the BTZ black hole under the assumption of absorbing boundary condition and its dual solution of the black string, respectively, in order to justify the validity of the no-cloning theorem in quantum mechanics. For the BTZ black hole, the required energy for the duplication of information can be made fairly small, whereas for the black string it exceeds the total mass of the black string, although they are related to each other under the dual transformation. So, the duplication of information might be possible in the BTZ black hole in contrast to the case of the black string, so that the no-cloning theorem could be violated for the former case. To save the duplication of information for the BTZ black hole, we perform an improved gedanken experiment by using the local thermodynamic quantities near the horizon rather than those defined at infinity, and show that the no-cloning theorem could be made valid even in the BTZ black hole. We also discuss how this local treatment for the no-cloning theorem can be applied to the black string as well as the Schwarzschild black hole innocuously.

  9. Vacuum polarization of the electromagnetic field near a rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-12-15

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor givesmore » a result which coincides at the event horizon with the exact value of /sup ren/. .AE« less

  10. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  11. Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav

    2018-04-01

    We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.

  12. Fundamental photon orbits: Black hole shadows and spacetime instabilities

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Radu, Eugen

    2017-07-01

    The standard black holes (BHs) in general relativity, as well as other ultracompact objects (with or without an event horizon) admit planar circular photon orbits. These light rings (LRs) determine several spacetime properties. For instance, stable LRs trigger instabilities and, in spherical symmetry, (unstable) LRs completely determine BH shadows. In generic stationary, axisymmetric spacetimes, nonplanar bound photon orbits may also exist, regardless of the integrability properties of the photon motion. We suggest a classification of these fundamental photon orbits (FPOs) and, using Poincaré maps, determine a criterion for their stability. For the Kerr BH, all FPOs are unstable (similar to its LRs) and completely determine the Kerr shadow. But in non-Kerr spacetimes, stable FPOs may also exist, even when all LRs are unstable, triggering new instabilities. We illustrate this for the case of Kerr BHs with Proca hair, wherein, moreover, qualitatively novel shadows with a cuspy edge exist, a feature that can be understood from the interplay between stable and unstable FPOs. FPOs are the natural generalization of LRs beyond spherical symmetry and should generalize the LRs key role in different spacetime properties.

  13. Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings

    NASA Astrophysics Data System (ADS)

    Vines, Justin

    2018-04-01

    We demonstrate equivalences, under simple mappings, between the dynamics of three distinct systems—(i) an arbitrary-mass-ratio two-spinning-black-hole system, (ii) a spinning test black hole in a background Kerr spacetime, and (iii) geodesic motion in Kerr—when each is considered in the first post-Minkowskian (1PM) approximation to general relativity, i.e. to linear order G but to all orders in 1/c, and to all orders in the black holes’ spins, with all orders in the multipole expansions of their linearized gravitational fields. This is accomplished via computations of the net results of weak gravitational scattering encounters between two spinning black holes, namely the net O(G) changes in the holes’ momenta and spins as functions of the incoming state. The results are given in remarkably simple closed forms, found by solving effective Mathisson–Papapetrou–Dixon-type equations of motion for a spinning black hole in conjunction with the linearized Einstein equation, with appropriate matching to the Kerr solution. The scattering results fully encode the gauge-invariant content of a canonical Hamiltonian governing binary-black-hole dynamics at 1PM order, for generic (unbound and bound) orbits and spin orientations. We deduce one such Hamiltonian, which reproduces and resums the 1PM parts of all such previous post-Newtonian results, and which directly manifests the equivalences with the test-body limits via simple effective-one-body mappings.

  14. Rotating black holes in higher dimensions with a cosmological constant.

    PubMed

    Gibbons, G W; Lü, H; Page, Don N; Pope, C N

    2004-10-22

    We present the metric for a rotating black hole with a cosmological constant and with arbitrary angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and the Boyer-Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on associated S(D-2) bundles over S2, infinitely many for each odd D>/=5. Applications to string theory and M-theory are indicated.

  15. Conformally flat black hole initial data with one cylindrical end

    NASA Astrophysics Data System (ADS)

    Gabach Clément, María E.

    2010-06-01

    We give a complete analytical proof of the existence and uniqueness of extreme-like black hole initial data for Einstein equations, which possess a cylindrical end, analogous to extreme Kerr, extreme Reissner-Nördstrom and extreme Bowen-York's initial data. This extends and refines a previous result (Dain and Clement 2009 Class. Quantum Grav. 26 035020) to a general case of conformally flat, maximal initial data with angular momentum, linear momentum and matter.

  16. Testing the Kerr metric with the iron line and the KRZ parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Jiang, Jiachen; Bambi, Cosimo, E-mail: yyni13@fudan.edu.cn, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    The spacetime geometry around astrophysical black holes is supposed to be well approximated by the Kerr metric, but deviations from the Kerr solution are predicted in a number of scenarios involving new physics. Broad iron Kα lines are commonly observed in the X-ray spectrum of black holes and originate by X-ray fluorescence of the inner accretion disk. The profile of the iron line is sensitively affected by the spacetime geometry in the strong gravity region and can be used to test the Kerr black hole hypothesis. In this paper, we extend previous work in the literature. In particular: i )more » as test-metric, we employ the parametrization recently proposed by Konoplya, Rezzolla, and Zhidenko, which has a number of subtle advantages with respect to the existing approaches; ii ) we perform simulations with specific X-ray missions, and we consider NuSTAR as a prototype of current observational facilities and eXTP as an example of the next generation of X-ray observatories. We find a significant difference between the constraining power of NuSTAR and eXTP. With NuSTAR, it is difficult or impossible to constrain deviations from the Kerr metric. With eXTP, in most cases we can obtain quite stringent constraints (modulo we have the correct astrophysical model).« less

  17. Ergoregions in magnetized black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Mujtaba, A. H.; Pope, C. N.

    2013-06-01

    The spacetimes obtained by Ernst’s procedure for appending an external magnetic field B to a seed Kerr-Newman black hole are commonly believed to be asymptotic to the static Melvin metric. We show that this is not in general true. Unless the electric charge of the black hole satisfies Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), where j is the angular momentum of the original seed solution, an ergoregion extends all the way from the black hole horizon to infinity. We find that if the condition on the electric charge is satisfied then the metric is asymptotic to the static Melvin metric, and the electromagnetic field carries not only magnetic, but also electric, flux along the axis. We give a self-contained account of the solution-generating procedure, including explicit formulae for the metric and the vector potential. In the case when Q= jB(1+{\\textstyle {\\frac{\\scriptstyle 1}{\\scriptstyle 4} } } j^2 B^4), we show that there is an arbitrariness in the choice of asymptotically timelike Killing field K_\\Omega = {\\partial }/{\\partial }t+ \\Omega \\, {\\partial }/{\\partial }\\phi, because there is no canonical choice of Ω. For one choice, Ω = Ωs, the metric is asymptotically static, and there is an ergoregion confined to the neighbourhood of the horizon. On the other hand, by choosing Ω = ΩH, so that K_{\\Omega _H} is co-rotating with the horizon, then for sufficiently large B numerical studies indicate there is no ergoregion at all. For smaller values, in a range B- < B < B+, there is a toroidal ergoregion outside and disjoint from the horizon. If B ⩽ B- this ergoregion expands all the way to infinity in a cylindrical region near to the rotation axis. For black holes whose size is small compared to the Melvin radius 2/B, and neglecting back-reaction of the electromagnetic field, we recover Wald’s result that it is energetically favourable for the hole to acquire a charge 2jB.

  18. Are LIGO's Black Holes Made From Smaller Black Holes?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that

  19. The ω{OMEGA} dynamo in accretion disks of rotating black holes.

    NASA Astrophysics Data System (ADS)

    Khanna, R.; Camenzind, M.

    1996-03-01

    We develop the kinematic theory of axisymmetric dynamo action in the innermost part of an accretion disk around a rotating black hole. The problem is formulated in the 3+1 split of Kerr spacetime. It turns out that the gravitomagnetic field of the hole gives rise to a dynamo current for the the poloidal magnetic field without any need of turbulent plasma motions even in axisymmetry. We show that Cowling's theorem does not apply in the Kerr metric. This gravitomagnetic dynamo effect (ω-effect) requires finite diffusivity and is enhanced by anomalous or turbulent magnetic diffusivity. The reformulation of the problem in the framework of mean field magnetohydrodynamics introduces the familiar α-effect. The dynamo equations are formally identical with their classical equivalents (i.e. equations for the α{OMEGA} dynamo in flat space), augmented by the general relativistic ω-effect-term as source. We have carried out time-dependent numerical simulations of the dynamo in a turbulent differentially rotating accretion disk using a finite element code with implicit time-stepping. The advection of the magnetic field with the plasma is fully included. Solutions are discussed for extremely and less rapidly rotating black holes. We observe growing dipolar, quadrupolar and mixed modes, the second being, however, dominant. A common feature of all our simulations of the ω{OMEGA} dynamo is that it will finally build up a stellar like magnetosphere around the black hole, which blends into the outer disk field topology in a transition region. This finding enforces the analogy in the models of jet formation in AGN and YSOs. An interesting feature occurs for less rapidly rotating holes. The frame dragging effect introduces a boundary layer in the plasma rotation, where the plasma is prone to resistive magnetohydrodynamical instabilities such as the rippling mode or the tearing mode and thus the boundary layer has to be regarded as a potential site of particle acceleration. We also

  20. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  1. Holographic helical superconductor with higher curvature corrections

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subir; Paul, Chandrima

    2018-01-01

    We study SU(2) × U(1) gauge theory with Chern-Simons term, coupled to scalar field in adjoint, in Einstein-Gauss-Bonnet gravity. We explore phases of holographic superconductor in terms of the condensates and free energies in the background of AdS black hole and AdS soliton. In the case of black hole, we find with increasing strength of higher curvature terms, transition temperature decreases. For AdS soliton, the critical value of chemical potential increases as the higher curvature terms dominate.

