Sample records for kerr-type nonlinear medium

  1. Optical activity via Kerr nonlinearity in a spinning chiral medium

    NASA Astrophysics Data System (ADS)

    Khan, Anwar Ali; Bacha, Bakht Amin; Khan, Rahmat Ali

    2016-11-01

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology.

  2. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  3. Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro

    2004-05-01

    Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.

  4. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  5. Phase space information in a non-linear quantum system containing a Kerr-like medium through Su(1, 1)-algebraic treatment

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Baset A.

    2018-05-01

    Analytical description for a Su(2)-quantum system interacting with a damped Su(1, 1)-cavity, which is filled with a non-linear Kerr medium, is presented. The dynamics of non-classicality of Su(1, 1)-state is investigated via the negative part of the Wigner function. We show that the negative part depends on the unitary interaction and the Kerr-like medium and it can be disappeared by increasing the dissipation rate and the detuning parameter. The phase space information of the Husimi function and its Wehrl density is very sensitive not only to the coupling to the environment and the unitary interaction but also to the detuning as well as to the Kerr-like medium. The phase space information may be completely erased by increasing the coupling to the environment. The coherence loss of the Su(2)-state is investigated via the Husimi Wehrl entropy. If the effects of the detuning parameter or/and of the Kerr-like medium are combined with the damping effect, the damping effect of the coupling to the environment may be weaken, and the Wehrl entropy is delayed to reach its steady-state value. At the steady-state value, the phase space information and the coherence are quickly lost.

  6. Nanoscale Kerr Nonlinearity Enhancement Using Spontaneously Generated Coherence in Plasmonic Nanocavity

    PubMed Central

    Chen, Hongyi; Ren, Juanjuan; Gu, Ying; Zhao, Dongxing; Zhang, Junxiang; Gong, Qihuang

    2015-01-01

    The enhancement of the optical nonlinear effects at nanoscale is important in the on-chip optical information processing. We theoretically propose the mechanism of the great Kerr nonlinearity enhancement by using anisotropic Purcell factors in a double-Λ type four-level system, i.e., if the bisector of the two vertical dipole moments lies in the small/large Purcell factor axis in the space, the Kerr nonlinearity will be enhanced/decreased due to the spontaneously generated coherence accordingly. Besides, when the two dipole moments are parallel, the extremely large Kerr nonlinearity increase appears, which comes from the double population trapping. Using the custom-designed resonant plasmonic nanostructure which gives an anisotropic Purcell factor environment, we demonstrate the effective nanoscale control of the Kerr nonlinearity. Such controllable Kerr nonlinearity may be realized by the state-of-the-art nanotechnics and it may have potential applications in on-chip photonic nonlinear devices. PMID:26670939

  7. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A and M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number,more » and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.« less

  8. Nonlinear Kerr enhancement of the Sagnac effect in a coherently coupled array of optical microresonators

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Search, Christopher

    2013-03-01

    Optical gyroscopes based on the Sagnac effect are of great interest both theoretically and practically. Previously it has been suggested a nonlinear Kerr medium inserted into a ring resonator gyroscope can largely increase the rotation sensitivity due to an instability caused by the non-reciprocal self-phase and cross-phase modulations. Recently, coupled microresonator arrays such as Side-Coupled Integrated Spaced Sequence of Resonators (SCISSOR) and Coupled Resonator Optical Waveguides (CROW) have drawn interest as potential integrated gyroscopes due to the sensitivity enhancement resulting from distributed interference between resonators. Here we analyze a SCISSOR system, which consists of an array of microresonators evanescently coupled to two parallel bus waveguides in the presence of a strong intra-resonator Kerr nonlinearity. We show that the distributed interference in the waveguides combined with the nonlinearly enhanced Sagnac effect in the resonators can further improve the sensitivity compared with either a single resonator of equal footprint or SCISSOR without a Kerr nonlinearity. Numerical simulation shows that bistability in the SCISSOR occurs and the rotation sensitivity dIoutput/dω can go to infinity near the boundaries of the bistable region.

  9. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  10. Near-field thermal upconversion and energy transfer through a Kerr medium.

    PubMed

    Khandekar, Chinmay; Rodriguez, Alejandro W

    2017-09-18

    We present an approach for achieving large Kerr χ (3) -mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ (3) medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of intervening mediums-either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials-designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities ~ W/μm 2 , the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses.

  11. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, M.; Yamamoto, Y.

    1987-11-01

    An alternative scheme for generating amplitude-squeezed states of photons based on unitary evolution which can properly be described by quantum mechanics is presented. This scheme is a nonlinear Mach-Zehnder interferometer containing an optical Kerr medium. The quasi-probability density (QPD) and photon-number distribution of the output field are calculated, and it is demonstrated that the reduced photon-number uncertainty and enhanced phase uncertainty maintain the minimum-uncertainty product. A self-phase-modulation of the single-mode quantized field in the Kerr medium is described based on localized operators. The spatial evolution of the state is demonstrated by QPD in the Schroedinger picture. It is shown that photon-number variance can be reduced to a level far below the limit for an ordinary squeezed state, and that the state prepared using this scheme remains a number-phase minimum-uncertainty state until the maximum reduction of number fluctuations is surpassed.

  12. Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.

    2012-02-01

    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.

  13. (2 + 1)-dimensional bright optical solitons in metamaterials with Kerr, power and parabolic law nonlinearities

    NASA Astrophysics Data System (ADS)

    Boubir, Badreddine

    2018-06-01

    In this paper, we investigate the dynamics of bright optical solitons in nonlinear metamaterials governed by a (2 + 1)-dimensional nonlinear Schrödinger equation. Three types of nonlinearities have been considered, Kerr law, power law and parabolic law. We based on the solitary wave ansatz method to find these optical soliton solutions. All necessary parametric conditions for their existence are driven.

  14. Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Ghahraman, Solookinejad; M, Panahi; E, Ahmadi; Seyyed, Hossein Asadpour

    2016-07-01

    In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.

  15. Kerr nonlinearity and nonlinear absorption coefficient in a four-level M-model cylindrical quantum dot under the phenomenon of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Behroozian, B.; Askari, H. R.

    2018-07-01

    The Kerr nonlinearity and the nonlinear absorption coefficient in a four-level M-model of a GaAs cylindrical quantum dot (QD) with parabolic potential under electromagnetically induced transparency are investigated. By solving the density matrix equations in the steady-state, the third order susceptibility is obtained. Then, by using the real and imaginary parts of third order susceptibility, the Kerr nonlinearity and the nonlinear absorption coefficient, respectively, for this system are computed. The effects of the radius and height of the cylindrical QD are then investigated. In addition, the effects of the control laser fields on the Kerr nonlinearity and the nonlinear absorption coefficient are investigated.

  16. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  17. Nonlinear evolution equations for surface plasmons for nano-focusing at a Kerr/metallic interface and tapered waveguide

    NASA Astrophysics Data System (ADS)

    Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan

    2012-06-01

    Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).

  18. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  19. Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Wu, Yun-xiang; Zhu, Chang-hua; Pei, Chang-xing

    2016-09-01

    A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.

  20. Multiplicity of transmission coefficients in photonic crystal and split ring resonator waveguides with Kerr nonlinear impurities

    NASA Astrophysics Data System (ADS)

    Rai, Buddhi; McGurn, Arthur R.

    2015-02-01

    Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies

  1. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  2. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  3. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Liu, Sheng; Department of Physics, University of Maryland, Baltimore County

    2015-02-02

    We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. Wemore » experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.« less

  4. Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.

    2013-05-01

    In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.

  5. The Dynamics of a Five-level (Double Λ)-type Atom Interacting with Two-mode Field in a Cross Kerr-like Medium

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.

    2018-04-01

    In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.

  6. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  7. Nonclassicality and decoherence of photon-added squeezed coherent Schrödinger kitten states in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Yogesh, V.

    2018-01-01

    We study the nonclassicality of the evolution of a superposition of an arbitrary number of photon-added squeezed coherent Schrödinger cat states in a nonlinear Kerr medium. The nonlinearity of the medium gives rise to the periodicities of the quantities such as the Wehrl entropy SQ and the negativity δW of the W-distribution, and a series of local minima of these quantities arise at the rational submultiples of the said period. At these local minima the evolving state coincides with the transient Yurke-Stoler type of photon-added squeezed kitten states, which, for the choice of the phase space variables reflecting their macroscopic nature, show extremely short-lived behavior. Proceeding further we provide the closed form tomograms, which furnish the alternate description of these short-lived states. The increasing complexity in the kitten formations induces more number of interference terms that trigger more quantumness of the corresponding states. The nonclassical depth of the photon-added squeezed kitten states are observed to be of maximum possible value. Employing the Lindblad master equation approach we study the amplitude and the phase damping models for the initial state considered here. In the phase damping model the nonclassicality is not completely erased even in the long time limit when the dynamical quantities, such as the negativity δW and the tomogram, assume nontrivial asymptotic values.

  8. Theoretical Investigation of Light Transmission in a Slab Cavity via Kerr Nonlinearity of Carbon Nanotube Quantum Dot Nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, Gh.; Jabbari, M.; Sangachin, E. Ahmadi; Asadpour, S. H.

    2018-01-01

    In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.

  9. Hopfield-Kerr model and analogue black hole radiation in dielectrics

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2017-11-01

    In the context of the interaction between the electromagnetic field and a dielectric dispersive lossless medium, we present a nonlinear version of the relativistically covariant Hopfield model, which is suitable for the description of a dielectric Kerr perturbation propagating in a dielectric medium. The nonlinearity is introduced in the Lagrangian through a self-interacting term proportional to the fourth power of the polarization field. We find an exact solution for the nonlinear equations describing a propagating perturbation in the dielectric medium. Furthermore, the presence of an analogue Hawking effect, as well as the thermal properties of the model, are discussed, confirming and improving the results achieved in the scalar case.

  10. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco

    2009-12-01

    Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical system that leads to a nonlinear Kerr effect in the system’s vacuum. The oscillating mirror at one edge of the optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant laser field is applied at the other edge to drive the cavity field in order to enhance the Kerr effect. We also propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a common oscillating mirror based on our effective Hamiltonian approach.

  11. Optical response of two coupled optomechanical systems in the presence of nonlinear mediums

    NASA Astrophysics Data System (ADS)

    Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.

    2018-01-01

    In this paper, we investigate response of a hybrid optomechanical system in different situations. This system is composed of two coupled optomechanical cavities, which one of them is filled with an optical parametric amplifier (OPA) and the other one encompasses a nonlinear Kerr medium. The Hamiltonian of the system is written in a rotating frame. The dynamics of the system is obtained by the quantum Langevin equations of motion in a steady state regime. The results show that the presence of OPA and the Kerr medium in the system can considerably change the behavior of both cavities. For this reason, we show that by choosing different values for the optical parameters of the system, one can switches the behaviors of the cavities between mono-, bi- and tristability. Also, we show that by changing the detunings of the cavities, one can obtain uncommon responses from the system. Furthermore, we show that it is possible to create proper optical multistability regions for both cavities.

  12. Coexistence of Multiple Nonlinear States in a Tristable Passive Kerr Resonator

    NASA Astrophysics Data System (ADS)

    Anderson, Miles; Wang, Yadong; Leo, François; Coen, Stéphane; Erkintalo, Miro; Murdoch, Stuart G.

    2017-07-01

    Passive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics, including bistability, pattern formation, and localized dissipative structures (solitons). Their conceptual simplicity has for several decades offered an unprecedented window into nonlinear cavity dynamics, providing insights into numerous systems and applications ranging from all-optical memory devices to microresonator frequency combs. Yet despite the decades of study, a recent theoretical work has surprisingly alluded to an entirely new and unexplored paradigm in the regime where nonlinearly tilted cavity resonances overlap with one another [T. Hansson and S. Wabnitz, J. Opt. Soc. Am. B 32, 1259 (2015), 10.1364/JOSAB.32.001259]. We use synchronously driven fiber ring resonators to experimentally access this regime and observe the rise of new nonlinear dissipative states. Specifically, we observe, for the first time to the best of our knowledge, the stable coexistence of temporal Kerr cavity solitons and extended modulation instability (Turing) patterns, and perform real-time measurements that unveil the dynamics of the ensuing nonlinear structure. When operating in the regime of continuous wave tristability, we further observe the coexistence of two distinct cavity soliton states, one of which can be identified as a "super" cavity soliton, as predicted by Hansson and Wabnitz. Our experimental findings are in excellent agreement with theoretical analyses and numerical simulations of the infinite-dimensional Ikeda map that governs the cavity dynamics. The results from our work reveal that experimental systems can support complex combinations of distinct nonlinear states, and they could have practical implications to future microresonator-based frequency comb sources.

  13. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  14. Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Biswas, Anjan; Milović, Daniela; Belić, Milivoj

    2016-05-01

    We consider a high-order nonlinear Schrödinger equation with competing cubic-quintic-septic nonlinearities, non-Kerr quintic nonlinearity, self-steepening, and self-frequency shift. The model describes the propagation of ultrashort (femtosecond) optical pulses in highly nonlinear optical fibers. A new ansatz is adopted to obtain nonlinear chirp associated with the propagating femtosecond soliton pulses. It is shown that the resultant elliptic equation of the problem is of high order, contains several new terms and is more general than the earlier reported results, thus providing a systematic way to find exact chirped soliton solutions of the septic model. Novel soliton solutions, including chirped bright, dark, kink and fractional-transform soliton solutions are obtained for special choices of parameters. Furthermore, we present the parameter domains in which these optical solitons exist. The nonlinear chirp associated with each of the solitonic solutions is also determined. It is shown that the chirping is proportional to the intensity of the wave and depends on higher-order nonlinearities. Of special interest is the soliton solution of the bright and dark type, determined for the general case when all coefficients in the equation have nonzero values. These results can be useful for possible chirped-soliton-based applications of highly nonlinear optical fiber systems.

  15. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.

    PubMed

    Yin, Tai-Shuang; Lü, Xin-You; Wan, Liang-Liang; Bin, Shang-Wu; Wu, Ying

    2018-05-01

    We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir. As a result of this dramatic nonlinear enhancement and the suppressed noise, we demonstrate the feasibility of the quantum nondemolition measurement of the phonon number in an originally weak coupled OMS. In addition, the photon-phonon blockade phenomenon is also investigated in this regime, which allows for performing manipulations between photons and phonons. This Letter offers a promising route towards the potential application for the OMS in quantum information processing and quantum networks.

  16. Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics

    NASA Astrophysics Data System (ADS)

    Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.

    2016-10-01

    The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.

  17. A numerical scheme for nonlinear Helmholtz equations with strong nonlinear optical effects.

    PubMed

    Xu, Zhengfu; Bao, Gang

    2010-11-01

    A numerical scheme is presented to solve the nonlinear Helmholtz (NLH) equation modeling second-harmonic generation (SHG) in photonic bandgap material doped with a nonlinear χ((2)) effect and the NLH equation modeling wave propagation in Kerr type gratings with a nonlinear χ((3)) effect in the one-dimensional case. Both of these nonlinear phenomena arise as a result of the combination of high electromagnetic mode density and nonlinear reaction from the medium. When the mode intensity of the incident wave is significantly strong, which makes the nonlinear effect non-negligible, numerical methods based on the linearization of the essentially nonlinear problem will become inadequate. In this work, a robust, stable numerical scheme is designed to simulate the NLH equations with strong nonlinearity.

  18. Chirped bright and dark solitons of (3 + 1)-dimensional coupled nonlinear Schrödinger equations in negative-index metamaterials with both electric and magnetic nonlinearity of Kerr type

    NASA Astrophysics Data System (ADS)

    Dai, Chao-Qing; Fan, Yan; Wang, Yue-Yue; Zheng, Jun

    2018-02-01

    The (3 + 1)-dimensional generalized coupled nonlinear Schrödinger equation with electric and magnetic nonlinearities of Kerr type and self-steepening effects is studied, and bright and dark soliton solutions are derived. Based on these analytical solutions, dynamical behaviors of bright and dark solitons are discussed. The amplitudes, widths and velocities of bright and dark solitons are all constants determined by the self-steepening effect parameters SE, SH. The phase chirp of a bright soliton diminishes in the pulse front of y-direction, however, it increases in the pulse back edge of y-direction. On the contrary, the phase chirp of a dark soliton increases in the pulse front of y-direction, however, it diminishes in the pulse back edge of y-direction. The phase chirps of a bright and dark soliton both shift along positive y -axis as time goes on. Moreover, the stability of the solutions is discussed.

  19. Dark-bright soliton pairs in nonlocal nonlinear media.

    PubMed

    Lin, Yuan Yao; Lee, Ray-Kuang

    2007-07-09

    We study the formation of dark-bright vector soliton pairs in nonlocal Kerr-type nonlinear medium. We show, by analytical analysis and direct numerical calculation, that in addition to stabilize of vector soliton pairs nonlocal nonlinearity also helps to reduce the threshold power for forming a guided bright soliton. With help of the nonlocality, it is expected that the observation of dark-bright vector soliton pairs in experiments becomes more workable.

  20. The effect of damping on a quantum system containing a Kerr-like medium

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.; Sebawe Abdalla, M.; Obada, A.-S. F.

    2018-05-01

    An analytical description is given for a model which represents the interaction between Su(1,1) and Su(2) quantum systems taking into account Su(1,1)-cavity damping and Kerr medium properties. The analytic solution for the master equation of the density matrix is obtained. The examination of the effects of the damping parameter as well as the Kerr-like medium features is performed. The atomic inversion is discussed where the revivals and collapses phenomenon is realized at the considered period of time. Our study is extended to include the degree of entanglement where the system shows partial entanglement in all cases, however, disentanglement is also observed. The death and rebirth is seen in the system provided one selects the suitable values of the parameters. The correlation function of the system shows non-classical as well as classical behavior.

  1. Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; Boutin, Samuel; Blais, Alexandre

    2017-04-01

    Photonic cat states stored in high-Q resonators show great promise for hardware efficient universal quantum computing. We propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use of a two-photon drive. Significantly, we show that this preparation is robust against single-photon loss. An outcome of this observation is that a two-photon drive can eliminate undesirable phase evolution induced by a Kerr nonlinearity. By exploiting the concept of transitionless quantum driving, we moreover demonstrate how non-adiabatic initialization of cat states is possible. Finally, we present a universal set of quantum logical gates that can be performed on the engineered eigenspace of such a two-photon driven resonator and discuss a possible realization using superconducting circuits. The robustness of the engineered subspace to higher-order circuit nonlinearities makes this implementation favorable for scalable quantum computation.

  2. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  3. Dynamics of a movable micromirror in a nonlinear optical cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Tarun; ManMohan; Bhattacherjee, Aranya B.

    We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a chi{sup (3)} medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that the displacement spectrum of the micromirror could be used as a tool to detect the photon blockade effect. Moreover the ability to control the photon number fluctuation by tuning the Kerr nonlinearity emerges as a new handle to coherently control the dynamics of the micromirror, which further could be useful in the realization ofmore » tuneable quantum-mechanical devices. We also found that the temperature of the micromechanical mirror increases with increasing Kerr nonlinearity.« less

  4. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.

    2017-12-01

    In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

  5. Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer.

    PubMed

    Husakou, A; Herrmann, J

    2006-11-13

    We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.

  6. Transverse effects in nonlinear optics: Toward the photon superfluid

    NASA Astrophysics Data System (ADS)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  7. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index

    NASA Astrophysics Data System (ADS)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed

    2013-07-01

    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  8. Giant Kerr response of ultrathin gold films from quantum size effect.

    PubMed

    Qian, Haoliang; Xiao, Yuzhe; Liu, Zhaowei

    2016-10-10

    With the size of plasmonic devices entering into the nanoscale region, the impact of quantum physics needs to be considered. In the past, the quantum size effect on linear material properties has been studied extensively. However, the nonlinear aspects have not been explored much so far. On the other hand, much effort has been put into the field of integrated nonlinear optics and a medium with large nonlinearity is desirable. Here we study the optical nonlinear properties of a nanometre scale gold quantum well by using the z-scan method and nonlinear spectrum broadening technique. The quantum size effect results in a giant optical Kerr susceptibility, which is four orders of magnitude higher than the intrinsic value of bulk gold and several orders larger than traditional nonlinear media. Such high nonlinearity enables efficient nonlinear interaction within a microscopic footprint, making quantum metallic films a promising candidate for integrated nonlinear optical applications.

  9. Numerical study of the medium thickness in the Z-scan technique

    NASA Astrophysics Data System (ADS)

    Severiano Carrillo, I.; Méndez Otero, M. M.; Arroyo Carrasco, M. L.; Iturbe Castillo, M. D.

    2011-09-01

    The optical characterization of nonlinear media through the Z-scan technique considers initially a thin medium (with a thickness much less than the beam depth of focus). It has been observed that increasing the thickness of the medium the transmittance increases, this means that n2 increases, for this reason we will present a numerical model to determinate the minimum thin and the maximum thick medium limit. A thin medium is considered as a thin lens with focal length F1 and a thick medium can be regarded as a set of such thin lenses set with focal lengths F2, these lenses are contained in a medium whit a refraction index different than air. This analysis is made through Matlab using the theory of Gaussian beams, ABCD matrices and the q parameter, elementary theory in the development of this work, where the main feature of this model is that the nonlinearity type of the medium is considered as an integer constant in its focal length3. We present the graphs obtained from Z-scan for thick medium with both thermal and Kerr nonlinearities.

  10. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    PubMed

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  11. Investigation on the properties of the formation and coherence of intense fringe near nonlinear medium slab

    NASA Astrophysics Data System (ADS)

    Hu, Yonghua; Qiu, Yaqiong; Li, Yang; Shi, Lin

    2018-03-01

    Near medium intense (NMI) fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated.

  12. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  13. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides.

    PubMed

    Ikeda, Kazuhiro; Saperstein, Robert E; Alic, Nikola; Fainman, Yeshaiahu

    2008-08-18

    We introduce and present experimental evaluations of loss and nonlinear optical response in a waveguide and an optical resonator, both implemented with a silicon nitride/ silicon dioxide material platform prepared by plasma-enhanced chemical vapor deposition with dual frequency reactors that significantly reduce the stress and the consequent loss of the devices. We measure a relatively small loss of approximately 4dB/cm in the waveguides. The fabricated ring resonators in add-drop and all-pass arrangements demonstrate quality factors of Q=12,900 and 35,600. The resonators are used to measure both the thermal and ultrafast Kerr nonlinearities. The measured thermal nonlinearity is larger than expected, which is attributed to slower heat dissipation in the plasma-deposited silicon dioxide film. The n2 for silicon nitride that is unknown in the literature is measured, for the first time, as 2.4 x 10(-15)cm(2)/W, which is 10 times larger than that for silicon dioxide.

  14. Post-Kerr black hole spectroscopy

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele

    2017-09-01

    One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.

  15. Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerr-lens autocorrelation method.

    PubMed

    Yu, Xiang-xiang; Wang, Yu-hua

    2014-01-13

    Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.

  16. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    NASA Astrophysics Data System (ADS)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  17. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    NASA Astrophysics Data System (ADS)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  18. Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.

    PubMed

    Petrov, E Yu; Kudrin, A V

    2010-05-14

    The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.

  19. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    PubMed

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  20. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  1. Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects

    NASA Astrophysics Data System (ADS)

    Faghihi, Mohammad Javad; Tavassoly, Mohammad Kazem

    2013-11-01

    In this paper, we follow our presented model in J. Opt. Soc. Am. B {\\bf 30}, 1109--1117 (2013), in which the interaction between a $\\Lambda$-type three-level atom and a quantized two-mode radiation field in a cavity in the presence of nonlinearities is studied. After giving a brief review on the procedure of obtaining the state vector of the atom-field system, some further interesting and important physical features (which are of particular interest in the quantum optics field of research) of the whole system state, i.e., the number-phase entropic uncertainty relation (based on the two-mode Pegg-Barnett formalism) and some of the nonclassicality signs consist of sub-Poissonian statistics, Cauchy-Schwartz inequality and two kinds of squeezing phenomenon are investigated. During our presentation, the effects of intensity-dependent coupling, deformed Kerr medium and the detuning parameters on the depth and domain of each of the mentioned nonclassical criteria of the considered quantum system are studied, in detail. It is shown that each of the mentioned nonclassicality aspects can be obtained by appropriately choosing the related parameters.

  2. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  3. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    PubMed

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  4. Triple tailored nonlinear dispersion of dressed four- and six-wave mixing

    NASA Astrophysics Data System (ADS)

    Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng

    2018-06-01

    We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.

  5. Enhancement of temporal contrast of high-power laser pulses in an anisotropic medium with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Kuz'mina, M. S.; Khazanov, E. A.

    2015-05-01

    We consider the methods for enhancing the temporal contrast of super-high-power laser pulses, based on the conversion of radiation polarisation in a medium with cubic nonlinearity. For a medium with weak birefringence and isotropic nonlinearity, we propose a new scheme to enhance the temporal contrast. For a medium with anisotropic nonlinearity, the efficiency of the temporal contrast optimisation is shown to depend not only on the spatial orientation of the crystal and B-integral, but also on the type of the crystal lattice symmetry.

  6. Kerr Reservoir LANDSAT experiment analysis for March 1981

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1982-01-01

    LANDSAT radiance data were used in an experiment conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. A mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. Except for secchi depth, the study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data encompass a mix of linear and nonlinear forms using only one LANDSAT band. Ratioing techniques did not improve the results since the initial design of the experiment minimized the errors against which this procedure is effective. Good correlations were found for total suspended solids, iron, turbidity, and secchi depth. Marginal correlations were discovered for nitrate and tannin + lignin. Quantification maps of Kerr Reservoir are presented for many of the water quality parameters using the developed algorithms.

  7. Quantum Statistical Properties of the Codirectional Kerr Nonlinear Coupler in Terms of su (2 ) Lie Group in Interaction with a Two-level Atom

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.

    2017-08-01

    The problem of the codirectional Kerr coupler has been considered several times from different point of view. In the present paper we introduce the interaction between a two-level atom and the codirectional Kerr nonlinear coupler in terms of su (2 ) Lie algebra. Under certain conditions we have adjusted the Kerr coupler and consequently we have managed to handle the problem. The wave function is obtained by using the evolution operator where the Heisnberg equation of motion is invoked to get the constants of the motion. We note that the Kerr parameter χ as well as the quantum number j plays the role of controlling the atomic inversion behavior. Also the maximum entanglement occurs after a short period of time when χ = 0. On the other hand for the entropy and the variance squeezing we observe that there is exchange between the quadrature variances. Furthermore, the variation in the quantum number j as well as in the parameter χ leads to increase or decrease in the number of fluctuations. Finally we examined the second order correlation function where classical and nonclassical phenomena are observed.

  8. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2017-12-01

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  9. Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2017-12-29

    East and Pretorius have successfully evolved, using fully nonlinear numerical simulations, the superradiant instability of the Kerr black hole (BH) triggered by a massive, complex vector field. Evolutions terminate in stationary states of a vector field condensate synchronized with a rotating BH horizon. We show that these end points are fundamental states of Kerr BHs with synchronized Proca hair. Motivated by the "experimental data" from these simulations, we suggest a universal (i.e., field-spin independent), analytic model for the subset of BHs with synchronized hair that possess a quasi-Kerr horizon, applicable in the weak hair regime. Comparing this model with fully nonlinear numerical solutions of BHs with a synchronized scalar or Proca hair, we show that the model is accurate for hairy BHs that may emerge dynamically from superradiance, whose domain we identify.

  10. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    NASA Astrophysics Data System (ADS)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  11. Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-05-01

    We predict nonlinear optical polarization rotation in two-dimensional massless Dirac systems including graphene and 8-P m m n borophene. When illuminated, a continuous-wave optical field leads to a nonlinear steady state of photoexcited carriers in the medium. The photoexcited population inversion and the interband coherence give rise to a finite transverse optical conductivity σx y(ω ) . This in turn leads to definitive signatures in associated Kerr and Faraday polarization rotation, which are measurable in a realistic experimental scenario.

  12. Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Xiu, Xiao-Ming; Dong, Hai-Kuan; Gao, Ya-Jun

    2017-05-01

    Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave-particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler's delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter's selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.

  13. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  14. Black and gray Helmholtz-Kerr soliton refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposalmore » of positive or negative lensing operations on soliton arrays at planar boundaries.« less

  15. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  16. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

    PubMed

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  17. Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique

    NASA Astrophysics Data System (ADS)

    Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu

    2017-11-01

    We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.

  18. Higher-order Kerr effect and harmonic cascading in gases.

    PubMed

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano

    2012-11-15

    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.

  19. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  20. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  1. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  2. Ultra-fast all-optical plasmon induced transparency in a metal–insulator–metal waveguide containing two Kerr nonlinear ring resonators

    NASA Astrophysics Data System (ADS)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-05-01

    In this work, an ultra-fast all-optical plasmon induced transparency based on a metal–insulator–metal nanoplasmonic waveguide with two Kerr nonlinear ring resonators is studied. Two-dimensional simulations utilizing the finite-difference time-domain method are used to show an obvious optical bistability and significant switching mechanisms of the signal light by varying the pump-light intensity. The proposed all-optical switching based on plasmon induced transparency demonstrates femtosecond-scale feedback time (90 fs), meaning ultra-fast switching can be achieved. The presented all-optical switch may have potential significant applications in integrated optical circuits.

  3. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    NASA Astrophysics Data System (ADS)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  4. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  5. Kerr optical frequency combs: theory, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  6. Optical Kerr spatiotemporal dark extreme waves

    NASA Astrophysics Data System (ADS)

    Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio

    2018-02-01

    We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.

  7. Effect of nonlinearity saturation on hot-image formation in cascaded saturable nonlinear medium slabs

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; Dai, Zhiping; Ling, Xiaohui; Chen, Liezun; Lu, Shizhuan; You, Kaiming

    2016-11-01

    In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. Based on the standard linearization method of small-scale self-focusing and the split-step Fourier numerical calculation method, we present analytical and simulative investigations on the hot-image formation in cascaded saturable nonlinear medium slabs, to disclose the effect of nonlinearity saturation on the distribution and intensity of hot images. The analytical and simulative results are found in good agreement. It is shown that, saturable nonlinearity does not change the distribution of hot images, while may greatly affect the intensity of hot images, i.e., for a given saturation light intensity, with the intensity of the incident laser beam, the intensity of hot images firstly increases monotonously and eventually reaches a saturation; for the incident laser beam of a given intensity, with the saturation light intensity lowering, the intensity of hot images decreases rapidly, even resulting in a few hot images too weak to be visible.

  8. Giant ultrafast Kerr effect in superconductors

    NASA Astrophysics Data System (ADS)

    Robson, Charles W.; Fraser, Kieran A.; Biancalana, Fabio

    2017-06-01

    We study the ultrafast Kerr effect and high-harmonic generation in superconductors by formulating a model for a time-varying electromagnetic pulse normally incident on a thin-film superconductor. It is found that superconductors exhibit exceptionally large χ(3 ) due to the progressive destruction of Cooper pairs, and display high-harmonic generation at low incident intensities, and the highest nonlinear susceptibility of all known materials in the THz regime. Our theory opens up avenues for accessible analytical and numerical studies of the ultrafast dynamics of superconductors.

  9. Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi

    2017-05-01

    This paper studies the dynamics of solitons to the nonlinear Schrödinger’s equation (NLSE) with spatio-temporal dispersion (STD). The integration algorithm that is employed in this paper is the Riccati-Bernoulli sub-ODE method. This leads to dark and singular soliton solutions that are important in the field of optoelectronics and fiber optics. The soliton solutions appear with all necessary constraint conditions that are necessary for them to exist. There are four types of nonlinear media studied in this paper. They are Kerr law, power law, parabolic law and dual law. The conservation laws (Cls) for the Kerr law and parabolic law nonlinear media are constructed using the conservation theorem presented by Ibragimov.

  10. [Comparison of pregnancy outcomes Caesarean techniques: modified Misgav-Ladach, Pfannenstiel-Kerr and Kerr-half infraumbilical].

    PubMed

    Cardona-Osuna, M E; Avila-Vergara, M A; Peraza-Garay, F; Meneses-Valderrama, V; Flores-Pompa, E; Corrales-López, A

    2016-08-01

    In Mexico, the prevalence of caesarean section is 40.9% in the health sector, the techniques used are the traditional Pfannenstiel-Kerr and Kerr-half infraumbilical and little experience with this new technique Misgav-Ladach modified. To compare pregnancy outcomes (surgical and fetal extraction time, bleeding, postoperative pain, surgical wound infection, maternal and fetal death) caesarean section techniques modified Misgav-Ladach, Pfannenstiel-Kerr and infraumbilical. Clinical trial in primiparous women with term pregnancy treated at the Medical Unit of High Specialty 23 of the Mexican Social Security Institute, Monterrey, Nuevo Leon, Mexico. Misgav-Ladach caesarean Caesarean modified and Kerr, the latter subdivided into two groups: infraumbilical Pfannenstiel incision and incision half-Kerr two groups patients were randomized. 137 gilts were studied, with term pregnancy and BMI between 19 and 24.9 kg / m2. Caesarean modified Misgav-Ladach 68 patients and 69 classical Kerr (35 Pfannenstiel-Kerr and 34 infraumbilical) was performed. The surgical time in minutes was lower with modified Misgav-Ladach: 27.8 ± 8.0, Pfannenstiel-Kerr recorded 51.7 ± 12.1 and 12.0 ± infraumbilical media48.3 (p = 0.000). The time in seconds fetal extraction was lower in modified Misgav-Ladach: 96.2 ± 68.3, 474.9 ± Pfannenstiel-Kerr 294.1 and 423.2 ± 398.6 infraumbilical (p = 0.000). The trasoperatory milliliters bleeding was lower with modified Misgav-Ladach: 298.5 ± 57.3, 354.3 ± Pfannenstiel-Kerr 98.0 and 355.9 ± 110.6 infraumbilical (p = 0.001). Postoperative pain assessed with the visual analog scale in the first 24 hours was lower with modified Misgav-Ladach: 4.4 ± 1.9, 5.7 ± Pfannenstiel-Kerr and IK 2.1 6.1 ± 2.0 (p = 0.000). The start of the oral route and ambulation Nwas soon comparing modified Misgav-Ladach against Pfannenstiel-Kerr and Kerr-infraumbilical (p = 0.000). The prevalence of fever was 5.9% with modified Misgav-Ladach, 5.9% Pfannenstiel-Kerr and 32

  11. Modeling of Nonlinear Optical Response in Gaseous Media and Its Comparison with Experiment

    NASA Astrophysics Data System (ADS)

    Xia, Yi

    This thesis demonstrates the model and application of nonlinear optical response with Metastable Electronic State Approach (MESA) in ultrashort laser propagation and verifies accuracy of MESA through extensive comparison with experimental data. The MESA is developed from quantum mechanics to describe the nonlinear off-resonant optical response together with strong-field ionization in gaseous medium. The conventional light-matter interaction models are based on a piece-wise approach where Kerr effect and multi-photon ionization are treated as independent nonlinear responses. In contrast, MESA is self-consistent as the response from freed electrons and bound electrons are microscopically linked. It also can be easily coupled to the Unidirectional Pulse Propagation Equations (UPPE) for large scale simulation of experiments. This work tests the implementation of MESA model in simulation of nonlinear phase transients of ultrashort pulse propagation in a gaseous medium. The phase transient has been measured through Single-Shot Supercontinuum Spectral Interferometry. This technique can achieve high temporal resolution (10 fs) and spatial resolution (5 mum). Our comparison between simulation and experiment gives a quantitive test of MESA model including post-adiabatic corrections. This is the first time such a comparison was achieved for a theory suitable for large scale numerical simulation of modern nonlinear-optics experiments. In more than one respect, ours is a first-of-a-kind achievement. In particular, • Large amount of data are compared. We compare the data of nonlinear response induced by different pump intensity in Ar and Nitrogen. The data sets are three dimensions including two transverse spacial dimensions and one axial temporal dimension which reflect the whole structure of nonlinear response including the interplay between Kerr and plasma-induced effects. The resolutions of spatial and temporal dimension are about a few micrometer and several femtosecond

  12. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    PubMed

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  13. Nonlinear dynamo in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  14. Spectral dynamics of THz pulses generated by two-color laser filaments in air: the role of Kerr nonlinearities and pump wavelength.

    PubMed

    Nguyen, A; González de Alaiza Martínez, P; Déchard, J; Thiele, I; Babushkin, I; Skupin, S; Bergé, L

    2017-03-06

    We theoretically and numerically study the influence of both instantaneous and Raman-delayed Kerr nonlinearities as well as a long-wavelength pump in the terahertz (THz) emissions produced by two-color femtosecond filaments in air. Although the Raman-delayed nonlinearity induced by air molecules weakens THz generation, four-wave mixing is found to impact the THz spectra accumulated upon propagation via self-, cross-phase modulations and self-steepening. Besides, using the local current theory, we show that the scaling of laser-to-THz conversion efficiency with the fundamental laser wavelength strongly depends on the relative phase between the two colors, the pulse duration and shape, rendering a universal scaling law impossible. Scaling laws in powers of the pump wavelength may only provide a rough estimate of the increase in the THz yield. We confront these results with comprehensive numerical simulations of strongly focused pulses and of filaments propagating over meter-range distances.

  15. Integrated Kerr comb-based reconfigurable transversal differentiator for microwave photonic signal processing

    NASA Astrophysics Data System (ADS)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2018-01-01

    An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.

  16. Rigorous theory of molecular orientational nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Chong Hoon, E-mail: chkwak@ynu.ac.kr; Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecularmore » hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.« less

  17. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates. Copyright © 2015, American Association for the Advancement of Science.

  18. Spinning BTZ black hole versus Kerr black hole: A closer look

    NASA Astrophysics Data System (ADS)

    Kim, Hongsu

    1999-03-01

    By applying Newman's algorithm, the AdS3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Bañados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in kind of ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such a transformation is found to exist. In these Kerr-Schild-type coordinates, a truly maximal extension of its global structure by analytically continuing to an ``antigravity universe'' region is carried out.

  19. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s

    PubMed Central

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-01-01

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of −7 dB on transmission has shown very promising applicability to all-optical communication networks. PMID:25923653

  20. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s.

    PubMed

    Lin, Gong-Ru; Su, Sheng-Pin; Wu, Chung-Lun; Lin, Yung-Hsiang; Huang, Bo-Ji; Wang, Huai-Yung; Tsai, Cheng-Ting; Wu, Chih-I; Chi, Yu-Chieh

    2015-04-29

    Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.

  1. Simple and complex chimera states in a nonlinearly coupled oscillatory medium

    NASA Astrophysics Data System (ADS)

    Bolotov, Maxim; Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady

    2018-04-01

    We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras.

  2. Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating.

    PubMed

    Wang, Guoxi; Lu, Hua; Liu, Xueming; Gong, Yongkang

    2012-11-09

    We have proposed and numerically investigated an all-optical switch based on a metal-insulator-metal waveguide with graded nonlinear plasmonic gratings. The influences of grating depth and refractive index of a Kerr nonlinear medium on the transmission of the switch are exactly analyzed by utilizing transmission line theory. The finite-difference time-domain simulation results show that the highly compact structure possesses excellent switch function by tuning the incident electric field intensity. In addition, the simulation results show that this all-optical switch has an ultrawide operating frequency regime and femtosecond-scale response time (~130 fs). Such a switch can find potential applications for all-optical signal processing and optical communication.

  3. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  4. Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin

    NASA Astrophysics Data System (ADS)

    Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji

    2016-04-01

    There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2 +1 )D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2 +1 )D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.

  5. Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin.

    PubMed

    Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji

    2016-04-29

    There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2+1)D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2+1)D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.

  6. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  7. Nonlinear-optical activity owing to anisotropy of ultrafast nonlinear refraction in cubic materials.

    PubMed

    Hutchings, D C

    1995-08-01

    The evolution of the polarization state in a cubic material with an anisotropic Kerr nonlinearity is examined. It is shown that in certain cases this provides a mechanism for nonlinear-optical activity, leaving the state of the polarization unchanged but causing a signif icant rotation in its major axis. The use of the anisotropic ultrafast nonlinear refraction that exists just beneath the half-gap in semiconductors to demonstrate these effects is discussed.

  8. Multipulse technique exploiting the intermodulation of ultrasound waves in a nonlinear medium.

    PubMed

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2009-03-01

    In recent years, the nonlinear properties of materials have attracted much interest in nondestructive testing and in ultrasound diagnostic applications. Acoustic nonlinear parameters represent an opportunity to improve the information that can be extracted from a medium such as structural organization and pathologic status of tissue. In this paper, a method called pulse subtraction intermodulation (PSI), based on a multipulse technique, is presented and investigated both theoretically and experimentally. This method allows separation of the intermodulation products, which arise when 2 separate frequencies are transmitted in a nonlinear medium, from fundamental and second harmonic components, making them available for improved imaging techniques or signal processing algorithms devoted to tissue characterization. The theory of intermodulation product generation was developed according the Khokhlov-Zabolotskaya-Kuznetsov (KZK) nonlinear propagation equation, which is consistent with experimental results. The description of the proposed method, characterization of the intermodulation spectral contents, and quantitative results coming from in vitro experimentation are reported and discussed in this paper.

  9. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-07-18

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.

  10. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-01-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767

  11. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    PubMed

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  12. Generation of Caustics and Rogue Waves from Nonlinear Instability.

    PubMed

    Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W

    2017-11-17

    Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.

  13. Generation of Caustics and Rogue Waves from Nonlinear Instability

    NASA Astrophysics Data System (ADS)

    Safari, Akbar; Fickler, Robert; Padgett, Miles J.; Boyd, Robert W.

    2017-11-01

    Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.

  14. Propagation of a Pearcey-Gaussian-vortex beam in free space and Kerr media

    NASA Astrophysics Data System (ADS)

    Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei

    2016-12-01

    The propagation of a Pearcey-Gaussian-vortex beam (PGVB) has been investigated numerically in free space and Kerr media. In addition, we have done a numerical experiment for the beam in free space. A PGVB maintains the characteristics of auto-focusing, self-healing and form-invariance which are possessed by a Pearcey beam and a Pearcey-Gaussian beam. Due to the influence of the optical vortex, a bright speck occurs in front of the main lobe. Compared with a Pearcey beam and a Pearcey-Gaussian beam, a PGVB has the most remarkable intensity singularity and the phase singularity. It is worth noting that the impact of the vortex at the coordinate origins means that a PGVB in the vicinity carries no angular momentum or transverse energy flow. We have investigated and numerically simulated the transverse intensity of a PGVB in Kerr media. We find that the auto-focusing of a PGVB in a Kerr medium becomes stronger with increasing power.

  15. Nonlinear tuning techniques of plasmonic nano-filters

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-02-01

    In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.

  16. Coupled tapering/uptapering of Thirring type soliton pair in nonlinear media

    NASA Astrophysics Data System (ADS)

    Prasad, Shraddha; Dutta, Manoj Kumar; Sarkar, Ram Krishna

    2018-03-01

    The paper investigates coupled tapering/uptapering of Thirring type soliton pair, employing Beam Propagation Method. It is seen that, the pair uptapers in presence of losses and tapers in presence of gain. When the first beam has gain and the second one has losses in the nonlinear medium, the second beam induces uptapering in the first beam, while, first beam induces tapering in the second beam. When the medium provides gain/losses to only one of the two beams, the beam undergoes tapering/uptapering and also induces tapering/uptapering to the other loss less beam; however, magnitude of tapering/uptapering are different.

  17. Nonlinear Spectral Singularity and Laser Output Intensity for the TE and TM Modes

    NASA Astrophysics Data System (ADS)

    Ghaemidizicheh, Hamed; Mostafazadeh, Ali

    The nonlinear spectral singularity arising from a Kerr nonlinearity is explored in. This reference studies the effect of nonlinearity in Lasing condition and shows that Kerr nonlinearity with spectral singularity for a normally incident wave provides an explanation of lasing at gain coefficient g. Lasing occurs when it exceeds threshold gain g0. For oblique waves, Ref. looks at the behavior of threshold gain coefficient g0 which is given by the condition that there is a linear spectral singularity. We investigated imposing the condition of the existence of nonlinear spectral singularity in the TE / TM modes of a mirrorless slab of gain materials and studied the θ-dependence of intensity. Supported by TUBITAK Project No: 114F357 and by the Turkish Academy of Science (TUBA).

  18. Nonlinear Wave Propagation

    DTIC Science & Technology

    2009-02-09

    grey) soliton , to a nearly linear wavetrain at the front moving with its group velocity ; like KdV the NLS DSW has two speeds. The 1-D NLS theory was...studies of wave phenomena in nonlinear optics include ultrashort pulse dynamics in mode- locked lasers, dynamics and perturbations of dark solitons ...nonlinear Kerr response and has a large normal group - velocity dispersion (GVD). This requires a set of prisms and/or mirrors specially designed to have

  19. Qubit-qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes

    NASA Astrophysics Data System (ADS)

    Ateto, M. S.

    2017-11-01

    The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.

  20. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    NASA Astrophysics Data System (ADS)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  1. Distribution of hybrid entanglement and hyperentanglement with time-bin for secure quantum channel under noise via weak cross-Kerr nonlinearity.

    PubMed

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyung-Jin; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-31

    We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.

  2. Localized states and their stability in an anharmonic medium with a nonlinear defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerasimchuk, I. V., E-mail: igor.gera@gmail.com

    2015-10-15

    A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. Amore » full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.« less

  3. Quantum-limited amplification with a nonlinear cavity detector

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Clerk, A. A.

    2011-03-01

    We consider the quantum measurement properties of a driven cavity with a Kerr-type nonlinearity that is used to amplify a dispersively coupled input signal. Focusing on an operating regime that is near a bifurcation point, we derive simple asymptotic expressions describing the cavity’s noise and response. We show that the cavity’s backaction and imprecision noise allow for quantum-limited linear amplification and position detection only if one is able to utilize the sizable correlations between these quantities. This is possible when one amplifies a nonresonant signal but is not possible in quantum nondemolition qubit detection. We also consider the possibility of using the nonlinear cavity’s backaction for cooling a mechanical mode.

  4. Optical solitons to the resonance nonlinear Schrödinger equation by Sine-Gordon equation method

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    In this paper, we examined the optical solitons to the resonant nonlinear Schrödinger equation (R-NLSE) which describes the propagation of solitons through optical fibers. Three types of nonlinear media fibers are studied. They are; quadratic-cubic law, Kerr law and parabolic law. Dark, bright, dark-bright or combined optical and singular soliton solutions are derived using the sine-Gordon equation method (SGEM). The constraint conditions that naturally fall out of the solution structure which guarantee the existence of these solitons are also reported.

  5. Chirped solitary pulses for a nonic nonlinear Schrödinger equation on a continuous-wave background

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Porsezian, K.; Choudhuri, Amitava; Dinda, P. Tchofo

    2016-06-01

    A class of derivative nonlinear Schrödinger equation with cubic-quintic-septic-nonic nonlinear terms describing the propagation of ultrashort optical pulses through a nonlinear medium with higher-order Kerr responses is investigated. An intensity-dependent chirp ansatz is adopted for solving the two coupled amplitude-phase nonlinear equations of the propagating wave. We find that the dynamics of field amplitude in this system is governed by a first-order nonlinear ordinary differential equation with a tenth-degree nonlinear term. We demonstrate that this system allows the propagation of a very rich variety of solitary waves (kink, dark, bright, and gray solitary pulses) which do not coexist in the conventional nonlinear systems that have appeared so far in the literature. The stability of the solitary wave solution under some violation on the parametric conditions is investigated. Moreover, we show that, unlike conventional systems, the nonlinear Schrödinger equation considered here meets the special requirements for the propagation of a chirped solitary wave on a continuous-wave background, involving a balance among group velocity dispersion, self-steepening, and higher-order nonlinearities of different nature.

  6. Femtosecond pulse self-shortening in Kerr media: role of modulational instability in the spectrum formation

    NASA Astrophysics Data System (ADS)

    Grudtsyn, Ya. V.; Koribut, A. V.; Mikheev, L. D.; Trofimov, V. A.

    2018-04-01

    The mechanism of femtosecond pulse self-shortening in thin optical materials with Kerr nonlinearity is investigated. The experimentally observed spectral-angular distribution of the radiation intensity on the exit surface of a 1-mm-thick fused silica sample is compared with the results of numerical simulation based on solving the nonlinear Schrödinger equation for an electromagnetic wave with a transverse perturbation on the axis. Qualitative agreement between the calculated and experimental results confirms the hypothesis about the transient regime of multiple filamentation as a mechanism of femtosecond pulse self-shortening.

  7. Perturbations of the Kerr black hole and the boundness of linear waves

    NASA Astrophysics Data System (ADS)

    Eskin, G.

    2010-11-01

    Artificial black holes (also called acoustic or optical black holes) are the black holes for the linear wave equation describing the wave propagation in a moving medium. They attracted a considerable interest of physicists who study them to better understand the black holes in general relativity. We consider the case of stationary axisymmetric metrics and we show that the Kerr black hole is not stable under perturbations in the class of all axisymmetric metrics. We describe families of axisymmetric metrics having black holes that are the perturbations of the Kerr black hole. We also show that the ergosphere can be determined by boundary measurements. Finally, we prove the uniform boundness of the solution in the exterior of the black hole when the event horizon coincides with the ergosphere.

  8. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less

  9. Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin

    2015-05-01

    We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.

  10. Nonlinear stability of solar type 3 radio bursts. 1: Theory

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.

    1978-01-01

    A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.

  11. Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom in a whispering-gallery-mode microtoroid resonator

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying

    2014-11-01

    Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.

  12. Control of polarization rotation in nonlinear propagation of fully structured light

    NASA Astrophysics Data System (ADS)

    Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.

    2018-03-01

    Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.

  13. Nonlinear magneto-plasmonics

    DOE PAGES

    Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...

    2015-10-19

    Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less

  14. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  15. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  16. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lidorikis, Elefterios

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model inmore » which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.« less

  17. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    NASA Astrophysics Data System (ADS)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  18. New entropy formula for Kerr black holes

    NASA Astrophysics Data System (ADS)

    González, Hernán A.; Grumiller, Daniel; Merbis, Wout; Wutte, Raphaela

    2018-01-01

    We introduce a new entropy formula for Kerr black holes inspired by recent results for 3-dimensional black holes and cosmologies with soft Heisenberg hair. We show that also Kerr-Taub-NUT black holes obey the same formula.

  19. Robust iterative method for nonlinear Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Yuan, Lijun; Lu, Ya Yan

    2017-08-01

    A new iterative method is developed for solving the two-dimensional nonlinear Helmholtz equation which governs polarized light in media with the optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear Helmholtz equation could have multiple solutions related to phenomena such as optical bistability and symmetry breaking. The new method exhibits a much more robust convergence behavior than existing iterative methods, such as frozen-nonlinearity iteration, Newton's method and damped Newton's method, and it can be used to find solutions when good initial guesses are unavailable. Numerical results are presented for the scattering of light by a nonlinear circular cylinder based on the exact nonlocal boundary condition and a pseudospectral method in the polar coordinate system.

  20. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  1. Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides.

    PubMed

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin; Bache, Morten

    2014-03-01

    Formation and interaction of few-cycle solitons in a lithium niobate ridge waveguide are numerically investigated. The solitons are created through a cascaded phase-mismatched second-harmonic generation process, which induces a dominant self-defocusing Kerr-like nonlinearity on the pump pulse. The inherent material self-focusing Kerr nonlinearity is overcome over a wide wavelength range, and self-defocusing solitons are supported from 1100 to 1900 nm, covering the whole communication band. Single cycle self-compressed solitons and supercontinuum generation spanning 1.3 octaves are observed when pumped with femtosecond nanojoule pulses at 1550 nm. The waveguide is not periodically poled, as quasi-phase-matching would lead to detrimental nonlinear effects impeding few-cycle soliton formation.

  2. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    NASA Astrophysics Data System (ADS)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  3. Mechano-optic logic gate controlled by third-order nonlinear optical properties in a rotating ZnO:Au thin film

    NASA Astrophysics Data System (ADS)

    Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.

    2016-01-01

    Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.