  2. Higher curvature self-interaction corrections to Hawking radiation

    NASA Astrophysics Data System (ADS)

    Fairoos, C.; Sarkar, Sudipta; Yogendran, K. P.

    2017-07-01

    The purely thermal nature of Hawking radiation from evaporating black holes leads to the information loss paradox. A possible route to its resolution could be if (enough) correlations are shown to be present in the radiation emitted from evaporating black holes. A reanalysis of Hawking's derivation including the effects of self-interactions in general relativity shows that the emitted radiation does deviate from pure thermality; however no correlations exist between successively emitted Hawking quanta. We extend the calculations to Einstein-Gauss-Bonnet gravity and investigate if higher curvature corrections to the action lead to some new correlations in the Hawking spectra. The effective trajectory of a massless shell is determined by solving the constraint equations and the semiclassical tunneling probability is calculated. As in the case of general relativity, the radiation is no longer thermal and there is no correlation between successive emissions. The absence of any extra correlations in the emitted radiations even in Gauss-Bonnet gravity suggests that the resolution of the paradox is beyond the scope of semiclassical gravity.

  3. Nearly extremal apparent horizons in simulations of merging black holes

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Scheel, Mark; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilagyi, Bela; Chu, Tony; Demos, Nicholas; Hemberger, Daniel; Kidder, Lawrence; Pfeiffer, Harald; Afshari, Nousha; SXS Collaboration

    2015-04-01

    The spin S of a Kerr black hole is bounded by the surface area A of its apparent horizon: 8 πS <= A . We present recent results (arXiv:1411.7297) for the extremality of apparent horizons for merging, rapidly rotating black holes with equal masses and equal spins aligned with the orbital angular momentum. Measuring the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, we find that the inequality 8 πS < A is satisfied but is very close to equality on the common apparent horizon at the instant it first appears--even for initial spins as large as S /M2 = 0 . 994 . We compute the smallest value e0 that Booth and Fairhurst's extremality parameter can take for any scaling of the horizon's null normal vectors, concluding that the common horizons are at least moderately close to extremal just after they appear. We construct binary-black-hole initial data with marginally trapped surfaces with 8 πS > A and e0 > 1 , but these surfaces are always surrounded by apparent horizons with 8 πS < A and e0 < 1 .

  4. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have found a black hole where few thought they could ever exist, inside a globular star cluster. The finding has broad implications for the dynamics of stars clusters and also for the existence of a still-speculative new class of black holes called 'intermediate-mass' black holes. The discovery is reported in the current issue of Nature. Tom Maccarone of the University of Southampton in England leads an international team on the finding, made primarily with the European Space Agency's XMM-Newton satellite. Globular clusters are dense bundles of thousands to millions of old stars, and many scientists have doubted that black holes could survive in such an exclusive environment. Computer simulations show that a newly formed black hole would first sink towards the centre of the cluster but quickly get gravitationally slingshot out entirely when interacting with the cluster's myriad stars. Credit: ESA/Hubble Artist's impression of globular star cluster The new finding provides the first convincing evidence that some black hole might not only survive but grow and flourish in globular clusters. What has astonished astronomers is how quickly the black hole was found. "We were preparing for a long, systematic search of thousands of globular clusters with the hope of finding just one black hole," said Maccarone. "But bingo, we found one as soon as we started the search. It was only the second globular cluster we looked at." The search continues to find more, Maccarone said, yet only one black hole was needed to resolve the decades-old discussion about black holes and globular clusters. Scientists say there are two main classes of black holes. Supermassive black holes containing the mass of millions to billions of suns are found in the core of most galaxies, including our own. A quasar is one kind of supermassive black hole. Stellar-size black holes contain the mass of about ten suns. These are created from the collapsed core of massive stars. Our galaxy likely

  5. Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar

    NASA Astrophysics Data System (ADS)

    James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.

    2015-03-01

    Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about

  6. Periastron advance in spinning black hole binaries: Gravitational self-force from numerical relativity

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Buonanno, Alessandra; Mroué, Abdul H.; Pfeiffer, Harald P.; Hemberger, Daniel A.; Lovelace, Geoffrey; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Bela; Taylor, Nicholas W.; Teukolsky, Saul A.

    2013-12-01

    We study the general relativistic periastron advance in spinning black hole binaries on quasicircular orbits, with spins aligned or antialigned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies’ labels, we devise an improved version of the perturbative result and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a nonspinning particle orbiting a Kerr black hole of mass M and spin S=-0.5M2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.

  7. Imaging a non-singular rotating black hole at the center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  8. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  9. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  10. High-velocity collision of particles around a rapidly rotating black hole

    NASA Astrophysics Data System (ADS)

    Harada, T.

    2014-03-01

    We have derived a general formula for the centre-of-mass (CM) energy for the near-horizon collision of two general geodesic particles around a Kerr black hole. We have found that if the angular momentum of the particle satisfies the critical condition, the CM energy can be arbitrarily high. We have then applied the formula to the collision of a particle orbiting an innermost stable circular orbit (ISCO) and another generic particle near the horizon, and found that the CM energy is arbitrarily high if we take the maximal limit of the black hole spin. In view of the astrophysical significance of the ISCO, this implies that particles can collide around a rapidly rotating black hole with a very high CM energy without any artificial fine-tuning. We have next applied the formula to the collision of general inclined geodesic particles and shown that in the direct collision scenario, the collision with an arbitrarily high CM energy can occur near the horizon of maximally rotating black holes, not only at the equator but also on a belt centred at the equator between two latitudes. This is also true in the scenario through the collision of a last stable orbit particle. This strongly suggests that if signals due to high-energy collision are to be observed, such signals will be generated primarily on this belt.

  11. A Dancing Black Hole

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  12. Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals

    NASA Astrophysics Data System (ADS)

    Lewis, Adam G. M.; Zimmerman, Aaron; Pfeiffer, Harald P.

    2017-06-01

    Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement with the leading order post-Newtonian prediction.

  13. Tori sequences as remnants of multiple accreting periods of Kerr SMBHs

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-03-01

    Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.

  14. Physical Properties of the Double Kerr Solution

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Rebelo, Carmen

    We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.

  15. Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations

    NASA Astrophysics Data System (ADS)

    Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A. R.; Radu, Eugen; Ferrari, Valeria

    2017-06-01

    Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.

  16. New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2012-10-01

    It was recently shown that a black hole (BH) is the only compact object that can acquire a scalar charge in scalar Gauss-Bonnet (sGB) theory under the small coupling approximation. This leads to the fact that scalar radiation is emitted from a binary containing at least one BH. In this paper, we find the constraints on this theory from BH low-mass x-ray binaries. The main result of this paper is that from the orbital decay rate of A0620-00, we obtained a conservative bound that is six orders of magnitude stronger than the Solar System bound. In addition to this, we look at XTE J1118+480, whose orbital decay rate has been recently measured with an excess compared to the theoretical prediction in general relativity due to the radiation reaction. The cause of this excess is currently unknown. Although it is likely that the cause is of astrophysical origin, here we investigate the possibility of explaining this excess with the additional scalar radiation in sGB theory. We find that there still remains a parameter range where the excess can be explained while also satisfying the constraint obtained from A0620-00. The interesting point is that for most of other alternative theories of gravity, it seems difficult to explain this excess with the additional radiation. This is because it would be difficult to evade the constraints from binary pulsars or they have already been constrained rather strongly from other observations such as solar system experiments. We propose several ways to determine whether the excess is caused by the scalar radiation in sGB gravity including future gravitational wave observations with space-borne interferometers, which can give a constraint three orders of magnitude stronger than that from A0620-00.

  17. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  18. Multiple reentrant phase transitions and triple points in Lovelock thermodynamics

    NASA Astrophysics Data System (ADS)

    Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil

    2014-09-01

    We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.

  19. Number of revolutions of a particle around a black hole: Is it infinite or finite?

    NASA Astrophysics Data System (ADS)

    Pavlov, Yuri V.; Zaslavskii, Oleg B.

    2018-01-01

    We consider a particle falling into a rotating black hole. Such a particle makes an infinite number of revolutions n from the viewpoint of a remote observer who uses the Boyer-Lindquist type of coordinates. We examine the behavior of n when it is measured with respect to a local reference frame that also rotates due to dragging effect of spacetime. The crucial point consists here in the observation that for a nonextremal black hole, the leading contributions to n from a particle itself and the reference frame have the same form being in fact universal, so that divergences mutually cancel. As a result, the relative number of revolutions turns out to be finite. For the extremal black hole this is not so, n can be infinite. Different choices of the local reference frame are considered, the results turn out to be the same qualitatively. For illustration, we discuss two explicit examples—rotation in the flat spacetime and in the Kerr metric.

  20. Constraining some Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Chakraborty, Sumanta

    2017-02-01

    We discuss two spherically symmetric solutions admitted by the Horndeski (or scalar-tensor) theory in the context of Solar System and astrophysical scenarios. One of these solutions is derived for Einstein-Gauss-Bonnet gravity, while the other originates from the coupling of the Gauss-Bonnet invariant with a scalar field. Specifically, we discuss the perihelion precession and the bending angle of light for these two different spherically symmetric spacetimes derived in Maeda and Dadhich [Phys. Rev. D 75, 044007 (2007), 10.1103/PhysRevD.75.044007] and Sotiriou and Zhou [Phys. Rev. D 90, 124063 (2014), 10.1103/PhysRevD.90.124063], respectively. The latter, in particular, applies only to black-hole spacetimes. We further delineate on the numerical bounds of relevant parameters of these theories from such computations.