  4. Innovations in energy: the story of Kerr-McaGee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, J.S.

    1979-01-01

    The history of the Kerr-McGee Corporation is a saga of American enterprise that began in Ada, Oklahoma, in 1929, when future Senator Robert S. Kerr and his brother-in-law, James L. Anderson, became partners in the Anderson and Kerr Drilling Company. Fifty years later Kerr-McGee's diversified, international operations truly justify Kerr-McGee President, Dean A. McGee's epithet, ''a natural resource company.'' Able to find other gifted people to work for him, Robert Kerr's company has been dominated by a series of extraordinary oil-industry personalities who made extraordinary and essential contributions - from roughnecks and drillers to lawyers and financiers. Much of hismore » history, based on first-person accounts, emphasizes human element in the exploitation of energy resources, describes the company's pioneering achievements in the inland and offshore oil industry (including the drilling of the first offshore well), the expansion into refining, manufacturing, and retailing and into the development of other natural resources (including uranium, coal, helium, boron, and potash), the corporate structure that sustained exploration and expansion, the financing of multimillion-dollar operations, the lawsuits (including the case of Karen Silkwood) in which the company has been involved from its earliest days, the relations between business and government exacerbated by Robert S. Kerr and the technological innovations that have been characteristic of Kerr-McGee. 90 references, 22 figures, 83 tables.« less

  5. Appearance of Keplerian discs orbiting Kerr superspinars

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan

    2010-11-01

    We study optical phenomena related to the appearance of Keplerian accretion discs orbiting Kerr superspinars predicted by string theory. The superspinar exterior is described by standard Kerr naked singularity geometry breaking the black hole limit on the internal angular momentum (spin). We construct local photon escape cones for a variety of orbiting sources that enable us to determine the superspinars silhouette in the case of distant observers. We show that the superspinar silhouette depends strongly on the assumed edge where the external Kerr spacetime is joined to the internal spacetime governed by string theory and significantly differs from the black hole silhouette. The appearance of the accretion disc is strongly dependent on the value of the superspinar spin in both their shape and frequency shift profile. Apparent extension of the disc grows significantly with the growing spin, while the frequency shift grows with the descending spin. This behaviour differs substantially from the appearance of discs orbiting black holes enabling thus, at least in principle, to distinguish clearly the Kerr superspinars and black holes. In vicinity of a Kerr superspinar the non-escaped photons have to be separated to those captured by the superspinar and those being trapped in its strong gravitational field leading to self-illumination of the disc that could even influence its structure and cause self-reflection effect of radiation of the disc. The amount of trapped photons grows with descending superspinar spin. We thus can expect significant self-illumination effects in the field of Kerr superspinars with near-extreme spin a ~ 1.

  6. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    PubMed

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  7. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    NASA Astrophysics Data System (ADS)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  8. Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Brzdąkiewicz, K. A.; Laudyn, U. A.; Karpierz, M. A.; Woliński, T. R.; Wójcik, J.

    2006-12-01

    We investigate linear and nonlinear light propagation in the photonic crystal fibers infiltrated with nematic liquid crystals. Such a photonic structure, with periodic modulation of refractive index, which could be additionally controlled by the temperature and by the optical power, allows for the study of discrete optical phenomena. Our theoretical investigations, carried out with the near infrared wavelength of 830 nm, for both focusing and defocusing Kerr-type nonlinearity, show the possibility of the transverse light localization, which can result in the discrete soliton generation. In addition, we present the preliminary experimental results on the linear light propagation in the photonic crystal fiber with the glycerin-water solution and 6CHBT nematics, as the guest materials.

  9. All-optical analog-to-digital converter based on Kerr effect in photonic crystal

    NASA Astrophysics Data System (ADS)

    Jafari, Dariush; Nurmohammadi, Tofiq; Asadi, Mohammad Javad; Abbasian, Karim

    2018-05-01

    In this paper, a novel all-optical analog-to-digital converter (AOADC) is proposed and simulated for proof of principle. This AOADC is designed to operate in the range of telecom wavelength (1550 nm). A cavity made of nonlinear Kerr material in photonic crystal (PhC), is designed to achieve an optical analog-to-digital conversion with 1 Tera sample per second (TS/s) and the total footprint of 42 μm2 . The simulation is done using finite-difference time domain (FDTD) method.

  10. Shadows of Kerr Black Holes with Scalar Hair.

    PubMed

    Cunha, Pedro V P; Herdeiro, Carlos A R; Radu, Eugen; Rúnarsson, Helgi F

    2015-11-20

    Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.

  11. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Modulation of radiation in a fiber Sagnac interferometer induced by an external field

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Kasymdzhanov, M. A.; Mirtadzhiev, F. M.; Tartakovskiĭ, G. Kh; Khabibullaev, P. K.

    1988-12-01

    A study was made of the influence of the Kerr nonlinearity of a fiber waveguide on fluctuations of the output signal from a fiber-optic interferometer. The intensity fluctuations were modeled using the radiation from a pulsed high-power laser with a controlled intensity and pulse profile. Interferograms of the output radiation were obtained for different interferometer configurations. A comparison of the experiment and theory made it possible to explain the observed changes in the signal and to estimate the phase noise due to the Kerr nonlinearity in the investigated fiber waveguide.

  12. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Theory of four-wave mixing in photorefractive media when the response of a medium is nonlinear in respect of the modulation parameter

    NASA Astrophysics Data System (ADS)

    Zozulya, A. A.

    1988-12-01

    A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.

  13. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    PubMed

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  14. Observation of three-photon bound states in a quantum nonlinear medium

    NASA Astrophysics Data System (ADS)

    Liang, Qi-Yu; Venkatramani, Aditya V.; Cantu, Sergio H.; Nicholson, Travis L.; Gullans, Michael J.; Gorshkov, Alexey V.; Thompson, Jeff D.; Chin, Cheng; Lukin, Mikhail D.; Vuletić, Vladan

    2018-02-01

    Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.

  15. Quantum X waves with orbital angular momentum in nonlinear dispersive media

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2018-06-01

    We present a complete and consistent quantum theory of generalised X waves with orbital angular momentum in dispersive media. We show that the resulting quantised light pulses are affected by neither dispersion nor diffraction and are therefore resilient against external perturbations. The nonlinear interaction of quantised X waves in quadratic and Kerr nonlinear media is also presented and studied in detail.

  16. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less

  17. Optical nonlinearities and ultrafast all-optical switching of m-plane GaN in the near-infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yu; Zhou, Feng; Yang, Junyi

    2015-06-22

    We reported a systematic investigation on the three-photon absorption (3PA) spectra and wavelength dispersion of Kerr refraction of bulk m-plane GaN crystal with both polarization E⊥c and E//c by femtosecond Z-scan technique in the near-infrared region from 760 to 1030 nm. Both 3PA spectra and Kerr refraction dispersion were in good agreement with two-band models. The calculated nonlinear figure of merit and measured ultrafast nonlinear refraction dynamics via femtosecond pump-probe with phase object method revealed that m-plane GaN would be a promising candidate for ultrafast all-optical switching and autocorrelation applications at telecommunication wavelengths.

  18. Nonlinear site response in medium magnitude earthquakes near Parkfield, California

    USGS Publications Warehouse

    Rubinstein, Justin L.

    2011-01-01

    Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).

  19. Initial data for two Kerr-like black holes.

    PubMed

    Dain, S

    2001-09-17

    We prove the existence of a family of initial data for the Einstein vacuum equation which can be interpreted as the data for two Kerr-like black holes in an arbitrary location and with spins pointing in arbitrary directions. We also provide a method to compute them. If the mass parameter of one of the black holes is zero, then this family reduces exactly to the Kerr initial data. The existence proof is based on a general property of the Kerr metric which can be used in other constructions as well. Further generalizations are also discussed.

  20. Newman-Penrose constants of the Kerr-Newman metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Xuefei; Shang Yu; Bai Shan

    The Newman-Unti formalism of the Kerr-Newman metric near future null infinity is developed, with which the Newman-Penrose constants for both the gravitational and electromagnetic fields of the Kerr-Newman metric are computed and shown to be zero. The multipole structure near future null infinity in the sense of Janis-Newman of the Kerr-Newman metric is then further studied. It is found that up to the 2{sup 4}-pole, modulo a constant dependent upon the order of the pole, these multipole moments agree with those of Geroch-Hansen multipole moments defined at spatial infinity.

  1. The Kerr/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Hartman, Thomas; Song, Wei; Strominger, Andrew

    2009-12-01

    Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J=GM2) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge cL=(12J)/(ℏ). This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature TL=(1)/(2π) and conjugate energy given by the zero mode generator, L0, of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy Smicro=(2πJ)/(ℏ) for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy Smacro=(Area)/(4ℏG). The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge cL=(12J)/(ℏ), and, in particular, that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with cL˜2×1079.

  2. Light cone structure near null infinity of the Kerr metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Shan; Shang Yu; Graduate School of Chinese Academy of Sciences, Beijing, 100080

    2007-02-15

    Motivated by our attempt to understand the question of angular momentum of a relativistic rotating source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then furthermore » developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr metric are also briefly discussed.« less

  3. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  4. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.; Ustinov, N. V.

    2017-02-01

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky-Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  5. Improvement of on/off ratio in single-shot multichannel demultiplexing by using an optical Kerr gate of a squarylium dye J aggregate film

    NASA Astrophysics Data System (ADS)

    Sato, Yasuhiro; Furuki, Makoto; Tian, Minquan; Iwasa, Izumi; Pu, Lyong Sun; Tatsuura, Satoshi

    2002-04-01

    We demonstrated ultrafast single-shot multichannel demultiplexing by using a squarylium dye J aggregate film as an optical Kerr medium. High efficiency and fast recovery of the optical Kerr responses were achieved when a signal-pulse wavelength was close to the absorption peak of the J aggregate film with off-resonant excitation. The on/off ratio in demultiplexing of 1 Tb/s signals was improved to be approximately 5. By introducing time delay to both horizontal and vertical directions, we succeeded in directly observing the conversion of 1 Tb/s serial signals into two-dimensionally arranged parallel signals.

  6. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.

    PubMed

    Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai

    2012-08-13

    We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.

  7. Investigation on thermally-induced optical nonlinearity of alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cheng, Xuemei; He, Bo; Ren, Zhaoyu; Zhang, Ying; Chen, Haowei; Bai, Jintao

    2018-06-01

    In this work, we studied the thermally-induced optical nonlinearity of alcohols by analyzing the far-filed diffraction rings patterns, which are generated when the alcohols are illuminated by a laser beam resonant to their overtones. We deduced the nonlinear refractive index coefficient n2 generated by thermal nonlinear optical effect to be - (20.53 ± 00.03) ×10-8cm2 /W , which is much higher than that of Kerr effect (7.7 ×10-16cm2 /W). The results also demonstrated that the thermally-induced optical nonlinearity increased with the laser power and sample concentration increasing. The notable nonlinearity suggests that thermal effect has potentials in many applications such as optical spatial modulation, and trapping and guiding of atoms.

  8. Investigations of black-hole spectra: Purely-imaginary modes and Kerr ringdown radiation

    NASA Astrophysics Data System (ADS)

    Zalutskiy, Maxim P.

    When black holes are perturbed they give rise to characteristic waves that propagate outwards carrying information about the black hole. In the linear regime these waves are described in terms of quasinormal modes (QNM). Studying QNM is an important topic which may provide a connection to the quantum theory of gravity in addition to their astrophysical applications. Quasinormal modes correspond to complex frequencies where the real part represents oscillation and the imaginary part represents damping. We have developed a new code for calculating QNM with high precision and accuracy, which we applied to the Schwarzschild and Kerr geometries. The high accuracy of our calculations was a significant improvement over prior work, allowing us to compute QNM much closer to the negative imaginary axis (NIA) than it was possible before. The existence of QNM on the NIA has remained poorly understood, but our high accuracy studies have highlighted the importance of understanding their nature. In this work we show how the purely-imaginary modes can be calculated with the help of the theory of confluent Heun polynomials with the conclusion that all modes on the NIA correspond to polynomial solutions. We also show that certain types of these modes correspond to Kerr QNM. Finally, using our highly accurate QNM data we model the ringdown, a remnant black hole's decaying radiation. Ringdown occurs in the final stages of such violent astrophysical events as supernovae and black hole collisions. We use our model to analyse the ringdown waveforms from the publicly available binary black hole coalescence catalog maintained by the SXS collaboration. In our analysis we use a number of methods: Fourier transform, multi-mode nonlinear fitting and waveform overlap. Both our fitting and overlap approach allow inclusion of many modes in the ringdown model with the goal being to extract information about the nature of the astrophysical source of the ringdown signal.

  9. Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium

    NASA Astrophysics Data System (ADS)

    Dasanayaka, Sahan; Atai, Javid

    2011-08-01

    Interactions between quiescent solitons in Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity are systematically investigated. In a previous work two disjoint families of solitons were identified in this model. One family can be viewed as the generalization of the Bragg grating solitons in Kerr nonlinearity with dispersive reflectivity (Type 1). On the other hand, the quintic nonlinearity is dominant in the other family (Type 2). For weak to moderate dispersive reflectivity, two in-phase solitons will attract and collide. Possible collision outcomes include merger to form a quiescent soliton, formation of three solitons including a quiescent one, separation after passing through each other once, asymmetric separation after several quasielastic collisions, and soliton destruction. Type 2 solitons are always destroyed by collisions. Solitons develop sidelobes when dispersive reflectivity is strong. In this case, it is found that the outcome of the interactions is strongly dependent on the initial separation of solitons. Solitons with sidelobes will collide only if they are in-phase and their initial separation is below a certain critical value. For larger separations, both in-phase and π-out-of-phase Type 1 and Type 2 solitons may either repel each other or form a temporary bound state that subsequently splits into two separating solitons. Additionally, in the case of Type 2 solitons, for certain initial separations, the bound state disintegrates into a single moving soliton.

  10. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  11. Derivation of an applied nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  12. Light amplification by seeded Kerr instability

    NASA Astrophysics Data System (ADS)

    Vampa, G.; Hammond, T. J.; Nesrallah, M.; Naumov, A. Yu.; Corkum, P. B.; Brabec, T.

    2018-02-01

    Amplification of femtosecond laser pulses typically requires a lasing medium or a nonlinear crystal. In either case, the chemical properties of the lasing medium or the momentum conservation in the nonlinear crystal constrain the frequency and the bandwidth of the amplified pulses. We demonstrate high gain amplification (greater than 1000) of widely tunable (0.5 to 2.2 micrometers) and short (less than 60 femtosecond) laser pulses, up to intensities of 1 terawatt per square centimeter, by seeding the modulation instability in an Y3Al5O12 crystal pumped by femtosecond near-infrared pulses. Our method avoids constraints related to doping and phase matching and therefore can occur in a wider pool of glasses and crystals even at far-infrared frequencies and for single-cycle pulses. Such amplified pulses are ideal to study strong-field processes in solids and highly excited states in gases.

  13. Casimir energy in Kerr space-time

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2014-10-01

    We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.

  14. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com; Ustinov, N. V., E-mail: n-ustinov@mail.ru

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutionsmore » of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.« less

  15. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  16. Sum-frequency nonlinear Cherenkov radiation generated on the boundary of bulk medium crystal.

    PubMed

    Wang, Xiaojing; Cao, Jianjun; Zhao, Xiaohui; Zheng, Yuanlin; Ren, Huaijin; Deng, Xuewei; Chen, Xianfeng

    2015-12-14

    We demonstrated experimentally a method to generate the sum-frequency Nonlinear Cherenkov radiation (NCR) on the boundary of bulk medium by using two synchronized laser beam with wavelength of 1300 nm and 800 nm. It is also an evidence that the polarization wave is always confined to the boundary. Critical conditions of surface sum-frequency NCR under normal and anomalous dispersion condition is discussed.

  17. Metric of two balancing Kerr particles in physical parametrization

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2015-11-01

    The present paper aims at elaborating a completely physical representation for the general 4-parameter family of the extended double-Kerr spacetimes describing two spinning sources in gravitational equilibrium. This involved problem is solved in a concise analytical form by using the individual Komar masses and angular momenta as arbitrary parameters, and the simplest equatorially symmetric specialization of the general expressions obtained by us yields the physical representation for the well-known Dietz-Hoenselaers superextreme case of two balancing identical Kerr constituents. The existence of the physically meaningful "black-hole-superextreme-object" equilibrium configurations permitted by the general solution may be considered as a clear indication that the spin-spin repulsion force might actually be by far stronger than expected earlier, when only the balance between two superextreme Kerr sources was thought possible. We also present the explicit analytical formulas relating the equilibrium states in the double-Kerr and double-Reissner-Nordström configurations.

  18. Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering

    NASA Astrophysics Data System (ADS)

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2018-06-01

    Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the

  19. Discrete Vector Solitons in Kerr Nonlinear Waveguide Arrays

    NASA Astrophysics Data System (ADS)

    Meier, Joachim; Hudock, Jared; Christodoulides, Demetrios; Stegeman, George; Silberberg, Y.; Morandotti, R.; Aitchison, J. S.

    2003-10-01

    We report the first experimental observation of discrete vector solitons in AlGaAs nonlinear waveguide arrays. These self-trapped states are possible through the coexistence of two orthogonally polarized fields and are stable in spite of the presence of four-wave mixing effects. We demonstrate that at sufficiently high power levels the two polarizations lock into a highly localized vector discrete soliton that would have been otherwise impossible in the absence of either one of these two components.

  20. Magnification effect of Kerr metric by configurations of collisionless particles in non-isotropic kinetic equilibria

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2018-05-01

    A test fluid composed of relativistic collisionless neutral particles in the background of Kerr metric is expected to generate non-isotropic equilibrium configurations in which the corresponding stress-energy tensor exhibits pressure and temperature anisotropies. This arises as a consequence of the constraints placed on single-particle dynamics by Killing tensor symmetries, leading to a peculiar non-Maxwellian functional form of the kinetic distribution function describing the continuum system. Based on this outcome, in this paper the generation of Kerr-like metric by collisionless N -body systems of neutral matter orbiting in the field of a rotating black hole is reported. The result is obtained in the framework of covariant kinetic theory by solving the Einstein equations in terms of an analytical perturbative treatment whereby the gravitational field is decomposed as a prescribed background metric tensor described by the Kerr solution plus a self-field correction. The latter one is generated by the uncharged fluid at equilibrium and satisfies the linearized Einstein equations having the non-isotropic stress-energy tensor as source term. It is shown that the resulting self-metric is again of Kerr type, providing a mechanism of magnification of the background metric tensor and its qualitative features.

  1. Third order nonlinear optical response exhibited by mono- and few-layers of WS 2

    DOE PAGES

    Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...

    2016-04-13

    In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.

  2. Perturbations of the Kerr spacetime in horizon-penetrating coordinates

    NASA Astrophysics Data System (ADS)

    Campanelli, Manuela; Khanna, Gaurav; Laguna, Pablo; Pullin, Jorge; Ryan, Michael P.

    2001-04-01

    We derive the Teukolsky equation for perturbations of a Kerr spacetime when the spacetime metric is written in either ingoing or outgoing Kerr-Schild form. We also write explicit formulae for setting up the initial data for the Teukolsky equation in the time domain in terms of a 3-metric and an extrinsic curvature. The motivation of this work is to have in place a formalism to study the evolution in the `close limit' of two recently proposed solutions to the initial-value problem in general relativity that are based on Kerr-Schild slicings. A perturbative formalism in horizon-penetrating coordinates is also very desirable in connection with numerical relativity simulations using black hole `excision'.

  3. Greybody factors and charges in Kerr/CFT

    DOE PAGES

    Cvetič, Mirjam; Larsen, Finn

    2009-09-01

    We compute greybody factors for near extreme Kerr black holes in D = 4 and D = 5. In D = 4 we include four charges so that our solutions can be continuously deformed to the BPS limit. In D = 5 we include two independent angular momenta so Left-Right symmetry is incorporated. We discuss the CFT interpretation of our emission amplitudes, including the overall frequency dependence and the dependence on all black hole parameters. We find that all additional parameters can be incorporated Kerr/CFT, with central charge independent of U(1) charges.

  4. Iron K α line of Kerr black holes with Proca hair

    NASA Astrophysics Data System (ADS)

    Zhou, Menglei; Bambi, Cosimo; Herdeiro, Carlos A. R.; Radu, Eugen

    2017-05-01

    We continue our study on the capabilities of present and future x-ray missions to test the nature of astrophysical black hole candidates via x-ray reflection spectroscopy and distinguish Kerr black holes from other solutions of 4-dimensional Einstein's gravity in the presence of a matter field. Here we investigate the case of Kerr black holes with Proca hair [1]. The analysis of a sample of these configurations suggests that even extremely hairy black holes can mimic the iron line profile of the standard Kerr black holes, and, at least for the configurations of our study, we find that current x-ray missions cannot distinguish these objects from Kerr black holes. This contrasts with our previous findings for the case of Kerr black holes with scalar (rather than Proca) hair [2], even though such comparison may be biased by the limited sample. Future x-ray missions can detect the presence of Proca hair, but a theoretical knowledge of the expected intensity profile (currently missing) can be crucial to obtain strong constraints.

  5. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    PubMed

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  6. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  7. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-01

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  8. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Lattice-Boltzmann model to simulate diffractive nonlinear ultrasound beam propagation in a dissipative fluid medium

    NASA Astrophysics Data System (ADS)

    Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan

    2012-12-01

    Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.

  10. Gravitational collapse to a Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano

    2017-07-01

    We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.

  11. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  12. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.

    PubMed

    Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi

    2008-03-01

    In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.

  13. Non-linear glasses and metaglasses for photonics, a review: Part II. Kerr nonlinearity and metaglasses of positive and negative refraction

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2008-01-01

    This is the second part of a paper on nonlinear properties of optical glasses and metaglasses. A subject of the paper is a review of the basic properties of several families of high optical quality glasses for photonics. The emphasis is put on nonlinear properties of these glasses, including nonlinearities of higher order. Nonlinear effects were debated and systematized. Interactions between optical wave of high power density with glass were described. All parameters of the glass increasing the optical nonlinearities were categorized. Optical nonlinearities in glasses were grouped into the following categories: time and frequency domain, amplitude and phase, resonant and non-resonant, elastic and inelastic, lossy and lossless, reversible and irreversible, instant and slow, adiabatic and non-adiabatic, with virtual versus real excitation of glass, destroying and non-destroying, etc. Nonlinear effects in glasses are based on the following effects: optical, thermal, mechanical and/or acoustic, electrical, magnetic, density and refraction modulation, chemical, etc.

  14. Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements

    NASA Astrophysics Data System (ADS)

    Cantwell, P. R.; Gibson, U. J.; Allwood, D. A.; Macleod, H. A. M.

    2006-11-01

    We have studied the increases in the longitudinal magneto-optic Kerr effect signal contrast that can be achieved by the application of optical overlayers on magnetic films. For simple coatings, a factor of ˜3 improvement in signal contrast is possible. Matching the optical impedance of the magnetic material improves the raw Kerr signal and also reduces the sample reflectivity, yielding a large Kerr angle. The contrast can be optimized by increasing the rotated Kerr reflectivity component while maintaining enough of the base reflectivity Fresnel component to produce a strong signal. Calculations and experimental results are presented for single layer ZrO2 dielectric coatings on Ni along with calculations for a three-layer Au -ZrO2-Ni structure. Incidence angle effects are also presented.

  15. A geometric description of Maxwell field in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek; Smołka, Tomasz

    2016-06-01

    We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.

  16. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  17. Mach-Zehnder interferometer implementation for thermo-optical and Kerr effect study

    NASA Astrophysics Data System (ADS)

    Bundulis, Arturs; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2018-04-01

    In this paper, we propose the Mach-Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach-Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.

  18. Horizon geometry for Kerr black holes with synchronized hair

    NASA Astrophysics Data System (ADS)

    Delgado, Jorge F. M.; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    We study the horizon geometry of Kerr black holes (BHs) with scalar synchronized hair [1], a family of solutions of the Einstein-Klein-Gordon system that continuously connects to vacuum Kerr BHs. We identify the region in parameter space wherein a global isometric embedding in Euclidean 3-space, E3, is possible for the horizon geometry of the hairy BHs. For the Kerr case, such embedding is possible iff the horizon dimensionless spin jH (which equals the total dimensionless spin, j ), the sphericity s and the horizon linear velocity vH are smaller than critical values, j(S ),s(S ),vH(S ), respectively. For the hairy BHs, we find that jHKerr BHs) differs from jH—is larger than unity.

  19. Effective stability against superradiance of Kerr black holes with synchronised hair

    NASA Astrophysics Data System (ADS)

    Degollado, Juan Carlos; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    Kerr black holes with synchronised hair [1,2] are a counter example to the no hair conjecture, in General Relativity minimally coupled to simple matter fields (with mass μ) obeying all energy conditions. Since these solutions have, like Kerr, an ergoregion it has been a lingering possibility that they are afflicted by the superradiant instability, the same process that leads to their dynamical formation from Kerr. A recent breakthrough [3] confirmed this instability and computed the corresponding timescales for a sample of solutions. We discuss how these results and other observations support two conclusions: 1) starting from the Kerr limit, the increase of hair for fixed coupling μM (where M is the BH mass) increases the timescale of the instability; 2) there are hairy solutions for which this timescale, for astrophysical black hole masses, is larger than the age of the Universe. The latter conclusion introduces the limited, but physically relevant concept of effective stability. The former conclusion, allows us to identify an astrophysically viable domain of such effectively stable hairy black holes, occurring, conservatively, for Mμ ≲ 0.25. These are hairy BHs that form dynamically, from the superradiant instability of Kerr, within an astrophysical timescale, but whose own superradiant instability occurs only in a cosmological timescale.

  20. New envelope solitons for Gerdjikov-Ivanov model in nonlinear fiber optics

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Alqahtani, Rubayyi T.; Zhou, Qin; Biswas, Anjan

    2017-11-01

    Exact soliton solutions in a class of derivative nonlinear Schrödinger equations including a pure quintic nonlinearity are investigated. By means of the coupled amplitude-phase formulation, we derive a nonlinear differential equation describing the evolution of the wave amplitude in the non-Kerr quintic media. The resulting amplitude equation is then solved to get exact analytical chirped bright, kink, antikink, and singular soliton solutions for the model. It is also shown that the nonlinear chirp associated with these solitons is crucially dependent on the wave intensity and related to self-steepening and group velocity dispersion parameters. Parametric conditions on physical parameters for the existence of chirped solitons are also presented. These localized structures exist due to a balance among quintic nonlinearity, group velocity dispersion, and self-steepening effects.

  1. Scattering of Dirac waves off Kerr black holes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata

    2000-10-01

    Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.

  2. Improved nonlinear plasmonic slot waveguide: a full study

    NASA Astrophysics Data System (ADS)

    Elsawy, Mahmoud M. R.; Nazabal, Virginie; Chauvet, Mathieu; Renversez, Gilles

    2016-04-01

    We present a full study of an improved nonlinear plasmonic slot waveguides (NPSWs) in which buffer linear dielectric layers are added between the Kerr type nonlinear dielectric core and the two semi-infinite metal regions. Our approach computes the stationary solutions using the fixed power algorithm, in which for a given structure the wave power is an input parameter and the outputs are the propagation constant and the corresponding field components. For TM polarized waves, the inclusion of these supplementary layers have two consequences. First, they reduced the overall losses. Secondly, they modify the types of solutions that propagate in the NPSWs adding new profiles enlarging the possibilities offered by these nonlinear waveguides. In addition to the symmetric linear plasmonic profile obtained in the simple plasmonic structure with linear core such that its effective index is above the linear core refractive index, we obtained a new field profile which is more localized in the core with an effective index below the core linear refractive index. In the nonlinear case, if the effective index of the symmetric linear mode is above the core linear refractive index, the mode field profiles now exhibit a spatial transition from a plasmonic type profile to a solitonic type one. Our structure also provides longer propagation length due to the decrease of the losses compared to the simple nonlinear slot waveguide and exhibits, for well-chosen refractive index or thickness of the buffer layer, a spatial transition of its main modes that can be controlled by the power. We provide a full phase diagram of the TM wave operating regimes of these improved NPSWs. The stability of the main TM modes is then demonstrated numerically using the FDTD. We also demonstrate the existence of TE waves for both linear and nonlinear cases (for some configurations) in which the maximum intensity is located in the middle of the waveguide. We indicate the bifurcation of the nonlinear

  3. Schwarzschild and Kerr solutions of Einstein's field equation: An Introduction

    NASA Astrophysics Data System (ADS)

    Heinicke, Christian; Hehl, Friedrich W.

    2015-12-01

    Starting from Newton's gravitational theory, we give a general introduction into the spherically symmetric solution of Einstein's vacuum field equation, the Schwarzschild(-Droste) solution, and into one specific stationary axially symmetric solution, the Kerr solution. The Schwarzschild solution is unique and its metric can be interpreted as the exterior gravitational field of a spherically symmetric mass. The Kerr solution is only unique if the multipole moments of its mass and its angular momentum take on prescribed values. Its metric can be interpreted as the exterior gravitational field of a suitably rotating mass distribution. Both solutions describe objects exhibiting an event horizon, a frontier of no return. The corresponding notion of a black hole is explained to some extent. Eventually, we present some generalizations of the Kerr solution.

  4. The superradiant instability regime of the spinning Kerr black hole

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-07-01

    Spinning Kerr black holes are known to be superradiantly unstable to massive scalar perturbations. We here prove that the instability regime of the composed Kerr-black-hole-massive-scalar-field system is bounded from above by the dimensionless inequality Mμ < m ṡ√{2(1 + γ) (1 -√ 1 -γ2) / -γ2 4γ2, where { μ , m } are respectively the proper mass and azimuthal harmonic index of the scalar field and γ ≡r- /r+ is the dimensionless ratio between the horizon radii of the black hole. It is further shown that this analytically derived upper bound on the superradiant instability regime of the spinning Kerr black hole agrees with recent numerical computations of the instability resonance spectrum.

  5. Dark solitons at nonlinear interfaces.

    PubMed

    Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S

    2010-05-01

    The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one describing bright soliton refraction to yield a generalized Snell's law whose validity is verified numerically. The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to internal refraction on varying the soliton contrast parameter.

  6. 75 FR 19989 - Final Environmental Impact Statement for Drought Management Planning at the Kerr Hydroelectric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Drought Management Planning at the Kerr Hydroelectric Project, Flathead Lake, MT AGENCY: Bureau of Indian... Impact Statement (FEIS) for Drought Management Planning at the Kerr Hydroelectric Project, Flathead Lake... drought management planning at the Kerr Hydroelectric Project no sooner than 30 days following the...

  7. A Novel Behavior of Pump Power in the Instability Induced Supercontinuum Generation of Saturable Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Porsezian, K.

    2015-04-01

    We investigate the modulational instability (MI) induced Supercontinuum generation (SCG) in exponential saturable nonlinearity. The pump power (P) is observed to behave in a unique way such that unlike the conventional Kerr case, the effective nonlinearity of saturable nonlinear system does not monotonously increases with an increase in power. The supercontinuum is observed at the shortest distance of propagation at power equal to the saturation power (Ps), whereas for all combinations of powers (P < Ps or P > Ps) spectral broadening occurs at longer distance.

  8. Constraints on two accretion disks centered on the equatorial plane of a Kerr SMBH

    NASA Astrophysics Data System (ADS)

    Pugliese, Daniela; Stuchlík, Zdeněk

    2017-12-01

    The possibility that two toroidal accretion configurations may be orbiting around a super–massive Kerr black hole has been addressed. Such tori may be formed during different stages of the Kerr attractor accretion history. We consider the relative rotation of the tori and the corotation or counterrotation of a single torus with respect to the Kerr attractor. We give classification of the couples of accreting and non–accreting tori in dependence on the Kerr black hole dimensionless spin. We demonstrate that only in few cases a double accretion tori system may be formed under specific conditions.

  9. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case ofmore » the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.« less

  10. Self-force correction to geodetic spin precession in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp

    2017-08-01

    We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.

  11. All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1.

    PubMed

    Lee, Ju Han; Kikuchi, Kazuro; Nagashima, Tatsuo; Hasegawa, Tomoharu; Ohara, Seiki; Sugimoto, Naoki

    2005-04-18

    We experimentally demonstrate the use of our fabricated 1-m-long Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter. The wavelength converter, composed of the 1-m Bi-NLF readily achieves error-free wavelength conversion of an 80-Gbit/s input signal.

  12. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2010-05-21

    We have theoretically demonstrated the large enhancement of the optical Kerr effect in a scheme of a nanomechanical resonator coupled to a quantum dot and shown that this phenomenon can be used to realize a fast optical Kerr switch by turning the control field on or off. Due to the vibration of the nanoresonator, as we pump on the strong control beam, the optical spectrum shows that the magnitude of this optical Kerr effect is proportional to the intensity of the control field. In this case, a fast and tunable optical Kerr switch can be implemented easily by an intensity-adjustable laser. Based on this tunable optical Kerr switch, we also provide a detection method to measure the frequency of the nanomechanical resonator in this coupled system.

  13. Logarithmic corrections to black hole entropy from Kerr/CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Furthermore, Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. We compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  14. Logarithmic corrections to black hole entropy from Kerr/CFT

    DOE PAGES

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew; ...

    2017-04-14

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Furthermore, Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. We compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  15. Managing the Research University: Clark Kerr and the University of California

    ERIC Educational Resources Information Center

    Soo, Mary; Carson, Cathryn

    2004-01-01

    In the 1950s and 1960s, Clark Kerr led the University of California's Berkeley campus, and then the University of California as a whole. Throughout these years, he developed a system of managerial strategies. This paper shows how Kerr's administrative views drew upon his background in industrial relations, his liberal theories of pluralistic…

  16. Robert S. Kerr Environmental Research Center

    EPA Science Inventory

    The Kerr Center, situated on 16 acres three miles south of Ada, Oklahoma, houses the Ground Water and Ecosystems Restoration Division (GWERD) of the National Risk Management Research Laboratory (NRMRL). The division develops strategies and technologies to protect and restore grou...

  17. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin, E-mail: liubin-d@126.com; Liu, Yun-Feng; He, Xing-Dao

    2016-06-15

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in redmore » shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.« less

  18. Hybrid Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  19. Bright-type and dark-type vector solitons of the (2 + 1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Yu; Jiang, Li-Hong

    2018-03-01

    We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.

  20. Nonlinear interferometry approach to photonic sequential logic

    NASA Astrophysics Data System (ADS)

    Mabuchi, Hideo

    2011-10-01

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  1. Hidden symmetries on Kerr-NUT-(A)dS metrics of Einstein-Sasaki type

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2013-01-01

    The hidden symmetries of higher dimensional Euclideanised Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. As a concrete example we present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.

  2. Quasilocal energy and surface geometry of Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Yu, Chengjie; Liu, Jian-Liang

    2017-04-01

    We study the quasilocal energy (QLE) and the surface geometry for Kerr spacetime in the Boyer-Lindquist coordinates without taking the slow rotation approximation. We also consider in the region r ≤2 m , which is inside the ergosphere. For a certain region, r >rk(a ) , the Gaussian curvature of the surface with constant t , r is positive, and for r >√{3 }a the critical value of the QLE is positive. We found that the three curves: the outer horizon r =r+(a ), r =rk(a ) and r =√{3 }a intersect at the point a =√{3 }m /2 , which is the limit for the horizon to be isometrically embedded into R3. The numerical result indicates that the Kerr QLE is monotonically decreasing to the ADM m from the region inside the ergosphere to large r . Based on the second law of black hole dynamics, the QLE is increasing with respect to the irreducible mass Mir. From the results of Chen-Wang-Yau, we conclude that in a certain region, r >rh(a ), the critical value of the Kerr QLE is a global minimum.

  3. Ergosurfaces for Kerr black holes with scalar hair

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Radu, Eugen

    2014-06-01

    We have recently reported the existence of Kerr black holes with scalar hair in General Relativity minimally coupled to a massive, complex scalar field [C. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)]. These solutions interpolate between boson stars and Kerr black holes. The latter have a well-known topologically S2 ergosurface (ergosphere) whereas the former develop a S1×S1 ergosurface (ergotorus) in a region of parameter space. We show that hairy black holes always have an ergoregion, and that this region is delimited by either an ergosphere or an ergo-Saturn—i.e. a S2⊕(S1×S1) ergosurface. In the phase space of solutions, the ergotorus can either appear disconnected from the ergosphere or pinch off from it. We provide a heuristic argument, based on a measure of the size of the ergoregion, that superradiant instabilities—which are likely to be present—are weaker for hairy black holes than for Kerr black holes with the same global charges. We observe that Saturn-like, and even more remarkable, ergosurfaces should also arise for other rotating "hairy" black holes.

  4. Optical nonlinearities of excitons in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo

    2018-04-01

    We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.

  5. Magneto-optical Kerr rotation and color in ultrathin lossy dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na

    2017-05-01

    Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.

  6. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    NASA Astrophysics Data System (ADS)

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  7. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  8. Routes to spatiotemporal chaos in Kerr optical frequency combs.

    PubMed

    Coillet, Aurélien; Chembo, Yanne K

    2014-03-01

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato-Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  9. Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources

    EIA Publications

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for worldwide oil and natural gas reserves and production of Anadarko, Kerr-McGee, and Western Gas Resources to inform discussions of Anadarko Petroleum Corp.'s proposed acquisition of both Kerr-McGee Corp. and Western Gas Resources Inc. for a total of $23.3 billion, which was announced June 23, 2006.

  10. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Mahak, Nadia

    2018-06-01

    The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

  11. Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-01-01

    The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.

  12. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  13. Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime

    NASA Astrophysics Data System (ADS)

    Övgün, A.; Sakalli, I.

    2018-02-01

    In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.

  14. Laboratory upwelled radiance and reflectance spectra of Kerr reservoir sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    Reflectance, chromaticity, and several other physical and chemical properties were measured for various water mixtures of bottom sediments taken from two sites at Kerr Reservoir, Virginia. Mixture concentrations ranged from 5 to 1000 ppm by weight of total suspended solids (TSS) in filtered deionized tap water. The two sets of radiance and reflectance spectra obtained were similar in shape and magnitude for comparable values of TSS. Upwelled reflectance was observed to be a nonlinear function of TSS with the degree of curvature a function of wavelength. Sediment from the downstream site contained a greater amount of particulate organic carbon than from the upstream site. No strong conclusions can be made regarding the effects of this difference on the radiance and reflectance spectra. Near-infrared wavelengths appear useful for measuring highly turbid water with concentrations up to 1000 ppm or more. Chromaticity characteristics do not appear useful for monitoring sediment loads above 150 ppm.

  15. Topological nature of nonlinear optical effects in solids

    PubMed Central

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-01-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523

  16. Topological nature of nonlinear optical effects in solids.

    PubMed

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-05-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.

  17. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  18. Magneto-optical Kerr spectroscopy of noble metals

    NASA Astrophysics Data System (ADS)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the

  19. Exploration of multiphoton entangled states by using weak nonlinearities

    PubMed Central

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044

  20. NONLINEAR AND FIBER OPTICS: Phase locking of a laser array in the case of different types of multibeam intracavity interaction in nonlinear media

    NASA Astrophysics Data System (ADS)

    Bel'dyugin, Igor'M.; Alimin, D. D.; Zolotarev, M. V.

    1991-03-01

    A theoretical investigation is made of the phase locking of a laser array in the case of different types of multibeam intracavity interaction in nonlinear media. The conditions are found under which a long-range coupling of the "all with all" type is established between the lasers and also when only the nearest neighbors interact (short-range coupling). The influence of the number of lasers, frequency offsets of their resonators, and of the coupling coefficients on the phase-locking band is considered. Expressions are obtained for determination of the threshold values of the gain and of the frequency characteristics of cophasal and noncophasal operation of a laser array under long-range and short-range coupling conditions. A study is made of the influence of the parameters of a resonantly absorbing medium on phase locking of a set of lasers and it is shown that in the case of the optimal long-range coupling the phase-locking band is independent of the number of lasers.

  1. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  2. Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching.

    PubMed

    Guo, Hairun; Zhou, Binbin; Steinert, Michael; Setzpfandt, Frank; Pertsch, Thomas; Chung, Hung-ping; Chen, Yen-Hung; Bache, Morten

    2015-02-15

    Supercontinuum generation (SCG) is most efficient when the solitons can be excited directly at the pump laser wavelength. Quadratic nonlinear waveguides may induce an effective negative Kerr nonlinearity, so temporal solitons can be directly generated in the normal (positive) dispersion regime overlapping with common ultrafast laser wavelengths. There is no need for waveguide dispersion engineering. Here, we experimentally demonstrate SCG in standard lithium niobate (LN) waveguides without quasi-phase matching (QPM), pumped with femtosecond pulses in the normal dispersion regime. The observed large bandwidths (even octave spanning), together with other experimental data, indicate that negative nonlinearity solitons are indeed excited, which is backed up by numerical simulations. The QPM-free design reduces production complexity, extends the maximum waveguide length, and limits undesired spectral resonances. Finally, nonlinear crystals can be used where QPM is inefficient or impossible, which is important for mid-IR SCG. QPM-free waveguides in mid-IR nonlinear crystals can support negative nonlinearity solitons, as these waveguides have a normal dispersion at the emission wavelengths of mid-IR ultrafast lasers.

  3. A seesaw-type approach for enhancing nonlinear energy harvesting

    NASA Astrophysics Data System (ADS)

    Deng, Huaxia; Wang, Zhemin; Du, Yu; Zhang, Jin; Ma, Mengchao; Zhong, Xiang

    2018-05-01

    Harvesting sustainable mechanical energy is the ultimate objective of nonlinear energy harvesters. However, overcoming potential barriers, especially without the use of extra excitations, poses a great challenge for the development of nonlinear generators. In contrast to the existing methods, which typically modify the barrier height or utilize additional excitations, this letter proposes a seesaw-type approach to facilitate escape from potential wells by transfer of internal energy, even under low-intensity excitation. This approach is adopted in the design of a seesaw-type nonlinear piezoelectric energy harvester and the energy transfer process is analyzed by deriving expressions for the energy to reveal the working mechanism. Comparison experiments demonstrate that this approach improves energy harvesting in terms of an increase in the working frequency bandwidth by a factor of 60.14 and an increase in the maximum output voltage by a factor of 5.1. Moreover, the output power is increased by a factor of 51.3, which indicates that this approach significantly improves energy collection efficiency. This seesaw-type approach provides a welcome boost to the development of renewable energy collection methods by improving the efficiency of harvesting of low-intensity ambient mechanical energy.

  4. Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons

    NASA Astrophysics Data System (ADS)

    Midya, Bikashkali; Konotop, Vladimir V.

    2017-07-01

    We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.

  5. Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals.

    PubMed

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-08-03

    We consider the electromagnetic response of a topological Weyl semimetal (TWS) with a pair of Weyl nodes in the bulk and corresponding Fermi arcs in the surface Brillouin zone. We compute the frequency-dependent complex conductivities σαβ(ω) and also take into account the modification of Maxwell equations by the topological θ-term to obtain the Kerr and Faraday rotations in a variety of geometries. For TWS films thinner than the wavelength, the Kerr and Faraday rotations, determined by the separation between Weyl nodes, are significantly larger than in topological insulators. In thicker films, the Kerr and Faraday angles can be enhanced by choice of film thickness and substrate refractive index. We show that, for radiation incident on a surface with Fermi arcs, there is no Kerr or Faraday rotation but the electric field develops a longitudinal component inside the TWS, and there is linear dichroism signal. Our results have implications for probing the TWS phase in various experimental systems.

  6. Nonlinear Acoustic Propagation into the Seafloor

    NASA Astrophysics Data System (ADS)

    McDonald, B. Edward

    2006-05-01

    Explosions near the seafloor result in shock waves entering a much more complicated medium than water or air. Nonlinearities may be increased by two processes inherent to granular media: (1) a poroelastic nonlinearity comparable to the addition of bubbles to water, and (2) the Hertz force resulting from elastic deformation of grains, proportional to the Youngs modulus of the grains times the strain rate to the power 3/2. These two types of nonlinearity for shock propagation into the seafloor are investigated using a variant of the NPE model. The traditional Taylor series expansion of the equation of state (pressure as a function of density) is not appropriate to the Hertz force in the limit of small strain. We present a simple nonlinear wave equation model for compressional waves in marine sediments that retains the Hertz force explicitly with overdensity to the power 3/2. Numerical results for shock propagation are compared with similarity solutions for quadratic nonlinearity and for the fractional nonlinearity of the Hertz force.

  7. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

    PubMed Central

    Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-01-01

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  8. Optical Kerr effect and two-photon absorption in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2018-05-01

    A theoretical treatment of nonlinear refraction and two-photon absorption is presented for a novel two-dimensional material, monolayer black phosphorus (or phosphorene), irradiated by a normally incident and linearly polarized coherent laser beam of frequency ω. It is found that both the nonlinear refractive index n 2(ω) and the two-photon absorption coefficient α 2(ω) of phosphorene depend upon the polarization of the radiation field relative to phosphorene’s crystallographic axes. For the two principal polarization directions considered—viz, the armchair ({ \\mathcal A }{ \\mathcal C }) and zigzag ({ \\mathcal Z }{ \\mathcal Z }), the calculated values of n 2 and α 2 are distinguished by the order of their magnitude, with the n 2 and α 2 values being greater for the { \\mathcal A }{ \\mathcal C } direction. Furthermore, for almost all the incident photon energies below the fundamental absorption edge, except its neighborhood, the signs of n 2 as well as α 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions are opposed to each other. Also, for both the directions, the change of sign of n 2 is predicted to occur in the way between the two-photon absorption edge and the fundamental absorption edge, as well as in the near vicinity of the latter, where the Kerr nonlinearity has a pronounced resonant character and the magnitude of n 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions reaches its largest positive values of the order of 10‑9 and 10‑10 cm2 W‑1, respectively. The implications of the findings for practical all-optical switching applications are discussed.

  9. Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators.

    PubMed

    Goto, Hayato; Lin, Zhirong; Nakamura, Yasunobu

    2018-05-08

    A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.

  10. Power play in the supercontinuum spectra of saturable nonlinear media

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.

    2014-04-01

    We investigate the role of pump power in the generation of supercontinua spectra induced by modulational instability (MI) in saturable nonlinear media (SNL). First, we analyze the dynamics of MI in the SNL using linear stability analysis. We then deal with the generation of a broadband spectrum by virtue of the instability process, and identify the unique behavior of MI in the SNL system. Unlike the case of Kerr-type nonlinearity, the so-called critical modulational frequency (CMF) does not monotonically increase, but behaves in a unique way, such that the increase in power increases the CMF up to the saturation power, and a further increase in power decreases the CMF. This behavior is identified to be unusual in the context of MI and thus makes the study of MI and supercontinuum generation (SCG) of interest. In order to confirm the above stated behavior in relation to SCG, we numerically analyzed the SCG using a split-step Fourier method, and the results confirm that at input power equal to saturation power, phase matching occurs at a short distance relative to other power levels and leads to a maximum enhancement of SCG in certain SNL materials.

  11. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  12. Source of the Kerr-Newman solution as a gravitating bag model: 50 years of the problem of the source of the Kerr solution

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2016-01-01

    It is known that gravitational and electromagnetic fields of an electron are described by the ultra-extreme Kerr-Newman (KN) black hole solution with extremely high spin/mass ratio. This solution is singular and has a topological defect, the Kerr singular ring, which may be regularized by introducing the solitonic source based on the Higgs mechanism of symmetry breaking. The source represents a domain wall bubble interpolating between the flat region inside the bubble and external KN solution. It was shown recently that the source represents a supersymmetric bag model, and its structure is unambiguously determined by Bogomolnyi equations. The Dirac equation is embedded inside the bag consistently with twistor structure of the Kerr geometry, and acquires the mass from the Yukawa coupling with Higgs field. The KN bag turns out to be flexible, and for parameters of an electron, it takes the form of very thin disk with a circular string placed along sharp boundary of the disk. Excitation of this string by a traveling wave creates a circulating singular pole, indicating that the bag-like source of KN solution unifies the dressed and point-like electron in a single bag-string-quark system.

  13. Strongly interacting photons in asymmetric quantum well via resonant tunneling.

    PubMed

    Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H

    2012-04-09

    We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.

  14. Nonlinear guiding of picosecond CO2 laser pulses in atmosphere(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tochitsky, Sergei

    2017-05-01

    During the last 20 years much attention has been given to the study of propagation of short intense laser pulses for which the peak power exceeds the critical power of self-focusing, Pcr. For a laser power P < Pcr, a dynamic equilibrium between the Kerr self-focusing, diffraction and defocusing caused by laser-ionized plasma result in the production of a high intensity laser filament in air within which a variety of nonlinear optical phenomena are observed. However, research in the 0.8-1 μm range so far has shown a fundamental limitation of guided energy to a few mJ transported within an 100 μm single channel. A long-wavelength, 0 10 μm CO2 laser is a promising candidate for nonlinear guiding because expected high Pcr values according to the modeling should allow for the increase of energy (and therefore power) in a self-guided beam from mJ (GW) to few Joules (TW). During the last decade a significant progress has been achieved in amplification of picosecond pulses to terawatt and recently to <10 TW power level at UCLA and ATF BNL. Such powerful 10 μm lasers open possibility for nonlinear propagation studies in an atmospheric window with high transmission. As a natural first step in a our program on picosecond CO2 laser filamentation, we have made first measurements of Kerr coefficients of air and air constituents around 10 μm. We also undertook direct measurements of n2 of air by analyzing nonlinear self-focusing in air using a 3 ps, 600 GW pulses of the BNL CO2 laser.

  15. Development of selective medium for IMP-type carbapenemase-producing Enterobacteriaceae in stool specimens.

    PubMed

    Yamamoto, Norihisa; Kawahara, Ryuji; Akeda, Yukihiro; Shanmugakani, Rathina Kumar; Yoshida, Hisao; Hagiya, Hideharu; Hara, Naohiro; Nishi, Isao; Yukawa, Satomi; Asada, Rumiko; Sasaki, Yumi; Maeda, Kazuhiro; Sakamoto, Noriko; Hamada, Shigeyuki; Tomono, Kazunori

    2017-03-24

    Identification of carbapenemase-producing Enterobacteriaceae (CPE) in faecal specimens is challenging. This fact is particularly critical because low-level carbapenem-resistant organisms such as IMP-producing CPE are most prevalent in Japan. We developed a modified selective medium more suitable for IMP-type CPE. Fifteen reference CPE strains producing different types of β-lactamases were used to evaluate the commercially available CHROMagar KPC and chromID CARBA as well as the newly prepared MC-ECC medium (CHROMagar ECC supplemented with meropenem, cloxacillin, and ZnSO 4 ) and M-ECC medium (CHROMagar ECC supplemented with meropenem and ZnSO 4 ). A total of 1035 clinical samples were then examined to detect CPE using chromID CARBA and M-ECC medium. All tested strains producing NDM-, KPC-, and OXA-48-carbapenemases were successfully cultured in the media employed. Although most of the IMP-positive strains did not grow in CHROMagar KPC, chromID CARBA, or MC-ECC, all tested strains grew on M-ECC. When faecal samples were applied to the media, M-ECC medium allowed the best growth of IMP-type CPE with a significantly higher sensitivity (99.3%) than that of chromID CARBA (13.9%). M-ECC medium was determined as the most favourable selective medium for the detection of IMP-type CPE as well as other types of CPE.

  16. Closed Conformal Killing-Yano Tensor and Uniqueness of Generalized Kerr-NUT-de Sitter Spacetime

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi

    We classify all spacetimes with a rank-2 closed conformal Killing-Yano tensor. They give a generalization of Kerr-NUT-de Sitter spacetime. The Einstein condition is explicitly solved. The Kerr-NUT-de Sitter spacetime is obtained as a spacetime with a non-degenerate CKY tensor.

  17. Third-order Nonlinear Optical Properties of Metallodielectric Stacks

    DTIC Science & Technology

    2011-07-01

    developed by Sheik- Bahae et al [7] a (Gaussian) laser beam is focused in free space; a sample is positioned along the propagation (Z) axis of the laser...transmittance and reflectance coefficients are defined for any angle of incidence as 22 0 ||,|| cos cos rRt n n T i tt    ; (2) i  and t are...nonlinear coefficient,    4 2 2 i n  , has a complex value. The longitudinal component of the Poynting vector was used in Eq. (11). The Kerr

  18. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  19. Study of travelling wave solutions for some special-type nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu

    2018-07-01

    The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.