  1. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garica, M.

    2001-01-01

    In 1995 we proposed to carry out ground-based observations in order to securely identify stellar mass black holes in our galaxy. This type 4 proposal under NASA's UV, Visible, and Gravitational Astrophysics program compliments NASA's space-based research by following up black hole candidates found and studied with space-based observatories, in order to determine if they are indeed black holes. While our primary goal is to securely identify black holes by measuring their masses, a secondary goal is identifying unique visible-range signatures for black holes.

  2. Anyon black holes

    NASA Astrophysics Data System (ADS)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 < α < 1) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α <αc. By defining a general form of the metric for the (2 + 1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2 + 1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For α <αc, the solution exhibits a quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  3. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  4. Effects of Kerr space-time on spectral features from X-ray illuminated accretion discs

    NASA Astrophysics Data System (ADS)

    Martocchia, A.; Karas, V.; Matt, G.

    2000-03-01

    We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space-time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.

  5. Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Aly, Ayman A.

    2014-09-01

    In this paper, we studied the cosmological application of the interacting Ricci Dark Energy (RDE) model in the framework of the scalar Gauss-Bonnet modified gravity model. We studied the properties of the reconstructed potential , the Strong Energy Condition (SEC), the Weak Energy Condition (WEC) and the deceleration parameter q for three different models of scale factor, i.e. the emergent, the intermediate and the logamediate one. We obtained that , for the emergent scenario, has a decreasing behavior, while, for the logamediate scenario, the potential start with an increasing behavior then, for later times, it shows a slowly decreasing behavior. Finally, for the intermediate scenario, the potential has an initial increasing behavior, then for a time of t≈1.2, it starts to decrease. We also found that both SEC and WEC are violated for all the three scale factors considered. Finally, studying the plots of q, we derived that an accelerated universe can be achieved for the three models of scale factor considered.

  6. Black Hole Simulation

    NASA Image and Video Library

    1999-11-30

    This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science. http://photojournal.jpl.nasa.gov/catalog/PIA04206

  7. Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gußmann, Alexander

    2016-12-01

    We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.

  8. Deforming regular black holes

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-06-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass functions. By using linear constraints in the energy-momentum tensor to generate metrics, the solutions presented in this work are either regular or singular. That is, within this approach, it is possible to generate regular or singular black holes from regular or singular black holes. Moreover, contrary to the Bardeen and Hayward regular solutions, the deformed regular black holes may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  9. Black Holes, Worm Holes, and Future Space Propulsion

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  10. Black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    2014-10-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  11. Perturbations of the Kerr spacetime in horizon-penetrating coordinates

    NASA Astrophysics Data System (ADS)

    Campanelli, Manuela; Khanna, Gaurav; Laguna, Pablo; Pullin, Jorge; Ryan, Michael P.

    2001-04-01

    We derive the Teukolsky equation for perturbations of a Kerr spacetime when the spacetime metric is written in either ingoing or outgoing Kerr-Schild form. We also write explicit formulae for setting up the initial data for the Teukolsky equation in the time domain in terms of a 3-metric and an extrinsic curvature. The motivation of this work is to have in place a formalism to study the evolution in the `close limit' of two recently proposed solutions to the initial-value problem in general relativity that are based on Kerr-Schild slicings. A perturbative formalism in horizon-penetrating coordinates is also very desirable in connection with numerical relativity simulations using black hole `excision'.

  12. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  13. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, Michael R.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both "stellar mass" x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  14. The Nearest Black Hole

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Garcia, Michael

    2005-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies.

  15. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild blackmore » hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.« less

  16. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  17. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Coleman Miller, M.; Colbert, E. J. M.

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3-20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106-1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102-104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  18. Exact solutions to force-free electrodynamics in black hole backgrounds

    NASA Astrophysics Data System (ADS)

    Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted

    2013-10-01

    A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.

  19. Primordial spectra of slow-roll inflation at second-order with the Gauss-Bonnet correction

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Zhu, Tao; Wang, Anzhong

    2018-05-01

    The slow-roll inflation for a single scalar field that couples to the Gauss-Bonnet (GB) term represents an important higher-order curvature correction inspired by string theory. With the arrival of the era of precision cosmology, it is expected that the high-order corrections become more and more important. In this paper we study the observational predictions of the slow-roll inflation with the GB term by using the third-order uniform asymptotic approximation method. We calculate explicitly the primordial power spectra, spectral indices, running of the spectral indices for both scalar and tensor perturbations, and the ratio between tensor and scalar spectra. These expressions are all written in terms of the Hubble and GB coupling flow parameters and expanded up to the next-to-leading order in the slow-roll expansions so they represent the most accurate results obtained so far in the literature. In addition, by studying the theoretical predictions of the scalar spectral index and the tensor-to-scalar ratio with the Planck 2015 constraints in a model with power-law potential and GB coupling, we show that the second-order corrections are important in the future measurements. We expect that the understanding of the GB corrections in the primordial spectra and their constraints by forthcoming observational data will provide clues for the UV complete theory of quantum gravity, such as the string/M-theory.

  20. Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    NASA Astrophysics Data System (ADS)

    Collins, Nathan A.; Hughes, Scott A.

    2004-06-01

    Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured

  1. Black holes and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Samir D., E-mail: mathur.16@osu.edu

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in themore » bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.« less

  2. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  3. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  4. Symmetry operators and decoupled equations for linear fields on black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2017-02-01

    In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2  +  2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.

  5. The Thermodynamics of Black Holes.

    PubMed

    Wald, Robert M

    2001-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  6. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  7. Merging Black Holes

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  8. Growth of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  9. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    PubMed

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Acceleration of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  11. Supersymmetric black holes and Freudenthal duality

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Mandal, Taniya; Tripathy, Prasanta K.

    2017-07-01

    We study the effect of Freudenthal duality on supersymmetric extremal black hole attractors in 𝒩 = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the dyonic black hole charges as an anti-involution which keeps the black hole entropy and the critical points of the effective black hole potential invariant. We analyze its effect on the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black holes, related to the existence of nontrivial involutory constant matrices. In particular, we consider a supersymmetric D0 - D4 - D6 black hole and we explicitly Freudenthal-map it to a supersymmetric D0 - D2 - D4 - D6 black hole. We thus show that the charge representation space of a supersymmetric D0 - D2 - D4 - D6 black hole also contains mutually exclusive domains.

  12. Black Hole in 3-D

    NASA Image and Video Library

    1999-11-30

    This three-dimensional illustration shows how the rotating space around a black hole twists up the magnetic field in the plasma falling toward the black hole. The black sphere at the center of the figure is the black hole itself. http://photojournal.jpl.nasa.gov/catalog/PIA04207

  13. A highly magnetized twin-jet base pinpoints a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Baczko, A.-K.; Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T. P.; Böck, M.; Bremer, M.; Grossberger, C.; Lindqvist, M.; Lobanov, A. P.; Mannheim, K.; Martí-Vidal, I.; Müller, C.; Wilms, J.; Zensus, J. A.

    2016-09-01

    Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC 1052, to launch these jets. This requires magnetic fields on the order of 103G to 104G. We imaged the vicinity of the SMBH of the AGN NGC 1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~ 8.3 × 104 G consistent with Blandford & Znajek models. The VLBI images shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A47

  14. Charged Galileon black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less

  15. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  16. Small dark energy and stable vacuum from Dilaton-Gauss-Bonnet coupling in TMT

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Nishino, Hitoshi; Rajpoot, Subhash

    2017-04-01

    In two measures theories (TMT), in addition to the Riemannian measure of integration, being the square root of the determinant of the metric, we introduce a metric-independent density Φ in four dimensions defined in terms of scalars \\varphi _a by Φ =\\varepsilon ^{μ ν ρ σ } \\varepsilon _{abcd} (partial _{μ }\\varphi _a)(partial _{ν }\\varphi _b) (partial _{ρ }\\varphi _c) (partial _{σ }\\varphi _d). With the help of a dilaton field φ we construct theories that are globally scale invariant. In particular, by introducing couplings of the dilaton φ to the Gauss-Bonnet (GB) topological density {√{-g}} φ ( R_{μ ν ρ σ }^2 - 4 R_{μ ν }^2 + R^2 ) we obtain a theory that is scale invariant up to a total divergence. Integration of the \\varphi _a field equation leads to an integration constant that breaks the global scale symmetry. We discuss the stabilizing effects of the coupling of the dilaton to the GB-topological density on the vacua with a very small cosmological constant and the resolution of the `TMT Vacuum-Manifold Problem' which exists in the zero cosmological-constant vacuum limit. This problem generically arises from an effective potential that is a perfect square, and it gives rise to a vacuum manifold instead of a unique vacuum solution in the presence of many different scalars, like the dilaton, the Higgs, etc. In the non-zero cosmological-constant case this problem disappears. Furthermore, the GB coupling to the dilaton eliminates flat directions in the effective potential, and it totally lifts the vacuum-manifold degeneracy.

  17. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  18. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  19. A tilted and warped inner accretion disc around a spinning black hole: an analytical solution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Bhattacharyya, Sudip

    2017-08-01

    Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ˜10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.

  20. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  1. Black Holes and Qubits

    NASA Astrophysics Data System (ADS)

    Borsten, L.; Duff, M. J.; Rubens, W.