  20. Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique

    NASA Astrophysics Data System (ADS)

    Motiei, H.; Jafari, A.; Naderali, R.

    2017-02-01

    In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.

  1. Physical Properties of the Double Kerr Solution

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Rebelo, Carmen

    We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.

  2. Equilibrium control of nonlinear verticum-type systems, applied to integrated pest control.

    PubMed

    Molnár, S; Gámez, M; López, I; Cabello, T

    2013-08-01

    Linear verticum-type control and observation systems have been introduced for modelling certain industrial systems, consisting of subsystems, vertically connected by certain state variables. Recently the concept of verticum-type observation systems and the corresponding observability condition have been extended by the authors to the nonlinear case. In the present paper the general concept of a nonlinear verticum-type control system is introduced, and a sufficient condition for local controllability to equilibrium is obtained. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems. Starting from the integrated pest control model of Rafikov and Limeira (2012) and Rafikov et al. (2012), a nonlinear verticum-type model has been set up an equilibrium control is obtained. Furthermore, a corresponding bioeconomical problem is solved minimizing the total cost of integrated pest control (combining chemical control with a biological one). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Scheinfein, M. R.

    1993-12-01

    Surface and ultrathin-film magnetocrystalline anisotropy in epitaxial fcc Fe thin films grown on room-temperature Cu(100) single crystals has been investigated, in situ, by the combined surface magneto-optical Kerr effects (SMOKE). In polar, longitudinal, and transverse Kerr effects, the direction of the applied magnetic field must be distinguished from the direction of magnetization during the switching process. For arbitrary orientations of the magnetization and field axis relative to the optical scattering plane, any of the three Kerr effects may contribute to the detected signal. A general expression for the normalized light intensity sensed by a photodiode detector, involving all three combined Kerr effects, is obtained both in the ultrathin-film limit and for bulk, at general oblique incidence angles and with different orientations of the polarizer, modulator, and analyzer. This expression is used to interpret the results of fcc Fe/Cu(100) SMOKE measurements. For films grown at room temperature, polar and longitudinal Kerr-effect magnetization loops show that the easy axis of magnetization rotates from the (canted) out-of-plane direction to the in-plane direction at a thickness of about 4.7 monolayers. Transverse Kerr-effect measurements indicate that the in-plane easy axes are biaxial.

  4. Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes

    NASA Astrophysics Data System (ADS)

    Jiang, Jiachen; Bambi, Cosimo; Steiner, James F.

    2015-05-01

    The iron Kα line commonly observed in the X-ray spectrum of both stellar-mass and supermassive black hole candidates is produced by the illumination of a cold accretion disk by a hot corona. In this framework, the activation of a new flaring region in the hot corona imprints a time variation on the iron line spectrum. Future X-ray facilities with high time resolution and large effective areas may be able to measure the so-called 2-dimensional transfer function; that is, the iron line profile detected by a distant observer as a function of time in response to an instantaneous flare from the X-ray primary source. This work is a preliminary study to determine if and how such a technique can provide more information about the spacetime geometry around the compact object than the already possible measurements of the time-integrated iron line profile. Within our simplified model, we find that a measurement of iron line reverberation can improve constraints appreciably given a sufficiently strong signal, though that most of the information is present in the time-integrated spectrum. Our aim is to test the Kerr metric. We find that current X-ray facilities and data are unable to provide strong tests of the Kerr nature of supermassive black hole candidates. We consider an optimistic case of 105 iron line photons from a next-generation data set. With such data, the reverberation model improves upon the spectral constraint by an order of magnitude.

  5. Kerr-McGee and the NRC: from Indian country to Silkwood to Gore.

    PubMed

    Baer, H

    1990-01-01

    By focusing upon the Nuclear Regulatory Commission's appraisal of the Kerr-McGee Corporation's safety record in the Four Corners area and at two facilities in Oklahoma, this article examines the political economy of nuclear regulation in American society. Particular attention is given to the agency's response to intervenor groups which protested various operations at Kerr-McGee facility in Gore, Oklahoma, both prior to and following the accidental rupture of a cylinder containing uranium hexafluoride. Despite a consistent record of violations and nuclear mishaps by Kerr-McGee, the Nuclear Regulatory Commission permitted the company to essentially monitor its own activities. Rather than protecting workers and the public from the hazards of the nuclear industry, state regulation attempts to legitimize and defuse public opposition to its endeavors.

  6. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au-Pt nanoparticles suspended in ethanol

    NASA Astrophysics Data System (ADS)

    Fernández-Valdés, D.; Torres-Torres, C.; Martínez-González, C. L.; Trejo-Valdez, M.; Hernández-Gómez, L. H.; Torres-Martínez, R.

    2016-07-01

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au-Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol-gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV-Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  7. Testing the Kerr metric with the iron line and the KRZ parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Jiang, Jiachen; Bambi, Cosimo, E-mail: yyni13@fudan.edu.cn, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    The spacetime geometry around astrophysical black holes is supposed to be well approximated by the Kerr metric, but deviations from the Kerr solution are predicted in a number of scenarios involving new physics. Broad iron Kα lines are commonly observed in the X-ray spectrum of black holes and originate by X-ray fluorescence of the inner accretion disk. The profile of the iron line is sensitively affected by the spacetime geometry in the strong gravity region and can be used to test the Kerr black hole hypothesis. In this paper, we extend previous work in the literature. In particular: i )more » as test-metric, we employ the parametrization recently proposed by Konoplya, Rezzolla, and Zhidenko, which has a number of subtle advantages with respect to the existing approaches; ii ) we perform simulations with specific X-ray missions, and we consider NuSTAR as a prototype of current observational facilities and eXTP as an example of the next generation of X-ray observatories. We find a significant difference between the constraining power of NuSTAR and eXTP. With NuSTAR, it is difficult or impossible to constrain deviations from the Kerr metric. With eXTP, in most cases we can obtain quite stringent constraints (modulo we have the correct astrophysical model).« less

  8. Compact singularity-free Kerr-Newman-de Sitter instantons

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Hörzinger, Michael

    2017-04-01

    Generalizing the results in Chruściel and Hörzinger [J. High Energy Phys. 16 (2016) 1, 10.1007/JHEP04(2016)012], we construct further families of compact Einstein-Maxwell instantons associated with the Kerr-Newman metrics with a positive cosmological constant.

  9. Taming the nonlinearity of the Einstein equation.

    PubMed

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  10. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2017-04-01

    We analyze a recent scheme proposed by Xia et al. to induce a conditional phase shift between two single-photon pulses by having them propagate at different speeds through a nonlinear medium with a nonlocal response. We have obtained an analytical solution for the case they considered, which supports their claim that a π phase shift with unit fidelity is possible in principle. We discuss the conditions that have to be met and the challenges and opportunities that this might present to the realization of a single-photon conditional phase gate.

  11. Properties of the distorted Kerr black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Tzounis, Christos; Kunz, Jutta

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, aremore » always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J{sup 2}/M{sup 4} > 1 and yet avoid a naked singularity.« less

  12. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers.

    PubMed

    Selim Habib, Md; Markos, Christos; Bang, Ole; Bache, Morten

    2017-06-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 μm. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity dominates. Specifically, the parameters may be tuned so the competing plasma self-defocusing nonlinearity only dominates over the Kerr self-focusing nonlinearity around the soliton self-compression stage, where the increasing peak intensity on the leading pulse edge initiates a competing self-defocusing plasma nonlinearity acting nonlocally on the trailing edge, effectively preventing soliton formation there. As the plasma switches off after the self-compression stage, self-focusing dominates again, initiating another soliton self-compression stage in the trailing edge. This process is accompanied by supercontinuum generation spanning 1-4 μm. We find that the spectral coherence drops as the secondary compression stage is initiated.

  13. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  14. Numerical simulation of incoherent optical wave propagation in nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Fernandez, Arnaud; Balac, Stéphane; Mugnier, Alain; Mahé, Fabrice; Texier-Picard, Rozenn; Chartier, Thierry; Pureur, David

    2013-11-01

    The present work concerns the study of pulsed laser systems containing a fiber amplifier for boosting optical output power. In this paper, this fiber amplification device is included into a MOPFA laser, a master oscillator coupled with fiber amplifier, usually a cladding-pumped high-power amplifier often based on an ytterbium-doped fiber. An experimental study has established that the observed nonlinear effects (such as Kerr effect, four waves mixing, Raman effect) could behave very differently depending on the characteristics of the optical source emitted by the master laser. However, it has not yet been possible to determine from the experimental data if the statistics of the photons is alone responsible for the various nonlinear scenarios observed. Therefore, we have developed a numerical simulation software for solving the generalized nonlinear Schrödinger equation with a stochastic source term in order to validate the hypothesis that the coherence properties of the master laser are mainly liable for the behavior of the observed nonlinear effects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  15. Low-temperature crack-free Si3N4 nonlinear photonic circuits for CMOS-compatible optoelectronic co-integration

    NASA Astrophysics Data System (ADS)

    Casale, Marco; Kerdiles, Sebastien; Brianceau, Pierre; Hugues, Vincent; El Dirani, Houssein; Sciancalepore, Corrado

    2017-02-01

    In this communication, authors report for the first time on the fabrication and testing of Si3N4 non-linear photonic circuits for CMOS-compatible monolithic co-integration with silicon-based optoelectronics. In particular, a novel process has been developed to fabricate low-loss crack-free Si3N4 750-nm-thick films for Kerr-based nonlinear functions featuring full thermal budget compatibility with existing Silicon photonics and front-end Si optoelectronics. Briefly, differently from previous and state-of-the-art works, our nonlinear nitride-based platform has been realized without resorting to commonly-used high-temperature annealing ( 1200°C) of the film and its silica upper-cladding used to break N-H bonds otherwise causing absorption in the C-band and destroying its nonlinear functionality. Furthermore, no complex and fabrication-intolerant Damascene process - as recently reported earlier this year - aimed at controlling cracks generated in thick tensile-strained Si3N4 films has been used as well. Instead, a tailored Si3N4 multiple-step film deposition in 200-mm LPCVD-based reactor and subsequent low-temperature (400°C) PECVD oxide encapsulation have been used to fabricate the nonlinear micro-resonant circuits aiming at generating optical frequency combs via optical parametric oscillators (OPOs), thus allowing the monolithic co-integration of such nonlinear functions on existing CMOS-compatible optoelectronics, for both active and passive components such as, for instance, silicon modulators and wavelength (de-)multiplexers. Experimental evidence based on wafer-level statistics show nitride-based 112-μm-radius ring resonators using such low-temperature crack-free nitride film exhibiting quality factors exceeding Q >3 x 105, thus paving the way to low-threshold power-efficient Kerr-based comb sources and dissipative temporal solitons in the C-band featuring full thermal processing compatibility with Si photonic integrated circuits (Si-PICs).

  16. Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.

    PubMed

    Bugaychuk, S; Conte, R

    2012-08-01

    We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.

  17. Bistability in mushroom-type metamaterials

    NASA Astrophysics Data System (ADS)

    Fernandes, David E.; Silveirinha, Mário G.

    2017-07-01

    Here, we study the electromagnetic response of asymmetric mushroom-type metamaterials loaded with nonlinear elements. It is shown that near a Fano resonance, these structures may have a strong tunable, bistable, and switchable response and enable giant nonlinear effects. By using an effective medium theory and full wave simulations, it is proven that the nonlinear elements may allow the reflection and transmission coefficients to follow hysteresis loops, and to switch the metamaterial between "go" and "no-go" states similar to an ideal electromagnetic switch.

  18. Trumpet slices in Kerr spacetimes.

    PubMed

    Dennison, Kenneth A; Baumgarte, Thomas W; Montero, Pedro J

    2014-12-31

    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.

  19. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  20. Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice

    NASA Astrophysics Data System (ADS)

    Bang, Do; Awano, Hiroyuki; Saito, Yuta; Tominaga, Junji

    2016-05-01

    We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.

  1. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect

    NASA Astrophysics Data System (ADS)

    Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John

    2013-11-01

    The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

  2. Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Nampalliwar, Sourabh; Cárdenas-Avendaño, Alejandro

    We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer function and the calculation of the local spectrum at any emission point in the disk. The transfer function only depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler boosting, and light bending). Our code computes the transfermore » function for a spacetime described by the Johannsen metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer functions and single line shapes in the Kerr metric are compared to those calculated from existing codes to check that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit the data with our new model to show the potential capabilities of current and future observations to constrain possible deviations from the Kerr metric.« less

  3. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    PubMed

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  4. Environmental Stewardship: It's Only Natural. Kerr Lake State Recreation Area: An Environmental Education Learning Experience Designed for Grades 3-5.

    ERIC Educational Resources Information Center

    Ayers, Scott; Speed, John

    This activity guide, developed to provide hands-on environmental education activities geared to Kerr Lake State Recreation Area in North Carolina, is targeted for grades 3, 4, and 5 and meets curriculum objectives of the standard course of study established by the North Carolina Department of Public Instruction. Three types of activities are…

  5. Nonlinear thermotics: nonlinearity enhancement and harmonic generation in thermal metasurfaces

    NASA Astrophysics Data System (ADS)

    Dai, Gaole; Shang, Jin; Wang, Ruizhe; Huang, Jiping

    2018-03-01

    We propose and investigate a class of structural surfaces (metasurfaces). We develop the perturbation theory and the effective medium theory to study the thermal properties of the metasurface. We report that the coefficient of temperature-dependent (nonlinear) item in thermal conductivity can be enhanced under certain conditions. Furthermore, the existence of nonlinear item helps to generate high-order harmonic frequencies of heat flux in the presence of a heat source with periodic temperature. This work paves a different way to control and manipulate the transfer of heat, and it also makes it possible to develop nonlinear thermotics in the light of nonlinear optics.

  6. Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Albanese, Guglielmo; Rigoli, Marco

    2017-12-01

    We prove an existence theorem for positive solutions to Lichnerowicz-type equations on complete manifolds with boundary (M , ∂ M , 〈 , 〉) and nonlinear Neumann conditions. This kind of nonlinear problems arise quite naturally in the study of solutions for the Einstein-scalar field equations of General Relativity in the framework of the so called Conformal Method.

  7. Nonlinear convective pulsation models of type II Cepheids

    NASA Astrophysics Data System (ADS)

    Smolec, Radoslaw

    2015-08-01

    We present a grid of nonlinear convective pulsation models of type-II Cepheids: BL Her stars, W Vir stars and RV Tau stars. The models cover a wide range of masses, luminosities, effective temperatures and chemical compositions. The most interesting result is detection of deterministic chaos in the models. Different routes to chaos are detected (period doubling, intermittent route) as well as variety of phenomena intrinsic to chaotic dynamics (periodic islands within chaotic bands, crisis bifurcation, type-I and type-III intermittency). Some of the phenomena (period doubling in BL Her and in RV Tau stars, irregular pulsation of RV Tau stars) are well known in the pulsation of type-II Cepheids. Prospects of discovering the other are briefly discussed. Transition from BL Her type pulsation through W Vir type till RV Tau type is analysed. In the most luminous models a dynamical instability is detected, which indicates that pulsation driven mass loss is important process occurring in type-II Cepheids.

  8. An efficient computational method for the approximate solution of nonlinear Lane-Emden type equations arising in astrophysics

    NASA Astrophysics Data System (ADS)

    Singh, Harendra

    2018-04-01

    The key purpose of this article is to introduce an efficient computational method for the approximate solution of the homogeneous as well as non-homogeneous nonlinear Lane-Emden type equations. Using proposed computational method given nonlinear equation is converted into a set of nonlinear algebraic equations whose solution gives the approximate solution to the Lane-Emden type equation. Various nonlinear cases of Lane-Emden type equations like standard Lane-Emden equation, the isothermal gas spheres equation and white-dwarf equation are discussed. Results are compared with some well-known numerical methods and it is observed that our results are more accurate.

  9. Algorithmic characterization results for the Kerr-NUT-(A)dS space-time. II. KIDs for the Kerr-(A)(de Sitter) family

    NASA Astrophysics Data System (ADS)

    Paetz, Tim-Torben

    2017-04-01

    We characterize Cauchy data sets leading to vacuum space-times with vanishing Mars-Simon tensor. This approach provides an algorithmic procedure to check whether a given initial data set (Σ ,hi j,Ki j) evolves into a space-time which is locally isometric to a member of the Kerr-(A)(dS) family.

  10. Critical exponents of extremal Kerr perturbations

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Zimmerman, Peter

    2018-05-01

    We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.

  11. Fast novel nonlinear optical NLC system with local response

    NASA Astrophysics Data System (ADS)

    Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto

    2017-06-01

    Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.

  12. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  13. Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun

    2016-01-01

    We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.

  14. Topological phenomena in classical optical networks

    PubMed Central

    Shi, T.; Kimble, H. J.; Cirac, J. I.

    2017-01-01

    We propose a scheme to realize a topological insulator with optical-passive elements and analyze the effects of Kerr nonlinearities in its topological behavior. In the linear regime, our design gives rise to an optical spectrum with topological features and where the bandwidths and bandgaps are dramatically broadened. The resulting edge modes cover a very wide frequency range. We relate this behavior to the fact that the effective Hamiltonian describing the system’s amplitudes is long range. We also develop a method to analyze the scheme in the presence of a Kerr medium. We assess robustness and stability of the topological features and predict the presence of chiral squeezed fluctuations at the edges in some parameter regimes. PMID:29073093

  15. Deterministic quantum nonlinear optics with single atoms and virtual photons

    NASA Astrophysics Data System (ADS)

    Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco

    2017-06-01

    We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.

  16. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-06-08

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  17. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  18. Influence of laminate sequence and fabric type on the inherent acoustic nonlinearity in carbon fiber reinforced composites.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J; Dayal, Vinay

    2016-05-01

    This paper presents the study of influence of laminate sequence and fabric type on the baseline acoustic nonlinearity of fiber-reinforced composites. Nonlinear elastic wave techniques are increasingly becoming popular in detecting damage in composite materials. It was earlier observed by the authors that the non-classical nonlinear response of fiber-reinforced composite is influenced by the fiber orientation [Chakrapani, Barnard, and Dayal, J. Acoust. Soc. Am. 137(2), 617-624 (2015)]. The current study expands this effort to investigate the effect of laminate sequence and fabric type on the non-classical nonlinear response. Two hypotheses were developed using the previous results, and the theory of interlaminar stresses to investigate the influence of laminate sequence and fabric type. Each hypothesis was tested by capturing the nonlinear response by performing nonlinear resonance spectroscopy and measuring frequency shifts, loss factors, and higher harmonics. It was observed that the laminate sequence can either increase or decrease the nonlinear response based on the stacking sequence. Similarly, tests were performed to compare unidirectional fabric and woven fabric and it was observed that woven fabric exhibited a lower nonlinear response compared to the unidirectional fabric. Conjectures based on the matrix properties and interlaminar stresses were used in an attempt to explain the observed nonlinear responses for different configurations.

  19. Enhanced magneto-optical Kerr effect at Fe/insulator interfaces

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Takahashi, Saburo; Maekawa, Sadamichi

    2017-12-01

    Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes the following two effects: (i) The diagonal component σx x of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component σx y of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio σx y/σx x . Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.

  20. Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well

    NASA Astrophysics Data System (ADS)

    Duque, C. A.; Akimov, V.; Demediuk, R.; Belykh, V.; Tiutiunnyk, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Fomina, O.; Tulupenko, V.

    2015-11-01

    The degree of ionization, controlled by external fields, of delta-doped layers inside the quantum wells can affect their energy structure, therefore delta-doped QWs can be used to engineer different kinds of tunable THz optical devices on intersubband transitions. Here it is calculated and analyzed the linear and nonlinear (Kerr-type) optical response, including absorption coefficient and refractive index change of 20 nm-wide Si0.8Ge0.2/Si/Si0.8Ge0.2 QW structures n-delta-doped either at the center or at the edge of the well under different temperatures. The conduction subband energy structure was found self-consistently, including the calculation of the impurity binding energy. Our results show that the degree of ionization of the impurity layer as well as the heterostructure symmetry has a strong influence on optical properties of the structures in THz region.

  1. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  2. Kerr-Newman black holes with string corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, Anthony M.; Larsen, Finn

    We study N = 2 supergravity with higher-derivative corrections that preserve the N = 2 supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.

  3. Kerr-Newman black holes with string corrections

    DOE PAGES

    Charles, Anthony M.; Larsen, Finn

    2016-10-26

    We study N = 2 supergravity with higher-derivative corrections that preserve the N = 2 supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.

  4. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency domain display quantum correlations

  5. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    PubMed

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  6. Linear entropy and collapse–revival phenomenon for a general formalism N-type four-level atom interacting with a single-mode field

    NASA Astrophysics Data System (ADS)

    Eied, A. A.

    2018-05-01

    In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.

  7. Tori sequences as remnants of multiple accreting periods of Kerr SMBHs

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-03-01

    Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.

  8. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  9. Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications.

    PubMed

    Xu, Run; Ma, Xiangting

    2017-01-01

    In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.

  10. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    NASA Astrophysics Data System (ADS)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  11. Cosmic censorship conjecture in Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  12. The Mixed Legacy of Clark Kerr: A Personal View

    ERIC Educational Resources Information Center

    Lustig, Jeff

    2004-01-01

    The death of famed educator Clark Kerr last December evoked tributes and testimonials everywhere from the "New York Times" to local faculty bulletins. Architect of California's famous Master Plan of 1960, skilled labor mediator, first president of the University of California system, bete noir of the early student movement, and chair of…

  13. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  14. Ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser.

    PubMed

    Kowalevicz, A M; Schibli, T R; Kärtner, F X; Fujimoto, J G

    2002-11-15

    An ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser achieved by use of an extended cavity design is demonstrated. Mode-locking thresholds as low as 156 mW are achieved. Pulses with durations as short as 14 fs and bandwidths of >100 nm with output powers of ~15 mW at 50-MHz repetition rates are generated by only 200 mW of pump power. Reducing the pump power requirements to a factor of 10x less than required by most conventional Kerr-lens mode-locked lasers permits inexpensive, low-power pump lasers to be used. This will facilitate the development of low-cost, high-performance femtosecond Ti:Al(2)O(3) laser technology.

  15. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  16. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixingmore » zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.« less

  17. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator.

    PubMed

    Del Bino, Leonardo; Silver, Jonathan M; Stebbings, Sarah L; Del'Haye, Pascal

    2017-02-21

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors.

  18. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  19. Khokhlov Zabolotskaya Kuznetsov type equation: nonlinear acoustics in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Kostin, Ilya; Panasenko, Grigory

    2006-04-01

    The KZK type equation introduced in this Note differs from the traditional form of the KZK model known in acoustics by the assumptions on the nonlinear term. For this modified form, a global existence and uniqueness result is established for the case of non-constant coefficients. Afterwards the asymptotic behaviour of the solution of the KZK type equation with rapidly oscillating coefficients is studied. To cite this article: I. Kostin, G. Panasenko, C. R. Mecanique 334 (2006).

  20. Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Qian; Xu, Xu-Sheng; Xiong, Jun; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2017-11-01

    Microwave photons have become very important qubits in quantum communication, as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N -type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.

  1. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1995-08-01

    The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.

  2. The nonlinear interaction of convection modes in a box of a saturated porous medium

    NASA Astrophysics Data System (ADS)

    Florio, Brendan J.; Bassom, Andrew P.; Fowkes, Neville; Judd, Kevin; Stemler, Thomas

    2015-05-01

    A plethora of convection modes may occur within a confined box of porous medium when the associated dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it is possible for multiple modes (typically three) to share a common Rc. For box shapes close to these special geometries the modes interact and compete nonlinearly near the onset of convection. Here this mechanism is explored and it is shown that generically the dynamics of the competition takes on one of two possible structures. A specific example of each is described, while the general properties of the system enables us to compare our results with some previous calculations for particular box dimensions.

  3. Analog gravity by an optical vortex: Resonance enhancement of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Bar-Ad, Shimshon; Szameit, Alexander; Fleurov, Victor

    2018-01-01

    Propagation of coherent light in a Kerr nonlinear medium can be mapped onto a flow of an equivalent fluid. Here we use this mapping to model the conditions in the vicinity of a rotating black hole as a Laguerre-Gauss vortex beam. We describe weak fluctuations of the phase and amplitude of the electric field by wave equations in curved space, with a metric that is similar to the Kerr metric. We find the positions of event horizons and ergoregion boundaries, and the conditions for the onset of superradiance, which are simultaneously the conditions for a resonance in the analog Hawking radiation. The resonance strongly enhances the otherwise exponentially weak Hawking radiation at certain frequencies and makes its experimental observation feasible.

  4. On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jørgen

    2011-05-01

    It is well known that the Kerr-NUT-AdS-dS black hole admits two linearly independent Killing vectors and possesses a hidden symmetry generated by a rank-2 Killing tensor. The near-horizon geometry of an extremal Kerr-NUT-AdS-dS black hole admits four linearly independent Killing vectors, and we show how the hidden symmetry of the black hole itself is carried over by means of a modified Killing-Yano potential which is given explicitly. We demonstrate that the corresponding Killing tensor of the near-horizon geometry is reducible as it can be expressed in terms of the Casimir operators formed by the four Killing vectors.

  5. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system.

    PubMed

    Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang

    2017-10-30

    In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.

  6. Rotating Black Holes and the Kerr Metric

    NASA Astrophysics Data System (ADS)

    Kerr, Roy Patrick

    2008-10-01

    Since it was first discovered in 1963 the Kerr metric has been used by relativists as a test-bed for conjectures on worm-holes, time travel, closed time-like loops, and the existence or otherwise of global Cauchy surfaces. More importantly, it has also used by astrophysicists to investigate the effects of collapsed objects on their local environments. These two groups of applications should not be confused. Astrophysical Black Holes are not the same as the Kruskal solution and its generalisations.

  7. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  8. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  9. From solitons to rogue waves in nonlinear left-handed metamaterials.

    PubMed

    Shen, Yannan; Kevrekidis, P G; Veldes, G P; Frantzeskakis, D J; DiMarzio, D; Lan, X; Radisic, V

    2017-03-01

    In the present work, we explore soliton and roguelike wave solutions in the transmission line analog of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltage-dependent, symmetric capacitance motivated by recently developed ferroelectric barium strontium titanate thin-film capacitor designs. We develop both the corresponding nonlinear dynamical lattice and its reduction via a multiple scales expansion to a nonlinear Schrödinger (NLS) model for the envelope of a given carrier wave. The reduced model can feature either a focusing or a defocusing nonlinearity depending on the frequency (wave number) of the carrier. We then consider the robustness of different types of solitary waves of the reduced model within the original nonlinear left-handed medium. We find that both bright and dark solitons persist in a suitable parametric regime, where the reduction to the NLS model is valid. Additionally, for suitable initial conditions, we observe a rogue wave type of behavior that differs significantly from the classic Peregrine rogue wave evolution, including most notably the breakup of a single Peregrine-like pattern into solutions with multiple wave peaks. Finally, we touch upon the behavior of generalized members of the family of the Peregrine solitons, namely, Akhmediev breathers and Kuznetsov-Ma solitons, and explore how these evolve in the left-handed transmission line.

  10. Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav

    2018-04-01

    We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.

  11. Stochastic and Deterministic Fluctuations in Stimulated Brillouin Scattering

    DTIC Science & Technology

    1990-10-01

    and J. R. Ackerhalt, "Instabilities in the Propagation of Arbitrarily Polarized Counterpropagating Waves in a Nonlinear Kerr Medium," Optical...Ackerhalt, and P. W. Milonni, "Instabilities and Chaos in the Polarizations of Counterpropagating Light Fields," Phys. Rev. Lett. 58, 2432 (1987). iv P...Plenum, New York (1990). V D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, " Polarization Bistability of Counterpropagating Beams," Phys. Rev

  12. Kerr Reservoir LANDSAT experiment analysis for November 1980

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R.

    1982-01-01

    An experiment was conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. LANDSAT radiance data was used in the analysis since it is readily available and covers the area of interest on a regular basis. By properly designing the experiment, many of the unwanted variations due to atmosphere, solar, and hydraulic changes were minimized. The algorithms developed were constrained to satisfy rigorous statistical criteria before they could be considered dependable in predicting water quality parameters. A complete mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. The study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data are mostly linear and only require a maximum of one or two LANDSAT bands. Rationing techniques did not improve the results since the initial design of the experiment minimized the errors that this procedure is effective against. Good correlations were established for inorganic suspended solids, iron, turbidity, and secchi depth.

  13. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2018-03-01

    It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.

  14. Traveling wave solutions and conservation laws for nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  15. Effect of the Kerr Metric on Photosperic Radius Expansion in X Ray Burst

    NASA Astrophysics Data System (ADS)

    Kalita, S.; Barman, A.

    2017-12-01

    The main objective of this paper is to study general relativistic effects on the photospheric radius expansion during an X-ray burst. We examine how the Kerr metric causes a shift in the effective temperature and radiation flux with respect to the Schwarzschild values during mass accretion onto a neutron star or a black hole resulting in the X-ray burst. The spin of the compact object is used up to the maximal Kerr limit χ = 0.99 with different latitudes of accretion emission. The amplitude of temperature shift relative to the Schwarzschild case is found to be δ T/ T ≈ - (10-3 - 10-4) for the range χ = 0.1 - 0.99 at latitudes θ = 0o , 30o, 45o and 88o. The ratio of emission flux in the Kerr metric to that in the Schwarzschild metric, F(K)/F(S), is found to be less than unity. It goes up to a maximum of 0.9 for the lowest nonzero value of the spin parameter (i.e., 0.1). For the maximal Kerr limit, χ = 0.99 , it saturates near 0.8. This effect is more prominent towards the pole. This reduction in temperature and flux is found to be consistent with the absence of photospheric radius expansion in the X Ray burst LMXB 4U 1608-52, observed by NuSTAR. Although this is not uniquely ascribed to the metric, it is believed that the spacetime metric effect in the burst phenomena can be used as a probe for testing general relativity. Also, the shift in temperature or the radiation flux might have an observable signature in the element synthesis processes in such environments.

  16. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    PubMed Central

    Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal

    2017-01-01

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865

  17. Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Minganti, Fabrizio; Casteels, Wim; Ciuti, Cristiano

    2016-09-01

    We present exact results for the steady-state density matrix of a general class of driven-dissipative systems consisting of a nonlinear Kerr resonator in the presence of both coherent (one-photon) and parametric (two-photon) driving and dissipation. Thanks to the analytical solution, obtained via the complex P -representation formalism, we are able to explore any regime, including photon blockade, multiphoton resonant effects, and a mesoscopic regime with large photon density and quantum correlations. We show how the interplay between one- and two-photon driving provides a way to control the multimodality of the Wigner function in regimes where the semiclassical theory exhibits multistability. We also study the emergence of dissipative phase transitions in the thermodynamic limit of large photon numbers.

  18. Linear and nonlinear Fano resonance in the main chain-structure of additional defects with an isolated ring composed of defects

    NASA Astrophysics Data System (ADS)

    Ding, Xiu-Huan; Wang, Rui; Qiao, Qian; Zhang, Cun-Xi

    2018-03-01

    As is well known, Fano resonance originates from the interference between a continuum energy band and an embedded discrete energy level. We study transmission properties of the discrete chain-structure of additional defects with an isolated ring composed of N defect states, and obtain the analytical transmission coefficient of similar Fano formula. Using the formula, we reveal conditions for perfect reflections and transmissions due to either destructive or constructive interferences. It is found that a nonlinear Kerr-like response leads to bistable transmission, and for either linear cases or nonlinear ones, the defects in main arrays have a major impact on perfect reflections, but has no effect on perfect transmission.

  19. Cross mode modulation in multimode fibers.

    PubMed

    Kroushkov, Dimitar I; Rademacher, Georg; Petermann, Klaus

    2013-05-15

    We show that Kerr nonlinearity induced intermodal power transfer in a particular mode group of a multimode fiber can be formulated by the same type of equation used to describe the effect of cross polarization modulation in single-mode fibers.

  20. Instability of evaporation fronts in the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong-Gyu; Kim, Woong-Tae, E-mail: jgkim@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2013-12-10

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The lengthmore » and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is larger than the initial plane-parallel value by a factor of ∼2.4 when the equilibrium thermal pressure is 1800 k {sub B} cm{sup –3} K. The degrees of front deformation and evaporation-rate enhancement at nonlinear saturation are determined primarily by the density ratio between the CNM and WNM. We demonstrate that the Field length in the thermally unstable medium should be resolved by at least four grid points to obtain reliable numerical outcomes involving thermal instability.« less

  1. Design and implementation of optical switches based on nonlinear plasmonic ring resonators: Circular, square and octagon

    NASA Astrophysics Data System (ADS)

    Ghadrdan, Majid; Mansouri-Birjandi, Mohammad Ali

    2018-05-01

    In this paper, all-optical plasmonic switches (AOPS) based on various configurations of circular, square and octagon nonlinear plasmonic ring resonators (NPRR) were proposed and numerically investigated. Each of these configurations consisted of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator (RR). Nonlinear Kerr effect was used to show switching performance of the proposed NPRR. The result showed that the octagon switch structure had lower threshold power and higher transmission ratio than square and circular switch structures. The octagon switch structure had a low threshold power equal to 7.77 MW/cm2 and the high transmission ratio of approximately 0.6. Therefore, the octagon switch structure was an appropriate candidate to be applied in optical integration circuits as an AOPS.

  2. Radiation of a resonant medium excited by few-cycle optical pulses at superluminal velocity

    NASA Astrophysics Data System (ADS)

    Arkhipov, R. M.; Pakhomov, A. V.; Arkhipov, M. V.; Babushkin, I.; Tolmachev, Yu A.; Rosanov, N. N.

    2017-05-01

    Recent progress in generation of optical pulses of durations comparable to one optical cycle has presented great opportunities for studies of the fundamental processes in matter as well as time-resolved spectroscopy of ultrafast processes in nonlinear media. It opened up a new area of research in modern ultrafast nonlinear optics and led to appearance of the attosecond science. In parallel, a new research area related to emission from resonant media excited by superluminally propagating ultrashort bursts of electromagnetic radiation has been actively developed over the last few years. In this paper, we review our recent results on theoretical analysis of the Cherenkov-type radiation of a resonant medium excited by few-cycle optical pulses propagating at superluminal velocity. This situation can be realized when an electromagnetic pulse with a plane wavefront incidents on a straight string of resonant atoms or a spot of light rotates at very large angular frequency and excites a distant circular string of resonant dipoles. Theoretical analysis revealed some unusual and remarkable features of the Cherenkov radiation generated in this case. This radiation arises in a transient regime which leads to the occurrence of new frequencies in the radiation spectrum. Analysis of the characteristics of this radiation can be used for the study of the resonant structure properties. In addition, a nonlinear resonant medium excited at superluminal velocity can emit unipolar optical pulses, which can be important in ultrafast control of wave-packet dynamics of matter. Specifics of the few-cycle pulse-driven optical response of a resonant medium composed of linear and nonlinear oscillators is discussed.

  3. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes lessmore » cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.« less

  4. Systematic analysis of nonlinear ground motion and temporal changes of material properties produced by small and medium earthquakes

    NASA Astrophysics Data System (ADS)

    Wu, C.; Peng, Z.; Ben-Zion, Y.

    2009-12-01

    Recent studies based on spectral ratio analysis have found clear temporal changes of material properties in the shallow crust and around active fault zones during large earthquakes with peak ground acceleration (PGA) larger than 100-200 gals (e.g., Sawazaki et al., GRL, 2006; Rubenstein et al., JGR, 2007; Wu et al., GJI, 2009). The temporal evolution of properties is generally characterized by a clear drop of resonant frequency and increased damping, followed by logarithmic recoveries with time. The shift in resonant frequency and damping are considered two hallmarks of nonlinear response associated with increasing material damage. However, an existing damage can produce similar changes in resonance curves with increasing wave amplitude, even in cases when the material damage does not increase (Lyakhovsky et al., GJI, 2009). In such cases the recovery of resonance properties with reduced source amplitude should be essentially instantaneous. It is important to distinguish with in situ seismic data nonlinear wave propagation effects that reflect fixed vs. evolving material damage. Here we systematically analyze temporal changes of material properties and nonlinear response associated with small and medium earthquakes, using seismic data recorded by the Japanese Strong Motion Network KIK-Net, a temporary 10-station PASSCAL seismic network along the North Anatolian Fault in Turkey, and the borehole and surface stations around the Parkfield section of the San Andreas fault. We compute the spectral ratios of windowed records from a pair of target and reference stations, and apply the sliding-window to the entire seismic records including the pre-event noise, P and S waves, and the early and late S-coda waves. We choose small and medium events to reduce the effects from additional material damage and use small sliding-window size to capture the subtle changes in the spectral ratios. The spectral ratio traces from windows within certain PGA ranges are then stacked to

  5. ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Yun, Kiyun; Yoon, Suk-Jin

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integrationmore » step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.« less

  6. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  7. U.S. Environmental Protection Agency's Robert S. Kerr Environmental Research Center, Ada, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar-Nagy, S.; Voss, P.; Van Geet, O.

    2006-10-01

    U.S. EPA's Robert S. Kerr Environmental Research Center, Ada, Oklahoma, has reduced its annual energy consumption by 45% by upgrading its building mechanical system and incorporating renewable energy.

  8. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    NASA Astrophysics Data System (ADS)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  9. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs 4 Sb 12

    DOE PAGES

    Levenson-Falk, Eli M.; Schemm, E. R.; Aoki, Y.; ...

    2018-05-04

    Here, we present polar Kerr effect measurements of the filled skutterudite superconductor PrOs 4Sb 12. Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θ K develops below the superconducting transition, saturating at ~300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θ K(T) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at Tmore » C2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs 4Sb 12.« less

  10. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs 4 Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levenson-Falk, Eli M.; Schemm, E. R.; Aoki, Y.

    Here, we present polar Kerr effect measurements of the filled skutterudite superconductor PrOs 4Sb 12. Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θ K develops below the superconducting transition, saturating at ~300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θ K(T) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at Tmore » C2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs 4Sb 12.« less

  11. Polar Kerr Effect from Time-Reversal Symmetry Breaking in the Heavy-Fermion Superconductor PrOs4Sb12

    NASA Astrophysics Data System (ADS)

    Levenson-Falk, E. M.; Schemm, E. R.; Aoki, Y.; Maple, M. B.; Kapitulnik, A.

    2018-05-01

    We present polar Kerr effect measurements of the filled skutterudite superconductor PrOs4 Sb12 . Simultaneous ac susceptibility measurements allow us to observe the superconducting transition under the influence of heating from the optical beam. A nonzero Kerr angle θK develops below the superconducting transition, saturating at ˜300 nrad at low temperatures. This result is repeated across several measurements of multiple samples. By extrapolating the measured θK(T ) to zero optical power, we are able to show that the Kerr angle onset temperature in one set of measurements is consistent with the transition to the B phase at TC 2. We discuss the possible explanations for this result and its impact on the understanding of multiphase and inhomogeneous superconductivity in PrOs4 Sb12 .

  12. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  13. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  14. Research in nonlinear optics

    NASA Technical Reports Server (NTRS)

    Yariv, A.

    1972-01-01

    A theoretical investigation revealed that a steady state mode-locked solution appropriate to ultrashort pulses is induced by Kerr liquids. An experimental investigation using a Q-switched ruby laser passively mode-locked by the insertion of a Kerr liquid verified the theory. Pulses of about 10 to the -11th power sec were generated when the relaxation time of the liquid was temperature tuned to approximately 10 to the -11th power sec.

  15. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can bemore » utilized for optimizing and controlling the optical switching process.« less

  16. Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian

    NASA Astrophysics Data System (ADS)

    Huang, Guangyue; Li, Zhi

    2018-03-01

    In this paper, we consider Liouville type theorems for positive solutions to the following nonlinear elliptic equation: Δ _V u+aulog u=0, where a is a nonzero real constant. By using gradient estimates, we obtain upper bounds of |\

  17. Kerr effect from diffractive skew scattering in chiral px +/- ipy superconductors

    NASA Astrophysics Data System (ADS)

    König, Elio; Levchenko, Alex

    We calculate the temperature dependent anomalous ac Hall conductance σH (Ω , T) for a two-dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4. We concentrate on a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors. This work was financially supported in part by NSF Grants No. DMR-1606517 and ECCS-1560732 and at U of Wisconsin by the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

  18. Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

    PubMed

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2016-09-02

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

  19. Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

    DOE PAGES

    Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt; ...

    2017-05-18

    We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.

  20. Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt

    We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM 00 pump laser sources, and their effect on the Kerr lens modelocking process.

  1. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in trilayers containing magneto-optical metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girón-Sedas, J. A.; Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali; Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com

    We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.

  2. Self-force via m-mode regularization and 2+1D evolution. II. Scalar-field implementation on Kerr spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Sam R.; Barack, Leor; Wardell, Barry

    2011-10-15

    This is the second in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic 'puncture' based on the Detweiler-Whiting decomposition, (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m-modes in 2+1 dimensions with a finite-difference scheme, and (iv) reconstruction of the physical self-force from the mode sum. Here we report an implementation of themore » method to compute the scalar-field self-force along circular equatorial geodesic orbits around a Kerr black hole. This constitutes a first time-domain computation of the self-force in Kerr geometry. Our time-domain code reproduces the results of a recent frequency-domain calculation by Warburton and Barack, but has the added advantage of being readily adaptable to include the backreaction from the self-force in a self-consistent manner. In a forthcoming paper--the third in the series--we apply our method to the gravitational self-force (in the Lorenz gauge).« less

  3. SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics

    NASA Astrophysics Data System (ADS)

    El Dirani, Houssein; Monat, Christelle; Brision, Stéphane; Olivier, Nicolas; Jany, Christophe; Letartre, Xavier; Pu, Minhao; Girouard, Peter D.; Hagedorn Frandsen, Lars; Semenova, Elizaveta; Katsuo Oxenløwe, Leif; Yvind, Kresten; Sciancalepore, Corrado

    2018-02-01

    In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).

  4. A study for testing the Kerr metric with AGN iron line eclipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: jcjiang12@fudan.edu.cn, E-mail: bambi@fudan.edu.cn

    2016-04-01

    Recently, two of us have studied iron line reverberation mapping to test black hole candidates, showing that the time information in reverberation mapping can better constrain the Kerr metric than the time-integrated approach. Motivated by this finding, here we explore the constraining power of another time-dependent measurement: an AGN iron line eclipse. An obscuring cloud passes between the AGN and the distant observer, covering different parts of the accretion disk at different times. Similar to the reverberation measurement, an eclipse might help to better identify the relativistic effects affecting the X-ray photons. However, this is not what we find. Inmore » our study, we employ the Johannsen-Psaltis parametrisation, but we argue that our conclusions hold in a large class of non-Kerr metrics. We explain our results pointing out an important difference between reverberation and eclipse measurements.« less

  5. Hypermedia as medium

    NASA Technical Reports Server (NTRS)

    Dede, Christopher J.

    1990-01-01

    Claims and rebuttals that hypermedia (the associative, nonlinear interconnection of multimedia materials) is a fundamentally innovative means of thinking and communicating are described. This representational architecture has many advantages that make it a major advance over other media; however, it also has several intrinsic problems that severly limits its effectiveness as a medium. These advantages and limits in applications are discussed.

  6. Nonlinear Talbot effect of rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  7. Nonlinear dynamics of drift structures in a magnetized dissipative plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.

    2011-06-15

    A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. Anmore » analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more

  8. Limit of Kerr-de Sitter spacetime with infinite angular-momentum parameter a

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.

    2018-01-01

    We consider the limit a →∞ of the Kerr-de Sitter spacetime. The spacetime is a Petrov type-D solution of the vacuum Einstein field equations with a positive cosmological constant Λ , vanishing Mars-Simon tensor and conformally flat ℐ . It possesses an Abelian 2-dimensional group of symmetries whose orbits are spacelike or timelike in different regions, and it includes, as a particular case, de Sitter spacetime. The global structure of the solution is analyzed in detail, with particular attention to its Killing horizons: they are foliated by noncompact marginally trapped surfaces of finite area, and one of them "touches" the curvature singularity, which resembles a null 2-dimensional surface. Outside the region between these horizons there exist trapped surfaces that again are noncompact. The solution contains, apart from Λ , a unique free parameter which can be related to the angular momentum of the nonsingular horizon in a precise way. A maximal extension of the (axis of the) spacetime is explicitly built. We also analyze the structure of ℐ , whose topology is R3.

  9. Community Involvement Plan for Northeast Church Rock and Kerr-McGee Quivira Mine Sites

    EPA Pesticide Factsheets

    This Community Involvement Plan outlines opportunities for individual participation and meaningful information sharing regarding EPA’s activities in communities near Northeast Churchrock and Kerr-McGee Quivira Mine Sites.

  10. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats

    NASA Astrophysics Data System (ADS)

    Allodi, Marco A.

    . We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 wavenumbers (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoium-based THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 wavenumbers), in exact agreement with the fundamental transition frequency of the lowest energy vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies. To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab

  11. Natural convection along a heated vertical plate immersed in a nonlinearly stratified medium: application to liquefied gas storage

    NASA Astrophysics Data System (ADS)

    Forestier, M.; Haldenwang, P.

    We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.

  12. Regional economic impact study for the McClellan Kerr Arkansas River Navigation System.

    DOT National Transportation Integrated Search

    2015-10-01

    The McClellan-Kerr Arkansas River Navigation System (MKARNS), located in Oklahoma and : Arkansas, contains 440 miles of waterway and is a crucial part of the United States : transportation system. The MKARNS strategically connects the heartland of...

  13. The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-10-01

    The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.

  14. Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings

    PubMed Central

    Porta, Alberto; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Cysarz, Dirk; Van Leeuwen, Peter; Takahashi, Anielle C. M.; Catai, Aparecida M.; Gnecchi-Ruscone, Tomaso

    2015-01-01

    Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales. PMID:25806002

  15. Life as the Middle Child: A Conversation With Mary Margaret Kerr

    ERIC Educational Resources Information Center

    Teagarden, James M.; Zabel, Robert H.; Kaff, Marilyn S.

    2015-01-01

    As part of an ongoing oral history project, a conversation was held with Dr. Mary Margaret Kerr on the past, present, and possible future of the field of providing services to children with emotional-behavioral disorders. Dr. Wood stresses the increasing importance of providing an interdisciplinary approach to meet the needs for children or, as…

  16. Spectroscopy of Kerr black holes with Earth- and space-based interferometers

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2017-01-01

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through ``gravitational spectroscopy,'' i.e. the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z 3 . In contrast, eLISA-like detectors should carry out a few - or even hundreds - of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.

  17. Curl forces and the nonlinear Fokker-Planck equation.

    PubMed

    Wedemann, R S; Plastino, A R; Tsallis, C

    2016-12-01

    Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the S_{q} entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.

  18. Local cochlear damage reduces local nonlinearity and decreases generator-type cochlear emissions while increasing reflector-type emissions.

    PubMed

    Dong, Wei; Olson, Elizabeth S

    2010-03-01

    Distortion product otoacoustic emissions (DPOAEs) originate in cochlear nonlinearity and emerge into the ear canal as an apparent sum of emission types, one of which (generator) travels directly out and the other (reflector) travels out following linear reflection. The present study explores intracochlear sources of DPOAEs via simultaneous ear canal and intracochlear pressure measurements in gerbils. A locally damaged cochlea was produced with reduced local intracochlear nonlinearity and significant elevation of the compound action potential thresholds at frequencies represented within the damaged region. In the DPOAE the comparison of healthy to locally damaged cochleae showed the following: (1) In the broad frequency region corresponding to the locally damaged best frequency, DPOAEs evoked by wider f(2)/f(1) stimuli decreased, consistent with the reduction in local nonlinearity. (2) DPOAEs evoked by narrow f(2)/f(1) stimuli often had a bimodal change, decreasing in a lower frequency band and increasing in a band just adjacent and higher, and the DPOAE phase-vs-frequency slope steepened. These changes confirm the complex nature of the DPOAE.

  19. Weakly charged generalized Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2017-08-01

    We find an explicit solution of the source free Maxwell equations in a generalized Kerr-NUT-(A)dS spacetime in all dimensions. This solution is obtained as a linear combination of the closed conformal Killing-Yano tensor hab, which is present in such a spacetime, and a derivative of the primary Killing vector, associated with hab. For the vanishing cosmological constant the obtained solution reduces to the Wald's electromagnetic field generated from the primary Killing vector.

  20. Kerr microscopy study of exchange-coupled FePt/Fe exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Hussain, Zaineb; Kumar, Dileep; Reddy, V. Raghavendra; Gupta, Ajay

    2017-05-01

    Magnetization reversal and magnetic microstructure of top soft magnetic layer (Fe) in exchange spring coupled L10 FePt/Fe is studied using high resolution Kerr microscopy. With remnant state of the hard magnetic layer (L10 FePt) as initial condition, magnetization loops along with magnetic domains are recorded for the top soft magnetic layer (Fe) using Kerr microscopy. Considerable shifting of Fe layer hysteresis loop from center which is similar to exchange bias phenomena is observed. It is also observed that one can tune the magnitude of hysteresis shift by reaching the remanent state from different saturating fields (HSAT) and also by varying the angle between measuring field and HSAT. The hysteresis loops and magnetic domains of top soft Fe layer demonstrate unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of established model of exchange bias phenomena framed for field-cooled ferromagnetic - antiferromagnetic bilayer systems.

  1. Third-order nonlinear optical properties of thin sputtered gold films

    NASA Astrophysics Data System (ADS)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  2. Repulsive Effect for Unbound High Energy Particles Along Rotation Axis in Kerr-Taub-NUT Spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Chen, Song-Bai

    2018-04-01

    We have investigated the acceleration of the unbound high energy particles moving along the rotation axis in the Kerr-Taub-NUT spacetime, and then study the dependence of the repulsive effects on the NUT charge for the particles in the spacetime. Whether the repulsive effects with the NUT charge become stronger depends on the Carter constant, the position and velocity of the particles themselves. We also present numerically the changes of the observable velocity and acceleration with the NUT charge for the unbound particles in the Kerr-Taub-NUT spacetime. Supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 17A124, and the Construct Program of Key Disciplines in Hunan Province

  3. Determination of circulation and turbidity patterns in Kerr Lake from LANDSAT MSS imagery. [Kerr Lake, Virginia, North Carolina

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1981-01-01

    The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  4. Gravitoelectromagnetic perturbations of Kerr-Newman black holes: stability and isospectrality in the slow-rotation limit.

    PubMed

    Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2013-06-14

    The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.

  5. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polewko-Klim, A., E-mail: anetapol@uwb.edu.pl; Uba, S.; Uba, L.

    2014-07-15

    A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulationmore » technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.« less

  6. Fractal dimension and nonlinear dynamical processes

    NASA Astrophysics Data System (ADS)

    McCarty, Robert C.; Lindley, John P.

    1993-11-01

    Mandelbrot, Falconer and others have demonstrated the existence of dimensionally invariant geometrical properties of non-linear dynamical processes known as fractals. Barnsley defines fractal geometry as an extension of classical geometry. Such an extension, however, is not mathematically trivial Of specific interest to those engaged in signal processing is the potential use of fractal geometry to facilitate the analysis of non-linear signal processes often referred to as non-linear time series. Fractal geometry has been used in the modeling of non- linear time series represented by radar signals in the presence of ground clutter or interference generated by spatially distributed reflections around the target or a radar system. It was recognized by Mandelbrot that the fractal geometries represented by man-made objects had different dimensions than the geometries of the familiar objects that abound in nature such as leaves, clouds, ferns, trees, etc. The invariant dimensional property of non-linear processes suggests that in the case of acoustic signals (active or passive) generated within a dispersive medium such as the ocean environment, there exists much rich structure that will aid in the detection and classification of various objects, man-made or natural, within the medium.

  7. Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Weerawarne, Darshana L.

    Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.

  8. Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique.