    These notes have been compiled to accompany a series of four lectures given at the Kinki University Quantum Computing Series Summer School on Decoherence, Entanglement and Entropy, August 2009 at the Oxford Kobe Institute (Kobe, Japan). Each of the four lectures focuses on a particular topic falling under the broad umbrella of the "black-hole/qubit correspondence". Lecture I introduces the first instance of the black-hole/qubit correspondence, the relationship between the entanglement of three qubits and the entropy of STU black holes. Lecture II develops this correspondence to the case of {N} = 8 black holes and the tripartite entanglement of seven qubits. Lecture III examines the use of Jordan algebras and the Freudenthal triple system, which capture the U-duality symmetries of these black hole systems, in entanglement classification. Lecture IV introduces the superqubit, a natural candidate to represent supersymmetric quantum information. These lectures draw on work done with D. Dahanayake, H. Ebrahim, S. Ferrara and A. Marrani whose efforts are most gratefully acknowledged.

  2. Magnetic fields threading black holes: restrictions from general relativity and implications for astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David

    2017-07-01

    The idea that black hole spin is instrumental in the generation of powerful jets in active galactic nuclei and X-ray binaries is arguably the most contentious claim in black hole astrophysics. Because jets are thought to originate in the context of electromagnetism, and the modeling of Maxwell fields in curved spacetime around black holes is challenging, various approximations are made in numerical simulations that fall under the guise of `ideal magnetohydrodynamics'. But the simplifications of this framework may struggle to capture relevant details of real astrophysical environments near black holes. In this work, we highlight tension between analytic and numerical results, specifically between the analytically derived conserved Noether currents for rotating black hole spacetimes and the results of general relativistic numerical simulations (GRMHD). While we cannot definitively attribute the issue to any specific approximation used in the numerical schemes, there seem to be natural candidates, which we explore. GRMHD notwithstanding, if electromagnetic fields around rotating black holes are brought to the hole by accretion, we show from first principles that prograde accreting disks likely experience weaker large-scale black hole-threading fields, implying weaker jets than in retrograde configurations.

  3. A Black Hole Choir.

    NASA Image and Video Library

    2016-07-28

    The blue dots in this field of galaxies, known as the COSMOS field, show galaxies that contain supermassive black holes emitting high-energy X-rays. The black holes were detected by NASA's Nuclear Spectroscopic Array, or NuSTAR, which spotted 32 such black holes in this field and has observed hundreds across the whole sky so far. The other colored dots are galaxies that host black holes emitting lower-energy X-rays, and were spotted by NASA's Chandra X-ray Observatory. Chandra data show X-rays with energies between 0.5 to 7 kiloelectron volts, while NuSTAR data show X-rays between 8 to 24 kiloelectron volts. http://photojournal.jpl.nasa.gov/catalog/PIA20865

  4. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  5. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.

    1998-01-01

    Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.

  6. Black holes and the multiverse

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  7. Black holes and the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleatingmore » during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.« less

  8. Schwarzschild and Kerr solutions of Einstein's field equation: An Introduction

    NASA Astrophysics Data System (ADS)

    Heinicke, Christian; Hehl, Friedrich W.

    2015-12-01

    Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution. The Schwarzschild solution is unique and its metric can be interpreted as the exterior gravitational field of a spherically symmetric mass. The Kerr solution is only unique if the multipole moments of its mass and its angular momentum take on prescribed values. Its metric can be interpreted as the exterior gravitational field of a suitably rotating mass distribution. Both solutions describe objects exhibiting an event horizon, a frontier of no return. The corresponding notion of a black hole is explained to some extent. Eventually, we present some generalizations of the Kerr solution.

  9. Black Hole Jerked Around Twice

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole itself, so this result differs from recently published work on recoiling black holes. "We think this is the best evidence ever seen for a black hole having been jerked around like this," said Edmund Hodges-Kluck of the University of Maryland. "We're not exactly sure what caused this behavior, but it was probably triggered by a collision between two galaxies." A team of astronomers used Chandra for a long observation of a galaxy known as 4C+00.58, which is located about 780 million light years from Earth. Like most galaxies, 4C+00.58 contains a supermassive black hole at its center, but this one is actively pulling in copious quantities of gas. Gas swirling toward the black hole forms a disk around the black hole. Twisted magnetic fields in the disk generate strong electromagnetic forces that propel some of the gas away from the disk at high speed, producing radio jets. A radio image of this galaxy shows a bright pair of jets pointing from left to right and a fainter, more distant line of radio emission running in a different direction. More specifically, 4C+00.58 belongs to a class of "X-shaped" galaxies, so called because of the outline of their radio emission. The new Chandra data have allowed astronomers to determine what may be happening in this system, and perhaps in others like it. The X-ray image reveals four different cavities around the black hole. These cavities come in pairs: one in the top-right and bottom-left, and another in the top-left and bottom-right. When combined with the orientation of the radio jets, the complicated geometry revealed in the Chandra image may

  10. Nonminimal coupling for the gravitational and electromagnetic fields: Black hole solutions and solitons

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Bochkarev, Vladimir V.; Lemos, José P. S.

    2008-04-01

    Using a Lagrangian formalism, a three-parameter nonminimal Einstein-Maxwell theory is established. The three parameters q1, q2, and q3 characterize the cross-terms in the Lagrangian, between the Maxwell field and terms linear in the Ricci scalar, Ricci tensor, and Riemann tensor, respectively. Static spherically symmetric equations are set up, and the three parameters are interrelated and chosen so that effectively the system reduces to a one parameter only, q. Specific black hole and other type of one-parameter solutions are studied. First, as a preparation, the Reissner-Nordström solution, with q1=q2=q3=0, is displayed. Then, we search for solutions in which the electric field is regular everywhere as well as asymptotically Coulombian, and the metric potentials are regular at the center as well as asymptotically flat. In this context, the one-parameter model with q1≡-q, q2=2q, q3=-q, called the Gauss-Bonnet model, is analyzed in detail. The study is done through the solution of the Abel equation (the key equation), and the dynamical system associated with the model. There is extra focus on an exact solution of the model and its critical properties. Finally, an exactly integrable one-parameter model, with q1≡-q, q2=q, q3=0, is considered also in detail. A special submodel, in which the Fibonacci number appears naturally, of this one-parameter model is shown, and the corresponding exact solution is presented. Interestingly enough, it is a soliton of the theory, the Fibonacci soliton, without horizons and with a mild conical singularity at the center.

  11. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  12. When Supermassive Black Holes Wander

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  13. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  14. How black holes saved relativity

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  15. "Iron-Clad" Evidence For Spinning Black Hole

    NASA Astrophysics Data System (ADS)

    2003-09-01

    Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out

  16. Shaping Globular Clusters with Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  17. Small deformations of extreme five dimensional Myers-Perry black hole initial data

    NASA Astrophysics Data System (ADS)

    Alaee, Aghil; Kunduri, Hari K.

    2015-02-01

    We demonstrate the existence of a one-parameter family of initial data for the vacuum Einstein equations in five dimensions representing small deformations of the extreme Myers-Perry black hole. This initial data set has `' symmetry and preserves the angular momenta and horizon geometry of the extreme solution. Our proof is based upon an earlier result of Dain and Gabach-Clement concerning the existence of -invariant initial data sets which preserve the geometry of extreme Kerr (at least for short times). In addition, we construct a general class of transverse, traceless symmetric rank 2 tensors in these geometries.

  18. Metric of two balancing Kerr particles in physical parametrization

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2015-11-01

    The present paper aims at elaborating a completely physical representation for the general 4-parameter family of the extended double-Kerr spacetimes describing two spinning sources in gravitational equilibrium. This involved problem is solved in a concise analytical form by using the individual Komar masses and angular momenta as arbitrary parameters, and the simplest equatorially symmetric specialization of the general expressions obtained by us yields the physical representation for the well-known Dietz-Hoenselaers superextreme case of two balancing identical Kerr constituents. The existence of the physically meaningful "black-hole-superextreme-object" equilibrium configurations permitted by the general solution may be considered as a clear indication that the spin-spin repulsion force might actually be by far stronger than expected earlier, when only the balance between two superextreme Kerr sources was thought possible. We also present the explicit analytical formulas relating the equilibrium states in the double-Kerr and double-Reissner-Nordström configurations.

  19. Remarks on non-singular black holes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.

    2018-01-01

    We briefly discuss non-singular black hole models, with the main focus on the properties of non-singular evaporating black holes. Such black holes possess an apparent horizon, however the event horizon may be absent. In such a case, the information from the black hole interior may reach the external observer after the complete evaporation of the black hole. This model might be used for the resolution of the information loss puzzle. However, as we demonstrate, in a general case the quantum radiation emitted from the black hole interior, calculated in the given black hole background, is very large. This outburst of the radiation is exponentially large for models with the redshift function α = 1. We show that it can be suppressed by including a non-trivial redshift function. However, even this suppression is not enough to guarantee self-consistency of the model. This problem is a manifestation of a general problem, known as the "mass inflation". We briefly comment on possible ways to overcome this problem in the models of non-singular evaporating black holes.

  20. Stability of squashed Kaluza-Klein black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Masashi; Ishihara, Hideki; Murata, Keiju

    2008-03-15

    The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1){approx_equal}U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Kleinmore » black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.« less

  1. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  2. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  3. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  4. Conformal Field Theory and black hole physics

    NASA Astrophysics Data System (ADS)

    Sidhu, Steve

    2012-01-01

    This thesis reviews the use of 2-dimensional conformal field theory applied to gravity, specifically calculating Bekenstein-Hawking entropy of black holes in (2+1) dimensions. A brief review of general relativity, Conformal Field Theory, energy extraction from black holes, and black hole thermodynamics will be given. The Cardy formula, which calculates the entropy of a black hole from the AdS/CFT duality, will be shown to calculate the correct Bekenstein-Hawking entropy of the static and rotating BTZ black holes. The first law of black hole thermodynamics of the static, rotating, and charged-rotating BTZ black holes will be verified.

  5. Critical exponents of extremal Kerr perturbations

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Zimmerman, Peter

    2018-05-01

    We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.

  6. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  7. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  8. Nonradial and nonpolytropic astrophysical outflows. X. Relativistic MHD rotating spine jets in Kerr metric

    NASA Astrophysics Data System (ADS)

    Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.

    2018-04-01

    Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the

  9. Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-NEWTON/EPIC SPECTRUM of XTE 11650-500

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fabian, A. C.; Wunands, R.; Reynolds, C. S.; Ehle, M.; Freyberg, M. J.; VanDerKlis, M.; Lewin, W. H. G.; Sanchez-Fernandez, C.; Castro-Tirado, A. J.

    2002-01-01

    We observed the Galactic black hole candidate XTE J1650-500 early in its fall of 2001 outburst with the XMM-Newton European Photon Imaging pn Camera (EPIC-pn). The observed spectrum is consistent with the source having been in the very high state. We h d a broad, skewed Fe Kar emission line that suggests the primary in this system may be a Kerr black hole and that indicates a steep disk emissivity profile that is hard to explain in terms of a standard accretion disk model. These results are quantitatively and qualitatively similar to those from an XMM-Newton observation of the Seyfert galaxy MCG -6-30-15. The steep emissivity in MCG -6-30-15 may be explained by the extraction and dissipation of rotational energy from a black hole with nearly maximal angular momentum or from material in the plunging region via magnetic connections to the inner accretion disk. If this process is at work in both sources, an exotic but fundamental general relativistic prediction may be confirmed across a factor of l0(exp 6) in black hole mass. We discuss these results in terms of the accretion flow geometry in stellar-mass black holes and the variety of enigmatic phenomena often observed in the very high state.

  10. Quantum information erasure inside black holes

    DOE PAGES

    Lowe, David A.; Thorlacius, Larus

    2015-12-15

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has beenmore » erased by the black hole singularity. Furthermore, this property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.« less

  11. Spins of primordial black holes formed in the matter-dominated phase of the Universe

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Yoo, Chul-Moon; Kohri, Kazunori; Nakao, Ken-Ichi

    2017-10-01

    Angular momentum plays very important roles in the formation of primordial black holes in the matter-dominated phase of the Universe if it lasts sufficiently long. In fact, most collapsing masses are bounced back due to centrifugal force, since angular momentum significantly grows before collapse. For masses with q ≤qc≃2.4 I1 /3σH1 /3 , where q is a nondimensional initial quadrupole moment parameter, σH is the density fluctuation at horizon entry t =tH, and I is a parameter of the order of unity, angular momentum gives a suppression factor ˜exp (-0.15 I4 /3σH-2 /3) to the production rate. As for masses with q >qc, the suppression factor is even stronger as ˜exp (-0.0046 q4/σH2) . We derive the spin distribution of primordial black holes and find that most of the primordial black holes are rapidly rotating near the extreme value a*=1 , where a* is the nondimensional Kerr parameter at their formation. The smaller σH is, the stronger the tendency towards the extreme rotation. Combining this result with the effect of anisotropy, we numerically and semianalytically estimate the production rate β0 of primordial black holes. Then we find that β0≃1.9 ×10-6fq(qc)I6σH2exp (-0.15 I4 /3σH-2 /3) for σH≲0.005 , while β0≃0.05556 σH5 for 0.005 ≲σH≲0.2 , where fq(qc) is the fraction of masses whose q is smaller than qc and we assume fq(qc) is not too small. We argue that matter domination significantly enhances the production of primordial black holes despite the suppression factor. If the end time tend of the matter-dominated phase satisfies tend≲(0.4 I σH)-1tH, the effect of the finite duration significantly suppresses primordial black hole formation and weakens the tendency towards large spins.

  12. Black holes as antimatter factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Petrov, Alexey A.; Dolgov, Alexander D., E-mail: cosimo.bambi@ipmu.jp, E-mail: dolgov@fe.infn.it, E-mail: apetrov@physics.wayne.edu

    2009-09-01

    We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of the higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 10{sup 20} g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron-positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back-captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.

  13. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  14. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  15. Black holes with halos

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  16. Simulations of binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2017-01-01

    Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.

  17. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  18. A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Psaltis, Dimitrios; Özel, Feryal; Chan, Chi-Kwan

    2015-12-01

    The half opening angle of a Kerr black hole shadow is always equal to (5 ± 0.2)GM/Dc{sup 2}, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% range constitutes a null hypothesis test of general relativity. We show that the black hole in the center of the Milky Way, Sgr A*, is the optimal target for performing this test with upcoming observations using the Event Horizon Telescope (EHT). We use the results of optical/IR monitoring of stellar orbits to showmore » that the mass-to-distance ratio for Sgr A* is already known to an accuracy of ∼4%. We investigate our prior knowledge of the properties of the scattering screen between Sgr A* and the Earth, the effects of which will need to be corrected for in order for the black hole shadow to appear sharp against the background emission. Finally, we explore an edge detection scheme for interferometric data and a pattern matching algorithm based on the Hough/Radon transform and demonstrate that the shadow of the black hole at 1.3 mm can be localized, in principle, to within ∼9%. All these results suggest that our prior knowledge of the properties of the black hole, of scattering broadening, and of the accretion flow can only limit this general relativistic null hypothesis test with EHT observations of Sgr A* to ≲10%.« less

  19. A General Relativistic Null Hypothesis Test with Event Horizon Telescope Observations of the Black Hole Shadow in Sgr A*

    NASA Astrophysics Data System (ADS)

    Psaltis, Dimitrios; Özel, Feryal; Chan, Chi-Kwan; Marrone, Daniel P.

    2015-12-01

    The half opening angle of a Kerr black hole shadow is always equal to (5 ± 0.2)GM/Dc2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% range constitutes a null hypothesis test of general relativity. We show that the black hole in the center of the Milky Way, Sgr A*, is the optimal target for performing this test with upcoming observations using the Event Horizon Telescope (EHT). We use the results of optical/IR monitoring of stellar orbits to show that the mass-to-distance ratio for Sgr A* is already known to an accuracy of ∼4%. We investigate our prior knowledge of the properties of the scattering screen between Sgr A* and the Earth, the effects of which will need to be corrected for in order for the black hole shadow to appear sharp against the background emission. Finally, we explore an edge detection scheme for interferometric data and a pattern matching algorithm based on the Hough/Radon transform and demonstrate that the shadow of the black hole at 1.3 mm can be localized, in principle, to within ∼9%. All these results suggest that our prior knowledge of the properties of the black hole, of scattering broadening, and of the accretion flow can only limit this general relativistic null hypothesis test with EHT observations of Sgr A* to ≲10%.

  20. The case for artificial black holes.

    PubMed

    Leonhardt, Ulf; Philbin, Thomas G

    2008-08-28

    The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.

  1. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  2. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  3. Entropy of black holes with multiple horizons

    NASA Astrophysics Data System (ADS)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  4. Simulations of nearly extremal binary black holes

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  5. Black Holes Have Simple Feeding Habits

    NASA Astrophysics Data System (ADS)

    2008-06-01

    The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study

  6. Force-feeding Black Holes

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2012-04-01

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few percent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees kelvin, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion σ of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and σ that resembles the empirical M BH-σ relation.

  7. BOOK REVIEW: Introduction to Black Hole Physics Introduction to Black Hole Physics

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro

    2012-07-01

    Introduction to Black Hole Physics is a large volume (504 pages), and yet despite this it is still really an introductory text. The book gives an introduction to general relativity, but most of the text is dedicated to attracting the reader's attention to the interesting world of black hole physics. In this sense, the book is very distinct from other textbooks on general relativity. We are told that it was based on the lectures given by Professor Frolov, one of the authors, over the last 30 years. One can obtain the basic ideas about black holes, and also the necessary tips to understand general relativity at a very basic level. For example, in the discussion about particle motion in curved space, the authors start with a brief review on analytical mechanics. The book does not require its readers to have a great deal of knowledge in advance. If you are familiar with such a basic subject, you can simply omit that section. The reason why I especially picked up on this topic as an example is that the book devotes a significant number of pages to geodesic motions in black hole spacetime. One of the main motivations to study black holes is related to how they will actually be observed, once we develop the ability to observe them clearly. The book does explain such discoveries as, for instance, how the motion of a particle is related to a beautiful mathematical structure arising from the hidden symmetry of spacetime, which became transparent via the recent progress in the exploration of black holes in higher dimensions; a concise introduction to this latest topic is deferred to Appendix D, so as not to distract the reader with its mathematical complexities. It should be also mentioned that the book is not limited to general relativistic aspects: quantum fields on a black hole background and Hawking radiation are also covered. Also included are current hot topics, for instance the gravitational waves from a system including black holes, whose first direct detection is

  8. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  9. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.

  10. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  11. Black Hole Paradoxes

    NASA Astrophysics Data System (ADS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-10-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals.

  12. Sizes of Black Holes Throughout the Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    What is the distribution of sizes of black holes in our universe? Can black holes of any mass exist, or are there gaps in their possible sizes? The shape of this black-hole mass function has been debated for decades and the dawn of gravitational-wave astronomy has only spurred further questions.Mind the GapsThe starting point for the black-hole mass function lies in the initial mass function (IMF) for stellar black holes the beginning size distribution of black holes after they are born from stars. Instead of allowing for the formation of stellar black holes of any mass, theoretical models propose two gaps in the black-hole IMF:An upper mass gap at 50130 solar masses, due to the fact that stellar progenitors of black holes in this mass range are destroyed by pair-instability supernovae.A lower mass gap below 5 solar masses, which is argued to arise naturally from the mechanics of supernova explosions.Missing black-hole (BH) formation channels due to the existence of the lower gap (LG) and the upper gap (UG) in the initial mass function. a) The number of BHs at all scales are lowered because no BH can merge with BHs in the LG to form a larger BH. b) The missing channel responsible for the break at 10 solar masses, resulting from the LG. c) The missing channel responsible for the break at 60 solar masses, due to the interaction between the LG and the UG. [Christian et al. 2018]We can estimate the IMF for black holes by scaling a typical IMF for stars and then adding in these theorized gaps. But is this initial distribution of black-hole masses the same as the distribution that we observe in the universe today?The Influence of MergersBased on recent events, the answer appears to be no! Since the first detections of gravitational waves in September 2015, we now know that black holes can merge to form bigger black holes. An initial distribution of black-hole masses must therefore evolve over time, as mergers cause the depletion of low-mass black holes and an increase in

  13. Resource Letter BH-1: Black Holes.

    ERIC Educational Resources Information Center

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  14. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  15. Black holes at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-03-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the Large Hadron Collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC.

  16. Universally stable black holes

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.

    We argue that, when certain higher-curvature corrections are added to the four-dimensional Einstein-Hilbert action, black holes become stable below certain mass. We show this to be the case for an infinite family of ghost-free theories involving terms of arbitrarily high order in curvature. The thermodynamic behavior of the new black holes is universal for arbitrary values of the couplings, with the only exception of the Schwarzschild solution itself, which is recovered when all the couplings are set to zero. For this class of theories, the issue of non-unitary evolution is inexistent, as black holes never evaporate completely.

  17. Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Max Planck Institute for Gravitational Physics

    2010-11-15

    We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggestsmore » that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the nontrivial family of spinning Bowen-York initial data.« less

  18. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  19. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  20. Mass and angular momentum of black holes in low-energy heterotic string theory

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2016-04-01

    We investigate conserved charges in the low-energy effective field theory describing heterotic string theory. Starting with a general Lagrangian that consists of a metric, a scalar field, a vector gauge field, together with a two-form potential, we derive off-shell Noether potentials of the Lagrangian and generalize the Abbott-Deser-Tekin (ADT) formalism to the off-shell level by establishing one-to-one correspondence between the ADT potential and the off-shell Noether potential. It is proved that the off-shell generalized ADT formalism is conformally invariant. Then, we apply the formulation to compute mass and angular momentum of the four-dimensional Kerr-Sen black hole and the five-dimensional rotating charged black string in the string frame without a necessity to transform the metrics into the Einstein frame.

  1. REVIEWS OF TOPICAL PROBLEMS: Search for black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    2003-04-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed.

  2. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  3. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  4. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  5. Coalescence of two spinning black holes: An effective one-body approach

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2001-12-01

    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. We show how to approximately map the conservative part of the third post-Newtonian (3PN) dynamics of two spinning black holes of masses m1, m2 and spins S1, S2 onto the dynamics of a non-spinning particle of mass μ≡m1m2/(m1+m2) in a certain effective metric geffμν(xλM,ν,a) which can be viewed either as a spin deformation [with the deformation parameter a≡Seff/M] of the recently constructed 3PN effective metric geffμν(xλM,ν), or as a ν deformation [with the comparable-mass deformation parameter ν≡m1m2/(m1+m2)2] of a Kerr metric of mass M≡m1+m2 and (effective) spin Seff≡[1+3m2/(4m1)]S1+[1+3m1/(4m2)]S2. The combination of the effective one-body approach, and of a Padé definition of the crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6 GM/c2. The complete (conservative) phase-space evolution equations of binary spinning black hole systems are written down and their exact and approximate first integrals are discussed. This leads to the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO-VIRGO-GEO gravitational wave observations. The binding energy and total angular momentum of LSSO's are studied in some detail. It is argued that for most (but not all) of the parameter space of two spinning holes the approximate (leading-order) effective one-body approach introduced here gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO

  6. Lectures on Black Hole Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space-time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear Physics B380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear Physics B378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of

  7. FORCE-FEEDING BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begelman, Mitchell C., E-mail: mitch@jila.colorado.edu

    2012-04-10

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ({sup h}yperaccretion{sup )}. This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few percent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below amore » few thousand degrees kelvin, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion {sigma} of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and {sigma} that resembles the empirical M{sub BH}-{sigma} relation.« less

  8. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  9. Dual jets from binary black holes.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  10. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  11. Boosting jet power in black hole spacetimes.

    PubMed

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  12. Cosmic microwave background radiation of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  13. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  14. LIGO Finds Lightest Black-Hole Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-11-01

    Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses

  15. Hopfield-Kerr model and analogue black hole radiation in dielectrics

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2017-11-01

    In the context of the interaction between the electromagnetic field and a dielectric dispersive lossless medium, we present a nonlinear version of the relativistically covariant Hopfield model, which is suitable for the description of a dielectric Kerr perturbation propagating in a dielectric medium. The nonlinearity is introduced in the Lagrangian through a self-interacting term proportional to the fourth power of the polarization field. We find an exact solution for the nonlinear equations describing a propagating perturbation in the dielectric medium. Furthermore, the presence of an analogue Hawking effect, as well as the thermal properties of the model, are discussed, confirming and improving the results achieved in the scalar case.

  16. Boosting jet power in black hole spacetimes

    PubMed Central

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  17. Probing the universality of synchronised hair around rotating black holes with Q-clouds

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro

    2018-04-01

    Recently, various families of black holes (BHs) with synchronised hair have been constructed. These are rotating BHs surrounded, as fully non-linear solutions of the appropriate Einstein-matter model, by a non-trivial bosonic field in synchronised rotation with the BH horizon. Some families bifurcate globally from a bald BH (e.g. the Kerr BH), whereas others bifurcate only locally from a bald BH (e.g. the D = 5 Myers-Perry BH). It would be desirable to understand how generically synchronisation allows hairy BHs to bifurcate from bald ones. However, the construction and scanning of the domain of existence of the former families of BHs can be a difficult and time consuming (numerical) task. Here, we first provide a simple perturbative argument to understand the generality of the synchronisation condition. Then, we observe that the study of Q-clouds is a generic tool to establish the existence of BHs with synchronised hair bifurcating (globally or locally) from a given bald BH without having to solve the fully non-linear coupled system of Einstein-matter equations. As examples, we apply this tool to establish the existence of synchronised hair around D = 6 Myers-Perry BHs, D = 5 black rings and D = 4 Kerr-AdS BHs, where D is the spacetime dimension. The black rings case provides an example of BHs with synchronised hair beyond spherical horizon topology, further establishing the generality of the mechanism.

  18. Compensating Scientism through "The Black Hole."

    ERIC Educational Resources Information Center

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  19. Black holes as bubble nucleation sites

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Moss, Ian G.; Withers, Benjamin

    2014-03-01

    We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.

  20. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  1. Magnetic Black Hole Waves

    NASA Image and Video Library

    2015-07-09

    This cartoon shows how magnetic waves, called Alfvén S-waves, propagate outward from the base of black hole jets. The jet is a flow of charged particles, called a plasma, which is launched by a black hole. The jet has a helical magnetic field (yellow coil) permeating the plasma. The waves then travel along the jet, in the direction of the plasma flow, but at a velocity determined by both the jet's magnetic properties and the plasma flow speed. The BL Lac jet examined in a new study is several light-years long, and the wave speed is about 98 percent the speed of light. Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a study using data from the National Radio Astronomy Observatory's Very Long Baseline Array. Scientists used this instrument to explore the galaxy/black hole system known as BL Lacertae (BL Lac) in high resolution. http://photojournal.jpl.nasa.gov/catalog/PIA19822

  2. Black holes by analytic continuation

    NASA Astrophysics Data System (ADS)

    Amati, D.; Russo, J. G.

    1997-07-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation-accessible in the 1+1 gravity theory considered-is implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.

  3. "Survivor" Black Holes May Be Mid-Sized

    NASA Astrophysics Data System (ADS)

    2010-04-01

    New evidence from NASA's Chandra X-ray Observatory and ESA's XMM-Newton strengthens the case that two mid-sized black holes exist close to the center of a nearby starburst galaxy. These "survivor" black holes avoided falling into the center of the galaxy and could be examples of the seeds required for the growth of supermassive black holes in galaxies, including the one in the Milky Way. For several decades, scientists have had strong evidence for two distinct classes of black hole: the stellar-mass variety with masses about ten times that of the Sun, and the supermassive ones, located at the center of galaxies, that range from hundreds of thousands to billions of solar masses. But a mystery has remained: what about black holes that are in between? Evidence for these objects has remained controversial, and until now there were no strong claims of more than one such black hole in a single galaxy. Recently, a team of researchers has found signatures in X-ray data of two mid-sized black holes in the starburst galaxy M82 located 12 million light years from Earth. "This is the first time that good evidence for two mid-sized black holes has been found in one galaxy," said Hua Feng of the Tsinghua University in China, who led two papers describing the results. "Their location near the center of the galaxy might provide clues about the origin of the Universe's largest black holes - supermassive black holes found in the centers of most galaxies." One possible mechanism for the formation of supermassive black holes involves a chain reaction of collisions of stars in compact star clusters that results in the buildup of extremely massive stars, which then collapse to form intermediate-mass black holes. The star clusters then sink to the center of the galaxy, where the intermediate-mass black holes merge to form a supermassive black hole. In this picture, clusters that were not massive enough or close enough to the center of the galaxy to fall in would survive, as would any

  4. Fermions tunnelling from the charged dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao

    2008-10-01

    Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.

  5. Escape of black holes from the brane.

    PubMed

    Flachi, Antonino; Tanaka, Takahiro

    2005-10-14

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the "black hole plus brane" system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.

  6. Chandra Data Reveal Rapidly Whirling Black Holes

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  7. Black hole evaporation in conformal gravity

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  8. Black hole evaporation in conformal gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  9. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  10. Is the black hole in NGC 1277 really overmassive?

    NASA Astrophysics Data System (ADS)

    Emsellem, Eric

    2013-08-01

    A recent claim has been made by van den Bosch et al. that the fast-rotator galaxy NGC 1277 hosts an overmassive black hole with a mass (1.7 × 1010 M⊙) larger than half its (central) stellar spheroid mass. We revisit this claim here by examining the predictions from simple dynamical realizations based on new multi-Gaussian expansion (MGE) models of NGC 1277, using the same inclination i = 75°, and constant mass-to-light ratios. We present realizations which fit well the observed photometry taking into account an approximation for the extinction due to the central dust ring. The mass-to-light ratio M/L is fixed following scaling relations which predict a Salpeter-like initial mass function for such a luminous early-type fast rotator, 60 per cent higher than the one of the previously derived best-fitting model. A model without a black hole provides a surprisingly good fit of the observed kinematics outside the unresolved central region, but not, as expected, of the central dispersion and Gauss-Hermite h4 values. A model with a black hole mass of 5 × 109 M⊙ allows us to fit the central dispersion profile, consistently with models of the same mass and M/L in van den Bosch et al. It departs from the central h4 values by only about twice the given uncertainty. A slightly varying M/L or the addition of high-velocity stars in the central spatially unresolved region would further lower the need for a very massive black hole in the central region of NGC 1277. These results do not, by themselves, rule out the presence of a presumed overmassive black hole at the centre of NGC 1277. However, they lead us to advocate the use of 3σ (as opposed to 1σ) confidence intervals for derived MBH as better, more conservative, guidelines for such studies. We also caution for the use of ill-defined spheroidal components as an input for scaling relations, and emphasize the fact that a MBH in the range 2-5 × 109 M⊙ would represent less than 5 per cent of the spheroid bulge-like mass

  11. High accuracy binary black hole simulations with an extended wave zone

    NASA Astrophysics Data System (ADS)

    Pollney, Denis; Reisswig, Christian; Schnetter, Erik; Dorband, Nils; Diener, Peter

    2011-02-01

    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalized coordinates, and allowing the spacetime to be covered with multiple communicating nonsingular coordinate patches. Here we consider a regular Cartesian near-zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test case of the inspiral of an equal-mass nonspinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10-6 and spin Sf/Mf2=0.686923±10×10-6.

  12. Flaring Black Hole Artist Concept

    NASA Image and Video Library

    2011-09-20

    This artist concept illustrates what the flaring black hole called GX 339-4 might look like. Infrared observations from NASA WISE reveal the best information yet on the chaotic and extreme environments of this black hole jets.

  13. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  14. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  15. Before Inflation and after Black Holes

    NASA Astrophysics Data System (ADS)

    Stoltenberg, Henry

    This dissertation covers work from three research projects relating to the physics before the start of inflation and information after the decay of a black hole. For the first project, we analyze the cosmological role of terminal vacua in the string theory landscape, and point out that existing work on this topic makes very strong assumptions about the properties of the terminal vacua. We explore the implications of relaxing these assumptions (by including "arrival" as well as "departure" terminals) and demonstrate that the results in earlier work are highly sensitive to their assumption of no arrival terminals. We use our discussion to make some general points about tuning and initial conditions in cosmology. The second project is a discussion of the black hole information problem. Under certain conditions the black hole information puzzle and the (related) arguments that firewalls are a typical feature of black holes can break down. We first review the arguments of Almheiri, Marolf, Polchinski and Sully (AMPS) favoring firewalls, focusing on entanglements in a simple toy model for a black hole and the Hawking radiation. By introducing a large and inaccessible system entangled with the black hole (representing perhaps a de Sitter stretched horizon or inaccessible part of a landscape) we show complementarity can be restored and firewalls can be avoided throughout the black hole's evolution. Under these conditions black holes do not have an "information problem". We point out flaws in some of our earlier arguments that such entanglement might be generically present in some cosmological scenarios, and call out certain ways our picture may still be realized. The third project also examines the firewall argument. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and

  16. Aspects of hairy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl; Astefanesei, Dumitru

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  17. Different Flavors of Black Holes

    NASA Image and Video Library

    2014-01-09

    A range of supermassive black holes lights up this new image from NASA NuSTAR. All of the dots are active black holes tucked inside the hearts of galaxies, with colors representing different energies of X-ray light.

  18. Visualizing, Approximating, and Understanding Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    Numerical-relativity simulations of black-hole binaries and advancements in gravitational-wave detectors now make it possible to learn more about the collisions of compact astrophysical bodies. To be able to infer more about the dynamical behavior of these objects requires a fuller analysis of the connection between the dynamics of pairs of black holes and their emitted gravitational waves. The chapters of this thesis describe three approaches to learn more about the relationship between the dynamics of black-hole binaries and their gravitational waves: modeling momentum flow in binaries with the Landau-Lifshitz formalism, approximating binary dynamics near the time of merger with post-Newtonian and black-hole-perturbation theories, and visualizing spacetime curvature with tidal tendexes and frame-drag vortexes. In Chapters 2--4, my collaborators and I present a method to quantify the flow of momentum in black-hole binaries using the Landau-Lifshitz formalism. Chapter 2 reviews an intuitive version of the formalism in the first-post-Newtonian approximation that bears a strong resemblance to Maxwell's theory of electromagnetism. Chapter 3 applies this approximation to relate the simultaneous bobbing motion of rotating black holes in the superkick configuration---equal-mass black holes with their spins anti-aligned and in the orbital plane---to the flow of momentum in the spacetime, prior to the black holes' merger. Chapter 4 then uses the Landau-Lifshitz formalism to explain the dynamics of a head-on merger of spinning black holes, whose spins are anti-aligned and transverse to the infalling motion. Before they merge, the black holes move with a large, transverse, velocity, which we can explain using the post-Newtonian approximation; as the holes merge and form a single black hole, we can use the Landau-Lifshitz formalism without any approximations to connect the slowing of the final black hole to its absorbing momentum density during the merger. In Chapters 5

  19. Black Holes Collide

    NASA Image and Video Library

    2017-12-08

    When two black holes collide, they release massive amounts of energy in the form of gravitational waves that last a fraction of a second and can be "heard" throughout the universe - if you have the right instruments. Today we learned that the #LIGO project heard the telltale chirp of black holes colliding, fulfilling Einstein's General Theory of Relativity. NASA's LISA mission will look for direct evidence of gravitational waves. go.nasa.gov/23ZbqoE This video illustrates what that collision might look like.

  20. Black holes and Higgs stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetradis, Nikolaos; Physics Department, Theory Unit, CERN,CH-1211 Geneva 23

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  1. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  2. Hawking temperature of constant curvature black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Ronggen; Myung, Yun Soo; Institute of Basic Science and School of Computer Aided Science, Inje University, Gimhae 621-749

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both themore » static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.« less

  3. Grumblings from an Awakening Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404

  4. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  5. Rotating black holes with non-Abelian hair

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2016-12-01

    We here review asymptotically flat rotating black holes in the presence of non-Abelian gauge fields. Like their static counterparts these black holes are no longer uniquely determined by their global charges. In the case of pure SU(2) Yang-Mills fields, the rotation generically induces an electric charge, while the black holes do not carry a magnetic charge. When a Higgs field is coupled, rotating black holes with monopole hair arise in the case of a Higgs triplet, while in the presence of a complex Higgs doublet the black holes carry sphaleron hair. The inclusion of a dilaton allows for Smarr type mass formulae.

  6. Ineffective higher derivative black hole hair

    NASA Astrophysics Data System (ADS)

    Goldstein, Kevin; Mashiyane, James Junior

    2018-01-01

    Inspired by the possibility that the Schwarzschild black hole may not be the unique spherically symmetric vacuum solution to generalizations of general relativity, we consider black holes in pure fourth order higher derivative gravity treated as an effective theory. Such solutions may be of interest in addressing the issue of higher derivative hair or during the later stages of black hole evaporation. Non-Schwarzschild solutions have been studied but we have put earlier results on a firmer footing by finding a systematic asymptotic expansion for the black holes and matching them with known numerical solutions obtained by integrating out from the near-horizon region. These asymptotic expansions can be cast in the form of trans-series expansions which we conjecture will be a generic feature of non-Schwarzschild higher derivative black holes. Excitingly we find a new branch of solutions with lower free energy than the Schwarzschild solution, but as found in earlier work, solutions only seem to exist for black holes with large curvatures, meaning that one should not generically neglect even higher derivative corrections. This suggests that one effectively recovers the nonhair theorems in this context.

  7. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  8. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  9. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  10. Unveiling early black holes with JWST

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada

    The formation of direct collapse black hole seeds with masses ~104 - 105 ~M⊙ could help explain the assembly of supermassive black holes powering high redshift quasars. Conditions conducive to the formation of these massive initial seeds exist at high redshift. Halos hosting these massive seeds merge promptly with a nearby galaxy. These early stage mergers at high redshift produce a new class of transient galaxies that contain an accreting black hole that is over-massive compared to the newly acquired stellar component - Obese Black hole Galaxies (OBGs). During this phase, the accretion luminosity of the direct collapse black hole seed exceeds that of the acquired stellar component. Here we calculate the multi-wavelength spectrum of this short-lived OBG stage, and show that there exist unique observational signatures in long wavelengths spanning near, mid to far-infrared that should be detectable by instruments aboard the upcoming James Webb Space Telescope (JWST).

  11. Pregalactic black holes - A new constraint

    NASA Technical Reports Server (NTRS)

    Barrow, J. D.; Silk, J.

    1979-01-01

    Pregalactic black holes accrete matter in the early universe and produce copious amounts of X radiation. By using observations of the background radiation in the X and gamma wavebands, a strong constraint is imposed upon their possible abundance. If pregalactic black holes are actually present, several outstanding problems of cosmogony can be resolved with typical pregalactic black hole masses of 100 solar masses. Significantly more massive holes cannot constitute an appreciable mass fraction of the universe and are limited by a specific mass-density bound.

  12. Black Hole Mergers in the Universe.

    PubMed

    Portegies Zwart SF; McMillan

    2000-01-01

    Mergers of black hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates that are too low to be of observational interest. In this Letter, we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black hole binaries become more tightly bound by superelastic encounters with other cluster members and are ultimately ejected from the cluster. The majority of escaping black hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black hole merger rate of about 1.6x10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first-generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first 2 years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.

  13. Superfluid Black Holes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson

    2017-01-01

    We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  14. Superfluid Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  15. Violent flickering in Black Holes

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the

  16. Magnetohydrodynamic Simulations of Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  17. A preferred mass range for primordial black hole formation and black holes as dark matter revisited

    NASA Astrophysics Data System (ADS)

    Georg, Julian; Watson, Scott

    2017-09-01

    Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.

  18. Horndeski theories confront the Gravity Probe B experiment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal; Chakraborty, Sumanta

    2018-06-01

    In this work we have investigated various properties of a spinning gyroscope in the context of Horndeski theories. In particular, we have focused on two specific situations—(a) when the gyroscope follows a geodesic trajectory and (b) when it is endowed with an acceleration. In both these cases, besides developing the basic formalism, we have also applied the same to understand the motion of a spinning gyroscope in various static and spherically symmetric spacetimes pertaining to Horndeski theories. Starting with the Schwarzschild de Sitter spacetime as a warm up exercise, we have presented our results for two charged Galileon black holes as well as for a black hole in scalar coupled Einstein-Gauss-Bonnet gravity. In all these cases we have shown that the spinning gyroscope can be used to distinguish black holes from naked singularities. Moreover, using the numerical estimation of the geodetic precession from the Gravity Probe B experiment, we have constrained the gauge/scalar charge of the black holes in these Horndeski theories. Implications are also discussed.

  19. Gravitational polarizability of black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Lecian, Orchidea Maria; APC, UMR 7164 du CNRS, Universite Paris 7, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  20. Mass of a black hole firewall.

    PubMed

    Abramowicz, M A; Kluźniak, W; Lasota, J-P

    2014-03-07

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).

  1. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and

  2. Surprise: Dwarf Galaxy Harbors Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    2011-01-01

    The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and

  3. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    NASA Astrophysics Data System (ADS)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  4. Hawking radiation power equations for black holes

    NASA Astrophysics Data System (ADS)

    Mistry, Ravi; Upadhyay, Sudhaker; Ali, Ahmed Farag; Faizal, Mir

    2017-10-01

    We derive the Hawking radiation power equations for black holes in asymptotically flat, asymptotically Anti-de Sitter (AdS) and asymptotically de Sitter (dS) black holes. This is done by using the greybody factor for these black holes. We observe that the radiation power equation for asymptotically flat black holes, corresponding to greybody factor at low frequency, depends on both the Hawking temperature and the horizon radius. However, for the greybody factors at asymptotic frequency, it only depends on the Hawking temperature. We also obtain the power equation for asymptotically AdS black holes both below and above the critical frequency. The radiation power equation for at asymptotic frequency is same for both Schwarzschild AdS and Reissner-Nordström AdS solutions and only depends on the Hawking temperature. We also discuss the power equation for asymptotically dS black holes at low frequency, for both even or odd dimensions.

  5. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  6. Black Hole Safari: Tracking Populations and Hunting Big Game

    NASA Astrophysics Data System (ADS)

    McConnell, N. J.

    2013-10-01

    Understanding the physical connection, or lack thereof, between the growth of galaxies and supermassive black holes is a key challenge in extragalactic astronomy. Dynamical studies of nearby galaxies are building a census of black hole masses across a broad range of galaxy types and uncovering statistical correlations between galaxy bulge properties and black hole masses. These local correlations provide a baseline for studying galaxies and black holes at higher redshifts. Recent measurements have probed the extremes of the supermassive black hole population and introduced surprises that challenge simple models of black hole and galaxy co-evolution. Future advances in the quality and quantity of dynamical black hole mass measurements will shed light upon the growth of massive galaxies and black holes in different cosmic environments.

  7. Harmonic maps and black holes

    NASA Astrophysics Data System (ADS)

    Lopes Costa, João

    2010-05-01

    We address two applications of existence and uniqueness properties of harmonic maps to the theory of stationary and axisymmetric electro-vacuum black holes. More specifically, we will consider: (1) The classification of such black hole space-times and (2) the proof of a Dain inequality with charge.

  8. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  9. Black Hole as a Supercollider

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2011-06-01

    Recently, it was found that in the vicinity of the black hole horizon of a rotating black hole two particles can collide in such a way that the energy in their centre of mass frame becomes infinite (so-called BSW effect). I give a brief review of basic features of this effect and show that this is a generic property of rotating black holes. In addition, there exists its counterpart for radial motion of charged particles in the charged black hole background. Simple kinematic explanation is suggested that is based on observation that all massive particles fall in two classes. In the first case (by definition, "usual particles"), the velocity approaches that of light on the horizon in the locally-nonrotating frame due to special relationship between the energy and the angular momentum. In the second case, it tends to some value less than speed of light. As a result, the relative velocity also tends to the speed of light with infinitely growing Lorentz factor.

  10. Schwarzschild black holes can wear scalar wigs.

    PubMed

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  11. Proto-jet configurations in RADs orbiting a Kerr SMBH: symmetries and limiting surfaces

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-05-01

    Ringed accretion disks (RADs) are agglomerations of perfect-fluid tori orbiting around a single central attractor that could arise during complex matter inflows in active galactic nuclei. We focus our analysis to axi-symmetric accretion tori orbiting in the equatorial plane of a supermassive Kerr black hole; equilibrium configurations, possible instabilities, and evolutionary sequences of RADs were discussed in our previous works. In the present work we discuss special instabilities related to open equipotential surfaces governing the material funnels emerging at various regions of the RADs, being located between two or more individual toroidal configurations of the agglomerate. These open structures could be associated to proto-jets. Boundary limiting surfaces are highlighted, connecting the emergency of the jet-like instabilities with the black hole dimensionless spin. These instabilities are observationally significant for active galactic nuclei, being related to outflows of matter in jets emerging from more than one torus of RADs orbiting around supermassive black holes.

  12. Black holes are almost optimal quantum cloners

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  13. Destruction and recreation of black holes

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second

  14. Regimes of mini black hole abandoned to accretion

    NASA Astrophysics Data System (ADS)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  15. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  16. Black Hole Universe Model for Explaining GRBs, X-Ray Flares, and Quasars as Emissions of Dynamic Star-like, Massive, and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-01-01

    Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.

  17. The portrait of eikonal instability in Lovelock theories

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Perturbations and eikonal instabilities of black holes and branes in the Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in the literature for several particular cases, where the asymptotic conditions (flat, dS, AdS), the number of spacetime dimensions D, non-vanishing coupling constants (α1, α2, α3 etc.) and other parameters have been chosen in a specific way. Here we give a comprehensive analysis of the eikonal instabilities of black holes and branes for the most general Lovelock theory, not limited by any of the above cases. Although the part of the stability analysis is performed here purely analytically and formulated in terms of the inequalities for the black hole parameters, the most general case is treated numerically and the accurate regions of instabilities are presented. The shared Mathematica® code allows the reader to construct the regions of eikonal instability for any desired values of the parameters.

  18. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.

  19. The Black Holes in the Hearts of Galaxies

    NASA Technical Reports Server (NTRS)

    Rigby, Jane

    2010-01-01

    In the past 20 years, astronomers have discovered that almost every galaxy contains a black hole at its center. These black holes outweigh our sun by a factor of a million to a billion. Surprisingly, there's a very tight connection between the size of the galaxy and its central black hole -- the bigger the galaxy, the bigger the black hole. We don't know why this relationship exists -- how can a black hole, with a sphere of influence the size of our solar system, know what kind of galaxy it inhabits? What processes create this relationship? I'll explore these topics, and show how new space telescopes are helping us discover thousands of black holes and explore how they evolve with time.

  20. Middleweight black holes found at last

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-06-01

    How did giant black holes grow so big? Astronomers have long had evidence of baby black holes with masses of no more than tens of suns, and of million- or billion-solar-mass behemoths lurking at the centers of galaxies. But middle-size ones, weighing thousands or tens of thousands of suns, seemed to be missing. Their absence forced theorists to propose that supermassive black holes didn't grow gradually by slowly consuming matter, but somehow emerged as ready-made giants. Now, astronomers appear to have located some missing middleweights. An international team has scoured an archive of galaxy spectra and found more than 300 small galaxies that have the signature of intermediate mass black holes in their cores, opening new questions for theorists.