    PubMed

    Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan

    2012-06-04

    We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.

  9. The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-10-01

    Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.

  10. Clark Kerr's Multiversity and Technology Transfer in the Modern American Research University

    ERIC Educational Resources Information Center

    Sigurdson, Kristjan T.

    2013-01-01

    In the early 1960s, Clark Kerr, the famed American educationalist and architect of the California public higher education system, took up the task of describing the emergent model of the contemporary American university. Multiversities, as he called them, were the large powerful American universities that packaged the provision of undergraduate,…

  11. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser

    NASA Astrophysics Data System (ADS)

    Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming

    2017-03-01

    In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.

  12. Cubic nonlinearity in shear wave beams with different polarizations

    PubMed Central

    Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2008-01-01

    A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167

  13. Hawking radiation by Kerr black holes and conformal symmetry.

    PubMed

    Agullo, Ivan; Navarro-Salas, José; Olmo, Gonzalo J; Parker, Leonard

    2010-11-19

    The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

  14. Nonlinear Dynamics of Turbulent Thermals in Shear Flow

    NASA Astrophysics Data System (ADS)

    Ingel, L. Kh.

    2018-03-01

    The nonlinear integral model of a turbulent thermal is extended to the case of the horizontal component of its motion relative to the medium (e.g., thermal floating-up in shear flow). In contrast to traditional models, the possibility of a heat source in the thermal is taken into account. For a piecewise constant vertical profile of the horizontal velocity of the medium and a constant vertical velocity shear, analytical solutions are obtained which describe different modes of dynamics of thermals. The nonlinear interaction between the horizontal and vertical components of thermal motion is studied because each of the components influences the rate of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and, hence, its mobility. It is shown that the enhancement of the entrainment of the medium due to the interaction between the thermal and the cross flow can lead to a significant decrease in the mobility of the thermal.

  15. Global existence and energy decay rates for a Kirchhoff-type wave equation with nonlinear dissipation.

    PubMed

    Kim, Daewook; Kim, Dojin; Hong, Keum-Shik; Jung, Il Hyo

    2014-01-01

    The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations in order to verify the analytical results are given.

  16. Near horizon symmetry and entropy formula for Kerr-Newman (A)dS black holes

    NASA Astrophysics Data System (ADS)

    Setare, Mohammad Reza; Adami, Hamed

    2018-04-01

    In this paper we provide the first non-trivial evidence for universality of the entropy formula 4 πJ 0 + J 0 - beyond pure Einstein gravity in 4-dimensions. We consider the Einstein-Maxwell theory in the presence of cosmological constant, then write near horizon metric of the Kerr-Newman (A)dS black hole in the Gaussian null coordinate system. We consider near horizon fall-off conditions for metric and U(1) gauge field. We find asymptotic combined symmetry generator, consists of diffeomorphism and U(1) gauge transformation, so that it preserves fall-off conditions. Consequently, we find supertranslation, supperrotation and multiple-charge modes and then we show that the entropy formula is held for the Kerr-Newman (A)dS black hole. Supperrotation modes suffer from a problem. By introducing new combined symmetry generator, we cure that problem.

  17. Computing the Entropy of Kerr-Newman Black Hole Without Brick Walls Method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of Kerr-Newman black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in Kerr-Newman black hole and are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the calculation, the constant λ introduced in the generalized uncertainty principle is related to polar angle θ in an axisymmetric space-time.

  18. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities

    PubMed Central

    Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki

    2011-01-01

    Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543

  19. The modified Misgav-Ladach versus the Pfannenstiel-Kerr technique for cesarean section: a randomized trial.

    PubMed

    Xavier, Pedro; Ayres-De-Campos, Diogo; Reynolds, Ana; Guimarães, Mariana; Costa-Santos, Cristina; Patrício, Belmiro

    2005-09-01

    Modifications to the classic cesarean section technique described by Pfannenstiel and Kerr have been proposed in the last few years. The objective of this trial was to compare intraoperative and short-term postoperative outcomes between the Pfannenstiel-Kerr and the modified Misgav-Ladach (MML) techniques for cesarean section. This prospective randomized trial involved 162 patients undergoing transverse lower uterine segment cesarean section. Patients were allocated to one of the two arms: 88 to the MML technique and 74 to the Pfannenstiel-Kerr technique. Main outcome measures were defined as the duration of surgery, analgesic requirements, and bowel restitution by the second postoperative day. Additional outcomes evaluated were febrile morbidity, postoperative antibiotic use, postpartum endometritis, and wound complications. Student's t, Mann-Whitney, and Chi-square tests were used for statistical analysis of the results, and a p < 0.05 was considered as the probability level reflecting significant differences. No differences between groups were noted in the incidence of analgesic requirements, bowel restitution by the second postoperative day, febrile morbidity, antibiotic requirements, endometritis, or wound complications. The MML technique took on average 12 min less to complete (p = 0.001). The MML technique is faster to perform and similar in terms of febrile morbidity, time to bowel restitution, or need for postoperative medications. It is likely to be more cost-effective.

  20. Does the type of culture medium used influence birthweight of children born after IVF?

    PubMed

    Zandstra, Heleen; Van Montfoort, Aafke P A; Dumoulin, John C M

    2015-03-01

    Do culture media influence birthweight of children born after IVF? Some studies have observed a significant effect of culture media on birthweight, while others have not, but since most studies compared different culture media, conventional meta-analysis was not possible. Animal studies suggest that in vitro culture of embryos can have a significant effect on the birthweight of offspring when compared with in vivo developed embryos. The type of culture medium (or certain components of the medium) used is one of the causal factors. We reviewed all available literature reporting on a relation between culture medium and birthweight in human studies and a selection of animal studies. An extensive literature search on Pubmed and Medline was performed with relevant search criteria relating to IVF, birthweight and culture medium. Eleven studies reporting on a relationship between culture medium and birthweight in human were included in this review. Five of these found significant differences in birthweight when offspring born after culture in different culture media were compared. The remaining studies did not find differences in birthweight after changing culture medium. The number of human studies is limited and different culture media with different compositions are compared which makes a comparison between the studies difficult, if not impossible. Furthermore, most study designs were retrospective with consecutive use of different culture media and limited sample sizes, which makes bias of the results likely. If it could be confirmed that the type of culture medium used does indeed influence phenotypic characteristics (such as birthweight) of children born after IVF, it would underline the importance of monitoring the health of IVF children in relation to aspects of the laboratory techniques used during embryo culture. No funding was applicable to this study. No conflict of interest is declared. © The Author 2015. Published by Oxford University Press on behalf of the

  1. Comment on “Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems”

    NASA Astrophysics Data System (ADS)

    Pan, Yongping; Huang, Daoping

    2011-03-01

    In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.

  2. Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Lee, J.-W.; Jeong, J.-R.; Kim, D.-H.; Ahn, J. S.; Kim, J.; Shin, S.-C.

    2000-10-01

    We have constructed a three-configurational surface magneto-optical Kerr effect system, which provides the simultaneous measurements of the "polar," "longitudinal," and "transverse" Kerr hysteresis loops at the position where deposition is carried out in an ultrahigh vacuum growth chamber. The present system enables in situ three-dimensional vectorial studies of ultrathin film magnetism with a submonolayer sensitivity. We present three-configurational hysteresis loops measured during the growth of Co films on Pd(111), glass, and Pd/glass substrates.

  3. Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hocini, Abdesselam

    2018-03-01

    In this work, we report on the theoretical study of one-dimensional magnetophotonic crystals (MPC) comprising of periodic dielectric structure Si/SiO and of silica matrix doped with cobalt-ferrite (CoFe2O4) magnetic nanoparticles as the only magnetic defect layer. Such structure can be prepared by sol-gel dip coating method that controls the thickness of each layer with nanometer level, hence, can overcome the problem of integration of the magneto-optical (MO) devices. We have studied the influence of the volume fraction (concentration of magnetic nanoparticles VF%) on the optical (reflectance, transmittance and absorption) and MO (Kerr rotation) responses in reflection-type one-dimensional MPCs. During investigation of the influence of magnetic nanoparticle's concentration, we found that giant Kerr rotations (even ≈135° for VF = 39%) can be obtained accompanied by large reflectance and low amounts for transmittance and absorption. We report on the demonstration of large MO quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles in the infrared regime. Given the large Kerr rotation, high reflectance accompanied by low absorption and nearly zero transmittance of the 1D MPC containing cobalt-ferrite magnetic nanoparticles, large MO Q factor and figure of merit are obtained.

  4. Effects of external magnetic field and out-of-plane strain on magneto-optical Kerr spectra in CrI3 monolayer.

    PubMed

    Guo, Guanxing; Bi, Gang; Cai, Chunfeng; Wu, Huizhen

    2018-07-18

    Magnetic semiconductors based on two-dimensional (2D) crystals have attracted attention owing to their intrinsic ferromagnetism and have potential for spintronic devices. Here, full-potential linearized augmented plane wave plus local orbitals method is used to explore the structural, electronic, magnetic, and magneto-optical properties of CrI 3 monolayer. Our first-principles calculations show that CrI 3 monolayer is a ferromagnetic indirect semiconductor with spin-up and spin-down band gaps of 1.23 and 1.90 eV, respectively, and a magnetic moment of 2.93 [Formula: see text] per Cr atom. Based on the macroscopic linear response theory, we systematically study the influences of external magnetic field and out-of-plane strain on the magneto-optical Kerr effect spectra in CrI 3 monolayer. The Kerr rotation of CrI 3 monolayer at 1.96 eV photon energy is [Formula: see text], which is consistent with the recent experiments. We find that the Kerr rotation reaches its maximum when the external magnetic field is perpendicular to CrI 3 plane, while it is almost zero on turning the magnetic field in the plane. This result as well as the sizable magnetocrystalline anisotropy energy (MAE) of 0.79 meV verifies that CrI 3 monolayer has a strong magnetic anisotropy with an out-of-plane easy axis. Further, applying out-of-plane compressive and tensile strain upon CrI 3 monolayer, we observe a redshift of the Kerr rotation spectra with the increase of the strain and the peak values of the Kerr rotation increase correspondingly. The rich electronic and magnetic properties, especially the magneto-optical spectra, render CrI 3 monolayer a promising 2D magnetic material for applications from sensing to data storage.

  5. Quantum annealing with all-to-all connected nonlinear oscillators

    PubMed Central

    Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre

    2017-01-01

    Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952

  6. Pattern Formations for Optical Switching Using Cold Atoms as a Nonlinear Medium

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Greenberg, Joel; Gauthier, Daniel

    2011-05-01

    The study of spatio-temporal pattern formation in nonlinear optical systems has both led to an increased understanding of nonlinear dynamics as well as given rise to sensitive new methods for all-optical switching. Whereas the majority of past experiments utilized warm atomic vapors as nonlinear media, we report the first observation of an optical instability leading to pattern formation in a cloud of cold Rubidium atoms. When we shine a pair of counterpropagating pump laser beams along the pencil-shaped cloud's long axis, new beams of light are generated along cones centered on the trap. This generated light produces petal-like patterns in the plane orthogonal to the pump beams that can be used for optical switching. We gratefully acknowledge the financial support of the NSF through Grant #PHY-0855399 and the DARPA Slow Light Program.

  7. Structure of polarization singularities of a light beam at triple frequency generated in isotropic medium by singularly polarized beam.

    PubMed

    Grigoriev, K S; Ryzhikov, P S; Cherepetskaya, E B; Makarov, V A

    2017-10-16

    The components of electric field of the third harmonic beam, generated in isotropic medium with cubic nonlinearity by a monochromatic light beam carrying polarization singularity of an arbitrary type, are found analytically. The relation between C-points characteristics in the fundamental and signal beams are determined, as well as the impact of the phase mismatch on the shape of the C-lines.

  8. Gravitational radiation from extreme Kerr black hole

    NASA Technical Reports Server (NTRS)

    Sasaki, Misao; Nakamura, Takashi

    1989-01-01

    Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.

  9. Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Dold, Dominic

    2017-03-01

    For any cosmological constant {Λ = -3/ℓ2 < 0} and any {α < 9/4}, we find a Kerr-AdS spacetime {({M}, g_{KAdS})}, in which the Klein-Gordon equation {Box_{g_{KAdS}}ψ + α/ℓ2ψ = 0} has an exponentially growing mode solution satisfying a Dirichlet boundary condition at infinity. The spacetime violates the Hawking-Reall bound {r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.

  10. Hidden symmetries of the Kerr metric and Goldstone’s theorem

    NASA Astrophysics Data System (ADS)

    Penna, Robert F.

    2011-12-01

    Perturbations of the Kerr metric admit a spectrum of massless excitations, which we interpret as Goldstone modes coming from the metric’s broken spherical symmetry. The zero-frequency mode is related to the conformal Yano-Killing tensor which encodes Carter’s constant and the Killing vectors of the spacetime. The modes are described by a conformal field theory, which becomes two-dimensional Liouville theory in the near-horizon limit. Directly counting the quantum microstates of this theory reproduces the Bekenstein-Hawking area law.

  11. Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Momeni, F.; Naderi, M. H.

    2018-05-01

    In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.

  12. Rogue-wave bullets in a composite (2+1)D nonlinear medium.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru

    2016-07-11

    We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.

  13. Optical Sidebands Multiplier

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Optical sidebands have been generated with relative frequency tens to hundreds of GHz by using optical sidebands that are generated in a cascade process in high-quality optical resonators with Kerr nonlinearity, such as whispering gallery mode (WGM) resonators. For this purpose, the WGM resonator needs to be optically pumped at two frequencies matching its resonances. These two optical components can be one or several free spectral ranges (FSRs), equal to approximately 12 GHz, in this example, apart from each other, and can be easily derived from a monochromatic pump with an ordinary EOM (electro-optic modulation) operating at half the FSR frequency. With sufficient nonlinearity, an optical cascade process will convert the two pump frequencies into a comb-like structure extending many FSRs around the carrier frequency. This has a demonstratively efficient frequency conversion of this type with only a few milliwatt optical pump power. The concept of using Kerr nonlinearity in a resonator for non-degenerate wave mixing has been discussed before, but it was a common belief that this was a weak process requiring very high peak powers to be observable. It was not thought possible for this approach to compete with electro-optical modulators in CW applications, especially those at lower optical powers. By using the high-Q WGM resonators, the effective Kerr nonlinearity can be made so high that, using even weak seeding bands available from a conventional EOM, one can effectively multiply the optical sidebands, extending them into an otherwise inaccessible frequency range.

  14. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse momentsmore » than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.« less

  15. Elliptic-type soliton combs in optical ring microresonators

    NASA Astrophysics Data System (ADS)

    Dikandé Bitha, Rodrigues D.; Dikandé, Alain M.

    2018-03-01

    Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a 2 ×2 -matrix Lamé-type eigenvalue problem, the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical simulations of the Lugiato-Lefever equation are also carried out seeking for stationary

  16. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  17. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.

    PubMed

    Jing, Yuan; Cleveland, Robin O

    2007-09-01

    A three-dimensional model of the forward propagation of nonlinear sound beams in inhomogeneous media, a generalized Khokhlov-Zabolotskaya-Kuznetsov equation, is described. The Texas time-domain code (which accounts for paraxial diffraction, nonlinearity, thermoviscous absorption, and absorption and dispersion associated with multiple relaxation processes) was extended to solve for the propagation of nonlinear beams for the case where all medium properties vary in space. The code was validated with measurements of the nonlinear acoustic field generated by a phased array transducer operating at 2.5 MHz in water. A nonuniform layer of gel was employed to create an inhomogeneous medium. There was good agreement between the code and measurements in capturing the shift in the pressure distribution of both the fundamental and second harmonic due to the gel layer. The results indicate that the numerical tool described here is appropriate for propagation of nonlinear sound beams through weakly inhomogeneous media.

  18. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.

    PubMed

    Averiyanov, Mikhail; Blanc-Benon, Philippe; Cleveland, Robin O; Khokhlova, Vera

    2011-04-01

    Finite amplitude acoustic wave propagation through atmospheric turbulence is modeled using a Khokhlov-Zabolotskaya-Kuznetsov (KZK)-type equation. The equation accounts for the combined effects of nonlinearity, diffraction, absorption, and vectorial inhomogeneities of the medium. A numerical algorithm is developed which uses a shock capturing scheme to reduce the number of temporal grid points. The inhomogeneous medium is modeled using random Fourier modes technique. Propagation of N-waves through the medium produces regions of focusing and defocusing that is consistent with geometrical ray theory. However, differences up to ten wavelengths are observed in the locations of fist foci. Nonlinear effects are shown to enhance local focusing, increase the maximum peak pressure (up to 60%), and decrease the shock rise time (about 30 times). Although the peak pressure increases and the rise time decreases in focal regions, statistical analysis across the entire wavefront at a distance 120 wavelengths from the source indicates that turbulence: decreases the mean time-of-flight by 15% of a pulse duration, decreases the mean peak pressure by 6%, and increases the mean rise time by almost 100%. The peak pressure and the arrival time are primarily governed by large scale inhomogeneities, while the rise time is also sensitive to small scales.

  19. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInnes, Brett; Ong, Yen Chin, E-mail: matmcinn@nus.edu.sg, E-mail: yenchin.ong@nordita.org

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' massmore » E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.« less

  20. Spin-orbit optical cross-phase-modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne

    2010-12-15

    We show experimentally that optical phase singularities (PSs) can be written and erased, locally and in a controllable manner, into a light beam using the giant Kerr optical nonlinearities of liquid crystals. The method relies on the nonlinear optical spin-orbit coupling experienced by a collimated probe beam when a collinear focused pump beam imprints a radial birefringent pattern into a nematic film. In addition, experimental data are quantitatively described, accounting for the elastic anisotropy of the material and its nonlocal spatial response to the pump light field. Since we show that the optical intensity of a light beam (the 'pump')more » controls the phase of another beam (the 'probe') in a singular fashion (i.e., with the generation of a screw PS) via their interaction in a nonlinear medium that involves spin-orbit coupling, we dubbed such a nonlinear optical process as spin-orbit optical cross-phase-modulation.« less

  1. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    NASA Astrophysics Data System (ADS)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  2. On the Kerr-AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Amado, Julián Barragán; da Cunha, Bruno Carneiro; Pallante, Elisabetta

    2017-08-01

    We review the relation between four-dimensional global conformal blocks and field propagation in AdS5. Following the standard argument that marginal perturbations should backreact in the geometry, we turn to the study of scalar fields in the generic Kerr-AdS5 geometry. On one hand, the result for scattering coefficients can be obtained exactly using the isomonodromy technique, giving exact expressions in terms of c = 1 chiral conformal blocks. On the other hand, one can use the analogy between the scalar field equations to the Level 2 null field Ward identity in two dimensional Liouville field theory to write approximate expressions for the same coefficients in terms of semi-classical chiral Liouville conformal blocks. Surprisingly, the conformal block thus constructed has a well-behaved interpretation in terms of Liouville vertex operators.

  3. Numerical implementation of equations for photon motion in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Bursa, Michal

    2017-12-01

    Raytracing is one of the essential tools for accurate modeling of spectra and variability of various astrophysical objects. It has a major importance in relativistic environments, where light endures to a number of relativistic effects. Because the trajectories of light rays in curved spacetimes, and in Kerr spacetime in particular, are highly non-trivial, we summarize the equations governing the motion of photon (or any other zero rest mass particle) and give analytic solution of the equations that can be further used in practical computer implementations.

  4. Self-excitation of a nonlinear scalar field in a random medium

    PubMed Central

    Zeldovich, Ya. B.; Molchanov, S. A.; Ruzmaikin, A. A.; Sokoloff, D. D.

    1987-01-01

    We discuss the evolution in time of a scalar field under the influence of a random potential and diffusion. The cases of a short-correlation in time and of stationary potentials are considered. In a linear approximation and for sufficiently weak diffusion, the statistical moments of the field grow exponentially in time at growth rates that progressively increase with the order of the moment; this indicates the intermittent nature of the field. Nonlinearity halts this growth and in some cases can destroy the intermittency. However, in many nonlinear situations the intermittency is preserved: high, persistent peaks of the field exist against the background of a smooth field distribution. These widely spaced peaks may make a major contribution to the average characteristics of the field. PMID:16593872

  5. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  6. Phase-transition Theory of Kerr Black Holes in the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Gong, Xiao-Bo; Wu, Jian-Sheng

    2017-02-01

    For a Kerr black hole (KBH) with spin J and mass M in a steady electromagnetic field, a special Wald vacuum solution (WVS) has been found in the case of the no-source uniform field. For WVS, the Meissner effect (ME) occurs only in the the extreme KBH, where M2/J = 1, in this case, the magnetic field is totally excluded from the event horizon (EH) of KBH. However, WVS does not consider the Hawking radiation (HR) but treats KBH as an absolutely black body. If HR is added , researchers believe that the condition is not so restricted and it is possible for ME to occur in the less-extreme case. How less is the “less-extreme case”? This paper tries to answer this question. Since the Hawking temperature TH of KBH defined by HR is proportional to the surface gravity κ at the EH, this question is actually about the so-called existence/non-existence of ME (ME/NME) or superconducting phase transition. In this paper, we study the connection between the superconductivity of KBH-EH and the existence of Weyl fermion. Using thermodynamic formulas and the KBH state equation, we prove that the inherent-parameter condition for ME to occur is {M}2/J≤slant {ɛ }c=1.5 in force-free fields whether it be in the simple axisymmetric vacuum zero source case or in the non-zero source case, which can be described by the nonlinear Grad-Shafranov equation. We suggest that this is a second-order phase transition and calculate the critical exponents δ = 1 and η = 1/2 for the specific heat diverging at constant J.

  7. Nonlinear Coherent Structures, Microbursts and Turbulence

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.

    2015-12-01

    Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.

  8. Modified Hawking Radiation from a Kerr-Newman Black Hole due to Back-Reaction

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Gang; Liu, Wenbiao

    Hawking radiation from a general Kerr-Newman black hole is investigated using Damour-Ruffini's method. Considering the back-reaction of particle's energy, charge and angular momentum to the spacetime, we obtain a modified nonthermal spectrum. Maybe the information loss paradox can be explained, furthermore, the result is also consistent with the result obtained using Parikh and Wilczek's method.

  9. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    NASA Astrophysics Data System (ADS)

    Dumeige, Yannick; Féron, Patrice

    2011-10-01

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.

  10. Iron Kα line of Kerr black holes with scalar hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. Inmore » the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.« less

  11. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    PubMed

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  12. Transformation of nonlinear behaviors: from bright- to dark-gap soliton in a one-dimensional photonic crystal containing a nonlinear indefinite metamaterial defect.

    PubMed

    Zhang, Wei; Chen, Yuanyuan; Hou, Peng; Shi, Jielong; Wang, Qi

    2010-12-01

    Nonlinear propagation characteristics are investigated theoretically in a one-dimensional photonic band-gap structure doped with a nonlinear indefinite metamaterial defect for five distinct frequency intervals. It is found from the electric field distribution that there exists the bright gap solitonlike when the nonlinear indefinite metamaterial defect is a cut-off medium, while the dark gap solitonlike can appear in the nonlinear never cut-off defect layer. It is also found that there exists corresponding bistable lateral shift the properties of which are strongly dependent on the permittivity and permeability of nonlinear indefinite metamaterials. Moreover, in contrast to the switch-down threshold value, the switch-up threshold value is more sensitive to the incident frequency.

  13. The Nonlinear Jaynes-Cummings Model for the Multiphoton Transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Lu, Jing-Bin; Zhang, Si-Qi; Liu, Ji-Ping; Li, Hong; Liang, Yu; Ma, Ji; Weng, Yi-Jiao; Zhang, Qi-Rui; Liu, Han; Zhang, Xiao-Ru; Wu, Xiang-Yao

    2018-01-01

    With the nonlinear Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition in nonlinear medium, and researched the effect of the transition photon number N and the nonlinear coefficient χ on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, we find when the transition photon number N increases, the entanglement degrees oscillation get faster. When the nonlinear coefficient α > 0, the entanglement degrees oscillation get quickly, the nonlinear term is disadvantage of the atom and light field entanglement, and when the nonlinear coefficient α < 0, the entanglement degrees oscillation get slow, the nonlinear term is advantage of the atom and light field entanglement. These results will have been used in the quantum communication and quantum information.

  14. Fast, optically controlled Kerr phase shifter for digital signal processing.

    PubMed

    Li, R B; Deng, L; Hagley, E W; Payne, M G; Bienfang, J C; Levine, Z H

    2013-05-01

    We demonstrate an optically controlled Kerr phase shifter using a room-temperature 85Rb vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach-Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

  15. Decoupling nonclassical nonlinear behavior of elastic wave types

    DOE PAGES

    Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cedric; ...

    2016-03-01

    In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. As a result, this could lead to furthermore » understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.« less

  16. Mean dyadic Green's function for a two layer random medium

    NASA Technical Reports Server (NTRS)

    Zuniga, M. A.

    1981-01-01

    The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.

  17. Time-reversed wave mixing in nonlinear optics

    PubMed Central

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-01-01

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906

  18. In situ Kerr and harmonic measurement in determining current-induced effective fields in MgO/CoFeB/Ta

    NASA Astrophysics Data System (ADS)

    Wong, Q. Y.; Gan, W. L.; Luo, F. L.; Lim, G. J.; Ang, C. C. I.; Tan, F. N.; Law, W. C.; Lew, W. S.

    2018-03-01

    A combination of the harmonic measurement and in situ Kerr imaging was used to experimentally determine the spin-orbit (SO) effective fields in a MgO/CoFeB/Ta structure. Here, we evaluate the SO effective fields through an analytical energy approach by transforming the anomalous Hall effect and planar Hall effect (PHE) voltage into a field dependency while imaging the magnetisation behaviour by differential Kerr microscopy. The analytical fitting to the measurement data indicates the significant coexistence of both a transverse field, {{H}T} , and longitudinal field, {{H}L} , in the longitudinal (H L  =  -12 Oe, H T  =  8 Oe per 106 A cm-2) and transverse (H L  =  -12 Oe, H T  =  -17 Oe per 106 A cm-2) measurement schemes, respectively, due to the PHE. Additionally, dendritic-like domains, indicating the influence of the interfacial Dzyaloshinskii-Moriya interaction (DMI) at the CoFeB/Ta interface, were observed by in situ Kerr imaging. Micromagnetic simulations confirm the dendritic domain formation and edge tilting of the magnetisation, as being due to the DMI.

  19. Raman-noise-induced quantum limits for χ(3) nondegenerate phase-sensitive amplification and quadrature squeezing

    NASA Astrophysics Data System (ADS)

    Voss, Paul L.; Köprülü, Kahraman G.; Kumar, Prem

    2006-04-01

    We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a χ(3) nonlinear medium. The nonzero response time of the Kerr (χ(3)) nonlinearity determines the quantum-limited noise figure of χ(3) parametric amplification, as well as the limit on quadrature squeezing. This nonzero response time of the nonlinearity requires coupling of the parametric process to a molecular vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency nondegenerate and frequency degenerate χ(3) parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency nondegenerate quadrature squeezing. We show that our nondegenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.

  20. On the competition of forces in the Kerr field

    NASA Astrophysics Data System (ADS)

    Semerak, O.

    1994-11-01

    'Rotosphere', where the component of 4-acceleration, radial relative to the symmetry axis, of the stationary observer depends on his angular velocity in a way going against our intuition, is demarcated in the Kerr spacetime. Stationary observers with extremal value of this acceleration ('extremelly accelerated observers') are introduced and their privileged relation to circular geodesics in the equatorial plane is found. Possible translation of the results into 'force' language is based on the definition of the 'centrifugal force' with respect to the zero-angular-momentum observers. It yields, in particular, a simple interpretation of the behavior of acceleration of the stationary observer in terms of gravitational, Coriolis and centrifugal forces.

  1. Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic

    NASA Astrophysics Data System (ADS)

    Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.

    2018-02-01

    We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.

  2. Radiation transport around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy David

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable

  3. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less

  4. Effect of the presence and size of a localized nonlinear source in concrete.

    PubMed

    Zardan, J-P; Payan, C; Garnier, V; Salin, J

    2010-07-01

    The aim of the present letter is to identify the contribution of a macroscopic source of elastic nonlinearity in concrete, a medium which by nature is nonlinear, and belongs to the nonlinear mesoscopic class of materials. The influence of real, localized macro-cracks is characterized with respect to the intrinsic nonlinearity of the material. The influence of the size of the source on the amplitude of the measured nonlinearity is qualitatively demonstrated. A comparison is made between the changes in linear and nonlinear parameters.

  5. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect.

    PubMed

    Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2016-01-11

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central λ-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect.

  6. Sagnac delay in the Kerr-dS spacetime: Implications for Mach's principle

    NASA Astrophysics Data System (ADS)

    Karimov, R. Kh.; Izmailov, R. N.; Garipova, G. M.; Nandi, K. K.

    2018-02-01

    Relativistic twin paradox can have important implications for Mach's principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach's principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass M and cosmological constant Λ on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits M→ 0, spin a→ 0 and Λ → 0, while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.

  7. QCL-based nonlinear sensing of independent targets dynamics.

    PubMed

    Mezzapesa, F P; Columbo, L L; Dabbicco, M; Brambilla, M; Scamarcio, G

    2014-03-10

    We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations.

  8. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  9. Spatial solitons of desired intensity and width and their self-tapering/uptapering in cubic quintic nonlinear medium

    NASA Astrophysics Data System (ADS)

    Krishna Sarkar, Ram; Medhekar, S.

    2007-12-01

    In this paper, we have investigated the propagation behavior of a Gaussian beam in cubic quintic nonlinear medium with and without absorption or gain. A governing differential equation for the evolution of beam width with the distance of propagation has been derived using the standard parabolic equation approach. By solving the governing equation numerically for different sets of parameters, we have shown that spatial solitons of fixed width and desired intensity and of fixed intensity and desired width are possible. Such liberty does not exist in other saturable media. We have also investigated self-tapering and self-uptapering of spatial solitons in the presence of absorption or gain and showed that the rate of self-tapering/uptapering is not only controlled by the magnitude of absorption or gain but also by the values of cubic and quintic terms. It is revealed that by self-tapering, the smallest achievable soliton width decreases/increases by increasing the magnitude of the cubic/quintic term. It is also revealed that the smallest achievable soliton width by self-tapering, is smaller for a larger initial width.

  10. Analysis of Nonlinear Periodic and Aperiodic Media: Application to Optical Logic Gates

    NASA Astrophysics Data System (ADS)

    Yu, Yisheng

    This dissertation is about the analysis of nonlinear periodic and aperiodic media and their application to the design of intensity controlled all optical logic gates: AND, OR, and NOT. A coupled nonlinear differential equation that characterizes the electromagnetic wave propagation in a nonlinear periodic (and aperiodic) medium has been derived from the first principle. The equations are general enough that it reflects the effect of transverse modal fields and can be used to analyze both co-propagating and counter propagating waves. A numerical technique based on the finite differences method and absorbing boundary condition has been developed to solve the coupled differential equations here. The numerical method is simple and accurate. Unlike the method based on characteristics that has been reported in the literature, this method does not involve integration and step sizes of time and space coordinates are decoupled. The decoupling provides independent choice for time and space step sizes. The concept of "gap soliton" has also been re-examined. The dissertation consists of four manuscripts. Manuscript I reports on the design of all optical logic gates: AND, OR, and NOT based on the bistability property of nonlinear periodic and aperiodic waveguiding structures. The functioning of the logic gates has been shown by analysis. The numerical technique that has been developed to solve the nonlinear differential equations are addressed in manuscript II. The effect of transverse modal fields on the bistable property of nonlinear periodic medium is reported in manuscript III. The concept of "gap soliton" that are generated in a nonlinear periodic medium has been re-examined. The details on the finding of the re-examination are discussed in manuscript IV.

  11. Nonlocal nonlinear refraction in Hibiscus sabdariffa with large phase shifts.

    PubMed

    Ramírez-Martínez, D; Alvarado-Méndez, E; Trejo-Durán, M; Vázquez-Guevara, M A

    2014-10-20

    In this work we present a study of nonlinear optical properties in organic materials (hibiscus sabdariffa). Our results demonstrate that the medium exhibits a highly nonlocal nonlinear response. We show preliminary numerical results of the transmittance as nonlocal response by considering, simultaneously, the nonlinear absorption and refraction in media. Numerical results are accord to measurement obtained by Z- scan technique where we observe large phase shifts. We also analyze the far field diffraction ring patterns of the sample.

  12. Envelope of coda waves for a double couple source due to non-linear elasticity

    NASA Astrophysics Data System (ADS)

    Calisto, Ignacia; Bataille, Klaus

    2014-10-01

    Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.

  13. A nonlinear HP-type complementary resistive switch

    NASA Astrophysics Data System (ADS)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  14. Nonlinear and quantum optics near nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhayal, Suman

    We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study

  15. Two-dimensional Kerr-Fourier imaging of translucent phantoms in thick turbid media

    NASA Astrophysics Data System (ADS)

    Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.

    1995-06-01

    Translucent scattering phantoms hidden inside a 5.5-cm-thick Intralipid solution were imaged as a function of phantom scattering coefficients by the use of a picosecond time-and space-gated Kerr-Fourier imaging system. A 2-mm-thick translucent phantom with a 0.1% concentration (scattering coefficient) difference from the 55-mm-thick surrounding scattering host can be distinguished at a signal level of approximately 10-10 of the incidence illumination intensity.

  16. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  17. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick; Feron, Patrice

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processingmore » or ternary optical logic applications.« less

  18. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  19. Verification of antiferromagnetic exchange coupling at room temperature using polar magneto-optic Kerr effect in thin EuS/Co multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goschew, A., E-mail: alexander.goschew@fu-berlin.de; Scott, M.; Fumagalli, P.

    2016-08-08

    We report on magneto-optic Kerr measurements in polar geometry carried out on a series of thin Co/EuS multilayers on suitable Co/Pd-multilayer substrates. Thin Co/EuS multilayers of a few nanometers individual layer thickness usually have their magnetization in plane. Co/Pd multilayers introduce a perpendicular magnetic anisotropy in the Co/EuS layers deposited on top, thus making it possible to measure magneto-optic signals in the polar geometry in remanence in order to study exchange coupling. Magneto-optic Kerr-effect spectra and hysteresis loops were recorded in the visible and ultraviolet photon-energy range at room temperature. The EuS contribution to the magneto-optic signal is extracted atmore » 4.1 eV by combining hysteresis loops measured at different photon energies with polar magneto-optic Kerr-effect spectra recorded in remanence and in an applied magnetic field of 2.2 T. The extracted EuS signal shows clear signs of antiferromagnetic coupling of the Eu magnetic moments to the Co layers. This implies that the ordering temperature of at least a fraction of the EuS layers is above room temperature proving that magneto-optic Kerr-effect spectroscopy can be used here as a quasi-element-specific method.« less

  20. Transition from linear- to nonlinear-focusing regime in filamentation

    PubMed Central

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  1. Nonlinear normal modes in electrodynamic systems: A nonperturbative approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudrin, A. V., E-mail: kud@rf.unn.ru; Kudrina, O. A.; Petrov, E. Yu.

    2016-06-15

    We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytic solutions of the nonlinear field equations are employed to study the mode properties in detail. Based on such a nonperturbative approach, we rigorously prove that the total energy of free nonlinear oscillations in a distributed conservative system, such as that considered in our work, can exactly coincide with the sum of energies of the normal modes of the system. This fact implies that the energy orthogonality property, which has so far been known tomore » hold only for linear oscillations and fields, can also be observed in a nonlinear oscillatory system.« less

  2. Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivadas, Nikhil; Okamoto, Satoshi; Xiao, Di

    2016-12-23

    In this paper, using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-optic effects without modifying the underlying magnetic structure. We further demonstrate the gate control of the magneto-optic Kerr effect (MOKE) in bilayer MnPSe 3 using first-principles calculations. Finally, the field-induced inversion symmetry breaking effect leads to gate-controllable MOKE, whose direction of rotation can be switched by the reversal of the gate voltage.

  3. Pair production of scalar dyons in Kerr-Newman black holes

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi

    2018-06-01

    We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS3 structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the J-, Q- and P-pictures respectively based on the threefold dyonic KN/CFTs dualities.

  4. Direct investigation of collective phenomena in patterned Ising-like arrays using high-resolution Kerr microscopy

    NASA Astrophysics Data System (ADS)

    Fraleigh, Robert Douglas

    Magnetic systems with interacting ferromagnetic single-domain elements are a useful landscape to explore a wide range of fundamental and technological phenomena. In this dissertation, we consider a system of interacting ferromagnetic islands with perpendicular anisotropy. Islands are lithographically-defined to be single-domain and are arranged into large arrays with geometries that are geometrically frustrated and unfrustrated. We explore field-driven local and global magnetic switching behavior using a home-built diffraction-limited magneto-optical Kerr microscope wherein individual islands in each array are isolated, indexed, and tracked in the presence of an applied external field. Global and local switching behavior is directly accessed through analysis island switching fields in the presence of magnetic hysteresis loops. We first explore the considerations regarding lithographic definition of disconnected islands and deposition of Co/Pt multilayers with strong perpendicular anisotropy. The thickness and number of stacked Co/Pt bilayers as well as deposition method significantly affect the strength of perpendicular anisotropy. We find sputter deposition of a 8-stack bilayer of Co0.3 nm=Pt 1 nm optimizes strong perpendicular anisotropy with square hysteresis loops. Our experimental sample contains several sets of ordered arrays with varying geometry and inter-island spacing. Each island is single-domain with length scales amenable to Kerr imaging such that magnetic degrees of freedom are optically accessible. We next discuss the development, calibration, and operation of a home-built magneto-optical Kerr microscope. The Kerr microscope uses a xenon stabilized white light source, Glan-Thompson polarizers, and a 100x oil objective lens to illuminate a sample with linear polarized light. A cooled CCD camera receives the re ected light and transmits it to the computer in a sequence timed with the application of an external magnetic field. We use LabVIEW software to

  5. Self-accelerating parabolic beams in quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Dolev, Ido; Libster, Ana; Arie, Ady

    2012-09-01

    We present experimental observation of self-accelerating parabolic beams in quadratic nonlinear media. We show that the intensity peaks of the first and second harmonics are asynchronous with respect to one another in the two transverse coordinates. In addition, the two coupled harmonics have the same acceleration within and after the nonlinear medium. We also study the evolution of second harmonic accelerating beams inside the quadratic media and their correlation with theoretical beams.

  6. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  7. Nonlinear fractional waves at elastic interfaces

    NASA Astrophysics Data System (ADS)

    Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.

    2017-11-01

    We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.

  8. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  9. Amplitude-dependent internal friction, hysteretic nonlinearity, and nonlinear oscillations in a magnesite resonator.

    PubMed

    Nazarov, V E; Kolpakov, A B; Radostin, A V

    2012-07-01

    The results of experimental and theoretical studies of low-frequency nonlinear acoustics phenomena (amplitude-dependent loss, resonance frequency shifts, and a generation of second and third harmonics) in a magnesite rod resonator are presented. Acceleration and velocity oscillograms of vibrations of the free boundary of the resonator caused by harmonic excitations were measured and analyzed. A theoretical description of the observed amplitude dependences was carried out within the framework of the phenomenological state equations that contain either of the two types of hysteretic nonlinearity (elastic and inelastic). The type of hysteresis and parameters of acoustic nonlinearity of magnesite were established from comparing the experimental measurements with the theoretical dependences. The values of the parameters were anomalously high even when compared to those of other strongly nonlinear polycrystalline materials such as granite, marble, limestone, sandstone, etc.

  10. Nonlinear Poisson Equation for Heterogeneous Media

    PubMed Central

    Hu, Langhua; Wei, Guo-Wei

    2012-01-01

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937

  11. Nonlinear Poisson equation for heterogeneous media.

    PubMed

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Decay of Solutions of the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2006-06-01

    We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L ∞ loc. The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable ω on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.

  13. Magnetoelastic Properties of Magnetic Thin Films Using the Magnetooptic Kerr Effect

    NASA Astrophysics Data System (ADS)

    Mayo, Elizabeth; Lederman, David

    1998-03-01

    The magnetoelastic properties of Co and Fe thin films were measured using the magnetooptic Kerr effect (MOKE). Films were grown via magnetron sputtering on thin mica substrates. Magnetization loops were measured using MOKE with the magnetic field along different in-plane directions. Subsequently, the samples were mounted on a cylindrical sample holder, which imposed a well-defined strain to the film. This caused the magnetization loops to change dramatically due to the magnetoelastic coefficient of the thin film materials. The effects of the surface roughness and film thickness will also be discussed.

  14. Aggravation of pre-existing atrioventricular block, Wenckebach type, provoked by application of X-ray contrast medium.

    PubMed

    Brodmann, Marianne; Seinost, Gerald; Stark, Gerhard; Pilger, Ernst

    2006-01-01

    Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case of a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.

  15. Spatial solitons and stability in the one-dimensional and the two-dimensional generalized nonlinear Schrödinger equation with fourth-order diffraction and parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.

    2018-03-01

    We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.

  16. BOOK REVIEW Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2011-02-01

    General relativity is arguably the most beautiful scientific theory ever conceived but its status within mainstream physics has vacillated since it was proposed in 1915. It began auspiciously with the successful explanation of the precession of Mercury and the dramatic confirmation of light-bending in the 1919 solar eclipse expedition, which turned Einstein into an overnight celebrity. Though little noticed at the time, there was also Karl Schwarzschild's discovery of the spherically symmetric solution in 1916 (later used to predict the existence of black holes) and Alexander Friedmann's discovery of the cosmological solution in 1922 (later confirmed by the discovery of the cosmic expansion). Then for 40 years the theory was more or less forgotten, partly because most physicists were turning their attention to the even more radical developments of quantum theory but also because the equations were too complicated to solve except in situations involving special symmetries or very weak gravitational fields (where general relativity is very similar to Newtonian theory). Furthermore, it was not clear that strong gravitational fields would ever arise in the real universe and, even if they did, it seemed unlikely that Einstein's equations could then be solved. So research in relativity became a quiet backwater as mainstream physics swept forward in other directions. Even Einstein lost interest, turning his attention to the search for a unified field theory. This book tells the remarkable story of how the tide changed in 1963, when the 28-year-old New Zealand mathematician Roy Kerr discovered an exact solution of Einstein's equations which represents a rotating black hole, thereby cracking the code of the title. The paper was just a few pages long, it being left for others to fill in the extensive beautiful mathematics which underlay the result, but it ushered in a golden age of relativity and is now one of the most cited works in physics. Coincidentally, Kerr

  17. Hilbert complexes of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2016-12-01

    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  18. The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Falci, R. F.; Darabian, H.; Anjos, V.; Bell, M. J. V.; Kassab, L. R. P.; Bordon, C. D. S.; Doualan, J. L.; Camy, P.; Moncorgé, R.

    2018-05-01

    The research on Nd3+ doped new solid-state laser hosts with specific thermo-mechanical and optical properties is very active. Nd3+ doped tellurite glasses are suitable for these applications. They have high linear and nonlinear refraction index, wide transmittance range. The TeO2-ZnO (TZO) glass considered in the present work combines all those features and the nonlinear optical properties can be used for the development of Kerr-lens mode-locked sub picosecond lasers. Recently the laser performance of Nd3+ doped TZO glass and was reported and laser slope efficiency of 21% was observed. We investigate how the intensity variation and the silver nanoparticles codoping affects the nonlinear optical properties of Nd3+ doped TZO glasses. Intensity dependent nonlinear refraction indices coefficients at 750, 800 and 850 nm were observed. The nonlinear optical features were obtained through ultrafast single beam z-scan technique with excitations at 750, 800 and 850 nm and are up to two orders of magnitude higher than those reported in the literature.

  19. Superradiant instabilities in the Kerr-mirror and Kerr-AdS black holes with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.

    2018-04-01

    It has been recently observed that a scalar field with Robin boundary conditions (RBCs) can trigger both a superradiant and a bulk instability for a Bañados-Teitelboim-Zanelli (BTZ) black hole (BH) [1]. To understand the generality and scrutinize the origin of this behavior, we consider here the superradiant instability of a Kerr BH confined either in a mirrorlike cavity or in anti-de Sitter (AdS) space, triggered also by a scalar field with RBCs. These boundary conditions are the most general ones that ensure the cavity/AdS space is an isolated system and include, as a particular case, the commonly considered Dirichlet boundary conditions (DBCs). Whereas the superradiant modes for some RBCs differ only mildly from the ones with DBCs, in both cases, we find that as we vary the RBCs the imaginary part of the frequency may attain arbitrarily large positive values. We interpret this growth as being sourced by a bulk instability of both confined geometries when certain RBCs are imposed to either the mirrorlike cavity or the AdS boundary, rather than by energy extraction from the BH, in analogy with the BTZ behavior.

  20. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  1. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    NASA Astrophysics Data System (ADS)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  2. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  3. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range.

    PubMed

    Lin, Guoping; Chembo, Yanne K

    2015-01-26

    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above 109. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion (GVD). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the GVD of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar GVD, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to push the zero-dispersion wavelength of fluorite crystals towards the mid-infrared (mid-IR) range, thereby allowing for efficient Kerr comb generation in that spectral range. We show that barium fluoride is the most interesting crystal in this regard, due to its zero dispersion wavelength (ZDW) at 1.93 μm and an optimal dispersion profile in the mid-IR regime. We expect our results to facilitate the design of different platforms for Kerr frequency comb generations in both telecommunication and mid-IR spectral ranges.

  4. Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, Mieszko

    2017-01-01

    In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.

  5. A string of Peregrine rogue waves in the nonlocal nonlinear Schrödinger equation with parity-time symmetric self-induced potential

    NASA Astrophysics Data System (ADS)

    Gupta, Samit Kumar

    2018-03-01

    Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.

  6. Blackbody emission from light interacting with an effective moving dispersive medium.

    PubMed

    Petev, M; Westerberg, N; Moss, D; Rubino, E; Rimoldi, C; Cacciatori, S L; Belgiorno, F; Faccio, D

    2013-07-26

    Intense laser pulses excite a nonlinear polarization response that may create an effective flowing medium and, under appropriate conditions, a blocking horizon for light. Here, we analyze in detail the interaction of light with such laser-induced flowing media, fully accounting for the medium dispersion properties. An analytical model based on a first Born approximation is found to be in excellent agreement with numerical simulations based on Maxwell's equations and shows that when a blocking horizon is formed, the stimulated medium scatters light with a blackbody emission spectrum. Based on these results, diamond is proposed as a promising candidate medium for future studies of Hawking emission from artificial, dispersive horizons.

  7. Aggravation of Pre-Existing Atrioventricular Block, Wenckebach Type, Provoked by Application of X-Ray Contrast Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodmann, Marianne, E-mail: marianne.brodmann@meduni-graz.at; Seinost, Gerald; Stark, Gerhard

    2006-12-15

    Background. Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. Methods and Results. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. Conclusion. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case ofmore » a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.« less

  8. Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N

    1998-11-30

    An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)

  9. Intrinsic and Extrinsic Origins of the Polar Kerr Effect in a Chiral p-WAVE Superconductor

    NASA Astrophysics Data System (ADS)

    Goryo, Jun

    Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + ipy-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsic (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.

  10. DEPENDENCE OF STELLAR MAGNETIC ACTIVITY CYCLES ON ROTATIONAL PERIOD IN A NONLINEAR SOLAR-TYPE DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. Wemore » discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.« less

  11. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  12. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    PubMed

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  13. Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal

    PubMed Central

    Lysak, Tatiana M.; Trykin, Evgenii M.

    2018-01-01

    We discuss a novel type of surface soliton—aberrated surface soliton—appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation. PMID:29558497

  14. Rejection of fluorescence background in resonance and spontaneous Raman microspectroscopy.

    PubMed

    Smith, Zachary J; Knorr, Florian; Pagba, Cynthia V; Wachsmann-Hogiu, Sebastian

    2011-05-18

    Raman spectroscopy is often plagued by a strong fluorescent background, particularly for biological samples. If a sample is excited with a train of ultrafast pulses, a system that can temporally separate spectrally overlapping signals on a picosecond timescale can isolate promptly arriving Raman scattered light from late-arriving fluorescence light. Here we discuss the construction and operation of a complex nonlinear optical system that uses all-optical switching in the form of a low-power optical Kerr gate to isolate Raman and fluorescence signals. A single 808 nm laser with 2.4 W of average power and 80 MHz repetition rate is split, with approximately 200 mW of 808 nm light being converted to < 5 mW of 404 nm light sent to the sample to excite Raman scattering. The remaining unconverted 808 nm light is then sent to a nonlinear medium where it acts as the pump for the all-optical shutter. The shutter opens and closes in 800 fs with a peak efficiency of approximately 5%. Using this system we are able to successfully separate Raman and fluorescence signals at an 80 MHz repetition rate using pulse energies and average powers that remain biologically safe. Because the system has no spare capacity in terms of optical power, we detail several design and alignment considerations that aid in maximizing the throughput of the system. We also discuss our protocol for obtaining the spatial and temporal overlap of the signal and pump beams within the Kerr medium, as well as a detailed protocol for spectral acquisition. Finally, we report a few representative results of Raman spectra obtained in the presence of strong fluorescence using our time-gating system.

  15. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy.

    PubMed

    Baker, Rebecca; Matousek, Pavel; Ronayne, Kate Louise; Parker, Anthony William; Rogers, Keith; Stone, Nicholas

    2007-01-01

    Breast calcifications are found in both benign and malignant lesions and their composition can indicate the disease state. Calcium oxalate (dihydrate) (COD) is associated with benign lesions, however calcium hydroxyapatite (HAP) is found mainly in proliferative lesions including carcinoma. The diagnostic practices of mammography and histopathology examine the morphology of the specimen. They can not reliably distinguish between the two types of calcification, which may indicate the presence of a cancerous lesion during mammography. We demonstrate for the first time that Kerr-gated Raman spectroscopy is capable of non-destructive probing of sufficient biochemical information from calcifications buried within tissue, and this information can potentially be used as a first step in identifying the type of lesion. The method uses a picosecond pulsed laser combined with fast temporal gating of Raman scattered light to enable spectra to be collected from a specific depth within scattering media by collecting signals emerging from the sample at a given time delay following the laser pulse. Spectra characteristic of both HAP and COD were obtained at depths of up to 0.96 mm, in both chicken breast and fatty tissue; and normal and cancerous human breast by utilising different time delays. This presents great potential for the use of Raman spectroscopy as an adjunct to mammography in the early diagnosis of breast cancer.

  16. A FORTRAN program for calculating nonlinear seismic ground response

    USGS Publications Warehouse

    Joyner, William B.

    1977-01-01

    The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.

  17. Hysteresis and memory factor of the Kerr effect in blue phases

    NASA Astrophysics Data System (ADS)

    Nordendorf, Gaby; Lorenz, Alexander; Hoischen, Andreas; Schmidtke, Jürgen; Kitzerow, Heinz; Wilkes, David; Wittek, Michael

    2013-11-01

    The performance of a polymer-stabilized blue phase system based on a nematic host with large dielectric anisotropy and a chiral dopant with high helical twisting power is investigated and the influence of the reactive monomer composition on the electro-optic characteristics is studied. Field-induced birefringence with a Kerr coefficient greater than 1 nm V-2 can be achieved in a large temperature range from well below 20 °C to above 55 °C. The disturbing influences of electro-optic hysteresis and memory effects can be reduced by diligent choice of the composition and appropriate electric addressing.

  18. Hidden instabilities in the Ti:sapphire Kerr lens mode-locked laser.

    PubMed

    Kovalsky, M G; Hnilo, A A; González Inchauspe, C M

    1999-11-15

    It is experimentally shown that pulse-to-pulse instabilities in the output of Kerr lens mode-locked Ti:sapphire lasers are usual and that they can affect some of the pulse variables (e.g., the spot size) and not others (e.g., pulse duration and energy). These instabilities are not detectable in the averaged signals (such as the autocorrelation of the pulse) that are customarily used for controlling the laser. But, if they are present but are disregarded, these instabilities have undesirable consequences in almost any application. A simple way to detect and eliminate the instabilities is described.

  19. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  20. An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2005-12-01

    We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs.