Sample records for ketene dimer akd

  1. Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics.

    PubMed

    Hamidon, Nurul Nadiah; Hong, Yumiao; Salentijn, Gert Ij; Verpoorte, Elisabeth

    2018-02-13

    We propose the use of water-based alkyl ketene dimer (AKD) ink for fast and user-friendly patterning of paper microfluidic devices either manually or using an inexpensive XY-plotter. The ink was produced by dissolving hydrophobic AKD in chloroform and emulsifying the solution in water. The emulsification was performed in a warm water bath, which led to an increased rate of the evaporation of chloroform. Subsequent cooling led to the final product, an aqueous suspension of fine AKD particles. The effects of surfactant and AKD concentrations, emulsification procedure, and cooling approach on final ink properties are presented, along with an optimized protocol for its formulation. This hydrophobic agent was applied onto paper using a plotter pen, after which the paper was heated to allow spreading of AKD molecules and chemical bonding with cellulose. A paper surface patterned with the ink (10 g L -1 AKD) yielded a contact angle of 135.6° for water. Unlike organic solvent-based solutions of AKD, this AKD ink does not require a fume hood for its use. Moreover, it is compatible with plastic patterning tools, due to the effective removal of chloroform in the production process to less than 2% of the total volume. Furthermore, this water-based ink is easy to prepare and use. Finally, the AKD ink can also be used for the fabrication of so-called selectively permeable barriers for use in paper microfluidic networks. These are barriers that stop the flow of water through paper, but are permeable to solvents with lower surface energies. We applied the AKD ink to confine and preconcentrate sample on paper, and demonstrated the use of this approach to achieve higher detection sensitivities in paper spray ionization-mass spectrometry (PSI-MS). Our patterning approach can be employed outside of the analytical lab or machine workshop for fast prototyping and small-scale production of paper-based analytical tools, for use in limited-resource labs or in the field. Copyright

  2. Determination of the content of alkyl ketene dimer in its latex by an ionic-liquid assisted headspace gas chromatography.

    PubMed

    Yan, Ning; Wan, Xiao-Fang; Chai, Xin-Sheng; Chen, Run-Quan; Chen, Chun-Xia

    2017-12-29

    This paper reports on an ionic-liquid assisted headspace gas chromatographic (HS-GC) for the determination of the content of alkyl ketene dimer (AKD) in its latex samples, in which the GC system was equipped with a thermal conductivity detector (TCD). The method was based on the AKD hydrolysis conducted in 1-butyl-3-methylimidazolium chloride (ionic-liquid) added medium at 100°C for 10min in a closed headspace sample vial, and the measured CO 2 (the resulting product of the hydrolysis) by HS-GC. The results showed that the present method has a good measurement precision (RSD <2.3%) and accuracy (recoveries from 96 - 105%), and the limit of quantitation (LOQ) is 0.9%. The present method is very suitable to be used for the routine check of AKD content in its latex sample in mill applications. The study also showed that the content of AKD in the tested commercial latex samples were in the range of 3.5-12%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Further understanding on the mechanism of alkyl ketene dimer sizing on the causticized calcium carbonate filled paper and its improvements.

    PubMed

    Wang, Jian; Dang, Miao; Duan, Chao; Qian, Li

    2017-02-01

    Causticized calcium carbonate (CCC), a solid waste derived from kraft black recovery process, can be used as an alternative for the conventional precipitated calcium carbonate (PCC). However, the application of the CCC has been limited due to its low sizing efficiency in its filled paper. In this study, the characteristics of the CCC were studied aiming to improve the alkyl ketene dimer (AKD) sizing performances of the CCC filled papers, and the results were compared with those from PCC filled papers. The results showed that the CCC had higher pore structure, higher specific surface area, and more negative charge density than the PCC, thus leading to a higher cationic AKD adsorption onto the CCC filler. The lower AKD sizing efficiency in the CCC filled paper can be explained by the combination of higher AKD adsorption and migration, both of which resulted in preferred AKD adsorption onto/into the CCC fillers, rather than the cellulose fibers. Based on the above, the prior addition of polyamide-polyamine epichlorhydrin (PAE) resin to the CCC filler system was proposed to remedy the related issues, thus improving the sizing efficiency.

  4. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  5. Nanocrystalline cellulose-dispersed AKD emulsion for enhancing the mechanical and multiple barrier properties of surface-sized paper.

    PubMed

    Yang, Luming; Lu, Sheng; Li, Juanjuan; Zhang, Fengshan; Cha, Ruitao

    2016-01-20

    In this study, we employed nanocrystalline cellulose (NCC) as an efficient dispersant to perpare alkyl ketene dimer (AKD) emulsion. The particle size and zeta potential of AKD/NCC emulsion were measured, which were approximately 5 μm and -50 mV, respectively. The surface-sized paper possessed multiple barriers properties. The air permeability of surface-sized paper was 0.29 μm/Pas and the sizing degree reached 42 s when the amount of sizing was 12.58 g/m(2) with a 96.83% decrease and a 40.00%, increase, respectively. Furthermore, the mechanical properties were optimal when the amount of sizing was about 8 g/m(2). AKD/NCC emulsion acted as a good reinforcing agent in surface-sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., processing, preparing, treating, packaging, transporting, or holding food, subject to the provisions of this... paperboard. (c) The alkyl ketene dimers may be used in the form of an aqueous emulsion which may contain...

  7. A Preliminary Study of the Spreading of AKD in the Presence of Capillary Structures.

    PubMed

    Shen, Wei; Parker, Ian H.

    2001-08-01

    There may be several mechanisms at work in the process of migration or redistribution of alkyl ketene dimers (AKD) on cellulose fiber surfaces during paper sizing and curing. This work is the second part of a continuing investigation of the spreading behavior of AKD on the surfaces of hydrophilic substrates. Paper sheets, single cotton, and cotton lint fibers and smooth cellulose film were used as substrates. These represent samples that have pores, V-shaped grooves, and no capillary structure at all. A very simple and effective testing method for studying the AKD migration behavior through these substrates was designed. AFM was used to study the surface capillary structures of cotton and cotton lint fibers. The results of this study provide hard evidence supporting our finding that capillary structures in the form of either interfiber pores in a paper sheet or V-shaped grooves on the surface of single fibers are essential in order for the spreading of molten AKD on a cellulose substrate to occur. Some preliminary results on the existence and the surface diffusion of an autophobic precursor of AKD are also presented. The results support the conclusion we reached in the first part of this investigation; i.e., the molten AKD wets but does not spread on smooth, capillary-free hydrophilic surfaces such as glass and cellulose. The driving force from interfacial energy alone does not cause spontaneous "flow-like" spreading of molten AKD on these surfaces. This is possibly associated with the formation of an autophobic precursor in front of an AKD droplet. The results in this study do not support the perception that molten AKD forms a single molecular layer on the surface of cellulose fibers by spreading during heat treatment, although the autophobic precursor in front of an AKD droplet could theoretically be of a monolayer thickness and the surface diffusion of this precursor may contribute to the sizing development after heat treatment. Copyright 2001 Academic Press.

  8. The effect of superhydrophobic wetting state on corrosion protection--the AKD example.

    PubMed

    Ejenstam, Lina; Ovaskainen, Louise; Rodriguez-Meizoso, Irene; Wågberg, Lars; Pan, Jinshan; Swerin, Agne; Claesson, Per M

    2013-12-15

    Corrosion is of considerable concern whenever metal is used as construction material. In this study we address whether superhydrophobic coatings could be used as part of an environmentally friendly corrosion-protective system, and specific focus is put on how the wetting regime of a superhydrophobic coating affects corrosion inhibition. Superhydrophobic alkyl ketene dimer (AKD) wax coatings were produced, using different methods resulting in hierarchical structures, where the coatings exhibit the same surface chemistry but different wetting regimes. Contact angle measurements, ESEM, confocal Raman microscopy, open circuit potential and electrochemical impedance spectroscopy were used to evaluate the surfaces. Remarkably high impedance values of 10(10)Ω cm(2) (at 10(-2) Hz) were reached for the sample showing superhydrophobic lotus-like wetting. Simultaneous open circuit potential measurements suggest that the circuit is broken, most likely due to the formation of a thin air layer at the coating-water interface that inhibits ion transport from the electrolyte to the metal substrate. The remaining samples, showing superhydrophobic wetting in the rose state and hydrophobic Wenzel-like wetting, showed less promising corrosion-protective properties. Due to the absence of air films on these surfaces the coatings were penetrated by the electrolyte, which allowed the corrosion reaction to proceed. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A facile route to ketene-functionalized polymers for general materials applications

    NASA Astrophysics Data System (ADS)

    Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.

    2010-03-01

    Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.

  10. The Millimeterwave Spectrum of Four Rare Ketene Isotopomers

    NASA Astrophysics Data System (ADS)

    Guarnieri, Antonio

    2005-09-01

    The pure rotational spectra in the ground vibrational state of (1,2-13C)ketene, H213C=13CO, (D2,1-13C)ketene, D2C=13CO, (D2,2-13C)ketene, D213C=CO, and (D2,18O)ketene, D2C=C18O, have been observed in the frequency region 200 - 350 GHz. All the spectral lines have been measured in natural abundances with a source modulated millimeterwave spectrometer. From the measured R-branch transitions a set of rotational and centrifugal distortion constants for each isotopomer could be derived, using the Watson S-reduction formalism. Further, the rotational spectra of the two isotopomers (4,5-D)ketene, D2CCO, and (4-D)ketene, DHCCO, which were already measured several years ago, have been extended to higher J-values and higher frequencies, as it is the case for all investigated isotopomers of this work. As a result of these studies a calculation of a mass-dependent structure will be the topic of a next paper.

  11. The Ketene-Surrogate Coupling: Catalytic Conversion of Aryl Iodides to Aryl Ketenes via Ynol Ethers**

    PubMed Central

    Zhang, Wenhan; Ready, Joseph M.

    2014-01-01

    tert-Butoxyacetylene is shown to undergo Sonogashira coupling with aryl iodides to yield aryl-substituted tert-butyl ynol ethers. These intermediates participate in a [1,5]-hydride shift, which results in the extrusion of isobutylene and the generation of aryl ketenes. The ketenes are trapped in situ with multiple nucleophiles or undergoelectrocyclic ring closure to yield hydroxynaphthalenes and quinolines. PMID:24975840

  12. Ketene Formation in Interstellar Ices: A Laboratory Study

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Loeffler, Mark Josiah

    2013-01-01

    The formation of ketene (H2CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UVphotolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidencewas obtained for ketene synthesis in H2O-rich and CO2-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  13. KETENE FORMATION IN INTERSTELLAR ICES: A LABORATORY STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Reggie L.; Loeffler, Mark J., E-mail: Reggie.Hudson@NASA.gov

    2013-08-20

    The formation of ketene (H{sub 2}CCO, ethenone) in polar and apolar ices was studied with in situ 0.8 MeV proton irradiation, far-UV photolysis, and infrared spectroscopic analyses at 10-20 K. Using isotopically enriched reagents, unequivocal evidence was obtained for ketene synthesis in H{sub 2}O-rich and CO{sub 2}-rich ices, and several reaction products were identified. Results from scavenging experiments suggested that ketene was formed by free-radical pathways, as opposed to acid-base processes or redox reactions. Finally, we use our results to draw conclusions about the formation and stability of ketene in the interstellar medium.

  14. Conversion of the. mu. ketene ligand in (PPN)(Os/sub 3/(CO)/sub 10/(. mu. -I)(. mu. -CH/sub 2/CO)) into enolate, acyl, and vinyl ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassner, S.L.; Morrison, E.D.; Geoffroy, G.L.

    1986-08-20

    Free ketene is a valuable organic synthetic reagent, but its utility is somewhat limited by its high reactivity and tendency to dimerize to yield diketene. The ketene ligand is obviously stabilized by metal coordination in a variety of bonding modes, but it is not yet known how coordination influences the chemistry of this important molecule. The authors have studied the reactivity of the coordinated ketene ligand of type II found in the anionic cluster compound (PPN)(Os/sub 3/(CO)/sub 10/(..mu..-I)(..mu..-CH/sub 2/CO)) (1) (PPN/sup +/ = (Ph/sub 3/P)/sub 2/N/sup +/) and herein show that this ligand is readily converted into eta-enolate ligands uponmore » reaction with simple nucleophiles and into vinyl and acetyl ligands upon reaction with electrophiles.« less

  15. Performance of waste-paper/PETG wood–plastic composites

    NASA Astrophysics Data System (ADS)

    Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei

    2018-05-01

    Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  16. Rural Youth Culture: "Keten" in the Netherlands

    ERIC Educational Resources Information Center

    Haartsen, Tialda; Strijker, Dirk

    2010-01-01

    A remarkable present-day phenomenon in rural areas in the Netherlands is that young people, mostly males, often meet in small groups in self-built or at least self-fitted out sheds or caravans ("keten"). At first glance, these "keten" seem to be substitutes for more official entertainment sites in the relatively sparsely…

  17. Silyl Ketene Imines: Highly Versatile Nucleophiles for Catalytic, Asymmetric Synthesis

    PubMed Central

    Denmark, Scott E.; Wilson, Tyler W.

    2012-01-01

    This Minireview provides an overview on the development of silyl ketene imines and their recent applications in catalytic, enantioselective reactions. The unique structure of the ketene imine allows a diverse range of reactivity patterns and provides solutions to existing challenges in the enantioselective construction of quaternary stereogenic carbon centers and cross-benzoin adducts. A variety of reactions for which silyl ketene imines have been applied are presented with an overall goal of inspiring new uses for these underutilized nucleophiles. PMID:22968901

  18. Reaction of iminopropadienones with amines: mechanistic explanations of zwitterionic intermediate, ketene and ketenimine formation.

    PubMed

    Koch, Rainer; Finnerty, Justin J; Bruhn, Torsten; Borget, Fabien; Wentrup, Curt

    2008-09-25

    The complex reaction of thermally generated iminopropadienones with amines in the gas phase and upon matrix deposition and its varying product composition is investigated using density functional theory. In the high energy gas phase addition a single amine molecule reacts readily with iminopropadienone with the decisive step being a 1,3-hydrogen shift and activation barriers of at least 100 kJ/mol. In accordance with the experiment, the formation of ketenes is favored. In the condensed phase of an amine matrix, the utilization of amine dimers both as reagents and as explicit solvents lowers the activation energy required to a feasible 20-30 kJ/mol and predicts ketenimines as the main products, as observed experimentally.

  19. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  20. Millimeter Wave Spectrum of Methyl Ketene and its Search in Orion

    NASA Astrophysics Data System (ADS)

    Bermúdez, Celina; Margulès, L.; Motiyenko, R. A.; Tercero, Belén; Cernicharo, Jose; Guillemin, J.-C.; Ellinger, Y.

    2017-06-01

    The knowledge of synthetic routes of complex organic molecules is still far to be fully understood. The creation of reliable models is particularly challenging. Hollis et al. pointed out that the observations of molecular isomers provides an excellent tool to evaluate the hypothesis of the synthetic pathways. In the group of isomers C_3H_4O that contains two unsaturations, the three most stable are cyclopropanone, propenal (also known as acrolein) and methyl ketene. Among these isomers, only propenal was tentatively detected in Sgr B2(N). Spectroscopic measurements of methyl ketene CH_3CHCO are limited to the microwave domain. We extended the measurements into millimeter waves in order to provide accurate frequency predictions suitable for astrophysical purposes. Methyl ketene has one more carbon atom than acetaldehyde (CH_3CHO) and in terms of rotational spectroscopy is quite similar to acetaldehyde. The analysis of the rotational spectrum of methyl ketene is complicated due to internal rotation of the methyl group, that is characterized by the barrier of intermediate height V_3 = 416 \\wn, and by quite large value of the coupling parameter ρ = 0.194. The spectroscopic results and the searches of methyl ketene in Orion will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS Hollis, J. M.; 2006, ApJ 642, 933 Hollis, J. M.; et al., 2006, ApJ 643, L25 Bak, B.; et al., 1966, J. Chez. Phys. 45, 883

  1. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  2. The Rotational Spectrum of Ketene Isotopomers with 18O and 13C Revisited

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Huckaufa, A.

    2003-06-01

    The pure rotational spectra of [18O]ketene, H2C=C18O, [1-13C]ketene, H2C=13CO, and [2-13C]ketene, H213C=CO, have been revisited in the frequency region 200 - 350 GHz in the ground vibrational state. From more than 100 R-branch transitions for each isotopomer a set of rotational and centrifugal distortion constants could be derived using the Watson S-reduction formalism. The values obtained for the rotational constants B and C agree very well with results of former investigations. The agreement is worse with respect to the A constants, but our newly determined A values agree well with the corresponding values of the main species and the 17O isotopomer.

  3. Ketene reactions with tertiary amines.

    PubMed

    Allen, Annette D; Andraos, John; Tidwell, Thomas T; Vukovic, Sinisa

    2014-01-17

    Tertiary amines react rapidly and reversibly with arylketenes in acetonitrile forming observable zwitterions, and these undergo amine catalyzed dealkylation forming N,N-disubstituted amides. Reactions of N-methyldialkylamines show a strong preference for methyl group loss by displacement, as predicted by computational studies. Loss of ethyl groups in reactions with triethylamine also occur by displacement, but preferential loss of isopropyl groups in the phenylketene reaction with diisopropylethylamine evidently involves elimination. Quinuclidine rapidly forms long-lived zwitterions with arylketenes, providing a model for catalysis by cinchona and related alkaloids in stereoselective additions to ketenes.

  4. Synthesis of ketene N,N-acetals by copper-catalyzed double-amidation of 1,1-dibromo-1-alkenes.

    PubMed

    Coste, Alexis; Couty, François; Evano, Gwilherm

    2009-10-01

    An efficient procedure for the preparation of ketene N,N-acetals by copper-catalyzed double amidation of 1,1-dibromo-1-alkenes is reported. The reaction was found to be general, and ketene aminals could be obtained in good yields when potassium phosphate in toluene was used at 80 degrees C. The reaction was found to proceed through a regioselective monocoupling reaction followed by dehydrobromination and hydroamidation.

  5. Ammonolysis of ketene as a potential source of acetamide in the troposphere: a quantum chemical investigation.

    PubMed

    Sarkar, Saptarshi; Mallick, Subhasish; Kumar, Pradeep; Bandyopadhyay, Biman

    2018-05-16

    Quantum chemical calculations at the CCSD(T)/CBS//MP2/aug-cc-pVTZ levels of theory have been carried out to investigate a potential new source of acetamide in Earth's atmosphere through the ammonolysis of the simplest ketene. It was found that the reaction can occur via the addition of ammonia at either the C[double bond, length as m-dash]C or C[double bond, length as m-dash]O bond of ketene. The potential energy surface as well as calculated rate coefficients indicate that under tropospheric conditions, ammonolysis would occur almost exclusively via ammonia addition at the C[double bond, length as m-dash]O bond with negligible contribution from addition at the C[double bond, length as m-dash]C bond. The reaction of ketene with water has also been investigated in order to compare between hydrolysis and ammonolysis, as the former is known to be responsible for the formation of acetic acid. The rate coefficient for the formation of acetamide was found to be ∼106 to 109 times higher than that for the formation of acetic acid from the same ketene source in the troposphere. By means of the relative rate of ammonolysis with respect to hydrolysis, it was shown that acetamide formation would dominate over acetic acid formation at various altitudes in the troposphere.

  6. Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Matthew K.; Francisco, Joseph S.; Verdicchio, Marco

    2015-05-14

    The hydrolysis of ketene (H2C=C=O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C=O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C=C double bond to directly produce acetic acid becomes the kinetically favored pathway formore » temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H(2)O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C=C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C=O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H(2)O + FA), the barrier for the direct addition of water across the C=C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C=O bond. In fact, the hydrolysis barrier for the H2C2O + 2H(2)O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  7. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface.

    PubMed

    Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong

    2018-01-26

    As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.

  8. The Onset of H + Ketene Products from Vinoxy Radicals Prepared by Photodissociation of Chloroacetaldehyde at 157 nm

    DOE PAGES

    Lam, Chow-Shing; Adams, Jonathan D.; Butler, Laurie J.

    2016-04-19

    We investigate the unimolecular dissociation of the vinoxy radical (CH 2CHO) prepared with high internal energy imparted from the photodissociation of chloroacetaldehyde (CH 2ClCHO) at 157 nm. Using a velocity map imaging apparatus, we measured the speed distribution of the recoiling chlorine atoms, Cl( 2P 3/2) and Cl( 2P 1/2), and derived from this the resulting distribution of kinetic energy, P(ET), imparted to the Cl + vinoxy fragments upon dissociation. Using conservation of energy, the distribution of kinetic energy was used to determine the total internal energy distribution in the radical. The P(ET) derived for the C–Cl bond fission presentedmore » in this work suggests the vinoxy radicals are mostly formed in the à state. We also took ion images at m/z = 42 and m/z = 15 to characterize the branching between the unimolecular dissociation channels of the vinoxy radical to H + ketene and methyl + CO products. Our results show a marked change in the branching ratio between the two channels from the previous study on the photodissociation of chloroacetaldehyde at 193 nm by Miller et al. (J. Chem. Phys., 2004, 121, 1830) in that the production of ketene is now favored over the production of methyl. To help analyze the data, we developed a model for the branching between the two channels that takes into account how the change in rotational energy en route to the products affects the vibrational energy available to surmount the barriers to the channels. The model predicts the portion of the C–Cl bond fission P(ET) that produces dissociative vinoxy radicals, then predicts the branching ratio between the H + ketene and CH 3 + CO product channels at each ET. The model uses Rice–Ramsperger–Kassel–Marcus rate constants at the correct sums and densities of vibrational states while accounting for angular momentum conservation. We find that the predicted portion of the P(ET) that produces H + ketene products best fits the experimental portion (that we derive

  9. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    PubMed

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  10. Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    PubMed

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R

    2007-12-05

    Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation.

  11. Energy profiles for ketene cyclizations. Interconversion of 1,3-oxazin-6-ones, mesoionic 1,3-oxazinium olates and acylketenes, imidoylketenes, oxoketenimines, and cyclization products.

    PubMed

    Bornemann, Holger; Wentrup, Curt

    2005-07-22

    The energy surface connecting oxazinium olates 9, several possible conformers of ketenes 10 and 11, and the final cyclization products 12, 13 and 14, as well as the isomeric 1,3-oxazine-6-ones 15, ring opening of the latter to N-acylimidoylketenes 16, and subsequent rearrangement of 16 to oxoketenimines 17, azetinones 18, and the cyclization products 19 and 20 are evaluated computationally at the B3LYP/6-31G and B3LYP/6-311+G//B3LYP/6-31G levels. The cyclizations of ketenes to oxazinium olates 9 and oxazines 15 have the characteristics of pseudopericyclic reactions. Plots of the energy vs internal reaction coordinate for the cyclization of transoid acylketenes such as 10 to 9 (via TS1) and 16 to 15 (via TS7) feature two inflection points and indicate that the part of the energy surface above the lower inflection points describe internal rotation of the acyl function in the ketene moiety, and the part below this point describes the cyclization of the cisoid ketene to the planar mesoionic oxazinium olate 9 or oxazinone 15. The 1,3-shifts of the OR group that interconvert ketenes 16 and ketenimines 17 via four-membered cyclic transition states TS8 behave similarly, the first portion (from the ketenimine side) of the activation barrier being due largely to internal rotation of substituents, and the top part being due to the 1,3-shift proper.

  12. Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Beutner, Gregory L; Wynn, Thomas; Eastgate, Martin D

    2005-03-23

    The concept of Lewis base activation of Lewis acids has been reduced to practice for catalysis of the aldol reaction of silyl ketene acetals and silyl dienol ethers with aldehydes. The weakly acidic species, silicon tetrachloride (SiCl4), can be activated by binding of a strongly Lewis basic chiral phosphoramide, leading to in situ formation of a chiral Lewis acid. This species has proven to be a competent catalyst for the aldol addition of acetate-, propanoate-, and isobutyrate-derived silyl ketene acetals to conjugated and nonconjugated aldehydes. Furthermore, vinylogous aldol reactions of silyl dienol ethers are also demonstrated. The high levels of regio-, anti diastereo-, and enantioselectivity observed in these reactions can be rationalized through consideration of an open transition structure where steric interactions between the silyl cation complex and the approaching nucleophile are dominant.

  13. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2006-02-01

    N,O-Silyl dienyl ketene acetals derived from unsaturated morpholine amides have been developed as highly useful reagents for vinylogous aldol addition reactions. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-3, N,O-silyl dienyl ketene acetal 8 undergoes high-yielding and highly site-selective addition to a wide variety of aldehydes with excellent enantioselectivity. Of particular note is the high yields and selectivities obtained from aliphatic aldehydes. Low catalyst loadings (2-5 mol %) can be employed. The morpholine amide serves as a useful precursor for further synthetic manipulation.

  14. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.

    PubMed

    Jarujamrus, Purim; Meelapsom, Rattapol; Pencharee, Somkid; Obma, Apinya; Amatatongchai, Maliwan; Ditcharoen, Nadh; Chairam, Sanoe; Tamuang, Suparb

    2018-01-01

    A smartphone application, called CAnal, was developed as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury(II) in water samples. Measurement on the double layer of a microfluidic paper-based analytical device (μPAD) fabricated by alkyl ketene dimer (AKD)-inkjet printing technique with special design doped with unmodified silver nanoparticles (AgNPs) onto the detection zones was performed by monitoring the gray intensity in the blue channel of AgNPs, which disintegrated when exposed to mercury(II) on μPAD. Under the optimized conditions, the developed approach showed high sensitivity, low limit of detection (0.003 mg L -1 , 3SD blank/slope of the calibration curve), small sample volume uptake (two times of 2 μL), and short analysis time. The linearity range of this technique ranged from 0.01 to 10 mg L -1 (r 2 = 0.993). Furthermore, practical analysis of various water samples was also demonstrated to have acceptable performance that was in agreement with the data from cold vapor atomic absorption spectrophotometry (CV-AAS), a conventional method. The proposed technique allows for a rapid, simple (instant report of the final mercury(II) concentration in water samples via smartphone display), sensitive, selective, and on-site analysis with high sample throughput (48 samples h -1 , n = 3) of trace mercury(II) in water samples, which is suitable for end users who are unskilled in analyzing mercury(II) in water samples.

  15. Enantioselective construction of quaternary stereogenic carbon atoms by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    PubMed

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T

    2014-07-21

    Silyl ketene imines derived from a variety of α-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of a chiral phosphoramide, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note are the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. Linear aliphatic aldehydes did react with good diastereo- and enantioselectivity in the presence of nBu4N(+)I(-), but branched aldehydes were much less reactive. Semiempirical calculations provided a rationalization of the observed diastereo- and enantioselectivity via open transitions states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of densely substituted trans-configured 4-acylated piperidine-2,4-diones as 3:1 adducts of imines and ketenes.

    PubMed

    Cabrera, José; Hellmuth, Tina; Peters, René

    2010-06-18

    An operationally simple method is described to form densely substituted diastereomerically pure trans-configured and potentially biologically interesting 5,6-dihydropyridone derivatives as 3:1 adducts of ketenes formed in situ from acyl bromides and aromatic imines.

  17. Divergent chemo-, regio-, and diastereoselective normal electron-demand Povarov-type reactions with α-oxo-ketene dienophiles.

    PubMed

    Galvez, Jaime; Castillo, Juan-Carlos; Quiroga, Jairo; Rajzmann, Michel; Rodriguez, Jean; Coquerel, Yoann

    2014-08-15

    The reactions between electron-rich 2-aza-dienes and α-oxo-ketenes derived from the Wolff rearrangement of 2-diazocycloalkane-1,3-diones chemo- and regioselectively produced spiro hydropyrid-4-ones with good to excellent diastereoselectivities. These reactions are likely to proceed via a domino Wolff/Friedel-Crafts/intramolecular Mannich process. Prolonged domino sequences also allowed the expeditious preparation of a series of pyrazolopyridine and pyridopyrimidine heterocycles.

  18. Copper-Catalyzed Tandem Reactions for Synthesis of Pyrazolo[5,1-a]isoquinolines with Heterocyclic Ketene Aminals as Ligands.

    PubMed

    Wen, Li-Rong; Jin, Xian-Jun; Niu, Xiao-Dong; Li, Ming

    2015-01-02

    A CuI-catalyzed tandem reaction of 5-(2-bromoaryl)-N-aryl-1H-pyrazol-3-amines with active acetonitrile derivatives to prepare pyrazolo[5,1-a]isoquinolines in good to excellent yields has been successfully developed under mild conditions with heterocyclic ketene aminals (HKAs) as new ligands. This is the first time HKAs have been used as ligands for copper-catalyzed coupling reactions.

  19. D-dimer test

    MedlinePlus

    ... vein thrombosis - D-dimer; Pulmonary embolism - D-dimer; Blood clot to the lungs - D-dimer ... dimer test if you are showing symptoms of blood clots, such as: Swelling, pain, warmth, and changes in ...

  20. Computational study on the aminolysis of beta-hydroxy-alpha,beta-unsaturated ester via the favorable path including the formation of alpha-oxo ketene intermediate.

    PubMed

    Jin, Lu; Xue, Ying; Zhang, Hui; Kim, Chan Kyung; Xie, Dai Qian; Yan, Guo Sen

    2008-05-15

    The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law.

  1. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  2. An ab initio molecular dynamics study of S0 ketene fragmentation

    NASA Astrophysics Data System (ADS)

    Forsythe, Kelsey M.; Gray, Stephen K.; Klippenstein, Stephen J.; Hall, Gregory E.

    2001-08-01

    The dynamical origins of product state distributions in the unimolecular dissociation of S0 ketene, CH2CO (X˜ 1A1)→CH2(ã1A1)+CO, are studied with ab initio molecular dynamics. We focus on rotational distributions associated with ground vibrational state fragments. Trajectories are integrated between an inner, variational transition state (TS) and separated fragments in both the dissociative and associative directions. The average rotational energy in both CO and CH2 fragments decreases during the motion from the TS to separated fragments. However, the CO distribution remains slightly hotter than phase space theory (PST) predictions, whereas that for CH2 ends up significantly colder than PST, in good agreement with experiment. Our calculations do not, however, reproduce the experimentally observed correlations between CH2 and CO rotational states, in which the simultaneous formation of low rotational levels of each fragment is suppressed relative to PST. A limited search for nonstatistical behavior in the strong interaction region also fails to explain this discrepancy.

  3. The two-state dimer receptor model: a general model for receptor dimers.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  4. Novel Picornavirus Associated with Avian Keratin Disorder in Alaskan Birds.

    PubMed

    Zylberberg, Maxine; Van Hemert, Caroline; Dumbacher, John P; Handel, Colleen M; Tihan, Tarik; DeRisi, Joseph L

    2016-07-26

    Avian keratin disorder (AKD), characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus) in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100%) AKD-affected individuals were positive, while only 2/9 (22%) control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus) and two red-breasted nuthatches (Sitta canadensis) with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD. Avian keratin disorder (AKD) is an increasingly common disease of wild birds. This disease, characterized by beak overgrowth, was first described in the late 1990s and has been spreading rapidly both geographically and in terms of host species affected. AKD decreases host fitness and can be fatal. However, the cause of the disease has remained elusive, and its impact on host populations is poorly understood. We found a novel and divergent picornavirus in 19/19 AKD-affected black-capped chickadees that we examined but in only 2/9 control cases. We also found this virus in 4 individuals of 2 other passerine species that exhibited symptoms consistent with AKD. Our data suggest that this novel picornavirus

  5. Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization.

    PubMed

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Popov, Mary; Khara, Dinesh C; Nir, Eyal

    2018-06-01

    Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single-molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the "sticky end" and "weaving welding" attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self-dimerization of the origami monomers, likely via blunt-end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel picornavirus associated with avian keratin disorder in Alaskan birds

    USGS Publications Warehouse

    Zylberberg, Maxine; Van Hemert, Caroline R.; Dumbacher, John P.; Handel, Colleen M.; Tihan, Tarik; DeRisi, Joseph L.

    2016-01-01

    Avian keratin disorder (AKD), characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus) in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100%) AKD-affected individuals were positive, while only 2/9 (22%) control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus) and two red-breasted nuthatches (Sitta canadensis) with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD.

  7. A one-pot synthesis of bis(phenylimino)thiazolidines from ketene N,S-acetals and [Formula: see text],[Formula: see text]-diphenyloxalimidoyl dichloride.

    PubMed

    Yavari, Issa; Zahedi, Nooshin; Baoosi, Leila; Skoulika, Stavroula

    2018-02-01

    A synthesis of functionalized 4,5-bis(phenylimino)-1,3-thiazolidine-2-ylidenes via a simple reaction between ketene [Formula: see text]-acetals (derived from isothiocyanates and acetonitrile derivatives) with N,[Formula: see text]-diphenyloxalimidoyl dichloride in the presence of KOH in DMF is described. When CS[Formula: see text] was used as the heterocumulene component, the reaction led to the formation of 4,5-bis(phenylimino)-1,3-dithiolan-2-ylidene derivatives, in moderate to good yields.

  8. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  9. Sigma- versus Pi-Dimerization Modes of Triangulene.

    PubMed

    Mou, Zhongyu; Kertesz, Miklos

    2018-04-20

    We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Avian keratin disorder of Alaska black-capped chickadees is associated with Poecivirus infection

    USGS Publications Warehouse

    Zylberberg, Maxine; Van Hemert, Caroline R.; Handel, Colleen M.; DeRisi, Joseph L.

    2018-01-01

    BackgroundAvian keratin disorder (AKD) is an epizootic of debilitating beak deformities, first documented in black-capped chickadees (Poecile atricapillus) in Alaska during the late 1990s. Similar deformities have now been recorded in dozens of species of birds across multiple continents. Despite this, the etiology of AKD has remained elusive, making it difficult to assess the impacts of this disease on wild populations. We previously identified an association between infection with a novel picornavirus, Poecivirus, and AKD in a small cohort of black-capped chickadees.MethodsTo test if the association between Poecivirus and AKD holds in a larger study population, we used targeted PCR followed by Sanger sequencing to screen 124 symptomatic and asymptomatic black-capped chickadees for Poecivirus infection. We further compared the efficacy of multiple non-terminal field sampling methods (buccal swabs, cloacal swabs, fecal samples, and blood samples) for Poecivirus screening. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to determine if virus is actively replicating in beak tissue.ResultsPoecivirus was detected in 28/28 (100%) individuals with AKD, but only 9/96 (9.4%) asymptomatic individuals with apparently normal beaks (p < 0.0001). We found that cloacal swabs are the most sensitive of these sample types for detecting Poecivirus in birds with AKD, but that buccal swabs should be combined with cloacal swabs in evaluating the infection status of asymptomatic birds. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to provide evidence of active viral replication.ConclusionThe data presented here show a strong, statistically significant relationship between Poecivirus infection and AKD, and provide evidence that Poecivirus is indeed an avian virus, infecting

  11. Photochemical dimerization of organic compounds

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.

    1992-01-01

    At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

  12. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface.

    PubMed

    Bjørk, Alexandra; Dalhus, Bjørn; Mantzilas, Dimitrios; Eijsink, Vincent G H; Sirevåg, Reidun

    2003-12-05

    Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.

  13. Comparison of clinical probability-adjusted D-dimer and age-adjusted D-dimer interpretation to exclude venous thromboembolism.

    PubMed

    Takach Lapner, Sarah; Julian, Jim A; Linkins, Lori-Ann; Bates, Shannon; Kearon, Clive

    2017-10-05

    Two new strategies for interpreting D-dimer results have been proposed: i) using a progressively higher D-dimer threshold with increasing age (age-adjusted strategy) and ii) using a D-dimer threshold in patients with low clinical probability that is twice the threshold used in patients with moderate clinical probability (clinical probability-adjusted strategy). Our objective was to compare the diagnostic accuracy of age-adjusted and clinical probability-adjusted D-dimer interpretation in patients with a low or moderate clinical probability of venous thromboembolism (VTE). We performed a retrospective analysis of clinical data and blood samples from two prospective studies. We compared the negative predictive value (NPV) for VTE, and the proportion of patients with a negative D-dimer result, using two D-dimer interpretation strategies: the age-adjusted strategy, which uses a progressively higher D-dimer threshold with increasing age over 50 years (age in years × 10 µg/L FEU); and the clinical probability-adjusted strategy which uses a D-dimer threshold of 1000 µg/L FEU in patients with low clinical probability and 500 µg/L FEU in patients with moderate clinical probability. A total of 1649 outpatients with low or moderate clinical probability for a first suspected deep vein thrombosis or pulmonary embolism were included. The NPV of both the clinical probability-adjusted strategy (99.7 %) and the age-adjusted strategy (99.6 %) were similar. However, the proportion of patients with a negative result was greater with the clinical probability-adjusted strategy (56.1 % vs, 50.9 %; difference 5.2 %; 95 % CI 3.5 % to 6.8 %). These findings suggest that clinical probability-adjusted D-dimer interpretation is a better way of interpreting D-dimer results compared to age-adjusted interpretation.

  14. Dimer covering and percolation frustration.

    PubMed

    Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M

    2015-09-01

    Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.

  15. Formic acid dimers in a nitrogen matrix

    NASA Astrophysics Data System (ADS)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-01

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  16. Formic acid dimers in a nitrogen matrix.

    PubMed

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-21

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  17. Ligand regulation of a constitutively dimeric EGF receptor

    NASA Astrophysics Data System (ADS)

    Freed, Daniel M.; Alvarado, Diego; Lemmon, Mark A.

    2015-06-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers.

  18. D-dimers (DD) in CVST.

    PubMed

    Wang, Hui Fang; Pu, Chuan Qiang; Yin, Xi; Tian, Cheng Lin; Chen, Ting; Guo, Jun Hong; Shi, Qiang

    2017-06-01

    We were interested in further confirming whether D-dimers (DD) are indeed elevated in cerebral venous sinus thrombosis (CVST) as reported in those studies. CVST patients who had a plasma D-dimer test (139 cases) were included and divided into two groups: elevated D-dimer group (EDG) (>0.5 μg/mL; 65 cases) and normal D-dimer group (NDG) (≤0.5 μg/mL; 74 cases). The two groups were compared in terms of demographic data, clinical manifestation, laboratory and imaging data, using inferential statistical methods. The chi-squared and Fisher exact test showed that, compared to the NDG (74 cases), patients with elevated D-dimer levels were more likely to have a shorter symptom duration (SD) (30 ± 83.9 versus 90 ± 58.9 d, p = 0.003), more risk factors (75.4% versus 52.7%, p = 0.006), higher multiple venous sinus involvement (75.4% versus 59.5%, p = 0.037), increased fibrinogen (43.1% versus 18.9%, p = 0.037) and higher levels of blood glucose (18.3% versus 11%, p = 0.037). According to correlation analyses, D-dimer levels were positively correlated with number of venous sinuses involvement (NVS) (r = 0.321, p = 0.009) in the EDG. Multivariate logistic regression analysis showed that SD (OR, 0.025; 95% CI, 1.324-6.043; p = 0.000), NVS (OR, 1.573; 95% CI, 1.15-2.151; p = 0.005) and risk factors (OR, 3.321; 95% CI, 1.451-7.564; p = 0.004) were significantly different between the two groups. D-dimer is elevated in patients with acute/subacute CVST.

  19. Solitary waves in dimer binary collision model

    NASA Astrophysics Data System (ADS)

    Ahsan, Zaid; Jayaprakash, K. R.

    2017-01-01

    Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.

  20. The Reach of Linear Protein-DNA Dimerizers

    PubMed Central

    Stafford, Ryan L.; Dervan, Peter B.

    2008-01-01

    A protein-DNA dimerizer constructed from a DNA-binding pyrrole-imidazole polyamide and the peptide FYPWMK facilitates binding of the natural transcription factor Exd to an adjacent DNA site. Previous dimerizers have been constructed with the peptide attached to an internal pyrrole monomer in an overall branched oligomer. Linear oligomers constructed by attaching the peptide to the polyamide C-terminus expand the range of protein-DNA dimerization to six additional DNA sites. Replacing the FYPWMK hexapeptide with a WM dipeptide, which was previously functional in branched compounds, does not lead to a functional linear dimerizer. Instead, inserting an additional lysine generates a minimal, linear WMK tripeptide conjugate that maintains the activity of the larger FYPWMK dimerizers in a single DNA-binding site orientation. These studies provide insight into the importance of linker length and composition, binding site spacing and orientation, and the protein-binding domain content that are important for the optimization of protein DNA-dimerizers suitable for biological experiments. PMID:17949089

  1. Graded-index optical dimer formed by optical force

    DOE PAGES

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria; ...

    2016-05-30

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  2. Graded-index optical dimer formed by optical force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  3. Fluxional σ-Bonds of the 2,5,8-Trimethylphenalenyl Dimer: Direct Observation of the Sixfold σ-Bond Shift via a π-Dimer.

    PubMed

    Uchida, Kazuyuki; Mou, Zhongyu; Kertesz, Miklos; Kubo, Takashi

    2016-04-06

    Direct evidence for σ-bond fluxionality in a phenalenyl σ-dimer was successfully obtained by a detailed investigation of the solution-state dynamics of 2,5,8-trimethylphenalenyl (TMPLY) using both experimental and theoretical approaches. TMPLY formed three diamagnetic dimers, namely, the σ-dimer (RR/SS), σ-dimer (RS), and π-dimer, which were fully characterized by (1)H NMR spectroscopy and electronic absorption measurements. The experimental findings gave the first quantitative insights into the essential preference of these competitive and unusual dimerization modes. The spectroscopic analyses suggested that the σ-dimer (RR/SS) is the most stable in terms of energy, whereas the others are metastable; the energy differences between these three isomers are less than 1 kcal mol(-1). Furthermore, the intriguing dynamics of the TMPLY dimers in the solution state were fully revealed by means of (1)H-(1)H exchange spectroscopy (EXSY) measurements and variable-temperature (1)H NMR studies. Surprisingly, the σ-dimer (RR/SS) demonstrated a sixfold σ-bond shift between the six sets of α-carbon pairs. This unusual σ-bond fluxionality is ascribed to the presence of a direct interconversion pathway between the σ-dimer (RR/SS) and the π-dimer, which was unambiguously corroborated by the EXSY measurements. The proposed mechanism of the sixfold σ-bond shift based on the experimental findings was well-supported by theoretical calculations.

  4. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  5. Dipole Approximation to Predict the Resonances of Dimers Composed of Dielectric Resonators for Directional Emission: Dielectric Dimers Dipole Approximation

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

    2017-09-29

    In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less

  6. Photochemical pathways of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt(III) and iron(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraudi, G.

    1979-04-01

    The photochemical reactivity of the dimeric, mixed dimer, and monomeric sulfophthalocyanines of cobalt (III) and iron (II) was investigated by steady-state and flash irradiations. The dimeric species photodissociated into sulfophthalocyanine radicals which were coordinated to either Co(III) or Fe(II) metal centers. Reactions of such intermediates were investigated by interception with alcohols and O/sub 2/. Also, photoredox reactions were detected with monomeric acidocobalt(III) sulfophtahlocyanines. These processes produce the oxidation of the acido ligands (Cl/sup -/, Br/sup -/, N/sub 3//sup -/, I/sup -/) and the reduction of the metal center. The photoredox dissociation was also investigated by using mixed dimers of themore » cobalt sulfophthalocyanines with Cr(bpy)/sub 3//sup 3 +/ and Ru(bpy)/sub 3//sup 2 +/. The photogeneration of sulfophthalocyanine radicals was observed as a general reaction which was produced by excitation of either the Cr(bby)/sub 3//sup 3 +/ or Ru(bpy)/sub 3//sup 2 +/ units in the mixed dimer. The nature of the reactive excited states involved in the various photochemical reactions of the sulfophthalocyanines of Co(II), Co(III), Cu(II), and Fe(II) is discussed.« less

  7. Improvement of Aptamer Affinity by Dimerization

    PubMed Central

    Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori

    2008-01-01

    To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754

  8. Water Dimer Concentrations in The Atmosphere

    NASA Astrophysics Data System (ADS)

    Saykally, R. J.

    2000-03-01

    The water dimer concentration present in water vapor under equilibrium conditions is rigorously determined as a function of temperature, pressure, and relative humidity via explicit calculations of partition functions on the VRT (ASP-W) potential surface using the SWPS method. Dimer vapor fractions as large as 4.6x10*3 are calculated under tropospheric conditions, and should have observable consequences on chemistry and physical properties of the atmosphere. There has been much recent interest and speculation regarding possible effects of water clusters on the chemistry and radiation balance of the atmosphere. For example, it has been proposed that vibrational overtones of the water dimer absorb solar radiation and account for a significant part of the *anomalous absorption* of the atmosphere, although recent measurements do not support this claim. Similarly, the presence of water dimers has been predicted to accelerate the formation of acid rain, and homogeneous nucleation of raindrops. In all of these contexts, the crucial unknown is the concentration of water dimers present under the specified conditions of temperature, pressure, and relative humidity.

  9. Theoretical investigation on the 2e/12c bond and second hyperpolarizability of azaphenalenyl radical dimers: strength and effect of dimerization.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Sun, Shi-Ling; Qiu, Yong-Qing; Zhao, Liang; Su, Zhong-Min

    2013-09-28

    An increasing number of chemists have focused on the investigations of two-electron/multicenter bond (2e/mc) that was first introduced to describe the structure of radical dimers. In this work, the dimerization of two isoelectronic radicals, triazaphenalenyl (TAP) and hexaazaphenalenyl (HAP) has been investigated in theory. Results show TAP2 is a stable dimer with stronger 2e/12c bond and larger interaction energy, while HAP2 is a less stable dimer with larger diradical character. Interestingly, the ultraviolet-visible absorption spectra suggest that the dimerization induces a longer wavelength absorption in visible area, which is dependent on the strength of dimerization. Significantly, the amplitude of second hyperpolarizability (γ(yyyy)) of HAP2 is 1.36 × 10(6) a.u. that is larger than 7.79 × 10(4) a.u. of TAP2 because of the larger diradical character of HAP2. Therefore, the results indicate that the strength of radical dimerization can be effectively detected by comparing the magnitude of third order non-linear optical response, which is beneficial for further theoretical and experimental studies on the properties of complexes formed by radical dimerization.

  10. Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase.

    PubMed

    Kolodziejski, Pawel J; Rashid, Mohammad B; Eissa, N Tony

    2003-11-25

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are "undisruptable" by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo.

  11. Photodissociable dimer reduction products of 2-thiopyrimidine derivatives.

    PubMed Central

    Wrona, M; Giziewicz, J; Shugar, D

    1975-01-01

    Both 4,6-dimethyl-2-thipyrimidine and its 1-methyl derivative undergo polarographic reduction in aqueous medium, via a 1e/1H+ reduction to a free radical which rapidly dimerizes to products isolates and identified as 4,4'-bis-(4,6-dimethyl-3,4-dihydropyrimidin-2-thione) and the corresponding 1-methyl dimer. The dimers may be oxidized electrolytically to regenerate the parent monomers. Both dimers also undergo photodissociation to quantitatively regenerate the parent monomers, in high quantum yield, 0.23 and 0.35 M/Einstein. The correlation between electrochemical and photochemical reductions of 2-thiopyrimidines are discussed, as well as the significance of the dimer photodissociation reactions in relation to nucleic acid photochemistry. PMID:28516

  12. Hydrogen Dimers in Giant-planet Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Gustafsson, Magnus; Orton, Glenn S.

    2018-03-01

    Despite being one of the weakest dimers in nature, low-spectral-resolution Voyager/IRIS observations revealed the presence of (H2)2 dimers on Jupiter and Saturn in the 1980s. However, the collision-induced H2–H2 opacity databases widely used in planetary science have thus far only included free-to-free transitions and have neglected the contributions of dimers. Dimer spectra have both fine-scale structure near the S(0) and S(1) quadrupole lines (354 and 587 cm‑1, respectively), and broad continuum absorption contributions up to ±50 cm‑1 from the line centers. We develop a new ab initio model for the free-to-bound, bound-to-free, and bound-to-bound transitions of the hydrogen dimer for a range of temperatures (40–400 K) and para-hydrogen fractions (0.25–1.0). The model is validated against low-temperature laboratory experiments, and used to simulate the spectra of the giant planets. The new collision-induced opacity database permits high-resolution (0.5–1.0 cm‑1) spectral modeling of dimer spectra near S(0) and S(1) in both Cassini Composite Infrared Spectrometer observations of Jupiter and Saturn, and in Spitzer Infrared Spectrometer (IRS) observations of Uranus and Neptune for the first time. Furthermore, the model reproduces the dimer signatures observed in Voyager/IRIS data near S(0) on Jupiter and Saturn, and generally lowers the amount of para-H2 (and the extent of disequilibrium) required to reproduce IRIS observations.

  13. Salt bridge residues between I-Ak dimer of dimers alpha-chains modulate antigen presentation.

    PubMed

    Yadati, S; Nydam, T; Demian, D; Wade, T K; Gabriel, J L; Barisas, B G; Wade, W F

    1999-03-15

    Class II dimers of dimers are predicted to have functional significance in antigen presentation. The putative contact amino acids of the I-Ak class II dimer of dimers have been identified by molecular modeling based on the DR1 crystal structure (Nydam et al., Int. Immunol. 10, 1237,1998). We have previously reported the role in antigen presentation of dimer of dimers contact amino acids located in the C-terminal domains of the alpha- and beta-chains of class II. Our calculations show that residues Ealpha89 and Ralpha145 in the alpha2-domain form an inter alpha-chain salt bridge between pairs of alphabeta-heterodimers. Other residues, Qalpha92 and Nalpha115, may be involved in close association in that part of the alpha-chain. We investigated the role of these amino acids on class II expression and antigen presentation. Class II composed of an Ealpha89K substituted alpha-chain paired with a wt beta-chain exhibited inhibited antigen presentation and expression of alpha-chain serologic epitopes. In contrast, mutation of Ralpha145E had less affect on antigen presentation and did not affect I-Ak serologic epitopes. Interchanging charges of the salt bridge residues by expressing both Ralpha145E and Ealpha89K on the same chain obviated the large negative effect of the Ealpha89K mutation on antigen presentation but not on the serologic epitopes. Our results are similar for those reported for mutation of DR3's inter-chain salt bridge with the exception that double mutants did not moderate the DR3 defect. Interestingly, the amino acids differences between I-A and DR change the location of the inter-chain salt bridges. In DR1 these residues are located at positions Ealpha88 and Kalpha111; in I-Ak these residues are located at position Ealpha89 and Ralpha145. Inter alpha-chain salt bridges are thus maintained in various class II molecules by amino acids located in different parts of the alpha2-domain. This conservation of structure suggests that considerable functional

  14. Plaquette order in a dimerized frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Shlagman, Ofer; Shimshoni, Efrat

    2014-11-01

    We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.

  15. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    NASA Technical Reports Server (NTRS)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  16. Effects of Dimers on Cooperation in the Spatial Prisoner's Dilemma Game

    NASA Astrophysics Data System (ADS)

    Li, Hai-Hong; Cheng, Hong-Yan; Dai, Qiong-Lin; Ju, Ping; Zhang, Mei; Yang, Jun-Zhong

    2011-11-01

    We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which information between communities is communicated by the requirement that two players in a dimer hold a same strategy.

  17. Dimerization of tetracationic porphyrins: ionic strength dependence.

    PubMed

    Dixon, D W; Steullet, V

    1998-02-01

    Cationic porphyrins are under study in a number of contexts including their interaction with biological targets, as possible therapeutic agents and as building blocks for molecular devices such as molecular photodiodes and solar cells. Many cationic porphyrins dimerize readily in aqueous solution. Dimerization in turn can control the properties of the porphyrin as well as its binding to its target. The propensity of a porphyrin to dimerize in aqueous solution can be estimated by recording the optical spectrum of the solution as a function of the concentration of added salt. Analysis of the data in terms of the Debye-Hückel formalism gives an estimate of the extent of dimerization as a function of ionic strength. Data for TMPyP4 [meso-tetrakis(4-N-methylpyridinium)porphyrin] and its butyl and octyl homologs; TMAP [meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin]; T theta PP [meso-tetrakis[4-N-[(3-(trimethyl-ammonio)propyl)oxy]phenyl]porphyrin] and the ferrocenyl porphyrin P3Fc are discussed. Dimerization may affect binding of the cationic porphyrins to their targets, e.g., DNA.

  18. Structural insights into the intertwined dimer of fyn SH2.

    PubMed

    Huculeci, Radu; Garcia-Pino, Abel; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico

    2015-12-01

    Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand. © 2015 The Protein Society.

  19. Dimers in Piecewise Temperleyan Domains

    NASA Astrophysics Data System (ADS)

    Russkikh, Marianna

    2018-03-01

    We study the large-scale behavior of the height function in the dimer model on the square lattice. Richard Kenyon has shown that the fluctuations of the height function on Temperleyan discretizations of a planar domain converge in the scaling limit (as the mesh size tends to zero) to the Gaussian Free Field with Dirichlet boundary conditions. We extend Kenyon's result to a more general class of discretizations. Moreover, we introduce a new factorization of the coupling function of the double-dimer model into two discrete holomorphic functions, which are similar to discrete fermions defined in Smirnov (Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, 2006; Ann Math (2) 172:1435-1467, 2010). For Temperleyan discretizations with appropriate boundary modifications, the results of Kenyon imply that the expectation of the double-dimer height function converges to a harmonic function in the scaling limit. We use the above factorization to extend this result to the class of all polygonal discretizations, that are not necessarily Temperleyan. Furthermore, we show that, quite surprisingly, the expectation of the double-dimer height function in the Temperleyan case is exactly discrete harmonic (for an appropriate choice of Laplacian) even before taking the scaling limit.

  20. Kinetics of DNA Tile Dimerization

    PubMed Central

    2015-01-01

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile–tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency. PMID:24794259

  1. Kinetics of DNA tile dimerization.

    PubMed

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  2. [Involvement of scientific societies in early benefit assessment: Simulated participation or valuable additional input?

    PubMed

    Bleß, Hans-Holger; Seidlitz, Cornelia; Ohlmeier, Christoph; de Millas, Christoph

    2018-02-01

    The German framework of early benefit assessment (EBA) of drugs also provides for the participation of scientific medical societies. The aim of their inclusion is to assure that care providers can critically assess all aspects of the EBA and provide insights into relevant aspects regarding the provision of care. This study systematically reviews the frequency of participation of the scientific medical societies (FGs) and the Drug Commission of the German Medical Association (AkdÄ) within the scope of the EBA. In addition, the positioning of AkdÄ/FG is compared to the Institute for Quality and Efficiency in Health Care (IQWiG) and the Federal Joint Committee (G-BA) with a focus on antidiabetic drugs and cancer drugs. A literature analysis was performed based on the comprehensive documentation of benefit assessments published by G-BA. All proceedings of antidiabetic drugs and cancer drugs were included, for which a decision was published by August 6, 2015. In addition, statements of FGs or AkdÄ were identified by an exploratory literature review and included in the analysis. The statements considered were assessed with regard to three categories: (1) additional benefit, (2) appropriate comparator (ZVT) and (3) suitability of the endpoints. For each procedure and category, it was assessed whether there was agreement or disagreement between IGWiG/G-BA and AkdÄ/FGs statements. Regarding the additional benefit, a deviating position was further differentiated according to the level of additional benefit (higher/lower). Afterwards, the proportion of favorable and unfavorable positions was calculated, stratified by FGs and AkdÄ and, separately, for proceedings of antidiabetics and cancer drugs. The literature review revealed 41 proceedings of cancer drugs and 21 proceedings of antidiabetic drugs which were included in the analyses. Statements by AkdÄ/FGs were identified in 90 % of the proceedings for antidiabetic drugs and in 98 % of the proceedings for cancer drugs

  3. Dimer-based model for heptaspanning membrane receptors.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferré, Sergi; Fuxe, Kjell; Cortés, Antonio; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2005-07-01

    The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.

  4. Intracellular formation of ”undisruptable” dimers of inducible nitric oxide synthase

    PubMed Central

    Kolodziejski, Pawel J.; Rashid, Mohammad B.; Eissa, N. Tony

    2003-01-01

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are ”undisruptable” by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo. PMID:14614131

  5. Synthesis and photophysical properties of a single bond linked tetracene dimer

    NASA Astrophysics Data System (ADS)

    Sun, Tingting; Shen, Li; Liu, Heyuan; Sun, Xuan; Li, Xiyou

    2016-07-01

    A tetracene dimer linked directly by a single bond has been successfully prepared by using electron withdrawing groups to improve the stability. The molecular structure of this dimer is characterized by 1H NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The minimized molecular structure and X-ray crystallography reveal that the tetracene subunits of this dimer adopt an orthogonal configuration. Its absorption spectrum differs significantly from that of its monomeric counterpart, suggesting the presence of strong interactions between the two tetracene subunits. The excited state of this dimer is delocalized on both two tetracene subunits, which is significantly different from that of orthogonal anthracene dimers, but similar with that observed for orthogonal pentacene dimer. Most of the excited states of this dimer decay by radioactive channels, which is different from the localized twisted charge transfer state (LTCT) channel of anthracene dimers and the singlet fission (SF) channel of pentacene dimers. The results of this research suggest that similar orthogonal configurations caused different propertied for acene dimers with different conjugation length.

  6. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  7. Factors Associated with D-Dimer Levels in HIV-Infected Individuals

    PubMed Central

    Borges, Álvaro H.; O’Connor, Jemma L.; Phillips, Andrew N.; Baker, Jason V.; Vjecha, Michael J.; Losso, Marcelo H.; Klinker, Hartwig; Lopardo, Gustavo; Williams, Ian; Lundgren, Jens D.

    2014-01-01

    Background Higher plasma D-dimer levels are strong predictors of mortality in HIV+ individuals. The factors associated with D-dimer levels during HIV infection, however, remain poorly understood. Methods In this cross-sectional study, participants in three randomized controlled trials with measured D-dimer levels were included (N = 9,848). Factors associated with D-dimer were identified by linear regression. Covariates investigated were: age, gender, race, body mass index, nadir and baseline CD4+ count, plasma HIV RNA levels, markers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6]), antiretroviral therapy (ART) use, ART regimens, co-morbidities (hepatitis B/C, diabetes mellitus, prior cardiovascular disease), smoking, renal function (estimated glomerular filtration rate [eGFR] and cystatin C) and cholesterol. Results Women from all age groups had higher D-dimer levels than men, though a steeper increase of D-dimer with age occurred in men. Hepatitis B/C co-infection was the only co-morbidity associated with higher D-dimer levels. In this subgroup, the degree of hepatic fibrosis, as demonstrated by higher hyaluronic acid levels, but not viral load of hepatitis viruses, was positively correlated with D-dimer. Other factors independently associated with higher D-dimer levels were black race, higher plasma HIV RNA levels, being off ART at baseline, and increased levels of CRP, IL-6 and cystatin C. In contrast, higher baseline CD4+ counts and higher high-density lipoprotein cholesterol were negatively correlated with D-dimer levels. Conclusions D-dimer levels increase with age in HIV+ men, but are already elevated in women at an early age due to reasons other than a higher burden of concomitant diseases. In hepatitis B/C co-infected individuals, hepatic fibrosis, but not hepatitis viral load, was associated with higher D-dimer levels. PMID:24626096

  8. Rotational spectra of propargyl alcohol dimer: A dimer bound with three different types of hydrogen bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Devendra; Arunan, E., E-mail: arunan@ipc.iisc.ernet.in

    2014-10-28

    Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer [A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initiomore » calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and “Atoms in Molecules” analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O–H⋯O, O–H⋯π, and C–H⋯π. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact.« less

  9. Quantum dimer model for the pseudogap metal

    PubMed Central

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-01-01

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S=1/2, charge +e fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments. PMID:26195771

  10. Receptor signaling: when dimerization is not enough.

    PubMed

    Jiang, G; Hunter, T

    Activation of receptors that signal via tyrosine kinase domains has been thought to involve receptor dimerization and transphosphorylation of juxtaposed catalytic domains. Recent results suggest things might be more complex - specific intersubunit conformational changes within a dimer can also be important.

  11. D-dimer Test

    MedlinePlus

    ... http://www.beckmancoulter.com . Began, T. (2002 October). Elisa D-Dimer: How Accurate For PE Diagnosis? PulmonaryReviews. ... at http://www.pulmonaryreviews.com/oct02/pr_oct02_ELISA.html through http://www.pulmonaryreviews.com . Cortese Hassett, ...

  12. Dimer geometry, amoebae and a vortex dimer model

    NASA Astrophysics Data System (ADS)

    Nash, Charles; O'Connor, Denjoe

    2017-09-01

    We present a geometrical approach and introduce a connection for dimer problems on bipartite and non-bipartite graphs. In the bipartite case the connection is flat but has non-trivial {Z}2 holonomy round certain curves. This holonomy has the universality property that it does not change as the number of vertices in the fundamental domain of the graph is increased. It is argued that the K-theory of the torus, with or without punctures, is the appropriate underlying invariant. In the non-bipartite case the connection has non-zero curvature as well as non-zero Chern number. The curvature does not require the introduction of a magnetic field. The phase diagram of these models is captured by what is known as an amoeba. We introduce a dimer model with negative edge weights which correspond to vortices. The amoebae for various models are studied with particular emphasis on the case of negative edge weights. Vortices give rise to new kinds of amoebae with certain singular structures which we investigate. On the amoeba of the vortex full hexagonal lattice we find the partition function corresponds to that of a massless Dirac doublet.

  13. Fibulin 5 Forms a Compact Dimer in Physiological Solutions*

    PubMed Central

    Jones, Richard P. O.; Wang, Ming-Chuan; Jowitt, Thomas A.; Ridley, Caroline; Mellody, Kieran T.; Howard, Marjorie; Wang, Tao; Bishop, Paul N.; Lotery, Andrew J.; Kielty, Cay M.; Baldock, Clair; Trump, Dorothy

    2009-01-01

    Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin. PMID:19617354

  14. Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers

    PubMed Central

    Juskaite, Victoria; Corcoran, David S; Leitinger, Birgit

    2017-01-01

    The collagen-binding receptor tyrosine kinase DDR1 (discoidin domain receptor 1) is a drug target for a wide range of human diseases, but the molecular mechanism of DDR1 activation is poorly defined. Here we co-expressed different types of signalling-incompetent DDR1 mutants (‘receiver’) with functional DDR1 (‘donor’) and demonstrate phosphorylation of receiver DDR1 by donor DDR1 in response to collagen. Making use of enforced covalent DDR1 dimerisation, which does not affect receptor function, we show that receiver dimers are phosphorylated in trans by the donor; this process requires the kinase activity of the donor but not that of the receiver. The receiver ectodomain is not required, but phosphorylation in trans is abolished by mutation of the transmembrane domain. Finally, we show that mutant DDR1 that cannot bind collagen is recruited into DDR1 signalling clusters. Our results support an activation mechanism whereby collagen induces lateral association of DDR1 dimers and phosphorylation between dimers. DOI: http://dx.doi.org/10.7554/eLife.25716.001 PMID:28590245

  15. Design and Preparation of Nanoparticle Dimers for SERS Detection

    DTIC Science & Technology

    2012-09-10

    sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were synthesized that incorporate SERS reporters...and antigens, based on the remarkable sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were...Potma, V. A._Apkarian. High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers, The Journal of

  16. Fano-like resonance in symmetry-broken gold nanotube dimer.

    PubMed

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2012-11-19

    The influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum. The Fano dip shows a red-shift and becomes deep with the increase of the offset-value. In the strong coupling model of the SBGNT dimer, the coupling between two SBGNTs induces giant electric field enhancement at the gap of the dimer, which is much larger than that in the symmetry gold nanotube dimer. The SBGNT with larger offset-value exhibits stronger near-field at the "hot spot".

  17. Unique and Highly Selective Anticytomegalovirus Activities of Artemisinin-Derived Dimer Diphenyl Phosphate Stem from Combination of Dimer Unit and a Diphenyl Phosphate Moiety

    PubMed Central

    He, Ran; Forman, Michael; Mott, Bryan T.; Venkatadri, Rajkumar; Posner, Gary H.

    2013-01-01

    We report that the artemisinin-derived dimer diphenyl phosphate (DPP; dimer 838) is the most selective inhibitor of human cytomegalovirus (CMV) replication among a series of artemisinin-derived monomers and dimers. Dimer 838 was also unique in being an irreversible CMV inhibitor. The peroxide unit within artemisinins' chemical structures is critical to their activities, and its absence results in loss of anti-CMV activities. Surprisingly, the deoxy dimer of 838 retained modest anti-CMV activity, suggesting that the DPP moiety of dimer 838 contributes to its anti-CMV activities. DPP alone did not inhibit CMV replication, but triphenyl phosphate (TPP) had modest CMV inhibition, although its selectivity index was low. Artemisinin DPP derivatives dimer 838 and monomer diphenyl phosphate (compound 558) showed stronger CMV inhibition and a higher selectivity index than their analogs lacking the DPP unit. An add-on and removal assay revealed that removing DPP derivatives (compounds 558 and 838) but not the non-DPP backbones (artesunate and compound 606) at 24 h postinfection (hpi) already resulted in dominant CMV inhibition. CMV inhibition was fully irreversible with 838 and partially irreversible with 558, while non-DPP artemisinins were reversible inhibitors. While all artemisinin derivatives and TPP reduced the expression of the CMV immediate early 2 (IE2), UL44, and pp65 proteins at or after 48 hpi, only TPP inhibited the expression of both IE1 and IE2. Combination of a non-DPP dimer (compound 606) with TPP was synergistic in CMV inhibition, while ganciclovir and TPP were additive. Although TPP shared structural similarity with monomer DPP (compound 558) and dimer DPP (compound 838), its pattern of CMV inhibition was significantly different from the patterns of the artemisinins. These findings demonstrate that the DPP group contributes to the unique activities of compound 838. PMID:23774439

  18. Oligomerization of deoxynucleoside-biphosphate dimers - Template and linkage specificity

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Van Der Woerd, R.; Bakker, C. G.; Schwartz, Alan W.

    1989-01-01

    The oligomerization of the activated 3-prime-5-prime pyrophosphate-linked dimer, pdAppdAp, is presently noted to be selectively favored by a poly(U) template over the 3-prime-3-prime and 5-prime-5-prime linked dimers. Both overall yields and the production of the longest oligomers were markedly stimulated by poly(U)'s presence; in its absence, the 5-prime-5-prime linked dimer became the most reactive, yielding chains of the order of 60 monomer-unit lengths. Remarkable self-organization properties are noted for the 5-prime-5-prime dimer of pdAp.

  19. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling.

    PubMed

    Qiu, Yue; Ogawa, Haruo; Miyagi, Masaru; Misono, Kunio S

    2004-02-13

    The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.

  20. Microwave Spectrum of the Isopropanol-Water Dimer

    NASA Astrophysics Data System (ADS)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  1. The Far Infrared Vibration-Rotation Spectrum of the Ammonia Dimer.

    NASA Astrophysics Data System (ADS)

    Loeser, Jennifer Gertrud

    1995-11-01

    The ammonia dimer has been shown to exhibit unusual weak bonding properties relative to those of the other prototypical second row systems, the hydrogen fluoride dimer and the water dimer. The ultimate goal of the work initiated in this dissertation is to determine a complete intermolecular potential energy surface for the ammonia dimer. It is first necessary to observe its far infrared vibration-rotation-tunneling (VRT) spectrum and to develop a group theoretical model that explains this spectrum in terms of the internal dynamics of the ammonia dimer. These first steps are the subject of this dissertation. First, the current understanding of the ammonia dimer system is reviewed. Group theoretical descriptions of the nature of the ammonia dimer VRT states are explained in detail. An overview of the experimental and theoretical studies of the ammonia dimer made during the last decade is presented. Second, progress on the analysis of the microwave and far infrared spectrum of (ND_3)_2 below 13 cm^{-1} is reported. These spectra directly measure the 'donor -acceptor' interchange splittings in (ND_3) _2, and determine some of the monomer umbrella inversion tunneling splittings. Third, new 80-90 cm^{-1} far infrared spectra of (NH_3)_2 are presented and a preliminary analysis is proposed. Most of the new excited VRT states have been assigned as tunneling sublevels of an out-of-plane intermolecular vibration.

  2. Association of different biomarkers of renal function with D-dimer levels in patients with type 1 diabetes mellitus (renal biomarkers and D-dimer in diabetes).

    PubMed

    Domingueti, Caroline Pereira; Fóscolo, Rodrigo Bastos; Dusse, Luci Maria S; Reis, Janice Sepúlveda; Carvalho, Maria das Graças; Gomes, Karina Braga; Fernandes, Ana Paula

    2018-02-01

    Objective This study aimed to evaluate the association between different renal biomarkers with D-Dimer levels in diabetes mellitus (DM1) patients group classified as: low D-Dimer levels (< 318 ng/mL), which included first and second D-Dimer tertiles, and high D-Dimer levels (≥ 318 ng/mL), which included third D-Dimer tertile. Materials and methods D-Dimer and cystatin C were measured by ELISA. Creatinine and urea were determined by enzymatic method. Estimated glomerular filtration rate (eGFR) was calculated using CKD-EPI equation. Albuminuria was assessed by immunoturbidimetry. Presence of renal disease was evaluated using each renal biomarker: creatinine, urea, cystatin C, eGFR and albuminuria. Bivariate logistic regression analysis was performed to assess which renal biomarkers are associated with high D-Dimer levels and odds ratio was calculated. After, multivariate logistic regression analysis was performed to assess which renal biomarkers are associated with high D-Dimer levels (after adjusting for sex and age) and odds ratio was calculated. Results Cystatin C presented a better association [OR of 9.8 (3.8-25.5)] with high D-Dimer levels than albuminuria, creatinine, eGFR and urea [OR of 5.3 (2.2-12.9), 8.4 (2.5-25.4), 9.1 (2.6-31.4) and 3.5 (1.4-8.4), respectively] after adjusting for sex and age. All biomarkers showed a good association with D-Dimer levels, and consequently, with hypercoagulability status, and cystatin C showed the best association among them. Conclusion Therefore, cystatin C might be useful to detect patients with incipient diabetic kidney disease that present an increased risk of cardiovascular disease, contributing to an early adoption of reno and cardioprotective therapies.

  3. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    PubMed Central

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-01-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA. PMID:7884897

  4. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    PubMed

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-04-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA.

  5. Integrability and conformal data of the dimer model

    NASA Astrophysics Data System (ADS)

    Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ruelle, Philippe

    2016-04-01

    The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=-2 description. Using Lieb’s transfer matrix and its description in terms of the Temperley-Lieb algebra {{TL}}n at β =0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analyzed in the scaling limit, and the result for {L}0-\\frac{c}{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of {{TL}}n and are found to yield a c=-2 realization of the Virasoro algebra, familiar from fermionic bc ghost systems. In this realization, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=-2 conformal integrals of motion. Consistent with the expression for {L}0-\\frac{c}{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c = 1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c = 1 integrals of motion. Although this indicates that Lieb’s transfer matrix description is incompatible with the c = 1 interpretation, it does not rule out the existence of an alternative, c = 1 compatible, transfer matrix description of the dimer model.

  6. An Alternative Mechanism for the Dimerization of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Nicole R.; Tschumper, Gregory; Yan, Ge

    Gas-phase formic acid exists primarily as a cyclic dimer. The mechanism of dimerization has been traditionally considered to be a synchronous process; however, recent experimental findings suggest a possible alternative mechanism by which two formic acid monomers proceed through an acyclic dimer to the cyclic dimer in a stepwise process. To investigate this newly proposed process of dimerization in formic acid, density functional theory and second-order Moeller-Plesset perturbation theory (MP2) have been used to optimize cis and trans monomers of formic acid, the acyclic and cyclic dimers, and the acyclic and cyclic transition states between minima. Single-point energies of themore » trans monomer, dimer minima, and transition states at the MP2/TZ2P+diff optimized geometries were computed at the coupled-cluster level of theory including singles and doubles with perturbatively applied triple excitations [CCSD(T)] with an aug-cc-pVTZ basis set to obtain an accurate determination of energy barriers and dissociation energies. A counterpoise correction was performed to determine an estimate of the basis set superposition error in computing relative energies. The explicitly correlated MP2 method of Kutzelnigg and Klopper (MP2-R12) was used to provide an independent means for obtaining the MP2 one-particle limit. The cyclic minimum is predicted to be 6.3 kcal/mol more stable than the acyclic minimum, and the barrier to double proton transfer is 7.1 kcal/mol.« less

  7. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    NASA Astrophysics Data System (ADS)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  8. Two Populations Mean-Field Monomer-Dimer Model

    NASA Astrophysics Data System (ADS)

    Alberici, Diego; Mingione, Emanuele

    2018-04-01

    A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

  9. D-dimer concentration outliers are not rare in at-term pregnant women.

    PubMed

    Wang, Yu; Gao, Jie; Du, Juan

    2016-06-01

    To determine the D-dimer levels in pregnant women at term and the differences between pregnant women with different D-dimer levels. The plasma D-dimer concentrations in pregnant women at term were identified in a cross-sectional study. The clinical indicators that are potentially relevant to D-dimer levels were compared between the pregnant women with different D-dimer levels (i.e., normal, mildly increased, and severely increased). There were always some D-dimer concentration outliers in the pregnant women at term regardless of the presence or absence of complications, and there were no significant differences in maternal age, gestational age, gravidity, parity, blood count, blood coagulation, or liver function between the pregnant women with different D-dimer levels. D-dimer levels may vary significantly during pregnancy for unknown reasons. This variation, particularly in pregnant women at term, might lead to questionable diagnostic information regarding coagulation. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  11. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  12. Bioluminescence Resonance Energy Transfer Studies Reveal Constitutive Dimerization of the Human Lutropin Receptor and a Lack of Correlation between Receptor Activation and the Propensity for Dimerization*

    PubMed Central

    Guan, Rongbin; Feng, Xiuyan; Wu, Xueqing; Zhang, Meilin; Zhang, Xuesen; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904–5914). In this study, bioluminescence resonance energy transfer (BRET2) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET2 to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET2 analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET2 signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR. PMID:19147490

  13. Rapid detection of D-Dimers with mLabs® whole blood method for venous thromboembolism exclusion. Comparison with Vidas® D-Dimers assay.

    PubMed

    Gerotziafas, Grigoris T; Ray, Patrick; Gkalea, Vasiliki; Benzarti, Ahlem; Khaterchi, Amir; Cast, Claire; Pernet, Julie; Lefkou, Eleftheria; Elalamy, Ismail

    2016-12-01

    Easy to use point of care assays for D-Dimers measurement in whole blood from patients with clinical suspicion of venous thromboembolism (VTE) will facilitate the diagnostic strategy in the Emergency Department (ED) setting. We prospectively evaluated the diagnostic performance of the point-of-care mLabs® Whole Blood D-Dimers test and we compared it with the Vidas® D-Dimers assay. As part of the diagnostic algorithm applied in patients with clinical suspicion of VTE, the VIDAS® D-Dimers Test was prescribed by the emergency physician in charge. The mLabs® Whole Blood D-Dimers Test was used on the same samples. All patients had undergone exploration with the recommended imaging techniques for VTE diagnosis. Both assays were performed, on 99 emergency patients (mean age was 65 years) with clinical suspicion of VTE. In 3% of patients, VTE was documented with a reference imaging technique. The Bland and Altman test showed significant agreement between the two methods. Both assays showed equal sensitivity and negative predictive value for VTE. The mLabs whole blood assay is a promising point of care method for measurement of D-Dimers and exclusion of VTE diagnosis in the emergency setting which should be validated in a larger prospective study.

  14. Circulating D-dimer level correlates with disease characteristics in hepatoblastoma patients

    PubMed Central

    Zhang, BinBin; Liu, GongBao; Liu, XiangQi; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2017-01-01

    Abstract Objectives: Hepatoblastoma (HB) is the most common pediatric liver malignancy, typically affecting children within the first 4 years of life. However, only a few validated blood biomarkers are used in clinical evaluation. The current study explored the clinical application and significance of D-dimer levels in patients with HB. Method: Forty-four patients with HB were included in this retrospective study. D-dimer and plasma fibrinogen levels were examined, and their correlation with other clinical features was analyzed. D-dimer and plasma fibrinogen levels were examined between HB and other benign hepatic tumors. Results: D-dimer levels were significantly associated with high-risk HB features, such as advanced stage and high α-fetoprotein (AFP) levels. Higher D-dimer levels were observed in stage 4 patients compared with stage 1/2/3 patients (P = .028). Higher D-dimer levels were also observed in patients with higher AFP levels before chemotherapy compared with patients with lower AFP levels after chemotherapy (P< 0.001). In addition, higher D-dimer levels were observed in HB compared with other benign hepatic tumors such as hepatic hemangioma and hepatocellular adenoma (P = .012). No significant difference in D-dimer levels was found between sex (P = .503) and age (≥12 vs <12 months, P = .424). There was no significant difference in plasma fibrinogen levels between sex or age and high-risk HB features, such as advanced stage and high AFP levels. Conclusions: Elevated D-dimer levels could be a useful determinant biomarker for high-risk features in patients with HB. This finding also supports the clinical application of D-dimer in HB. PMID:29381980

  15. The water dimer II: Theoretical investigations

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-05-01

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. In this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interactions in clusters and the condensed phases of water.

  16. Detectability of Noble Gases in Jovian Atmospheres Utilizing Dimer Spectral Structures

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Min, Y.; Kim, Y.; Lee, Y.; Trafton, L.; Miller, S.; McKellar, A. R. W.

    1997-07-01

    The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window (Kim et al. 1995; Trafton et al. 1997) suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres, it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if adequate S/N is obtained. However, these dimer structures should be much weaker than the nearby hydrogen-hydrogen features because noble gases are expected to be minor constituents of these atmospheres. We will discuss the detectability of these dimers based on laboratory measurements (McKellar, 1994; 1996), and current technology of infrared observations.

  17. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    NASA Astrophysics Data System (ADS)

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-09-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.

  18. Structural Determinants Underlying Constitutive Dimerization of Unoccupied Human Follitropin Receptors

    PubMed Central

    Guan, Rongbin; Wu, Xueqing; Feng, Xiuyan; Zhang, Meilin; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr110 in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269–277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr110 to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr110 of the ECD. PMID:19800402

  19. The Water Dimer II: Theoretical Investigations

    DOE PAGES

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    2018-03-29

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. Here in this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and the condensed phases of water.

  20. The Water Dimer II: Theoretical Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Anamika; Xantheas, Sotiris S.; Saykally, Richard J.

    As the archetype of aqueous hydrogen bonding, the water dimer has been extensively studied by both theory and experiment for nearly seven decades. Here in this article, we present a detailed chronological review of the theoretical advances made using electronic structure methods to address the structure, hydrogen bonding and vibrational spectroscopy of the water dimer, as well as the role of its potential energy surface in the development of classical force fields to describe intermolecular interaction in clusters and the condensed phases of water.

  1. Diagnostic implication of fibrin degradation products and D-dimer in aortic dissection

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Duan, Xianli; Feng, Rui; Zhao, Zhiqing; Feng, Xiang; Lu, Qingsheng; Jing, Qing; Zhou, Jian; Bao, Junmin; Jing, Zaiping

    2017-03-01

    Fibrin degradation products (FDP) and D-dimer have been considered to be involved in many vascular diseases. In this study we aimed to explore the diagnostic implication of FDP and D-dimer in aortic dissection patients. 202 aortic dissection patients were collected as the case group, 150 patients with other cardiovascular diseases, including myocardial infarction (MI, n = 45), pulmonary infarction (n = 51) and abdominal aortic aneurysm (n = 54) were collected as non-dissection group, and 27 healthy people were in the blank control group. The FDP and D-dimer levels were detected with immune nephelometry. Logist regression analysis was performed to evaluate the influence of FDP and D-dimer for the aortic dissection patients. ROC curve was used to determine the diagnostic value of FDP and D-dimer. The FDP and D-dimer levels were significantly higher in aortic dissection patients than in non-dissection patients and the healthy controls. FDP and D-dimer were both the risk factors for patients with aortic dissection. From the ROC analysis, diagnostic value of FDP and D-dimer were not high to distinguish aortic dissection patients from the non-dissection patients. However FDP and D-dimer could be valuable diagnostic marker to differentiate aortic dissection patients and healthy controls with both AUC 0.863.

  2. Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers†

    PubMed Central

    2011-01-01

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5” dimer) in an explicit lipid−water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer. PMID:21261298

  3. Making structural sense of dimerization interfaces of delta opioid receptor homodimers.

    PubMed

    Johnston, Jennifer M; Aburi, Mahalaxmi; Provasi, Davide; Bortolato, Andrea; Urizar, Eneko; Lambert, Nevin A; Javitch, Jonathan A; Filizola, Marta

    2011-03-15

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed "4" dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed "4/5" dimer) in an explicit lipid-water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer.

  4. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain.

    PubMed

    Bianchetti, Laurent; Wassmer, Bianca; Defosset, Audrey; Smertina, Anna; Tiberti, Marion L; Stote, Roland H; Dejaegere, Annick

    2018-04-30

    Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research. Copyright © 2018. Published by Elsevier B.V.

  5. D-dimer: An Overview of Hemostasis and Fibrinolysis, Assays, and Clinical Applications.

    PubMed

    Olson, John D

    2015-01-01

    D-dimer is the smallest fibrinolysis-specific degradation product found in the circulation. The origins, assays, and clinical use of D-dimer will be addressed. Hemostasis (platelet and vascular function, coagulation, fibrinolysis, hemostasis) is briefly reviewed. D-dimer assays are reviewed. The D-dimer is very sensitive to intravascular thrombus and may be markedly elevated in disseminated intravascular coagulation, acute aortic dissection, and pulmonary embolus. Because of its exquisite sensitivity, negative tests are useful in the exclusion venous thromboembolism. Elevations occur in normal pregnancy, rising two- to fourfold by delivery. D-dimer also rises with age, limiting its use in those >80 years old. There is a variable rise in D-dimer in active malignancy and indicates increased thrombosis risk in active disease. Elevated D-dimer following anticoagulation for a thrombotic event indicates increased risk of recurrent thrombosis. These and other issues are addressed. © 2015 Elsevier Inc. All rights reserved.

  6. Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    PubMed Central

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664

  7. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    PubMed

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  8. Vancomycin: ligand recognition, dimerization and super-complex formation.

    PubMed

    Jia, ZhiGuang; O'Mara, Megan L; Zuegg, Johannes; Cooper, Matthew A; Mark, Alan E

    2013-03-01

    The antibiotic vancomycin targets lipid II, blocking cell wall synthesis in Gram-positive bacteria. Despite extensive study, questions remain regarding how it recognizes its primary ligand and what is the most biologically relevant form of vancomycin. In this study, molecular dynamics simulation techniques have been used to examine the process of ligand binding and dimerization of vancomycin. Starting from one or more vancomycin monomers in solution, together with different peptide ligands derived from lipid II, the simulations predict the structures of the ligated monomeric and dimeric complexes to within 0.1 nm rmsd of the structures determined experimentally. The simulations reproduce the conformation transitions observed by NMR and suggest that proposed differences between the crystal structure and the solution structure are an artifact of the way the NMR data has been interpreted in terms of a structural model. The spontaneous formation of both back-to-back and face-to-face dimers was observed in the simulations. This has allowed a detailed analysis of the origin of the cooperatively between ligand binding and dimerization and suggests that the formation of face-to-face dimers could be functionally significant. The work also highlights the possible role of structural water in stabilizing the vancomycin ligand complex and its role in the manifestation of vancomycin resistance. © 2013 The Authors Journal compilation © 2013 FEBS.

  9. Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers.

    PubMed

    Dong, Xiao-qian; Zou, Bo; Zhang, Ying; Ge, Zhen-zhen; Du, Jing; Li, Chun-mei

    2013-12-01

    We have established a simple method for preparing large quantities of A-type dimers from peanut skin and persimmon for further structure-activity relationship study. Peanut skins were defatted with hexane and oligomeric proanthocyanidins were extracted from it with 20% of methanol, and the extract was fractionated with ethyl acetate. Persimmon tannin was extracted from persimmon with methanol acidified with 1% hydrochloric acid, after removing the sugar and small phenols, the high molecular weight persimmon tannin was partially cleaved with 6.25% hydrochloric acid in methanol. The ethyl acetate fraction from peanut skins and persimmon tannin cleaved products was chromatographed on AB-8 macroporous resin followed by Toyopearl HW-50F resin to yield about 378.3mg of A-type (epi)catechin (EC) dimer from 1 kg dry peanut skins and 34.3mg of A-type (epi)catechin-3-O-gallate (ECG) dimer and 37.7 mg of A-type (epi)gallocatechin-3-O-gallate (EGCG) dimer from 1 kg fresh persimmon fruit. The antioxidant properties of the A-type and B-type dimers were compared in five different assays, namely, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, lipid peroxidation in mice liver homogenate and erythrocyte hemolysis in rat blood. Our results showed that both A-type and B-type dimers showed high antioxidant potency in a dose-dependent manner. In general, B-type dimers showed higher radical scavenging potency than A-type ones with the same subunits in aqueous systems. But in tissue or lipid systems, A-type dimers showed similar or even higher antioxidant potency than B-type ones. © 2013.

  10. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  11. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  12. Fiber optic D dimer biosensor

    DOEpatents

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  13. Fiber optic D dimer biosensor

    DOEpatents

    Glass, R.S.; Grant, S.A.

    1999-08-17

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  14. Singlet fission in pentacene dimers

    PubMed Central

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  15. MspA Nanopores from Subunit Dimers

    PubMed Central

    Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  16. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  17. Metal membrane with dimer slots as a universal polarizer

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergej; Zalkovskij, Maksim; Malureanu, Radu; Kremers, Christian; Chigrin, Dmitry; Tang, Peter T.; Jepsen, Peter U.; Lavrinenko, Andrei V.

    2014-03-01

    In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory for the electromagnetic response of an arbitrary dimer based on the Green functions approach. The theory confirms that a great variety of polarization properties, such as birefringence, chirality and elliptical dichroism, can be achieved in a metal layer with such slot-dimer patterning (i.e. in a metasurface). Optical properties of the metasurface can be extensively tuned by varying the geometry (shape and dimensions) of the dimer, for example, by adjusting the sizes and mutual placement of the slots (e.g. inter-slot distance and alignment angle). Three basic shapes of dimers are analyzed: II-shaped (parallel slots), V-shaped, and T-shaped. These particular shapes of dimers are found to be sensitive to variations of the slots lengths and orientation of elements. Theoretical results are well supported by full-wave three-dimensional simulations. Our findings were verified experimentally on the metal membranes fabricated using UV lithography with subsequent Ni growth. Such metasurfaces were characterized using time-domain THz spectroscopy. The samples exhibit pronounced optical activity (500 degrees per wavelength) and high transmission: even though the slots cover only 4.3 % of the total membrane area the amplitude transmission reaches 0.67 at the resonance frequency 0.56 THz.

  18. Plasma D-dimer as a predictor of the progression of abdominal aortic aneurysm.

    PubMed

    Vele, E; Kurtcehajic, A; Zerem, E; Maskovic, J; Alibegovic, E; Hujdurovic, A

    2016-11-01

    Essentials D-dimer could provide important information about abdominal aortic aneurysm (AAA) progression. The greatest diameter of the infrarenal aorta and the value of plasma D-dimer were determined. AAA progression is correlated with increasing plasma D-dimer levels. The increasing value of plasma D-dimer could be a predictor of aneurysm progression. Background The natural course of abdominal aortic aneurysm (AAA) is mostly asymptomatic and unpredictable. D-dimer could provide potentially important information about subsequent AAA progression. Objectives The aims of this study were to establish the relationship between the progression of an abdominal aortic aneurysm (AAA) and plasma D-dimer concentration over a 12-month period and determine the value of plasma D-dimer in patients with sub-aneurysmal aortic dilatation. Patients/Methods This was a prospective observational study that involved 33 patients with an AAA, 30 patients with sub-aneurysmal aortic dilatation and 30 control subjects. The greatest diameter of the infrarenal aorta, which was assessed by ultrasound, and the value of plasma D-dimer were determined for all subjects at baseline assessment, as well as after 12 months for those with an AAA. Results A positive correlation was found between the diameter of an AAA and plasma D-dimer concentration at the baseline and the control measurement stages. There was a strong positive correlation between AAA progression and increasing plasma D-dimer concentration over a 12-month period. Among patients with sub-aneurysmal aortic dilatation (n = 30), the value of plasma D-dimer was higher compared with matched controls (n = 30). Conclusions There is a strongly positive correlation between AAA progression and increasing plasma D-dimer concentration. The value of plasma D-dimer is higher in patients with sub-aneurysmal aortic dilatation than in control subjects. © 2016 International Society on Thrombosis and Haemostasis.

  19. Genetic predictors of fibrin D-dimer levels in healthy adults

    PubMed Central

    Smith, Nicholas L.; Huffman, Jennifer E.; Strachan, David P.; Huang, Jie; Dehghan, Abbas; Trompet, Stella; Lopez, Lorna M.; Shin, So-Youn; Baumert, Jens; Vitart, Veronique; Bis, Joshua C.; Wild, Sarah H.; Rumley, Ann; Yang, Qiong; Uitterlinden, Andre G; Stott, David. J.; Davies, Gail; Carter, Angela M.; Thorand, Barbara; Polašek, Ozren; McKnight, Barbara; Campbell, Harry; Rudnicka, Alicja R.; Chen, Ming-Huei; Buckley, Brendan M.; Harris, Sarah E.; Williams, Frances M. K.; Peters, Annette; Pulanic, Drazen; Lumley, Thomas; de Craen, Anton J.M.; Liewald, David C.; Gieger, Christian; Campbell, Susan; Ford, Ian; Gow, Alan J.; Luciano, Michelle; Porteous, David J.; Guo, Xiuqing; Sattar, Naveed; Tenesa, Albert; Cushman, Mary; Slagboom, P. Eline; Visscher, Peter M.; Spector, Tim D.; Illig, Thomas; Rudan, Igor; Bovill, Edwin G.; Wright, Alan F.; McArdle, Wendy L.; Tofler, Geoffrey; Hofman, Albert; Westendorp, Rudi G.J.; Starr, John M.; Grant, Peter J.; Karakas, Mahir; Hastie, Nicholas D.; Psaty, Bruce M.; Wilson, James F.; Lowe, Gordon D. O.; O’Donnell, Christopher J; Witteman, Jacqueline CM; Jukema, J. Wouter; Deary, Ian J.; Soranzo, Nicole; Koenig, Wolfgang; Hayward, Caroline

    2011-01-01

    Background Fibrin fragment D-dimer is one of several peptides produced when cross-linked fibrin is degraded by plasmin, and is the most widely-used clinical marker of activated blood coagulation. To identity genetic loci influencing D-dimer levels, we performed the first large-scale, genome-wide association search. Methods and Results A genome-wide investigation of the genomic correlates of plasma D-dimer levels was conducted among 21,052 European-ancestry adults. Plasma levels of D-dimer were measured independently in each of 13 cohorts. Each study analyzed the association between ~2.6 million genotyped and imputed variants across the 22 autosomal chromosomes and natural-log transformed D-dimer levels using linear regression in additive genetic models adjusted for age and sex. Among all variants, 74 exceeded the genome-wide significance threshold and marked 3 regions. At 1p22, rs12029080 (p-value 6.4×10−52) was 46.0 kb upstream from F3, coagulation factor III (tissue factor). At 1q24, rs6687813 (p-value 2.4×10−14) was 79.7 kb downstream of F5, coagulation factor V. At 4q32, rs13109457 (p-value 2.9×10−18) was located between 2 fibrinogen genes: 10.4 kb downstream from FGG and 3.0 kb upstream from FGA. Variants were associated with a 0.099, 0.096, and 0.061 unit difference, respectively, in natural-log transformed D-dimer and together accounted for 1.8% of the total variance. When adjusted for non-synonymous substitutions in F5 and FGA loci known to be associated with D-dimer levels, there was no evidence of an additional association at either locus. Conclusions Three genes were associated with fibrin D-dimer levels, of which the F3 association was the strongest and has not been previously reported. PMID:21502573

  20. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  1. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed Central

    Darlix, J L; Gabus, C; Allain, B

    1992-01-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein. Images PMID:1331519

  2. Infrared spectra of C2H4 dimer and trimer

    NASA Astrophysics Data System (ADS)

    Barclay, A. J.; Esteki, K.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2018-05-01

    Spectra of ethylene dimers and trimers are studied in the ν11 and (for the dimer) ν9 fundamental band regions of C2H4 (≈2990 and 3100 cm-1) using a tunable optical parametric oscillator source to probe a pulsed supersonic slit jet expansion. The deuterated trimer has been observed previously, but this represents the first rotationally resolved spectrum of (C2H4)3. The results support the previously determined cross-shaped (D2d) dimer and barrel-shaped (C3h or C3) trimer structures. However, the dimer spectrum in the ν9 fundamental region of C2H4 is apparently very perturbed and a previous rotational analysis is not well verified.

  3. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement.

    PubMed Central

    Wright, J K; Tschopp, J; Jaton, J C; Engel, J

    1980-01-01

    The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability. Images Fig. 2. PMID:6985362

  4. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  5. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed Central

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-01-01

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process. Images PMID:1645868

  6. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission

    PubMed Central

    Lees, Jonathan P. B.; Manlandro, Cara Marie; Picton, Lora K.; Ebie Tan, Alexandra Z.; Casares, Salvador; Flanagan, John M.; Fleming, Karen G.; Hill, R. Blake

    2012-01-01

    Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide-like repeat (TPR) protein whose role in assembly of the fission machinery remains obscure. Two non-functional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild type Fis1. A72P also disrupts dimerization of non-functional variants indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is non-functional in fission consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR containing proteins may reversibly self-associate. PMID:22789569

  7. Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mao, Qian; Ren, Yihua; Luo, K. H.; van Duin, Adri C. T.

    2017-12-01

    Physical dimerization of polycyclic aromatic hydrocarbons (PAHs) has been investigated via molecular dynamics (MD) simulation with the ReaxFF reactive force field that is developed to bridge the gap between the quantum mechanism and classical MD. Dynamics and kinetics of homo-molecular PAH collision under different temperatures, impact parameters, and orientations are studied at an atomic level, which is of great value to understand and model the PAH dimerization. In the collision process, the enhancement factors of homo-molecular dimerizations are quantified and found to be larger at lower temperatures or with smaller PAH instead of size independent. Within the capture radius, the lifetime of the formed PAH dimer decreases as the impact parameter increases. Temperature and PAH characteristic dependent forward and reverse rate constants of homo-molecular PAH dimerization are derived from MD simulations, on the basis of which a reversible model is developed. This model can predict the tendency of PAH dimerization as validated by pyrene dimerization experiments [H. Sabbah et al., J. Phys. Chem. Lett. 1(19), 2962 (2010)]. Results from this study indicate that the physical dimerization cannot be an important source under the typical flame temperatures and PAH concentrations, which implies a more significant role played by the chemical route.

  8. Universal dimer–dimer scattering in lattice effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  9. Universal dimer–dimer scattering in lattice effective field theory

    DOE PAGES

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...

    2017-03-14

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  10. mRNA Molecules Containing Murine Leukemia Virus Packaging Signals Are Encapsidated as Dimers

    PubMed Central

    Hibbert, Catherine S.; Mirro, Jane; Rein, Alan

    2004-01-01

    Prior work by others has shown that insertion of ψ (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3′ untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV ψ or with ψ sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the ψ region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Ψ+ mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops. PMID:15452213

  11. Biophysical Characterization of the Dimer and Tetramer Interface Interactions of the Human Cytosolic Malic Enzyme

    PubMed Central

    Murugan, Sujithkumar; Hung, Hui-Chih

    2012-01-01

    The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers. PMID:23284632

  12. Artificial light harvesting by dimerized Möbius ring

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Gong, Z. R.; Tao, Ming-Jie; Ai, Qing

    2018-04-01

    We theoretically study artificial light harvesting by a Möbius ring. When the donors in the ring are dimerized, the energies of the donor ring are split into two subbands. Because of the nontrivial Möbius boundary condition, both the photon and acceptor are coupled to all collective-excitation modes in the donor ring. Therefore, the quantum dynamics in the light harvesting is subtly influenced by dimerization in the Möbius ring. It is discovered that energy transfer is more efficient in a dimerized ring than that in an equally spaced ring. This discovery is also confirmed by a calculation with the perturbation theory, which is equivalent to the Wigner-Weisskopf approximation. Our findings may be beneficial to the optimal design of artificial light harvesting.

  13. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    PubMed Central

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  14. Coherent stimulated light emission (lasing) in covalently linked chlorophyll dimers

    PubMed Central

    Hindman, James C.; Kugel, Roger; Wasielewski, Michael R.; Katz, Joseph J.

    1978-01-01

    The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules. Images PMID:16592524

  15. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  16. Designer interface peptide grafts target estrogen receptor alpha dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K., E-mail: pbiswas@tougaloo.edu

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization.more » Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  17. The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain

    PubMed Central

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-01-01

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. PMID:21193411

  18. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates.

    PubMed

    Assar, Zahra; Nossoni, Zahra; Wang, Wenjing; Santos, Elizabeth M; Kramer, Kevin; McCornack, Colin; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-09-06

    Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  20. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    PubMed

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  1. Slab photonic crystals with dimer colloid bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Erin K.; Liddell Watson, Chekesha M., E-mail: cliddell@ccmr.cornell.edu

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd,more » even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.« less

  2. Electromers of the benzene dimer radical cation.

    PubMed

    Błoch-Mechkour, Anna; Bally, Thomas

    2015-04-28

    The well-studied benzene dimer radical cation, which is prototypical for this class of species, has been reinvestigated computationally. Thereby it turned out that both the σ-hemibonded and the half-shifted sandwich structures of the benzene dimer cation, which had been independently proposed, represent stationary points on the B2PLYP-D potential energy surfaces. However, these structures belong to distinct electronic states, both of which are associated with potential surfaces that are very flat with regard to rotation of the two benzene rings in an opposite sense relative to each other. The surfaces of these two "electromers" of the benzene dimer cation are separated by only 3-4 kcal mol(-1) and do not intersect along the rotation coordinate, which represents a rather unique electronic structure situation. When moving on either of the two surfaces the title complex is an extremely fluxional species, in spite of its being bound by over 20 kcal mol(-1).

  3. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  4. EDEM1 targets misfolded HLA-B27 dimers for endoplasmic reticulum associated degradation

    PubMed Central

    Guiliano, David B.; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J.; Campbell, Elaine C.; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J.; Kellam, Paul; Hebert, Daniel N.; Gould, Keith; Powis, Simon J.; Antoniou, Antony N.

    2015-01-01

    Objective HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We wanted to define the role of the UPR induced ER associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. Methods HeLa cell lines expressing only two copies of a carboxy terminally Sv5 tagged HLA-B27 were generated. The ER stress induced EDEM1 protein was over expressed by transfection and dimer levels monitored by immunoblotting. EDEM1, the UPR associated transcription factor XBP-1, the E3 ubiquitin ligase HRD1, the degradation associated derlin 1 and 2 proteins were inhibited by either short hairpin RNA or dominant negative mutants. The UPR associated ERAD of HLA-B27 was confirmed using ER stress inducing pharamacological agents in kinetic and pulse chase assays. Results We demonstrate that UPR induced machinery can target HLA-B27 dimers, and that dimer formation can be controlled by alterations to expression levels of components of the UPR induced ERAD pathway. HLA-B27 dimers and misfolded MHC class I monomeric molecules were detected bound to EDEM1, with overexpression of EDEM1 inhibiting HLA-B27 dimer formation. EDEM1 inhibition resulted in upregulation of HLA-B27 dimers, whilst UPR induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1 and derlin1/2. Conclusion The UPR ERAD pathway as described here can dispose of HLA-B27 dimers and presents a potential novel therapeutic target for the modulation of HLA-B27 associated inflammatory disease. PMID:25132672

  5. D-dimer as marker for microcirculatory failure: correlation with LOD and APACHE II scores.

    PubMed

    Angstwurm, Matthias W A; Reininger, Armin J; Spannagl, Michael

    2004-01-01

    The relevance of plasma d-dimer levels as marker for morbidity and organ dysfunction in severely ill patients is largely unknown. In a prospective study we determined d-dimer plasma levels of 800 unselected patients at admission to our intensive care unit. In 91% of the patients' samples d-dimer levels were elevated, in some patients up to several hundredfold as compared to normal values. The highest mean d-dimer values were present in the patient group with thromboembolic diseases, and particularly in non-survivors of pulmonary embolism. In patients with circulatory impairment (r=0.794) and in patients with infections (r=0.487) a statistically significant correlation was present between d-dimer levels and the APACHE II score (P<0.001). The logistic organ dysfunction score (LOD, P<0.001) correlated with d-dimer levels only in patients with circulatory impairment (r=0.474). On the contrary, patients without circulatory impairment demonstrated no correlation of d-dimer levels to the APACHE II or LOD score. Taking all patients together, no correlations of d-dimer levels with single organ failure or with indicators of infection could be detected. In conclusion, d-dimer plasma levels strongly correlated with the severity of the disease and organ dysfunction in patients with circulatory impairment or infections suggesting that elevated d-dimer levels may reflect the extent of microcirculatory failure. Thus, a therapeutic strategy to improve the microcirculation in such patients may be monitored using d-dimer plasma levels.

  6. A new D-dimer cutoff in bedridden hospitalized elderly patients.

    PubMed

    Granziera, Serena; Rechichi, Alfonsina; De Rui, Marina; De Carlo, Paola; Bertozzo, Giulia; Marigo, Lucia; Nante, Giovanni; Manzato, Enzo

    2013-03-01

    Asymptomatic deep vein thrombosis (DVT) and pulmonary embolism are leading causes of morbidity following the hospitalization of elderly people. The diagnosis of DVT is supported by the D-dimer laboratory assay. The concentration of D-dimer increases in patients with DVT, but may be high in other conditions too (i.e. cancer, infections and inflammation). Old age coincides with a physiological increase in D-dimer values, and that is why D-dimer assay in the elderly is characteristically highly sensitive but scarcely specific. The aim of our study was to explore the reliability of different D-dimer cutoffs for the diagnosis of asymptomatic DVT in a population of bedridden hospitalized elderly patients. We studied 199 patients who were a mean 86.3 ± 6.7 years old. All participants underwent lower limb Doppler ultrasound (DUS) and D-dimer venous blood sampling on admission. In our cohort, the usual cutoff proved highly sensitive (100%), but its specificity was very poor (20.1%). To find a higher cutoff that could improve the method's specificity, we analyzed our data using a receiver operating characteristic curve analysis. The resulting D-dimer cutoff of 492 μg/l enabled us to retain the same sensitivity while improving the test's specificity to 39.1%, with a consequent improvement in its positive predictive value and accuracy. In addition to improving the method's reliability, this result may be helpful in clinical practice, in both medical wards and nursing homes. By adopting a cutoff of 492 μg/l, clinicians could significantly increase the proportion of older patients in whom DVT can be safely ruled out, reducing referrals for DUS and administration of heparin, with consequent clinical, practical and economic advantages.

  7. Crosslinking Evidence for Motional Constraints within Chemoreceptor Trimers of Dimers

    PubMed Central

    Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2011-01-01

    Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In E. coli, chemoreceptors show higher order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer of dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo crosslinking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed crosslinks, whereas reporters lying at different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernable effect on the crosslinking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced crosslinking at most of the reporter sites, indicating that individual dimers may move closer together under this condition. PMID:21174433

  8. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed Central

    Hoggett, J G; Kellett, G L

    1992-01-01

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. Images Fig. 1. PMID:1445216

  9. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  10. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less

  11. Structural features of the KPI domain control APP dimerization, trafficking, and processing.

    PubMed

    Ben Khalifa, Naouel; Tyteca, Donatienne; Marinangeli, Claudia; Depuydt, Mathieu; Collet, Jean-François; Courtoy, Pierre J; Renauld, Jean-Christophe; Constantinescu, Stefan; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2012-02-01

    The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.

  12. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  13. A HeI photoelectron spectrum of the [Al(CH 3) 3] 2 dimer

    NASA Astrophysics Data System (ADS)

    Wang, Dianxun; Qian, Ximei; Zheng, Shijun; Shi, Yizhong

    1997-10-01

    The HeI photoelectron spectrum (PES) of the [Al(CH 3) 3] 2 dimer is recorded for the first time. To assign the PES bands, an ab initio SCF MO calculation for the dimer has also been performed. The four splitting peaks of the first PE band are respectively designated to electron ionization of the four frontier 8b u, 13a g, 7b g, and 7b u orbitals of the dimer. They originate from the recombination of the two HOMO (5e') of the two monomers in the forming of the dimer. That is to say, during the formation of the dimer from the two monomers, the reduction of molecular symmetry (from the C 3h symmetry of the monomer to the C 2h symmetry of the dimer) leads to the undegeneration of the degenerate orbitals.

  14. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  15. On the diffusion and self-trapping of surface dimers

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1982-03-01

    The theory of elastic interactions between surface atoms which are caused by substrate strains is applied to the interaction of dimers on the (211) surface of tungsten. From the comparison of theoretical and experimental interactions which were derived from the diffusion behaviour of dimers, conclusions are drawn on the nature of the adatom-substrate bond.

  16. Point-of-care D-dimer testing in emergency departments.

    PubMed

    Marquardt, Udo; Apau, Daniel

    2015-09-01

    Overcrowding and prolonged patient stays in emergency departments (EDs) affect patients' experiences and outcomes, and increase healthcare costs. One way of addressing these problems is through using point-of-care blood tests, laboratory testing undertaken near patient locations with rapidly available results. D-dimer tests are used to exclude venous thromboembolism (VTE), a common presentation in EDs, in low-risk patients. However, data on the effects of point-of-care D-dimer testing in EDs and other urgent care settings are scarce. This article reports the results of a literature review that examined the benefits to patients of point-of-care D-dimer testing in terms of reduced turnaround times (time to results), and time to diagnosis, discharge or referral. It also considers the benefits to organisations in relation to reduced ED crowding and increased cost effectiveness. The review concludes that undertaking point-of-care D-dimer tests, combined with pre-test probability scores, can be a quick and safe way of ruling out VTE and improving patients' experience.

  17. Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis.

    PubMed

    Salae, Abdul-Wahab; Chairerk, Orapan; Sukkoet, Piyanut; Chairat, Therdsak; Prawat, Uma; Tuntiwachwuttikul, Pittaya; Chalermglin, Piya; Ruchirawat, Somsak

    2017-03-01

    Four dimeric chalcone derivatives, 8″,9″-dihydrowelwitschin H, uvarins A-C, a naphthalene derivative, 2-hydroxy-3-methoxy-6-(4'- hydroxyphenyl)naphthalene, and the known dimeric chalcones, dependensin and welwitschin E, flavonoids, a cyclohexane oxide derivative, an aromatic aldehyde were isolated from the roots of Uvaria siamensis (Annonaceae). The structures of the compounds were elucidated by spectroscopic analysis, as well as by comparison with literature data. The isolated compounds with a sufficient amount for biological assays were evaluated for their antimalarial, antimycobacterial, and cytotoxic activities. The dimeric chalcones 8″,9″-dihydrowelwitschin H, uvarins B and C, dependensin and welwitschin E showed strong antiplasmodial activity with IC 50 values of 3.10, 3.02, 3.09, 4.21 and 3.99 μg/mL, respectively. A possible biosynthesis pathway of the dimeric chalcones is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.

    PubMed

    Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia

    2011-12-27

    We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.

  19. Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics

    PubMed Central

    Motta, Stefano

    2018-01-01

    Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix−loop−helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local

  20. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravind, G.; Klaerke, B.; Rajput, J.

    2012-01-07

    Photodissociation lifetimes and fragment channels of gas-phase, protonated YA{sub n} (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of {approx}200 ns while the protonated dimers show an additional slow dissociation component with a lifetime of {approx}2 {mu}s. Laser power dependence measurements enabled us to ascribe the fast channel in the monomer and the slow channel in the dimer to a one-photon process, whereas the fast dimer channel is from a two-photon process. The slow (1 photon) dissociation channel in themore » dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical rate constants also confirmed a statistical nature of the photodissociation processes in the dipeptide monomers and dimers. The classical RRKM expression gives a rate constant as an analytical function of the number of active vibrational modes in the system, estimated separately on the basis of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both found in space.« less

  1. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  2. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  3. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer.

    PubMed

    Sanchez, Jacint G; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M; Sundquist, Wesley I; Pornillos, Owen

    2014-02-18

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication.

  4. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    PubMed Central

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  5. Glycine transporter dimers: evidence for occurrence in the plasma membrane.

    PubMed

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette; Dutertre, Sébastien; Hastrup, Hanne; Jha, Alok; Gether, Ulrik; Sitte, Harald H; Betz, Heinrich; Eulenburg, Volker

    2008-04-18

    Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2 by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuT(Aa), as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization interface of GlyTs.

  6. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-02-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.

  7. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed Central

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation. Images PMID:2153242

  8. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  9. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  10. Dimerization of the keto tautomer of acetohydroxamic acid—infrared matrix isolation and theoretical study

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena; Mielke, Zofia

    2005-05-01

    Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH 3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO···H sbnd ON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO···H sbnd N hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular N sbnd H···O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies ( ΔEZPECPI, II = -7.02, -6.34 kcal mol -1) being less stable than calculated structures III and IV ( ΔEZPECPIII, IV = -9.50, -8.87 kcal mol -1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO···H sbnd ON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA) 2 dimers in the studied matrixes indicates that the formation of (AHA) 2 is kinetically and not thermodynamically controlled.

  11. Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2

    DOE PAGES

    Yu, Runze; Banerjee, S.; Lei, H. C.; ...

    2018-06-01

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less

  12. Absence of Local Fluctuating Dimers in Superconducting Ir 1-x(Pt,Rh) xTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Runze; Banerjee, S.; Lei, H. C.

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir 0.95Pt 0.05Te 2 and Ir 0.8Rh 0.2Te 2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model downmore » to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.« less

  13. Absence of local fluctuating dimers in superconducting Ir1 -x(Pt,Rh ) xTe2

    NASA Astrophysics Data System (ADS)

    Yu, Runze; Banerjee, S.; Lei, H. C.; Sinclair, Ryan; Abeykoon, M.; Zhou, H. D.; Petrovic, C.; Guguchia, Z.; Bozin, E. S.

    2018-05-01

    The compound IrTe2 is known to exhibit a transition to a modulated state featuring Ir-Ir dimers, with large associated atomic displacements. Partial substitution of Pt or Rh for Ir destabilizes the modulated structure and induces superconductivity. It has been proposed that quantum critical dimer fluctuations might be associated with the superconductivity. Here we test for such local dimer correlations and demonstrate their absence. X-ray pair distribution function approach reveals that the local structure of Ir0 :95Pt0 :05Te2 and Ir0 :8Rh0 :2Te2 dichalcogenide superconductors with compositions just past the dimer/superconductor boundary is explained well by a dimer-free model down to 10 K, ruling out the possibility of there being nanoscale dimer fluctuations in this regime. This is inconsistent with the proposed quantum-critical-point-like interplay of the dimer state and superconductivity, and precludes scenarios for dimer fluctuations mediated superconducting pairing.

  14. Polarization to the field enhancement by a gold dimer

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Jin, Zheng

    2016-11-01

    Due to the effect of plasmonic coupling, gold nanoparticle dimers have been paid more attentions in bio-imaging. The coupling effect existing at the gap between a closely linked particle pair can make the local field strongly enhanced and in which the angle between the excitation polarization and the dimer axis plays a dominant role. We calculated the amplitude distribution under a highly focused illumination objective. The simulation results show that for such a model, 45 degrees between the excitation polarization and the dimer axis can produce an optimum signal. The enhancement thus obtained is 10.78 fold while the variation between peak-peak can reach 6.59 fold compared to a single plasmoic particle during the rotation of the polarization.

  15. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization.

    PubMed

    Fossé, P; Motté, N; Roumier, A; Gabus, C; Muriaux, D; Darlix, J L; Paoletti, J

    1996-12-24

    Retroviral genomes consist of two identical RNA molecules joined noncovalently near their 5'-ends. Recently, two models have been proposed for RNA dimer formation on the basis of results obtained in vitro with human immunodeficiency virus type 1 RNA and Moloney murine leukemia virus RNA. It was first proposed that viral RNA dimerizes by forming an interstrand quadruple helix with purine tetrads. The second model postulates that RNA dimerization is initiated by a loop-loop interaction between the two RNA molecules. In order to better characterize the dimerization process of retroviral genomic RNA, we analyzed the in vitro dimerization of avian sarcoma-leukosis virus (ASLV) RNA using different transcripts. We determined the requirements for heterodimer formation, the thermal dissociation of RNA dimers, and the influence of antisense DNA oligonucleotides on dimer formation. Our results strongly suggest that purine tetrads are not involved in dimer formation. Data show that an autocomplementary sequence located upstream from the splice donor site and within a major packaging signal plays a crucial role in ASLV RNA dimer formation in vitro. This sequence is able to form a stem-loop structure, and phylogenetic analysis reveals that it is conserved in 28 different avian sarcoma and leukosis viruses. These results suggest that dimerization of ASLV RNA is initiated by a loop-loop interaction between two RNA molecules and provide an additional argument for the ubiquity of the dimerization process via loop-loop interaction.

  16. Lignin-Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Lu, Fachuang; Regner, Matt

    2017-01-26

    Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β–aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here in this work, 12 guaiacyl-type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β–1-coupled units was established as resulting from β–5 units, correcting an analytical quandary. Another longstanding dilemma, that no β–β dimers were recognized in thioacidolysis products frommore » gymnosperms, was resolved with the discovery of two such authenticated compounds. Finally, individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit-linkage distributions in lignins and thereby guiding the valorization of lignocellulosics.« less

  17. Emission of dimers from a free surface of heated water

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-09-01

    The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

  18. Lignin‐Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification

    PubMed Central

    Yue, Fengxia; Regner, Matt; Sun, Runcang

    2017-01-01

    Abstract Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β–aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here, 12 guaiacyl‐type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β–1‐coupled units was established as resulting from β–5 units, correcting an analytical quandary. Another longstanding dilemma, that no β–β dimers were recognized in thioacidolysis products from gymnosperms, was resolved with the discovery of two such authenticated compounds. Individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit‐linkage distributions in lignins and thereby guiding the valorization of lignocellulosics. PMID:28125766

  19. Lignin-Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification.

    PubMed

    Yue, Fengxia; Lu, Fachuang; Regner, Matt; Sun, Runcang; Ralph, John

    2017-03-09

    Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β-aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here, 12 guaiacyl-type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β-1-coupled units was established as resulting from β-5 units, correcting an analytical quandary. Another longstanding dilemma, that no β-β dimers were recognized in thioacidolysis products from gymnosperms, was resolved with the discovery of two such authenticated compounds. Individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit-linkage distributions in lignins and thereby guiding the valorization of lignocellulosics. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Actin-induced dimerization of palladin promotes actin-bundling

    PubMed Central

    Vattepu, Ravi; Yadav, Rahul; Beck, Moriah R

    2015-01-01

    A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics. PMID:25307943

  1. Stereodivergent Mannich reaction of bis(trimethylsilyl)ketene acetals with N-tert-butanesulfinyl imines by Lewis acid or Lewis base activation, a one-pot protocol to obtain chiral β-amino acids.

    PubMed

    Cantú-Reyes, Margarita; Alvarado-Beltrán, Isabel; Ballinas-Indilí, Ricardo; Álvarez-Toledano, Cecilio; Hernández-Rodríguez, Marcos

    2017-09-20

    We report a one-pot synthesis of chiral β 2,2,3 -amino acids by the Mannich addition of bistrimethylsilyl ketene acetals to N-tert-butanesulfinyl imines followed by the removal of the chiral auxiliary. The synthesis and isolation of pure β-amino acid hydrochlorides were conducted under mild conditions, without strong bases and this method is operationally simple. The stereoselective reaction was promoted by two different activation methods that lead to different stereoisomers: (1) Lewis Acid (LA) catalysis with boron trifluoride diethyl etherate and (2) Lewis Base (LB) catalysis with tetrabutylammonium difluorotriphenylsilicate. The reaction presented good diastereoselectivity with LB activation and moderate to good dr with LA catalysis. The exceptions in both protocols were imines with electron donating groups in the aromatic ring.

  2. One-pot synthesis of high molecular weight synthetic heteroprotein dimers driven by charge complementarity electrostatic interactions.

    PubMed

    Hvasanov, David; Nam, Ekaterina V; Peterson, Joshua R; Pornsaksit, Dithepon; Wiedenmann, Jörg; Marquis, Christopher P; Thordarson, Pall

    2014-10-17

    Despite the importance of protein dimers and dimerization in biology, the formation of protein dimers through synthetic covalent chemistry has not found widespread use. In the case of maleimide-cysteine-based dimerization of proteins, we show here that when the proteins have the same charge, dimerization appears to be inherently difficult with yields around 1% or less, regardless of the nature of the spacer used or whether homo- or heteroprotein dimers are targeted. In contrast, if the proteins have opposing (complementary) charges, the formation of heteroprotein dimers proceeds much more readily, and in the case of one high molecular weight (>80 kDa) synthetic dimer between cytochrome c and bovine serum albumin, a 30% yield of the purified, isolated dimer was achieved. This represents at least a 30-fold increase in yield for protein dimers formed from proteins with complementary charges, compared to when the proteins have the same charge, under otherwise similar conditions. These results illustrate the role of ionic supramolecular interactions in controlling the reactivity of proteins toward bis-functionalized spacers. The strategy here for effective synthetic dimerization of proteins could be very useful for developing novel approaches to study the important role of protein-protein interactions in chemical biology.

  3. High D-dimer levels after stopping anticoagulants in pulmonary embolism with sleep apnoea.

    PubMed

    García Suquia, Angela; Alonso-Fernández, Alberto; de la Peña, Mónica; Romero, David; Piérola, Javier; Carrera, Miguel; Barceló, Antonia; Soriano, Joan B; Arque, Meritxell; Fernández-Capitán, Carmen; Lorenzo, Alicia; García-Río, Francisco

    2015-12-01

    Obstructive sleep apnoea is a risk factor for pulmonary embolism. Elevated D-dimer levels and other biomarkers are associated with recurrent pulmonary embolism. The objectives were to compare the frequency of elevated D-dimer levels (>500 ng·mL(-1)) and further coagulation biomarkers after oral anticoagulation withdrawal in pulmonary embolism patients, with and without obstructive sleep apnoea, including two control groups without pulmonary embolism.We performed home respiratory polygraphy. We also measured basic biochemical profile and haemogram, and coagulation biomarkers (D-dimer, prothrombin fragment 1+2, thrombin-antithrombin complex, plasminogen activator inhibitor 1, and soluble P-selectin).64 (74.4%) of the pulmonary embolism cases and 41 (46.11%) of the controls without pulmonary embolism had obstructive sleep apnoea. Plasmatic D-dimer was higher in PE patients with OSA than in those without obstructive sleep apnoea. D-dimer levels were significantly correlated with apnoea-hypopnoea index, and nocturnal hypoxia. There were more patients with high D-dimer after stopping anticoagulants in those with pulmonary embolism and obstructive sleep apnoea compared with PE without obstructive sleep apnoea (35.4% versus 19.0%, p=0.003). Apnoea-hypopnoea index was independently associated with high D-dimer.Pulmonary embolism patients with obstructive sleep apnoea had higher rates of elevated D-dimer levels after anticoagulation discontinuation for pulmonary embolism than in patients without obstructive sleep apnoea and, therefore, higher procoagulant state that might increase the risk of pulmonary embolism recurrence. Copyright ©ERS 2015.

  4. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth: Ambient Observations of Gas-Phase Dimers

    DOE PAGES

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; ...

    2017-03-28

    Here, we present ambient observations of dimeric monoterpene oxidation products (C 16–20H yO 6–9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10 -15 to 10 -6 µg m -3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10 -3 to 10 -2 µg m -3 (~10more » 6–10 7 molecules cm -3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of ~5% to early stage particle growth from the ~60 gaseous dimer compounds.« less

  5. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth: Ambient Observations of Gas-Phase Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina

    Here, we present ambient observations of dimeric monoterpene oxidation products (C 16–20H yO 6–9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10 -15 to 10 -6 µg m -3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10 -3 to 10 -2 µg m -3 (~10more » 6–10 7 molecules cm -3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of ~5% to early stage particle growth from the ~60 gaseous dimer compounds.« less

  6. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals

    NASA Astrophysics Data System (ADS)

    Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias

    2018-05-01

    We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.

  7. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism.

    PubMed

    Kudo, Shota; Caaveiro, Jose M M; Tsumoto, Kouhei

    2016-09-06

    Orderly assembly of classical cadherins governs cell adhesion and tissue maintenance. A key event is the strand-swap dimerization of the extracellular ectodomains of two cadherin molecules from apposing cells. Here we have determined crystal structures of P-cadherin in six different conformational states to elaborate a motion picture of its adhesive dimerization at the atomic level. The snapshots revealed that cell-adhesive dimerization is facilitated by several intermediate states collectively termed X-dimer in analogy to other classical cadherins. Based on previous studies and on the combined structural, kinetic, thermodynamic, biochemical, and cellular data reported herein, we propose that the adhesive dimerization of human P-cadherin is achieved by a stepwise mechanism analogous to that of assembly chaperones. This mechanism, applicable to type I classical cadherins, confers high specificity and fast association rates. We expect these findings to guide innovative therapeutic approaches targeting P-cadherin in cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Experimental study of transport of a dimer on a vertically oscillating plate

    PubMed Central

    Wang, Jiao; Liu, Caishan; Ma, Daolin

    2014-01-01

    It has recently been shown that a dimer, composed of two identical spheres rigidly connected by a rod, under harmonic vertical vibration can exhibit a self-ordered transport behaviour. In this case, the mass centre of the dimer will perform a circular orbit in the horizontal plane, or a straight line if confined between parallel walls. In order to validate the numerical discoveries, we experimentally investigate the temporal evolution of the dimer's motion in both two- and three-dimensional situations. A stereoscopic vision method with a pair of high-speed cameras is adopted to perform omnidirectional measurements. All the cases studied in our experiments are also simulated using an existing numerical model. The combined investigations detail the dimer's dynamics and clearly show that its transport behaviours originate from a series of combinations of different contact states. This series is critical to our understanding of the transport properties in the dimer's motion and related self-ordered phenomena in granular systems. PMID:25383029

  9. Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*

    PubMed Central

    Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh

    2013-01-01

    Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643

  10. Age-adjusted versus clinical probability-adjusted D-dimer to exclude pulmonary embolism.

    PubMed

    Takach Lapner, Sarah; Stevens, Scott M; Woller, Scott C; Snow, Gregory; Kearon, Clive

    2018-05-05

    A low D-dimer can exclude suspected pulmonary embolism (PE) in cases with low or intermediate clinical probability of disease. Yet D-dimer is nonspecific, so many cases without PE require imaging. D-dimer's specificity is improved by increasing the threshold for a positive test with age (age × 10 ng/mL; age-adjusted D-dimer; AADD) or clinical probability of PE (1000 ng/mL if low and 500 ng/mL if intermediate clinical probability; clinical probability-adjusted D-dimer; CPADD). It is unclear which approach is preferable. We report the sensitivity, specificity and negative predictive value (NPV) of AADD compared to CPADD in suspected PE. A retrospective cohort of 3500 consecutive cases imaged for suspected PE at two U.S. emergency departments was assembled. We analyzed cases with low or intermediate clinical probability of PE (Revised Geneva Score) who had a D-dimer. The outcome was acute PE on imaging at presentation. Of the 3500 cases, 1745 were eligible. 37% were low, and 63% were intermediate clinical probability of PE. PE was present in 145 (8.3%) cases. Sensitivity of CPADD was 87.5% vs. 96.6% for AADD (difference 9.1%; 95% CI 4.3% to 14.0%). NPV of CPADD was 97.1% vs. 99.0% for AADD (difference 1.9%; 95% CI, 0.7% to 3.1%). Specificity of CPADD was 37.5% vs. 30.2% for AADD (difference -7.3%; 95% CI -9.4% to -5.1%). D-dimer was negative in 35.4% of cases using CPADD vs. 28.0% using AADD. CPADD modestly improved the specificity of D-dimer, but had a lower NPV than AADD. AADD appears preferable in this analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Dynamics and asymmetry in the dimer of the norovirus major capsid protein.

    PubMed

    Tubiana, Thibault; Boulard, Yves; Bressanelli, Stéphane

    2017-01-01

    Noroviruses are the major cause of non-bacterial acute gastroenteritis in humans and livestock worldwide, despite being physically among the simplest animal viruses. The icosahedral capsid encasing the norovirus RNA genome is made of 90 dimers of a single ca 60-kDa polypeptide chain, VP1, arranged with T = 3 icosahedral symmetry. Here we study the conformational dynamics of this main building block of the norovirus capsid. We use molecular modeling and all-atom molecular dynamics simulations of the VP1 dimer for two genogroups with 50% sequence identity. We focus on the two points of flexibility in VP1 known from the crystal structure of the genogroup I (GI, human) capsid and from subsequent cryo-electron microscopy work on the GII capsid (also human). First, with a homology model of the GIII (bovine) VP1 dimer subjected to simulated annealing then classical molecular dynamics simulations, we show that the N-terminal arm conformation seen in the GI crystal structure is also favored in GIII VP1 but depends on the protonation state of critical residues. Second, simulations of the GI dimer show that the VP1 spike domain will not keep the position found in the GII electron microscopy work. Our main finding is a consistent propensity of the VP1 dimer to assume prominently asymmetric conformations. In order to probe this result, we obtain new SAXS data on GI VP1 dimers. These data are not interpretable as a population of symmetric dimers, but readily modeled by a highly asymmetric dimer. We go on to discuss possible implications of spontaneously asymmetric conformations in the successive steps of norovirus capsid assembly. Our work brings new lights on the surprising conformational range encoded in the norovirus major capsid protein.

  12. Dimer formation of perylene: An ultracold spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Birer, Ö.; Yurtsever, E.

    2015-10-01

    The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.

  13. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Chun; Palek, Jiri

    1980-06-01

    The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

  14. Structure of the dimerization domain of DiGeorge Critical Region 8

    PubMed Central

    Senturia, Rachel; Faller, Michael; Yin, Sheng; Loo, Joseph A; Cascio, Duilio; Sawaya, Michael R; Hwang, Daniel; Clubb, Robert T; Guo, Feng

    2010-01-01

    Maturation of microRNAs (miRNAs, ∼22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298–352) at 1.7 Å resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis. PMID:20506313

  15. The dimerization equilibrium of a ClC Cl−/H+ antiporter in lipid bilayers

    PubMed Central

    Chadda, Rahul; Krishnamani, Venkatramanan; Mersch, Kacey; Wong, Jason; Brimberry, Marley; Chadda, Ankita; Kolmakova-Partensky, Ludmila; Friedman, Larry J; Gelles, Jeff; Robertson, Janice L

    2016-01-01

    Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers a new approach to the problem, as individual subunits adopt a stable and functionally verifiable fold that constrains the system to two states – monomer or dimer. Here, we use single-molecule photobleaching analysis to measure the probability of ClC-ec1 subunit capture into liposomes during extrusion of large, multilamellar membranes. The capture statistics describe a monomer to dimer transition that is dependent on the subunit/lipid mole fraction density and follows an equilibrium dimerization isotherm. This allows for the measurement of the free energy of ClC-ec1 dimerization in lipid bilayers, revealing that it is one of the strongest membrane protein complexes measured so far, and introduces it as new type of dimerization model to investigate the physical forces that drive membrane protein association in membranes. DOI: http://dx.doi.org/10.7554/eLife.17438.001 PMID:27484630

  16. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization.

    PubMed

    Donderis, Jorge; Bowring, Janine; Maiques, Elisa; Ciges-Tomas, J Rafael; Alite, Christian; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R; Marina, Alberto

    2017-09-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.

  17. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization

    PubMed Central

    Ciges-Tomas, J. Rafael; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R.

    2017-01-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules. PMID:28892519

  18. Light activation of the LOV protein vivid generates a rapidly exchanging dimer.

    PubMed

    Zoltowski, Brian D; Crane, Brian R

    2008-07-08

    The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.

  19. Enhancing action of positive allosteric modulators through the design of dimeric compounds.

    PubMed

    Drapier, Thomas; Geubelle, Pierre; Bouckaert, Charlotte; Nielsen, Lise; Laulumaa, Saara; Goffin, Eric; Dilly, Sébastien; Francotte, Pierre; Hanson, Julien; Pochet, Lionel; Kastrup, Jette Sandholm; Pirotte, Bernard

    2018-05-18

    The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs co-crystallized with the GluA2o ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (16 and 22) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2o(Q) (calcium flux experiment). These compounds were found to be about 10,000 times more potent than their respective monomers, the most active dimeric compound being the bis-4-cyclopropyl-substituted compound 22 [6,6'-(ethane-1,2-diyl)bis(4-cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide], with an EC50 value of 1.4 nM. As a proof of concept, the bis-4-methyl-substituted dimeric compound 16 (EC50 = 13 nM) was successfully co-crystallized with the GluA2o-LBD and was found to occupy the two BTD binding sites at the LBD dimer interface.

  20. Can very high level of D-dimer exclusively predict the presence of thromboembolic diseases?

    PubMed

    Ho, Chao-Hung

    2011-04-01

    D-dimer quantitative test is mainly used to rule out the presence of thromboembolic diseases (TEDs). Whether very high D-dimer (100 times above the cutoff point) can exclusively indicate the presence of TED should be known. D-dimer was detected by a quantitative immunoturbidimetric assay. The normal value is 0.2-0.7 mg/L fibrinogen equivalent units (FEUs). During the year of 2009, 1,053 D-dimer tests were performed. We analyzed the results of these patients to find out the causes of very high D-dimer. The mean value of D-dimer in the 1,053 tests was 8.56 mg/L FEU, ranging from <0.2 mg/L to 563.2 mg/L FEU. Of them, 28 samples from 21 patients had very high D-dimer value: >50 mg/L FEU. Of the 21 patients, 9 (43%) had TED, 1 had suspected TED, but not proved by computed tomographic (CT) angiogram, 3 had massive gastrointestinal or other site bleeding, 3 patients had cardiac arrest with samples taken immediately after recovery from cardiopulmonary resuscitation (CPR), 2 had sepsis with disseminated intravascular coagulation (DIC), 1 had postpartum hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome with acute pulmonary edema and renal failure, 1 had multiple traumatic injury, and 1 received thrombolytic therapy. Although TED was the most frequently seen disorder in patients with very high D-dimer value, very high D-dimer was not necessary exclusively the marker of TED. Other disorders such as massive bleeding, status post CPR, sepsis with DIC, multiple traumatic injuries, hyperfibrinolysis and HELLP syndrome can also have very high D-dimer. Copyright © 2011. Published by Elsevier B.V.

  1. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5

  2. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.

  3. Atomic model for the dimeric FO region of mitochondrial ATP synthase.

    PubMed

    Guo, Hui; Bueler, Stephanie A; Rubinstein, John L

    2017-11-17

    Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded F O region turns the rotor that drives ATP synthesis in the soluble F 1 region. Although crystal structures of the F 1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the F O region. Using cryo-electron microscopy, we determined the structure of the dimeric F O complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae. Copyright © 2017, American Association for the Advancement of Science.

  4. Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction.

    PubMed

    Montoya, Joseph H; Shi, Chuan; Chan, Karen; Nørskov, Jens K

    2015-06-04

    In this work, we present DFT simulations that demonstrate the ability of Cu to catalyze CO dimerization in CO2 and CO electroreduction. We describe a previously unreported CO dimer configuration that is uniquely stabilized by a charged water layer on both Cu(111) and Cu(100). Without this charged water layer at the metal surface, the formation of the CO dimer is prohibitively endergonic. Our calculations also demonstrate that dimerization should have a lower activation barrier on Cu(100) than Cu(111), which, along with a more exergonic adsorption energy and a corresponding higher coverage of *CO, is consistent with experimental observations that Cu(100) has a high activity for C-C coupling at low overpotentials. We also demonstrate that this effect is present with cations other than H(+), a finding that is consistent with the experimentally observed pH independence of C2 formation on Cu.

  5. Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: dimerization and antioxidant activity.

    PubMed

    Arrieta-Baez, Daniel; Dorantes-Álvarez, Lidia; Martinez-Torres, Rocio; Zepeda-Vallejo, Gerardo; Jaramillo-Flores, Maria Eugenia; Ortiz-Moreno, Alicia; Aparicio-Ozores, Gerardo

    2012-10-01

    Some phenolic compounds, such as ferulic acid and p-coumaric acid, exist in the form of free acids, in fruits, rice, corn and other grains. Thermal treatment (121 °C at 15-17 psi) for different times on ferulic, p-coumaric and cinnamic acids as well as equimolar mixtures of these acids was investigated. Ferulic and p-coumaric acids underwent decarboxylation, yielding dimeric products formed through their corresponding radical intermediates, while cinnamic acid was recovered unreacted. High-performance liquid chromatography analysis showed no cross-dimerization when equimolar mixtures of pairs of hydroxycinnamic acids were treated under the same conditions. Dimers were characterized as (E)-4',4″-(but-1-ene-1,3-diyl)bis(2'-methoxyphenol)) (dimer of 4-vinylguaiacol) and (E)-4,4'-(but-1-ene-1,3-diyl)diphenol) (dimer of 4-vinylphenol) by nuclear magnetic resonance and mass spectrometry. Sterilization by thermal processing produced dimers of ferulic and coumaric acid. The antioxidant activity of these dimers was greater than that of the respective hydroxycinnamic acids. These results may be relevant for fruits and grains that contain hydroxycinnamic acids and undergo sterilization processes such as canning. Copyright © 2012 Society of Chemical Industry.

  6. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    PubMed Central

    2013-01-01

    Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. PMID:23731667

  7. Coordination-Driven Dimerization of Zinc Chlorophyll Derivatives Possessing a Dialkylamino Group.

    PubMed

    Watanabe, Hiroaki; Kamatani, Yusuke; Tamiaki, Hitoshi

    2017-04-04

    Zinc chlorophyll derivatives Zn-1-3 possessing a tertiary amino group at the C3 1 position have been synthesized through reductive amination of methyl pyropheophorbide-d obtained from naturally occurring chlorophyll-a. In a dilute CH 2 Cl 2 solution as well as in a dilute 10 %(v/v) CH 2 Cl 2 /hexane solution, Zn-1 possessing a dimethylamino group at the C3 1 position showed red-shifted UV/Vis absorption and intensified exciton-coupling circular dichroism (CD) spectra at room temperature owing to its dimer formation via coordination to the central zinc by the 3 1 -N atom of the dimethylamino group. However, Zn-2/3 bearing 3 1 -ethylmethylamino/diethylamino groups did not. The difference was dependent on the steric factor of the substituents in the tertiary amino group, where an increase of the carbon numbers on the N atom reduced the intermolecular N⋅⋅⋅Zn coordination. UV/Vis, CD, and 1 H NMR spectroscopic analyses including DOSY measurements revealed that Zn-1 formed closed-type dimers via an opened dimer by single-to-double axial coordination with an increase in concentration and a temperature decrease in CH 2 Cl 2 , while Zn-2/3 gave open and flexible dimers in a concentrated CH 2 Cl 2 solution at low temperature. The supramolecular closed dimer structures of Zn-1 were estimated by molecular modelling calculations, which showed these structures were promising models for the chlorophyll dimer in a photosynthetic reaction center. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High Molecular Weight Dimer Esters in α-Pinene Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Cui, Tianqu; Zhang, Haofei; Gold, Avram; Glasius, Marianne; Surratt, Jason D.

    2014-05-01

    Monoterpenes, such as α-pinene, constitute an important group of biogenic volatile organic compounds (BVOC). Once emitted into the atmosphere α-pinene is removed by oxidization by the hydroxyl radical (OH), reactions with ozone (O3), and with nitrate radicals (NO3) resulting in the formation of first-generation oxidation products, such as semi-volatile carboxylic acids. In addition, higher molecular weight dimer esters originating from the oxidation of α-pinene have been observed in both laboratory-generated and ambient secondary organic aerosols (SOA). While recent studies suggest that the dimers are formed through esterification between carboxylic acids in the particle phase, the formation mechanism of the dimer esters is still ambiguous. In this work, we present the results of a series of smog chamber experiments to assess the formation of dimer esters formed from the oxidation of α-pinene. Experiments were conducted in the University of North Carolina (UNC) dual outdoor smog chamber facility to investigate the effect of oxidant species (OH versus O3), relative humidity (RH), and seed aerosol acidity in order to obtain a better understanding of the conditions leading to the formation of the dimer esters and how these parameters may affect the formation and chemical composition of SOA. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), and a total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12 % of the total α-pinene SOA mass.

  9. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface*

    PubMed Central

    Jastrzebska, Beata; Chen, Yuanyuan; Orban, Tivadar; Jin, Hui; Hofmann, Lukas; Palczewski, Krzysztof

    2015-01-01

    Although homo- and heterodimerizations of G protein-coupled receptors (GPCRs) are well documented, GPCR monomers are able to assemble in different ways, thus causing variations in the interactive interface between receptor monomers among different GPCRs. Moreover, the functional consequences of this phenomenon, which remain to be clarified, could be specific for different GPCRs. Synthetic peptides derived from transmembrane (TM) domains can interact with a full-length GPCR, blocking dimer formation and affecting its function. Here we used peptides corresponding to TM helices of bovine rhodopsin (Rho) to investigate the Rho dimer interface and functional consequences of its disruption. Incubation of Rho with TM1, TM2, TM4, and TM5 peptides in rod outer segment (ROS) membranes shifted the resulting detergent-solubilized protein migration through a gel filtration column toward smaller molecular masses with a reduced propensity for dimer formation in a cross-linking reaction. Binding of these TM peptides to Rho was characterized by both mass spectrometry and a label-free assay from which dissociation constants were calculated. A BRET (bioluminescence resonance energy transfer) assay revealed that the physical interaction between Rho molecules expressed in membranes of living cells was blocked by the same four TM peptides identified in our in vitro experiments. Although disruption of the Rho dimer/oligomer had no effect on the rates of G protein activation, binding of Gt to the activated receptor stabilized the dimer. However, TM peptide-induced disruption of dimer/oligomer decreased receptor stability, suggesting that Rho supramolecular organization could be essential for ROS stabilization and receptor trafficking. PMID:26330551

  10. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  11. How different is the borazine-acetylene dimer from the benzene-acetylene dimer? A matrix isolation infrared and ab initio quantum chemical study

    NASA Astrophysics Data System (ADS)

    Verma, Kanupriya; Viswanathan, K. S.; Majumder, Moumita; Sathyamurthy, N.

    2017-11-01

    The 1:1 dimer of borazine-acetylene has been studied for the first time, both experimentally and computationally. The borazine-acetylene dimer was trapped in Ar and N2 matrices, and studied using infrared spectroscopy. Our experiments clearly revealed two isomers of the borazine-acetylene complex, one in which the N-H of borazine interacted with the carbon of acetylene, and another in which the C-H of acetylene formed a hydrogen bond with a nitrogen atom of borazine. The formation of both isomers in the matrix was evidenced by shifts in the vibrational frequencies of the appropriate modes. Reassuringly, the experimental observations were corroborated by our computations using the second-order Møller-Plesset perturbation theoretic method and coupled-cluster singles, doubles and perturbative triples method in conjunction with different Dunning basis sets, which indicated both these isomers to be stable minima, with the N-HṡṡṡC complex being the global minimum. Atoms-in-molecules and energy decomposition analysis were also carried out for the different isomers of the dimer. These studies reveal that replacing the three C-C linkages in benzene with three B-N linkages in borazine modifies the interaction in the dimer sufficiently, to result in a different potential energy landscape for the borazine-acetylene system when compared with the benzene-acetylene system.

  12. Alignment and Imaging of the CS2 Dimer Inside Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Pickering, James D.; Shepperson, Benjamin; Hübschmann, Bjarke A. K.; Thorning, Frederik; Stapelfeldt, Henrik

    2018-03-01

    The carbon disulphide (CS2) dimer is formed inside He nanodroplets and identified using fs laser-induced Coulomb explosion, by observing the CS2+ ion recoil velocity. It is then shown that a 160 ps moderately intense laser pulse can align the dimer in advantageous spatial orientations which allow us to determine the cross-shaped structure of the dimer by analysis of the correlations between the emission angles of the nascent CS2+ and S+ ions, following the explosion process. Our method will enable fs time-resolved structural imaging of weakly bound molecular complexes during conformational isomerization, including formation of exciplexes.

  13. Special Features of Light Absorption by the Dimer of Bilayer Microparticles

    NASA Astrophysics Data System (ADS)

    Geints, Yu. É.; Panina, E. K.; Zemlyanov, A. A.

    2018-05-01

    Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.

  14. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  15. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes.

    PubMed

    Wang, Qian; Chen, Xinmei; Wang, Zhixiang

    2015-03-01

    We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR-ErbB2 or EGFR-ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFRΔ1005-1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR-PDGFRβ heterodimer is endocytosis deficient, although both EGFR and PDGFRβ homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated. © 2015. Published by The Company of Biologists Ltd.

  16. Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells

    PubMed Central

    RAINA, DEEPAK; AHMAD, REHAN; RAJABI, HASAN; PANCHAMOORTHY, GOVIND; KHARBANDA, SURENDER; KUFE, DONALD

    2012-01-01

    The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas and contributes to the malignant phenotype. The MUC1-C transmembrane subunit contains a CQC motif in the cytoplasmic domain that has been implicated in the formation of dimers and in its oncogenic function. The present study demonstrates that MUC1-C forms dimers in human breast and lung cancer cells. MUC1-C dimerization was detectable in the cytoplasm and was independent of MUC1-N, the N-terminal mucin subunit that extends outside the cell. We show that the MUC1-C cytoplasmic domain forms dimers in vitro that are disrupted by reducing agents. Moreover, dimerization of the MUC1-C subunit in cancer cells was blocked by reducing agents and increased by oxidative stress, supporting involvement of the CQC motif in forming disulfide bonds. In support of these observations, mutation of the MUC1-C CQC motif to AQA completely blocked MUC1-C dimerization. Importantly, this study was performed with MUC1-C devoid of fluorescent proteins, such as GFP, CFP and YFP. In this regard, we show that GFP, CFP and YFP themselves form dimers that are readily detectable with cross-linking agents. The present results further demonstrate that a cell-penetrating peptide that targets the MUC1-C CQC cysteines blocks MUC1-C dimerization in cancer cells. These findings provide definitive evidence that: i) the MUC1-C cytoplasmic domain cysteines are necessary and sufficient for MUC1-C dimerization, and ii) these CQC motif cysteines represent an Achilles’ heel for targeting MUC1-C function. PMID:22200620

  17. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions

    PubMed Central

    Cunningham, Orla; Andolfo, Annapaola; Santovito, Maria Lisa; Iuzzolino, Lucia; Blasi, Francesco; Sidenius, Nicolai

    2003-01-01

    The urokinase-type plasminogen activator receptor (uPAR/CD87) is a glycosylphosphatidylinositol-anchored membrane protein with multiple functions in extracellular proteolysis, cell adhesion, cell migration and proliferation. We now report that cell surface uPAR dimerizes and that dimeric uPAR partitions preferentially to detergent-resistant lipid rafts. Dimerization of uPAR did not require raft partitioning as the lowering of membrane cholesterol failed to reduce dimerization and as a transmembrane uPAR chimera, which does not partition to lipid rafts, also dimerized efficiently. While uPA bound to uPAR independently of its membrane localization and dimerization status, uPA-induced uPAR cleavage was strongly accelerated in lipid rafts. In contrast to uPA, the binding of Vn occurred preferentially to raft- associated dimeric uPAR and was completely blocked by cholesterol depletion. PMID:14609946

  18. Lignin dimers: Structures, distribution, and potential geochemical applications

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1992-11-01

    An extensive suite of thirty lignin-derived phenolic dimers and fourteen additional monomers has been identified among the CuO reaction products of twenty-four different vascular plant tissues. The various lignin dimers are characterized by five different types of linkages between phenolic units, including direct 5,5'-ring-ring bonding, as well as β,1-diketone, α,1-monoketone, α,5-monoketone, and α,2-methyl sidechain-ring couplings. The new lignin-derived monomeric CuO reaction products include vanillyl and syringyl glyoxalic acids and vanillyl phenols with formyl and carboxyl functional groups attached at various ring positions. The distribution of all these novel compounds in twenty-four different vascular plant tissues indicates important differences in the structure and chemical composition of the lignin macromolecule among these sources. The abundances of these compounds in a selected set of sedimentary samples suggest that the lignin dimers and novel lignin monomers can characterize the ultrastructure, sources, and diagenetic state of sedimentary lignin in ways not possible from the routinely utilized lignin monomers alone.

  19. Nucleosome accessibility governed by the dimer/tetramer interface

    PubMed Central

    Böhm, Vera; Hieb, Aaron R.; Andrews, Andrew J.; Gansen, Alexander; Rocker, Andrea; Tóth, Katalin; Luger, Karolin; Langowski, Jörg

    2011-01-01

    Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate structural state before H2A–H2B dimer release, which is characterized by an increased distance between H2B and the nucleosomal dyad. This suggests that the first step in nucleosome disassembly is the opening of the (H3–H4)2 tetramer/(H2A–H2B) dimer interface, followed by H2A–H2B dimer release from the DNA and, lastly, (H3–H4)2 tetramer removal. We estimate that the open intermediate state is populated at 0.2–3% under physiological conditions. This finding could have significant in vivo implications for factor-mediated histone removal and exchange, as well as for regulating DNA accessibility to the transcription and replication machinery. PMID:21177647

  20. Study of structural stability and damaging effect on membrane for four Aβ42 dimers

    PubMed Central

    Feng, Wei; Lei, Huimin; Si, Jiarui; Zhang, Tao

    2017-01-01

    Increasing evidence shows that Aβ oligomers are key pathogenic molecules in Alzheimer’s disease. Among Aβ oligomers, dimer is the smallest aggregate and toxic unit. Therefore, understanding its structural and dynamic properties is quite useful to prevent the formation and toxicity of the Aβ oligomers. In this study, we performed molecular dynamic simulations on four Aβ42 dimers, 2NCb, CNNC, NCNC and NCCN, within the hydrated DPPC membrane. Four Aβ42 dimers differ in the arrangements of two Aβ42 peptides. This study aims to investigate the impact of aggregation pattern of two Aβ peptides on the structural stability of the Aβ42 dimer and its disruption to the biological membrane. The MD results demonstrate that the NCCN, CNNC and NCNC have the larger structural fluctuation at the N-terminus of Aβ42 peptide, where the β-strand structure converts into the coil structure. The loss of the N-terminal β-strand further impairs the aggregate ability of Aβ42 dimer. In addition, inserting Aβ42 dimer into the membrane can considerably decrease the average APL of DPPC membrane. Moreover this decrease effect is largely dependent on the distance to the location of Aβ42 dimer and its secondary structure forms. Based on the results, the 2NCb is considered as a stable dimeric unit for aggregating the larger Aβ42 oligomer, and has a potent ability to disrupt the membrane. PMID:28594887

  1. D-dimer test for excluding the diagnosis of pulmonary embolism.

    PubMed

    Crawford, Fay; Andras, Alina; Welch, Karen; Sheares, Karen; Keeling, David; Chappell, Francesca M

    2016-08-05

    Pulmonary embolism (PE) can occur when a thrombus (blood clot) travels through the veins and lodges in the arteries of the lungs, producing an obstruction. People who are thought to be at risk include those with cancer, people who have had a recent surgical procedure or have experienced long periods of immobilisation and women who are pregnant. The clinical presentation can vary, but unexplained respiratory symptoms such as difficulty breathing, chest pain and an increased respiratory rate are common.D-dimers are fragments of protein released into the circulation when a blood clot breaks down as a result of normal body processes or with use of prescribed fibrinolytic medication. The D-dimer test is a laboratory assay currently used to rule out the presence of high D-dimer plasma levels and, by association, venous thromboembolism (VTE). D-dimer tests are rapid, simple and inexpensive and can prevent the high costs associated with expensive diagnostic tests. To investigate the ability of the D-dimer test to rule out a diagnosis of acute PE in patients treated in hospital outpatient and accident and emergency (A&E) settings who have had a pre-test probability (PTP) of PE determined according to a clinical prediction rule (CPR), by estimating the accuracy of the test according to estimates of sensitivity and specificity. The review focuses on those patients who are not already established on anticoagulation at the time of study recruitment. We searched 13 databases from conception until December 2013. We cross-checked the reference lists of relevant studies. Two review authors independently applied exclusion criteria to full papers and resolved disagreements by discussion.We included cross-sectional studies of D-dimer in which ventilation/perfusion (V/Q) scintigraphy, computerised tomography pulmonary angiography (CTPA), selective pulmonary angiography and magnetic resonance pulmonary angiography (MRPA) were used as the reference standard.• Adults who were managed in

  2. RNA Imaging with Dimeric Broccoli in Live Bacterial and Mammalian Cells

    PubMed Central

    Filonov, Grigory S.

    2016-01-01

    RNA spatial dynamics play a crucial role in cell physiology and thus the ability to monitor RNA localization in live cells can provide insight into important biological problems. This article focuses on imaging RNAs using an “RNA mimic of GFP”. This approach relies on a RNA aptamer, called dimeric Broccoli, which binds to and switches on the fluorescence of DFHBI, a small molecule mimicking the fluorophore in GFP. Dimeric Broccoli is tagged to heterologously expressed RNAs and upon DFHBI binding the fluorescent signal of dimeric Broccoli reports the transcript’s localization in cells. This protocol describes the process of validating the fluorescence of dimeric Broccoli-labeled transcripts in vitro and in cells, flow cytometry analysis to determine overall fluorescence levels in cells, and fluorescence imaging in bacterial and mammalian cells. Overall, the current protocol should be useful for researchers seeking to image high abundance RNAs, such as transcribed off the T7 promoter in bacteria or off Pol III-dependent promoters in mammalian cells. PMID:26995352

  3. Unexpected dimerization of isoprene in a gas chromatography inlet. A study by gas chromatography/mass spectrometry coupling.

    PubMed

    Estevez, Yannick; Gardrat, Christian; Berthelot, Karine; Grau, Etienne; De Jeso, Bernard; Ouardad, Samira; Peruch, Frédéric

    2014-02-28

    During analysis of pure isoprene by gas chromatography/mass spectrometry (GC-MS) using a programmed temperature vaporization (PTV) inlet, the presence of several isoprene dimers was detected in the total ion chromatograms (TICs). This study intends to determine the part of the instrument where dimerization occurs and the relative importance of the dimer amounts under different experimental conditions. The reference thermal dimerization of isoprene gives four six-membered cyclic dimers and two eight-membered ones. In all samples containing different amounts of freshly distilled isoprene, only peaks corresponding to the former appeared in TICs. For the same temperature, their amounts increase as the concentration of injected isoprene increases. The main products are diprene (from 80 to 100%) of the total dimers and dipentene (from 1 to 14%). The sum of the two other dimers is never higher than 6%. In conclusion, isomeric dimers are produced through a dimerization in the inlet. No dimerization of isoprene occurs in the mass spectrometer source. Then care is needed when analyzing terpenic compounds in the presence of isoprene by GC-MS because structures, retention times and mass spectra of diprene and dipentene are close. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds

    PubMed Central

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko

    2014-01-01

    Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451

  5. Stabilization of EphA2 dimers as a novel anti-cancer strategy

    NASA Astrophysics Data System (ADS)

    Singh, Deo; Ahmed, Fozia; Salloto, Matt; Hristova, Kalina

    We have recently shown that EphA2 receptors exist in a monomer-dimer equilibrium in the absence of ligand. The monomers promote tumorigenic activity and thus a therapeutic strategy that minimizes the monomer population may be beneficial in the clinic. The YSA peptide is an EphA2-targeting peptide that effectively delivers anticancer agents to cancer tumors. The quantitative measurements of the dimerization of EphA2 receptors in the presence of these peptides using quantitative spectral Forster resonance transfer (QS-FRET) methodology in conjunction with two-photon microscopy that has been developed recently in our lab suggests that this peptide stabilizes the EphA2 dimers. Thus, such peptides that stabilize the EphA2 dimers may be used for the treatment of some cancers that overexpress EphA2.

  6. Quantum mechanical reaction probability of triplet ketene at the multireference second-order perturbation level of theory.

    PubMed

    Ogihara, Yusuke; Yamamoto, Takeshi; Kato, Shigeki

    2010-09-23

    Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rates, but its mechanism is still unknown despite many theoretical efforts in the past decades. In this paper we revisit this problem by quantum mechanically calculating the reaction probability with multireference-based electronic structure theory. Specifically, we first construct an analytical potential energy surface of triplet state by fitting it to about 6000 ab initio energies computed at the multireference second-order Mller-Plesset perturbation (MRMP2) level. We then evaluate the cumulative reaction probability by using the transition state wave packet method together with an adiabatically constrained Hamiltonian. The result shows that the imaginary barrier frequency on the triplet surface is 328i cm-1, which is close to the CCSD(T) result (321i cm-1) but is likely too large for reproducing the experimentally observed steps. Indeed, our calculated reaction probability exhibits no signature of steps, reflecting too strong tunneling effect along the reaction coordinate. Nevertheless, it is emphasized that the flatness of the potential profile in the transition-state region (which governs the degree of tunneling) depends strongly on the level of electronic structure calculation, thus leaving some possibility that the use of more accurate theories might lead to the observed steps. We also demonstrate that the triplet potential surface differs significantly between the CASSCF and MRMP2 results, particularly in the transition-state region. This fact seems to require more attention when studying the "nonadiabatic" scenario for the steps, in which the crossing seam between S0 and T1 surfaces is assumed to play a central role.

  7. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    PubMed

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  8. Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets

    PubMed Central

    Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-01-01

    Abstract We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging–reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. Key Words: Remote sensing—Extrasolar terrestrial planets

  9. Electronic structure of the benzene dimer cation

    NASA Astrophysics Data System (ADS)

    Pieniazek, Piotr A.; Krylov, Anna I.; Bradforth, Stephen E.

    2007-07-01

    The benzene and benzene dimer cations are studied using the equation-of-motion coupled-cluster model with single and double substitutions for ionized systems. The ten lowest electronic states of the dimer at t-shaped, sandwich, and displaced sandwich configurations are described and cataloged based on the character of the constituent fragment molecular orbitals. The character of the states, bonding patterns, and important features of the electronic spectrum are explained using qualitative dimer molecular orbital linear combination of fragment molecular orbital framework. Relaxed ground state geometries are obtained for all isomers. Calculations reveal that the lowest energy structure of the cation has a displaced sandwich structure and a binding energy of 20kcal/mol, while the t-shaped isomer is 6kcal/mol higher. The calculated electronic spectra agree well with experimental gas phase action spectra and femtosecond transient absorption in liquid benzene. Both sandwich and t-shaped structures feature intense charge resonance bands, whose location is very sensitive to the interfragment distance. Change in the electronic state ordering was observed between σ and πu states, which correlate to the B˜ and C˜ bands of the monomer, suggesting a reassignment of the local excitation peaks in the gas phase experimental spectrum.

  10. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification.

    PubMed

    Osipov, Alexey V; Kasheverov, Igor E; Makarova, Yana V; Starkov, Vladislav G; Vorontsova, Olga V; Ziganshin, Rustam Kh; Andreeva, Tatyana V; Serebryakova, Marina V; Benoit, Audrey; Hogg, Ronald C; Bertrand, Daniel; Tsetlin, Victor I; Utkin, Yuri N

    2008-05-23

    Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.

  11. The aggregation paths and products of Aβ42 dimers are distinct from Aβ42 monomer

    PubMed Central

    O'Malley, Tiernan T.; Witbold, William M.; Linse, Sara; Walsh, Dominic M.

    2017-01-01

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be SDS-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated from Aβ monomer, consist primarily of Aβ42 and resist denaturation by powerful chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in only one of two different ways - either by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then applied a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by Aβ monomer. These results suggest that Aβ dimers allow the formation of soluble aggregates akin to those in aqueous extracts of AD brain. Thus it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates. PMID:27750419

  12. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  13. Fibrin d-dimer concentration, deep vein thrombosis symptom duration, and venous thrombus volume.

    PubMed

    Kurklinsky, Andrew K; Kalsi, Henna; Wysokinski, Waldemar E; Mauck, Karen F; Bhagra, Anjali; Havyer, Rachel D; Thompson, Carrie A; Hayes, Sharonne N; McBane, Robert D

    2011-04-01

    To determine the relationship between fibrin D-dimer levels, symptom duration, and thrombus volume, consecutive patients with incident deep venous thrombosis (DVT) were evaluated. In a cross-sectional study design, patient symptom onset was determined by careful patient questioning. Venous thrombosis was confirmed by compression duplex ultrasonography. Thrombus volume was estimated based on patient's femur length using a forensic anthropology method. Fibrin D-dimer was measured by latex immunoassay. 72 consecutive patients with confirmed leg DVT agreed to participate. The median symptom duration at the time of diagnosis was 10 days. The median D-dimer concentration was 1050 ng/dL. The median thrombus volume was 12.92 cm(3). D-Dimer levels correlated with estimated thrombus volume (P < .0006 CI 0.12-0.41; R(2) (adjusted) = .15) but not symptom duration, patient's age, or gender. Despite varying symptom duration prior to diagnosis, fibrin D-dimer remains a sensitive measure of venous thrombosis and correlates with thrombus volume.

  14. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy.

    PubMed

    Chadda, R; Robertson, J L

    2016-01-01

    Dimerization of membrane protein interfaces occurs during membrane protein folding and cell receptor signaling. Here, we summarize a method that allows for measurement of equilibrium dimerization reactions of membrane proteins in lipid bilayers, by measuring the Poisson distribution of subunit capture into liposomes by single-molecule photobleaching analysis. This strategy is grounded in the fact that given a comparable labeling efficiency, monomeric or dimeric forms of a membrane protein will give rise to distinctly different photobleaching probability distributions. These methods have been used to verify the dimer stoichiometry of the Fluc F - ion channel and the dimerization equilibrium constant of the ClC-ec1 Cl - /H + antiporter in lipid bilayers. This approach can be applied to any membrane protein system provided it can be purified, fluorescently labeled in a quantitative manner, and verified to be correctly folded by functional assays, even if the structure is not yet known. © 2016 Elsevier Inc. All rights reserved.

  15. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  16. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    PubMed

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  17. G-Quadruplex Induction by the Hairpin Pyrrole-Imidazole Polyamide Dimer.

    PubMed

    Obata, Shunsuke; Asamitsu, Sefan; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2018-02-06

    The G-quadruplex (G4) is one type of higher-order structure of nucleic acids and is thought to play important roles in various biological events such as regulation of transcription and inhibition of DNA replication. Pyrrole-imidazole polyamides (PIPs) are programmable small molecules that can sequence-specifically bind with high affinity to the minor groove of double-stranded DNA (dsDNA). Herein, we designed head-to-head hairpin PIP dimers and their target dsDNA in a model G4-forming sequence. Using an electrophoresis mobility shift assay and transcription arrest assay, we found that PIP dimers could induce the structural change to G4 DNA from dsDNA through the recognition by one PIP dimer molecule of two duplex-binding sites flanking both ends of the G4-forming sequence. This induction ability was dependent on linker length. This is the first study to induce G4 formation using PIPs, which are known to be dsDNA binders. The results reported here suggest that selective G4 induction in native sequences may be achieved with PIP dimers by applying the same design strategy.

  18. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    PubMed Central

    Feilen, Lukas P.; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling. PMID:28553201

  19. Tautomerization and Dimerization of 6,13-Disubstituted Derivatives of Pentacene.

    PubMed

    Garcia-Borràs, Marc; Konishi, Akihito; Waterloo, Andreas; Liang, Yong; Cao, Yang; Hetzer, Constantin; Lehnherr, Dan; Hampel, Frank; Houk, Kendall N; Tykwinski, Rik R

    2017-05-02

    Two new 6,13-disubstituted pentacene derivatives, 1 c and 1 d, with alkyl and triisopropylsilylethynyl substitution have been synthesized and characterized experimentally and computationally. The alkyl substituted 1 c and 1 d represent the first 6-alkyl-substituted pentacene derivative where the fully aromatic species dominates over the corresponding tautomer. Indeed, no tautomerization product is found for either 1 c or 1 d upon heating or in the presence of catalytic amounts of acid. On the other hand, an unexpected dimer (3 c) is formed from 1 c. A plausible mechanism for this new dimerization process of the 6-methyl-substituted pentacene derivative 1 c is proposed, which involves first a bimolecular hydrogen atom transfer followed by an intramolecular [4+2] Diels-Alder cycloaddition. In the case of 6-butyl substitution, neither tautomerization nor dimerization is observed. Computations support the proposed 1 c dehydrodimerization pathway, explain why 1 d does not dimerize, and show the importance of the nature of the group at C-13 in controlling the relative stability of 6-alkyl-substituted pentacene tautomers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask.

    PubMed

    Hao, Qi; Huang, Hao; Fan, Xingce; Yin, Yin; Wang, Jiawei; Li, Wan; Qiu, Teng; Ma, Libo; Chu, Paul K; Schmidt, Oliver G

    2017-10-18

    We report on design and fabrication of patterned plasmonic dimer arrays by using an ultrathin anodic aluminum oxide (AAO) membrane as a shadow mask. This strategy allows for controllable fabrication of plasmonic dimers where the location, size, and orientation of each particle in the dimer pairs can be independently tuned. Particularly, plasmonic dimers with ultrasmall nanogaps down to the sub-10 nm scale as well as a large dimer density up to 1.0 × 10 10 cm -2 are fabricated over a centimeter-sized area. The plasmonic dimers exhibit significant surface-enhanced Raman scattering (SERS) enhancement with a polarization-dependent behavior, which is well interpreted by finite-difference time-domain (FDTD) simulations. Our results reveal a facile approach for controllable fabrication of large-area dimer arrays, which is of fundamental interest for plasmon-based applications in surface-enhanced spectroscopy, biochemical sensing, and optoelectronics.

  1. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2012-12-01

    The complex of squaric acid (3,4-dihydroxy-3-cyclobuten-1,2-dion, H2SQ) with quinuclidine betaine (1-carboxymethyl-1-azabicyclo[2.2.2]octane inner salt, QNB), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies and by DFT calculations. In the crystal of 1, monoclinic space group P21/n, one proton from H2SQ is transferred to QNB. QNBH+ and HSQ- are linked together by a Osbnd H⋯O hydrogen bond of 2.553(2) Å. Two such QNBH+·HSQ- complexes form a centrosymmetric dimer bridged by two Osbnd H⋯O bonds of 2.536(2) Å. The FTIR spectrum is consistent with the X-ray results. The structures of monomer QNBH+·HSQ- (1a) and dimer [QNB·H2SQ]2 (2) have been optimized at the B3LYP/6-311++G(d,p) level of theory. Isolated dimer 2 optimized back to a molecular aggregate of H2SQ and QNB. The calculated frequencies for the optimized structure of dimer 2 have been used to explain the frequencies of the experimental FTIR spectrum. The interpretation of 1H and 13C NMR spectra has been based on the calculated GIAO/B3LYP/6-311++G(d,p) magnetic isotropic shielding constants for monomer 1a.

  2. The structures and properties of proton- and alkali-bound cysteine dimers.

    PubMed

    Ieritano, Christian; Carr, Patrick J J; Hasan, Moaraj; Burt, Michael; Marta, Rick A; Steinmetz, Vincent; Fillion, Eric; McMahon, Terrance B; Scott Hopkins, W

    2016-02-14

    The proton-, lithium-, and sodium-bound cysteine dimers have been investigated in a joint computational and experimental infrared multiple photon dissociation (IRMPD) study. IRMPD spectra in the 1000-2000 cm(-1) region show that protonation is localized on an amine group, and that intermolecular hydrogen bonding occurs between the protonated amine and the carbonyl oxygen of the neutral Cys moiety. Alkali-bound dimers adopt structures reminiscent of those observed for the monomeric Cys·Li(+) and Cys·Na(+) species. Calculations of the heavier Cys2·M(+) (M = K, Rb or Cs) species suggest that these are significantly less strongly bound than the lighter (M = H, Li, or Na) dimers.

  3. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  4. Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins.

    PubMed

    Kudlacek, Stephan T; Premkumar, Lakshmanane; Metz, Stefan W; Tripathy, Ashutosh; Bobkov, Andrey A; Payne, Alexander Matthew; Graham, Stephen; Brackbill, James A; Miley, Michael J; de Silva, Aravinda M; Kuhlman, Brian

    2018-06-08

    The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 μm at 25 °C to 50 μm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine. © 2018 Kudlacek et al.

  5. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly.

    PubMed

    Bray, David J; Walsh, Tiffany R; Noro, Massimo G; Notman, Rebecca

    2015-01-01

    Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.

  6. Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

    PubMed

    Wu, Cheng Guo; Cheng, Shu Chun; Chen, Shiang Chuan; Li, Juo Yan; Fang, Yi Hsuan; Chen, Yau Hung; Chou, Chi Yuan

    2013-05-01

    The Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)) cleaves two virion polyproteins (pp1a and pp1ab); this essential process represents an attractive target for the development of anti-SARS drugs. The functional unit of M(pro) is a homodimer and each subunit contains a His41/Cys145 catalytic dyad. Large amounts of biochemical and structural information are available on M(pro); nevertheless, the mechanism by which monomeric M(pro) is converted into a dimer during maturation still remains poorly understood. Previous studies have suggested that a C-terminal residue, Arg298, interacts with Ser123 of the other monomer in the dimer, and mutation of Arg298 results in a monomeric structure with a collapsed substrate-binding pocket. Interestingly, the R298A mutant of M(pro) shows a reversible substrate-induced dimerization that is essential for catalysis. Here, the conformational change that occurs during substrate-induced dimerization is delineated by X-ray crystallography. A dimer with a mutual orientation of the monomers that differs from that of the wild-type protease is present in the asymmetric unit. The presence of a complete substrate-binding pocket and oxyanion hole in both protomers suggests that they are both catalytically active, while the two domain IIIs show minor reorganization. This structural information offers valuable insights into the molecular mechanism associated with substrate-induced dimerization and has important implications with respect to the maturation of the enzyme.

  7. Energetic Coupling between Ligand Binding and Dimerization in E. coli Phosphoglycerate Mutase

    PubMed Central

    Gardner, Nathan W.; Monroe, Lyman K.; Kihara, Daisuke; Park, Chiwook

    2016-01-01

    Energetic coupling of two molecular events in a protein molecule is ubiquitous in biochemical reactions mediated by proteins, such as catalysis and signal transduction. Here, we investigate energetic coupling between ligand binding and folding of a dimer using a model system that shows three-state equilibrium unfolding in an exceptional quality. The homodimeric E. coli cofactor-dependent phosphoglycerate mutase (dPGM) was found to be stabilized by ATP in a proteome-wide screen, although dPGM does not require or utilize ATP for enzymatic function. We investigated the effect of ATP on the thermodynamic stability of dPGM using equilibrium unfolding. In the absence of ATP, dPGM populates a partially unfolded, monomeric intermediate during equilibrium unfolding. However, addition of 1.0 mM ATP drastically reduces the population of the intermediate by selectively stabilizing the native dimer. Using a computational ligand docking method, we predicted ATP binds to the active site of the enzyme using the triphosphate group. By performing equilibrium unfolding and isothermal titration calorimetry with active-site variants of dPGM, we confirmed that active-site residues are involved in ATP binding. Our findings show that ATP promotes dimerization of the protein by binding to the active site, which is distal from the dimer interface. This cooperativity suggests an energetic coupling between the active-site and the dimer interface. We also propose a structural link to explain how ligand binding to the active site is energetically coupled with dimerization. PMID:26919584

  8. Distance within colloidal dimers probed by rotation-induced oscillations of scattered light.

    PubMed

    van Vliembergen, Roland W L; van IJzendoorn, Leo J; Prins, Menno W J

    2016-01-25

    Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.

  9. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices

    NASA Astrophysics Data System (ADS)

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.

  10. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwei; Ding, Ya-qiong; Ren, Jie; Sun, Yong; Li, Yunhui; Jiang, Haitao; Chen, Hong

    2018-05-01

    The Zak phase, which refers to Berry's phase picked up by a particle moving across the Brillouin zone, characterizes the topological properties of Bloch bands in a one-dimensional periodic system. Here the Zak phase in dimerized one-dimensional locally resonant metamaterials is investigated. It is found that there are some singular points in the bulk band across which the Bloch states contribute π to the Zak phase, whereas in the rest of the band the contribution is nearly zero. These singular points associated with zero reflection are caused by two different mechanisms: the dimerization-independent antiresonance of each branch and the dimerization-dependent destructive interference in multiple backscattering. The structure undergoes a topological phase-transition point in the band structure where the band inverts, and the Zak phase, which is determined by the numbers of singular points in the bulk band, changes following a shift in dimerization parameter. Finally, the interface state between two dimerized metamaterial structures with different topological properties in the first band gap is demonstrated experimentally. The quasi-one-dimensional configuration of the system allows one to explore topology-inspired new methods and applications on the subwavelength scale.

  11. Lifecourse social position and D-dimer; findings from the 1958 British birth cohort.

    PubMed

    Tabassum, Faiza; Kumari, Meena; Rumley, Ann; Power, Chris; Strachan, David P; Lowe, Gordon

    2014-01-01

    The aim is to examine the association of lifecourse socioeconomic position (SEP) on circulating levels of D-dimer. Data from the 1958 British birth cohort were used, social class was determined at three stages of respondents' life: at birth, at 23 and at 42 years. A cumulative indicator score of SEP (CIS) was calculated ranging from 0 (always in the highest social class) to 9 (always in the lowest social class). In men and women, associations were observed between CIS and D-dimer (P<0.05). Thus, the respondents in more disadvantaged social classes had elevated levels of D-dimer compared to respondents in less disadvantaged social class. In multivariate analyses, the association of disadvantaged social position with D-dimer was largely explained by fibrinogen, C-reactive protein and von Willebrand Factor in women, and additionally by smoking, alcohol consumption and physical activity in men. Socioeconomic circumstances across the lifecourse at various stages also contribute independently to raised levels of D-dimer in middle age in women only. Risk exposure related to SEP accumulates across life and contributes to raised levels of D-dimer. The association of haemostatic markers and social differences in health may be mediated by inflammatory and other markers.

  12. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Li, Sazi; Li, Wei; Chen, Ziyu

    2014-11-01

    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v ) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ , we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v -T and μ -T . Moreover, for the noninteracting monomer-dimer model (setting μ =ν =0 ), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h2) as f =-0.662 798 972 833 746 with the dimer density n =0.638 123 109 228 547 , both of 15 correct digits.

  13. Ultraviolet spectrum and chemical reactivity of the ClO dimer

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Tschuikow-Roux, E.

    1990-01-01

    The ClO dimer was prepared by photolysis (wavelength greater than 300 nm) of Cl2/Cl2O or Cl2/O3 mixtures or by photolysis of Cl2O alone. Temperatures were in the range 195-217 K, and experiments were carried out both in the gas phase and in the cryogenic solvents CF4, CO2, and N2O. Dimer cross sections in the range 190-400 nm are reported both in the gas phase and in the solvents. Results indicate that ClOOCl is the only dimer structure formed as a stable product. Upper limits of 1 x 10 to the -19th and 1 x 10 to the -20th cu cm/s are placed on the reactions of ClOOCl with O3 and with itself, respectively.

  14. Fano resonances in heterogeneous dimers of silicon and gold nanospheres

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Yang, Zhong-Jian; He, Jun

    2018-06-01

    We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.

  15. First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid.

    PubMed

    Pham, Hieu H; Taylor, Christopher D; Henson, Neil J

    2013-01-24

    We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.

  16. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Accurate ab initio binding energies of the benzene dimer.

    PubMed

    Park, Young Choon; Lee, Jae Shin

    2006-04-20

    Accurate binding energies of the benzene dimer at the T and parallel displaced (PD) configurations were determined using the single- and double-coupled cluster method with perturbative triple correction (CCSD(T)) with correlation-consistent basis sets and an effective basis set extrapolation scheme recently devised. The difference between the estimated CCSD(T) basis set limit electronic binding energies for the T and PD shapes appears to amount to more than 0.3 kcal/mol, indicating the PD shape is a more stable configuration than the T shape for this dimer in the gas phase. This conclusion is further strengthened when a vibrational zero-point correction to the electronic binding energies of this dimer is made, which increases the difference between the two configurations to 0.4-0.5 kcal/mol. The binding energies of 2.4 and 2.8 kcal/mol for the T and PD configurations are in good accord with the previous experimental result from ionization potential measurement.

  18. Split-orientation-modulated plasmon coupling in disk/sector dimers

    NASA Astrophysics Data System (ADS)

    Zhu, Xupeng; Chen, Yiqin; Shi, Huimin; Zhang, Shi; Liu, Quanhui; Duan, Huigao

    2017-06-01

    The coupled asymmetric plasmonic nanostructures allow more compact nanophotonics integration and easier optical control in practical applications, such as directional scattering and near-field control. Here, we carried out a systematic and in-depth study on the plasmonic coupling of an asymmetric gold disk/sector dimer, and investigated the light-matter interaction in such an asymmetric coupled complex nanostructures. The results demonstrated that the positions and the intensity of plasmon resonance peak as well as the spatial distribution of electric fields around the surface in the coupled disk/sector dimer can be tuned by changing the azimuth angle of the gold sector. Based on Simpson-Peterson approximation, we proposed a model to understand the obtained plasmon properties of asymmetric coupled disk/sector dimers by introducing an offset parameter between the geometry center and dipole center of the sector. The experimental results agree well with the simulations. Our study provides an insight to tune the plasmon coupling behavior via adjusting the plasmon dipole center position in coupling systems.

  19. Hydrogen bonding in the benzene-ammonia dimer

    NASA Technical Reports Server (NTRS)

    Rodham, David A.; Suzuki, Sakae; Suenram, Richard D.; Lovas, Frank J.; Dasgupta, Siddharth; Goddard, William A., III; Blake, Geoffrey A.

    1993-01-01

    High-resolution optical and microwave spectra of the gas-phase benzene-ammonia dimer were obtained, showing that the ammonia molecule resides above the benzene plane and undergoes free, or nearly free, internal rotation. To estimate the binding energy (De) and other global properties of the intermolecular potential, theoretical calculations were performed for the benzene-ammonia dimer, using the Gaussian 92 (Fritsch, 1992) program at the MP2/6-31G** level. The predicted De was found to be at the lowest end of the range commonly accepted for hydrogen bonding and considerably below that of C6H6-H2O, consistent with the gas-phase acidities of ammonia and water. The observed geometry greatly resembles the amino-aromatic interaction found naturally in proteins.

  20. Microwave Spectrum of the Ethanol-Methanol Dimer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Carroll, Brandon; Mead, Griffin; Blake, Geoffrey

    2016-06-01

    The hydrogen bond donor/acceptor competition in mixed alcohol clusters remains a fundamental question in physical chemistry. Previous theoretical work on the prototype ethanol-methanol dimer has been inconclusive in predicting the energetically preferred structure. Here, we report the microwave spectrum of the ethanol-methanol dimer between 8-18 GHz, using a chirped pulse Fourier transform microwave spectrometer. With the aid of ab initio calculations, 36 transitions have been fit and assigned to a t-ethanol-acceptor, methanol-donor structure in an argon-backed expansion. In a helium-backed expansion, a second excited conformer has been observed, and tentatively assigned to a g-ethanol-acceptor, methanol-donor structure. No ethanol-donor, methanol-acceptor structures have been found, suggesting such structures are energetically disfavored.

  1. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties.

    PubMed

    Kofler, Stefan; Ackaert, Chloé; Samonig, Martin; Asam, Claudia; Briza, Peter; Horejs-Hoeck, Jutta; Cabrele, Chiara; Ferreira, Fatima; Duschl, Albert; Huber, Christian; Brandstetter, Hans

    2014-01-03

    Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.

  2. Structural Basis for a Reciprocating Mechanism of Negative Cooperativity in Dimeric Phosphagen Kinase Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, X.; Ye, S; Guo, S

    Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 {angstrom}, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand-free protomer in a ligand-bound dimer opens more widelymore » than the protomers in a ligand-free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand-free protomer in a ligand-bound dimer should be relayed from the ligand-binding-induced allostery of its adjacent protomer. Mutations that weaken the interprotomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase. - Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.« less

  3. The Role of Water in the Stability of Wild Type and Mutant Insulin Dimers.

    PubMed

    Raghunathan, Shampa; El Hage, Krystel; Desmond, Jasmine; Zhang, Lixian; Meuwly, Markus

    2018-06-19

    Insulin dimerization and aggregation play important roles in the endogenous delivery of the hormone. One of the important residues at the insulin dimer interface is Phe B24 which is an invariant aromatic anchor that packs towards its own monomer inside a hydrophobic cavity formed by Val B12 , Leu B15 , Tyr B16 , Cys B19 and Tyr B26 . Using molecular dynamics and free energy simulations in explicit solvent, the structural and dynamical consequences of mutations of Phe at position B24 to Gly, Ala, and d-Ala and the des-PheB25 variant are quantified. Consistent with experiments it is found that the Gly and Ala modifications lead to insulin dimers with reduced stability by 4 and 5 kcal/mol from thermodynamic integration and 4 and 8 kcal/mol from results using MM-GBSA, respectively. Given the experimental difficulties to quantify the thermodynamic stability of modified insulin dimers, such computations provide a valuable complement. Interestingly, the Gly-mutant exists as a strongly and a weakly interacting dimer. Analysis of the molecular dynamics simulations shows that this can be explained by water molecules that replace direct monomer-monomer H-bonding contacts at the dimerization interface involving residues B24 to B26. It is concluded that such solvent molecules play an essential role and must be included in future insulin dimerization studies.

  4. Members of the DAN family are BMP antagonists that form highly stable noncovalent dimers.

    PubMed

    Kattamuri, Chandramohan; Luedeke, David M; Nolan, Kristof; Rankin, Scott A; Greis, Kenneth D; Zorn, Aaron M; Thompson, Thomas B

    2012-12-14

    Signaling of bone morphogenetic protein (BMP) ligands is antagonized by a number of extracellular proteins, including noggin, follistatin and members of the DAN (differential screening selected gene abberative in neuroblastoma) family. Structural studies on the DAN family member sclerostin (a weak BMP antagonist) have previously revealed that the protein is monomeric and consists of an eight-membered cystine knot motif with a fold similar to transforming growth factor-β ligands. In contrast to sclerostin, certain DAN family antagonists, including protein related to DAN and cerberus (PRDC), have an unpaired cysteine that is thought to function in covalent dimer assembly (analogous to transforming growth factor-β ligands). Through a combination of biophysical and biochemical studies, we determined that PRDC forms biologically active dimers that potently inhibit BMP ligands. Furthermore, we showed that PRDC dimers, surprisingly, are not covalently linked, as mutation of the unpaired cysteine does not inhibit dimer formation or biological activity. We further demonstrated that the noncovalent PRDC dimers are highly stable under both denaturing and reducing conditions. This study was extended to the founding family member DAN, which also forms noncovalent dimers that are highly stable. These results demonstrate that certain DAN family members can form both monomers and noncovalent dimers, implying that biological activity of DAN family members might be linked to their oligomeric state. Published by Elsevier Ltd.

  5. Neutral dipole-dipole dimers: A new field in science

    NASA Astrophysics Data System (ADS)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate

  6. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.

    2017-07-05

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less

  7. Dimeric molecular association of dimethyl sulfoxide in solutions of nonpolar liquids.

    PubMed

    Shikata, Toshiyuki; Sugimoto, Natsuki

    2012-01-26

    Although many vibrational spectroscopic studies using infrared (IR) absorption and Raman scattering (RS) techniques revealed that dimethyl sulfoxide (DMSO) forms intermolecular dimeric associations in the pure liquid state and in solutions, the results of a number of dielectric relaxation studies did not clearly show the presence of such dimers. Recently, we found the presence of dimeric DMSO associations in not only the pure liquid but also in solutions of nonpolar solvents, such as tetrachloromethane (CCl(4)) and benzene (Bz), using dielectric relaxation (DR) techniques, which ranged from 50 MHz to 50 GHz at 25 °C. The dimeric DMSO associations cause a slow dielectric relaxation process with a relaxation time of ca. 23 ps for solutions in CCl(4) (ca. 17 ps in Bz) due to the dissociation into monomeric DMSO molecules, while the other fast relaxation is caused by monomeric DMSO molecules with a relaxation time of ca. 5.0 ps (ca. 5.5 ps in Bz) at 25 °C. A comparison of DR and vibrational spectroscopic data for DMSO solutions demonstrated that the concentration dependence of the relative magnitude of the slow and fast DR strength corresponds well to the two IR and RS bands assigned to the vibrational stretching modes of the sulfoxide groups (S═O) of the dimeric associations and the monomeric DMSO molecules, respectively. Moreover, the concentrations of the dimeric associations ([DIM]) and monomeric DMSO molecules ([MON]) were governed by a chemical equilibrium and an equilibrium constant (K(d) = [DIM](2)[MON](-1)) that was markedly dependent on the concentration of DMSO and the solvent species (K(d) = 2.5 ± 0.5 M(-1) and 0.7 ± 0.1 M(-1) in dilute CCl(4) and Bz solutions, respectively, and dramatically increased to 20-40 M(-1) in pure DMSO at 25 °C).

  8. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.

    PubMed

    Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun

    2018-04-25

    Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Ultraviolet B-Sensitive Rice Cultivar Deficient in Cyclobutyl Pyrimidine Dimer Repair.

    PubMed Central

    Hidema, J.; Kumagai, T.; Sutherland, J. C.; Sutherland, B. M.

    1997-01-01

    Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair. PMID:12223592

  10. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  11. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    PubMed

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    PubMed

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  13. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    PubMed

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  14. Base Pair Opening in a Deoxynucleotide Duplex Containing a cis-syn Thymine Cyclobutane Dimer Lesion

    PubMed Central

    Wenke, Belinda B.; Huiting, Leah N.; Frankel, Elisa B.; Lane, Benjamin F.; Núñez, Megan E.

    2014-01-01

    The cis-syn thymine cyclobutane dimer is a DNA photoproduct implicated in skin cancer. We compared the stability of individual base pairs in thymine dimer-containing duplexes to undamaged parent 10-mer duplexes. UV melting thermodynamic measurements, CD spectroscopy, and 2D NOESY NMR spectroscopy confirm that the thymine dimer lesion is locally and moderately destabilizing within an overall B-form duplex conformation. We measured the rates of exchange of individual imino protons by NMR using magnetization transfer from water and determined the equilibrium constant for the opening of each base pair Kop. In the normal duplex Kop decreases from the frayed ends of the duplex toward the center, such that the central TA pair is the most stable with a Kop of 8×10−7. In contrast, base pair opening at the 5’T of the thymine dimer is facile. The 5’T of the dimer has the largest equilibrium constant (Kop =3×10−4) in its duplex, considerably larger than even the frayed penultimate base pairs. Notably, base pairing by the 3’T of the dimer is much more stable than by the 5’T, indicating that the predominant opening mechanism for the thymine dimer lesion is not likely to be flipping out into solution as a single unit. The dimer asymmetrically affects the stability of the duplex in its vicinity, destabilizing base pairing on its 5’ side more than on the 3’ side. The striking differences in base pair opening between parent and dimer duplexes occur independently of the duplex-single strand melting transitions. PMID:24328089

  15. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

  16. Performance Evaluation of Different d-Dimer Cutoffs in Bedridden Hospitalized Elderly Patients.

    PubMed

    Kassim, Nevine A; Farid, Tamer M; Pessar, Shaimaa Abdelmalik; Shawkat, Salma A

    2017-11-01

    A rapid and accurate diagnosis of venous thromboembolism (VTE) in the elderly individuals represents a dilemma due to nonspecific clinical presentation, confusing laboratory results, and the hazards of radiological examination in this age-group. d-Dimer test is used mainly in combination with non-high clinical pretest probability (PTP) to exclude VTE. d-Dimer testing retains its sensitivity, however, its specificity decreases in the elderly individuals. Raising the cutoff level improves the specificity of the d-dimer test without compromising its sensitivity. The current study aimed to explore the reliability of higher d-dimer cutoff values for the diagnosis of asymptomatic VTE in a population of bedridden hospitalized elderly patients with non-high clinical PTP. This retrospective study included 252 bedridden hospitalized elderly patients (>65 years) who were admitted to the Ain shams University Specialized Hospital with non-high clinical probability and developed later reduced mobility; all underwent quantitation of d-dimer and Doppler examination. Considering the whole population (>65 years), the age-adjusted cutoff achieved the best performance in comparison with the conventional and receiver operating characteristic (ROC)-derived cutoffs. When stratified according to age, the age-adjusted cutoff showed the best performance in the age-group 65-70 and comparable performance with the ROC-derived cutoff in the age-group 71-80, however, its sensitivity compromised in those older than 80 years. In conclusion, it is recommended to use age-adjusted cutoff value of d-dimer together with the clinical probability score in elderly individuals (65-80 years).

  17. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. © 2016 Wiley Periodicals, Inc.

  18. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  19. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers.

    PubMed

    Comps-Agrar, Laëtitia; Dunshee, Diana Ronai; Eaton, Dan L; Sonoda, Junichiro

    2015-10-02

    Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation.

    PubMed

    Pavankumar, Asalapuram R; Kayathri, Rajarathinam; Murugan, Natarajan A; Zhang, Qiong; Srivastava, Vaibhav; Okoli, Chuka; Bulone, Vincent; Rajarao, Gunaratna K; Ågren, Hans

    2014-01-01

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  1. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

    PubMed Central

    Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308

  2. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, Christine; Phuong, Nguyen Minh; Adam, Günter; Van Sung, Tran

    2003-10-01

    From the leaves of Xylopia vielana (Annonaceae) two dimeric guaianes named vielanins D and E were isolated and structurally elucidated by mass and NMR spectroscopy. Vielanin D and E consist of bridged ring systems formally representing the Diels-Alder products from the hypothetical guaiane-type monomers. Due to a hemiketal function at C-8' both compounds occurred as epimeric mixtures.

  3. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.

    PubMed

    Haglin, Elizabeth R; Yang, Wen; Briegel, Ariane; Thompson, Lynmarie K

    2017-11-07

    Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.

  4. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    NASA Astrophysics Data System (ADS)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  5. Levels of plasma fibrinogen and D-dimer in subjects with subclinical hyperthyroidism.

    PubMed

    Coban, Erkan; Aydemir, Mustafa

    2008-01-01

    During the last 15 years, several risk markers for atherosclerosis, such as fibrinogen and D-dimer, have been identified. The role of elevated fibrinogen levels as an independent risk factor for coronary, cerebral, and peripheral vascular disease is well established on the basis of clinical and epidemiological studies. Increased D-dimer levels are associated with increased risk of future myocardial infarction, stroke, and peripheral vascular disease. The aim of this study was to evaluate the alterations in fibrinogen and D-dimer, which indicates overall thrombotic activity, in subjects with subclinical hyperthyroidism. Thirty-six subclinical hyperthyroidic subjects and 36 euthyroidic control subjects matched for age, gender, and body mass index were selected. The levels of plasma fibrinogen and D-dimer in all subjects were measured. The level of fibrinogen was significantly higher in the subclinical hyperthyroidic group than in the euthyroidic group (296.9+/-74.3 mg/dl vs. 255.0+/-41.7 mg/dl, p<0.001). The level of D-dimer was significantly higher in the subclinical hyperthyroidic group than in the euthyroidic group (261.9+/-47.8 mg/dl vs. 216.4+/-32.1 mg/dl, p<0.000). The results suggest that subjects with subclinical hyperthyroidism present a relatively hypercoagulable state. This state could contribute to increased thromboembolic risk in subclinical hyperthyroidism.

  6. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  7. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    NASA Astrophysics Data System (ADS)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  8. Effect of berberine on the yield of pyrimidine dimers in uv-irradiated DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, M.; Sevcikova, P.; Pidra, M.

    1973-01-01

    From international conference on the bases of the biological effects of ultraviolet radiation; Brno, Czechoslovakia (2 Oct The effect of berberine on the yield of thymine dimers produced by uv light in DNA isolated from mouse leukemic cells and in DNA within irradiated cells was investigated. In solutions of isolated DNA the complete inhibition of thynnine dimerization was found at the concentration of berberine equal to 2 x 10/sup -3M/. However, in the cells inhibition of dimerization by berberine was never complete. In L cells a pronounced decrease in the intensity of DNA synthesis was found in cells treated withmore » berberine, dependent on berberine concentration used. But despite the presence of berberine in cell nuclei, no inhibition of pyrimidine dimerization in uv irradiated cells could be established. (auth)« less

  9. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing

    PubMed Central

    Xu, Tian-Jiao; Wang, Qi; Ma, Xiao-Wen; Zhang, Zhen; Zhang, Wei; Xue, Xiao-Chang; Zhang, Cun; Hao, Qiang; Li, Wei-Na; Zhang, Ying-Qi; Li, Meng

    2013-01-01

    Objective Thymosin beta 4 (Tβ4) is a peptide with 43 amino acids that is critical for repair and remodeling tissues on the skin, eye, heart, and neural system following injury. To fully realize its utility as a treatment for disease caused by injury, the authors constructed a cost-effective novel Tβ4 dimer and demonstrated that it was better able to accelerate tissue repair than native Tβ4. Methods A prokaryotic vector harboring two complete Tβ4 genes with a short linker was constructed and expressed in Escherichia coli. A pilot-scale fermentation (10 L) was performed to produce engineered bacteria and the Tβ4 dimer was purified by one-step hydrophobic interaction chromatography. The activities of the Tβ4 dimer to promote endothelial cell proliferation, migration, and sprouting were assessed by tetramethylbenzidine (methylthiazol tetrazolium), trans-well, scratch, and tube formation assays. The ability to accelerate dermal healing was assessed on rats. Results After fermentation, the Tβ4 dimer accounted for about 30% of all the bacteria proteins. The purity of the Tβ4 dimer reached 98% after hydrophobic interaction chromatography purification. An average of 562.4 mg/L Tβ4 dimer was acquired using a 10 L fermenter. In each assay, the dimeric Tβ4 exhibited enhanced activities compared with native Tβ4. Notably, the ability of the dimeric Tβ4 to promote cell migration was almost two times higher than that of Tβ4. The rate of dermal healing in the dimeric Tβ4-treated rats was approximately 1 day faster than with native Tβ4-treated rats. Conclusion The dimeric Tβ4 exhibited enhanced activity on wound healing than native Tβ4, and the purification process was simple and cost-effective. This data could be of significant benefit for the high pain and morbidity associated with chronic wounds disease. A better strategy to develop Tβ4 as a treatment for other diseases caused by injuries such as heart attack, neurotrophic keratitis, and multiple sclerosis was

  10. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics.

    PubMed

    Denison, Fiona C; Gökirmak, Tufan; Ferl, Robert J

    2014-01-01

    14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity.

    PubMed

    Torres, Eduardo; Aburto, Jorge

    2005-05-15

    A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.

  12. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance.

    PubMed

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-03-18

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem-haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer.

  13. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance

    PubMed Central

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-01-01

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem–haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer. PMID:26988023

  14. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Hiroshi, E-mail: hirotake@sapmed.ac.jp

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation ofmore » cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.« less

  15. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.

    PubMed

    Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan

    2009-10-01

    We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.

  16. Dynamics of a Chlorophyll Dimer in Collective and Local Thermal Environments

    DOE PAGES

    Merkli, M.; Berman, Gennady Petrovich; Sayre, Richard Thomas; ...

    2016-01-30

    Here we present a theoretical analysis of exciton transfer and decoherence effects in a photosynthetic dimer interacting with collective (correlated) and local (uncorrelated) protein-solvent environments. Our approach is based on the framework of the spin-boson model. We derive explicitly the thermal relaxation and decoherence rates of the exciton transfer process, valid for arbitrary temperatures and for arbitrary (in particular, large) interaction constants between the dimer and the environments. We establish a generalization of the Marcus formula, giving reaction rates for dimer levels possibly individually and asymmetrically coupled to environments. We identify rigorously parameter regimes for the validity of the generalizedmore » Marcus formula. The existence of long living quantum coherences at ambient temperatures emerges naturally from our approach.« less

  17. Relative stabilities and the spectral signatures of stacked and hydrogen-bonded dimers of serotonin

    NASA Astrophysics Data System (ADS)

    Dev, S.; Giri, K.; Majumder, M.; Sathyamurthy, N.

    2015-10-01

    The O-HṡṡṡN hydrogen-bonded dimer of serotonin is shown to be more stable than the stacked dimer in its ground electronic state, by using the Møller-Plesset second-order perturbation theory (MP2) and the 6-31g** basis set. The vertical excitation energy for the lowest π → π* transition for the monomer as well as the dimer is predicted by time-dependent density functional theory. The experimentally observed red shift of excitation wavelength on oligomerisation is explained in terms of the change in the HOMO-LUMO energy gap due to complex formation. The impact of dimer formation on the proton magnetic resonance spectrum of serotonin monomer is also examined.

  18. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hideki; Maruta, Shinsaku, E-mail: maruta@soka.ac.jp

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesinmore » monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.« less

  19. A Link between Dimerization and Autophosphorylation of the Response Regulator PhoB*

    PubMed Central

    Creager-Allen, Rachel L.; Silversmith, Ruth E.; Bourret, Robert B.

    2013-01-01

    Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3−. Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ∼10-fold higher than for the monomer. In a test of the model, disruption of the known PhoBN dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation. PMID:23760278

  20. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase.

    PubMed

    Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2017-11-01

    The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Overall conformation of covalently stabilized domain-swapped dimer of human cystatin C in solution

    NASA Astrophysics Data System (ADS)

    Murawska, Magdalena; Szymańska, Aneta; Grubb, Anders; Kozak, Maciej

    2017-11-01

    Human cystatin C (HCC), a small protein, plays a crucial role in inhibition of cysteine proteases. The most common structural form of human cystatin C in crystals is a dimer, which has been evidenced both for the native protein and its mutants. In these structures, HCC dimers were formed through the mechanism of domain swapping. The structure of the monomeric form of human cystatin C was determined for V57N mutant and the mutant with the engineered disulfide bond (L47C)-(G69C) (known as stab1-HCC). On the basis of stab1-HCC, a number of covalently stabilized oligomers, including also dimers have been obtained. The aim of this study was to analyze the structure of the covalently stabilized dimer HCC in solution by the small angle X-ray scattering (SAXS) technique and synchrotron radiation. Experimental data confirmed that in solution this protein forms a dimer, which is characterized by the radius of gyration RG = 3.1 nm and maximum intramolecular distance Dmax = 10.3 nm. Using the ab initio method and program DAMMIN, we propose a low resolution structure of stabilized covalently cystatin C in solution. Stab-HCC dimer adopts in solution an elongated conformation, which is well reconstructed by the ab initio model.

  2. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.

    PubMed

    Suyama, Keitaro; Taniguchi, Suguru; Tatsubo, Daiki; Maeda, Iori; Nose, Takeru

    2016-04-01

    Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II β-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  3. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    PubMed

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, C; Phuong, N M; Van Sung, T; Adam, G

    2001-02-01

    From the leaves of Xylopia vielana (Annonaceae) the three dimeric guaianes vielanin A-C were isolated and structurally elucidated by mass and NMR spectroscopy as 1-3. The structure of 1 contains a bridged ring system formed probably via a Diels-Alder reaction of two different guaiane monomers. Compounds 2 and 3 represent symmetric cyclobutanes formally generated from two equal guaiane moieties by [2 + 2] cycloaddition.

  5. Characterization of topological phases of dimerized Kitaev chain via edge correlation functions

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu

    2017-11-01

    We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.

  6. Analytical expressions for the correlation function of a hard sphere dimer fluid

    NASA Astrophysics Data System (ADS)

    Kim, Soonho; Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.

  7. Discovery, Characterization, and Analogue Synthesis of Bohemamine Dimers Generated by Non-enzymatic Biosynthesis.

    PubMed

    Fu, Peng; Legako, Aaron; La, Scott; MacMillan, John B

    2016-03-01

    Dibohemamines A-C (5-7), three new dimeric bohemamine analogues dimerized through a methylene group, were isolated from a marine-derived Streptomyces spinoverrucosus. The structures determined by spectroscopic analysis were confirmed through the semi-synthetic derivatization of monomeric bohemamines and formaldehyde. These reactions, which could occur under mild conditions, together with the detection of formaldehyde in the culture, revealed that this dimerization is a non-enzymatic process. In addition to the unique dimerization of the dibohemamines, dibohemamines B and C were found to have nm cytotoxicity against the non-small cell-lung cancer cell line A549. In view of the potent cytotoxicity of compounds 6 and 7, a small library of bohemamine analogues was generated for biological evaluation by utilizing a series of aryl and alkyl aldehydes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Identification of two conformationally trapped n-propanol-water dimers in a supersonic expansion

    NASA Astrophysics Data System (ADS)

    Mead, Griffin J.; Alonso, Elena R.; Finneran, Ian A.; Carroll, P. Brandon; Blake, Geoffrey A.

    2017-05-01

    Two conformers of the n-propanol-water dimer have been observed in a supersonic expansion using chirped-pulse Fourier-transform microwave (CPFTMW) spectroscopy. Structural assignments reveal the n-propanol sub-unit is conformationally trapped, with its methyl group in both Gauche and Trans orientations. Despite different carbon backbone conformations, both dimers display the same water-donor/alcohol-acceptor hydrogen bonding motif. This work builds upon other reported alcohol-water dimers and upon previous work detailing the trapping of small molecules into multiple structural minima in rare gas supersonic expansions.

  9. The E2 Domains of APP and APLP1 Share a Conserved Mode of Dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lee; Y Xue; J Hulbert

    2011-12-31

    Amyloid precursor protein (APP) is genetically linked to Alzheimer's disease. APP is a type I membrane protein, and its oligomeric structure is potentially important because this property may play a role in its function or affect the processing of the precursor by the secretases to generate amyloid {beta}-peptide. Several independent studies have shown that APP can form dimers in the cell, but how it dimerizes remains controversial. At least three regions of the precursor, including a centrally located and conserved domain called E2, have been proposed to contribute to dimerization. Here we report two new crystal structures of E2, onemore » from APP and the other from APLP1, a mammalian APP homologue. Comparison with an earlier APP structure, which was determined in a different space group, shows that the E2 domains share a conserved and antiparallel mode of dimerization. Biophysical measurements in solution show that heparin binding induces E2 dimerization. The 2.1 {angstrom} resolution electron density map also reveals phosphate ions that are bound to the protein surface. Mutational analysis shows that protein residues interacting with the phosphate ions are also involved in heparin binding. The locations of two of these residues, Arg-369 and His-433, at the dimeric interface suggest a mechanism for heparin-induced protein dimerization.« less

  10. Elucidation of the active conformation of vancomycin dimers with antibacterial activity against vancomycin-resistant bacteria.

    PubMed

    Nakamura, Jun; Yamashiro, Hidenori; Hayashi, Sayaka; Yamamoto, Mami; Miura, Kenji; Xu, Shu; Doi, Takayuki; Maki, Hideki; Yoshida, Osamu; Arimoto, Hirokazu

    2012-10-01

    Covalently linked vancomycin dimers have attracted a great deal of attention among researchers because of their enhanced antibacterial activity against vancomycin-resistant strains. However, the lack of a clear insight into the mechanisms of action of these dimers hampers rational optimization of their antibacterial potency. Here, we describe the synthesis and antibacterial activity of novel vancomycin dimers with a constrained molecular conformation achieved by two tethers between vancomycin units. Conformational restriction is a useful strategy for studying the relationship between the molecular topology and biological activity of compounds. In this study, two vancomycin units were linked at three distinct positions of the glycopeptide (vancosamine residue (V), C terminus (C), and N terminus (N)) to form two types of novel vancomycin cyclic dimers. Active NC-VV-linked dimers with a stable conformation as indicated by molecular mechanics calculations selectively suppressed the peptidoglycan polymerization reaction of vancomycin-resistant Staphylococcus aureus in vitro. In addition, double-disk diffusion tests indicated that the antibacterial activity of these dimers against vancomycin-resistant enterococci might arise from the inhibition of enzymes responsible for peptidoglycan polymerization. These findings provide a new insight into the biological targets of vancomycin dimers and the conformational requirements for efficient antibacterial activity against vancomycin-resistant strains. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.

    2015-01-01

    Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628

  12. Thiazine-2-thiones as Masked 1-Azadienes in Cascade Dimerization Reactions).

    PubMed

    Kruithof, Art; Vande Velde, Christophe M L; Ruijter, Eelco; Orru, Romano V A

    2017-03-28

    We report the unexpected formation of a 1-azadiene dimer from 4,6-diphenyl-3,6-dihydro-2 H -1,3-thiazine-2-thiones under prolonged microwave irradiation. In this manner, thiazine-2-thiones act as "masked" 1-azadiene equivalents, which makes them useful synthetic tools to access complex heterocyclic frameworks. We compare this dimerization with earlier approaches and elaborate on the observed diastereoselectivity.

  13. Electronic and mechanical characteristics of stacked dimer molecular junctions.

    PubMed

    Magyarkuti, András; Adak, Olgun; Halbritter, Andras; Venkataraman, Latha

    2018-02-15

    Break-junction measurements are typically aimed at characterizing electronic properties of single molecules bound between two metal electrodes. Although these measurements have provided structure-function relationships for such devices, there is little work that studies the impact of molecule-molecule interactions on junction characteristics. Here, we use a scanning tunneling microscope based break-junction technique to study pi-stacked dimer junctions formed with two amine-terminated conjugated molecules. We show that the conductance, force and flicker noise of such dimers differ dramatically when compared with the corresponding monomer junctions and discuss the implications of these results on intra- and inter-molecular charge transport.

  14. Molecular evidence of stereo-specific lactoferrin dimers in solution.

    PubMed

    Persson, Björn A; Lund, Mikael; Forsman, Jan; Chatterton, Dereck E W; Akesson, Torbjörn

    2010-10-01

    Gathering experimental evidence suggests that bovine as well as human lactoferrin self-associate in aqueous solution. Still, a molecular level explanation is unavailable. Using force field based molecular modeling of the protein-protein interaction free energy we demonstrate (1) that lactoferrin forms highly stereo-specific dimers at neutral pH and (2) that the self-association is driven by a high charge complementarity across the contact surface of the proteins. Our theoretical predictions of dimer formation are verified by electrophoretic mobility and N-terminal sequence analysis on bovine lactoferrin. 2010 Elsevier B.V. All rights reserved.

  15. Vibrationally induced flip motion of a hydroxyl dimer on Cu(110)

    NASA Astrophysics Data System (ADS)

    Ootsuka, Yasuhiro; Frederiksen, Thomas; Ueba, Hiromu; Paulsson, Magnus

    2011-11-01

    Recent low-temperature scanning-tunneling microscopy experiments [T. Kumagai , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.79.035423 79, 035423 (2009)] observed the vibrationally induced flip motion of a hydroxyl dimer (OD)2 on Cu(110). We propose a model to describe two-level fluctuations and current-voltage characteristics of nanoscale systems that undergo vibrationally induced switching. The parameters of the model are based on comprehensive density functional calculations of the system’s vibrational properties. For the dimer (OD)2, the calculated population of the high- and low-conductance states, the I-V, dI/dV, and d2I/dV2 curves are in good agreement with the experimental results and underline the different roles played by the free and shared OD stretch modes of the dimer.

  16. Tea Catechin Auto-oxidation Dimers are Accumulated and Retained by Caco-2 Human Intestinal Cells

    PubMed Central

    Neilson, Andrew P.; Song, Brian J.; Sapper, Teryn N.; Bomser, Joshua A.; Ferruzzi, Mario G.

    2010-01-01

    Despite the presence of bioactive catechin B-ring auto-oxidation dimers in tea, little is known regarding their absorption in humans. Our hypothesis for this research is that catechin auto-oxidation dimers are present in teas and are absorbable by human intestinal epithelial cells. Dimers [theasinensins (THSNs) and P-2 analogs) were quantified in commercial teas by HPLC-MS. (−)-Epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) homodimers were present at 10–43 and 0–62 µmol/g leaf, respectively. EGC-EGCG heterodimers were present at 0–79 µmol/g. The potential intestinal absorption of these dimers was assessed using Caco-2 intestinal cells. Catechin monomers and dimers were detected in cells exposed to media containing monomers and preformed dimers. Accumulation of dimers was significantly greater than monomers from test media. Three h accumulation of EGC and EGCG was 0.19– 0.55% and 1.24–1.35% respectively. Comparatively, 3h accumulation of the EGC P-2 analog, and THSNs C/E was 0.89 ± 0.28% and 1.53 ± 0.36%. Accumulation of P-2, and THSNs A/D was 6.93 ± 2.1%, and 10.1 ± 3.6%. EGCG-EGC heterodimer P-2 analog, and THSN B 3h accumulation was 4.87 ± 2.2%, and 4.65 ± 2.8% respectively. One h retention of P-2, and THSNs A/D was 171 ± 22%, and 29.6 ± 9.3% of accumulated amount suggesting intracellular oxidative conversion of THSNs to P-2. These data suggest that catechin dimers present in the gut lumen may be readily absorbed by intestinal epithelium. PMID:20579525

  17. Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K

    NASA Astrophysics Data System (ADS)

    Jag, M.; Cetina, M.; Lous, R. S.; Grimm, R.; Levinsen, J.; Petrov, D. S.

    2016-12-01

    We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our 40K-6Li system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.

  18. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  19. Classical dimer model with anisotropic interactions on the square lattice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi

    2009-07-01

    We discuss phase transitions and the phase diagram of a classical dimer model with anisotropic interactions defined on a square lattice. For the attractive region, the perturbation of the orientational order parameter introduced by the anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a dimer-liquid to columnar phases. According to the discussion by Nomura and Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we proffer criteria to determine transition points and also universal level-splitting conditions. Subsequently, we perform numerical diagonalization calculations of the nonsymmetric real transfer matrices up to linear dimension specified by L=20 and determine the global phase diagram. For the repulsive region, we find the boundary between the dimer-liquid and the strong repulsion phases. Based on the dispersion relation of the one-string motion, which exhibits a twofold “zero-energy flat band” in the strong repulsion limit, we give an intuitive account for the property of the strong repulsion phase.

  20. A multimode vibronic treatment of absorption, resonance Raman, and hyper-Rayleigh scattering of excitonically coupled molecular dimers

    NASA Astrophysics Data System (ADS)

    Myers Kelley, Anne

    2003-08-01

    The linear absorption spectra, resonance Raman excitation profiles and depolarization dispersion curves, and hyper-Rayleigh scattering profiles are calculated for excitonically coupled homodimers of a model electron donor-acceptor "push-pull" conjugated chromophore as a function of dimer geometry. The vibronic eigenstates of the dimer are calculated by diagonalizing the matrix of transition dipole couplings among the vibronic transitions of the constituent monomers. The absorption spectra show the usual red- or blueshifted transitions for J-type or H-type dimers, respectively. When the electronic coupling is large compared with the vibronic width of the monomer spectrum, the dimer absorption spectra exhibit simple Franck-Condon progressions having reduced vibronic intensities compared with the monomer, and the resonance Raman excitation profiles are shifted but otherwise only weakly perturbed. When the coupling is comparable to the vibronic width, the H-dimer absorption spectra exhibit irregular vibronic frequency spacings and intensity patterns and the effects on the Raman excitation profiles are larger. There is strong dispersion in the Raman depolarization ratios for dimer geometries in which both transitions carry oscillator strength. The first hyperpolarizabilities are somewhat enhanced in J-dimers and considerably reduced in H-dimers. These effects on the molecular β will amplify the effects of dimerization on the ground-state dipole moment in electro-optic materials formed from chromophore-doped polymers that must be electric field poled to obtain the net alignment needed for a macroscopic χ(2).

  1. Studies on the Dissociation and Urea-Induced Unfolding of FtsZ Support the Dimer Nucleus Polymerization Mechanism

    PubMed Central

    Montecinos-Franjola, Felipe; Ross, Justin A.; Sánchez, Susana A.; Brunet, Juan E.; Lagos, Rosalba; Jameson, David M.; Monasterio, Octavio

    2012-01-01

    FtsZ is a major protein in bacterial cytokinesis that polymerizes into single filaments. A dimer has been proposed to be the nucleating species in FtsZ polymerization. To investigate the influence of the self-assembly of FtsZ on its unfolding pathway, we characterized its oligomerization and unfolding thermodynamics. We studied the assembly using size-exclusion chromatography and fluorescence spectroscopy, and the unfolding using circular dichroism and two-photon fluorescence correlation spectroscopy. The chromatographic analysis demonstrated the presence of monomers, dimers, and tetramers with populations dependent on protein concentration. Dilution experiments using fluorescent conjugates revealed dimer-to-monomer and tetramer-to-dimer dissociation constants in the micromolar range. Measurements of fluorescence lifetimes and rotational correlation times of the conjugates supported the presence of tetramers at high protein concentrations and monomers at low protein concentrations. The unfolding study demonstrated that the three-state unfolding of FtsZ was due to the mainly dimeric state of the protein, and that the monomer unfolds through a two-state mechanism. The monomer-to-dimer equilibrium characterized here (Kd = 9 μM) indicates a significant fraction (∼10%) of stable dimers at the critical concentration for polymerization, supporting a role of the dimeric species in the first steps of FtsZ polymerization. PMID:22824282

  2. Two new dimeric naphthoquinones with neuraminidase inhibitory activity from Lithospermum erythrorhizon.

    PubMed

    Yang, Yanqin; Zhao, Dapeng; Yuan, Kailong; Zhou, Guojun; Wang, Yu; Xiao, Yanmeng; Wang, Chenxu; Xu, Jingwei; Yang, Wei

    2015-01-01

    The crude methanol extract of roots of Lithospermum erythrorhizon was subjected to successive chromatographic fractionation which afforded two new dimeric naphthoquinone derivatives shikometabolin E (2) and shikometabolin F (3) as well as one known compound shikometabolin A (1). The structures of compounds 1-3 were elucidated by using UV, MS, 1D and 2D NMR spectroscopic analysis. The two new dimeric naphthoquinone derivatives showed significant neuraminidase inhibitory activities.

  3. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution.

    PubMed Central

    Chang, B S; Beauvais, R M; Arakawa, T; Narhi, L O; Dong, A; Aparisio, D I; Carpenter, J F

    1996-01-01

    The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the

  4. Chloroplast Preproteins Bind to the Dimer Interface of the Toc159 Receptor during Import1[OPEN

    PubMed Central

    Chen, Lih-Jen; Yeh, Yi-Hung; Hsiao, Chwan-Deng

    2017-01-01

    Most chloroplast proteins are synthesized in the cytosol as higher molecular weight preproteins and imported via the translocons in the outer (TOC) and inner (TIC) envelope membranes of chloroplasts. Toc159 functions as a primary receptor and directly binds preproteins through its dimeric GTPase domain. As a first step toward a molecular understanding of how Toc159 mediates preprotein import, we mapped the preprotein-binding regions on the Toc159 GTPase domain (Toc159G) of pea (Pisum sativum) using cleavage by bound preproteins conjugated with the artificial protease FeBABE and cysteine-cysteine cross-linking. Our results show that residues at the dimer interface and the switch II region of Toc159G are in close proximity to preproteins. The mature portion of preproteins was observed preferentially at the dimer interface, whereas the transit peptide was found at both regions equally. Chloroplasts from transgenic plants expressing engineered Toc159 with a cysteine placed at the dimer interface showed increased cross-linking to bound preproteins. Our data suggest that, during preprotein import, the Toc159G dimer disengages and the dimer interface contacts translocating preproteins, which is consistent with a model in which conformational changes induced by dimer-monomer conversion in Toc159 play a direct role in facilitating preprotein import. PMID:28250068

  5. Appearance of Sodium Dodecyl Sulfate-Stable Amyloid β-Protein (Aβ) Dimer in the Cortex During Aging

    PubMed Central

    Enya, Miho; Morishima-Kawashima, Maho; Yoshimura, Masahiro; Shinkai, Yasuhisa; Kusui, Kaoru; Khan, Karen; Games, Dora; Schenk, Dale; Sugihara, Shiro; Yamaguchi, Haruyasu; Ihara, Yasuo

    1999-01-01

    We previously noted that some aged human cortical specimens containing very low or negligible levels of amyloid β-protein (Aβ) by enzyme immunoassay (EIA) provided prominent signals at 6∼8 kd on the Western blot, probably representing sodium dodecyl sulfate (SDS)-stable Aβ dimer. Re-examination of the specificity of the EIA revealed that BAN50- and BNT77-based EIA, most commonly used for the quantitation of Aβ, capture SDS-dissociable Aβ but not SDS-stable Aβ dimer. Thus, all cortical specimens in which the levels of Aβ were below the detection limits of EIA were subjected to Western blot analysis. A fraction of such specimens contained SDS-stable dimer at 6∼8 kd, but not SDS-dissociable Aβ monomer at ∼4 kd, as judged from the blot. This Aβ dimer is unlikely to be generated after death, because (i) specimens with very short postmortem delay contained the Aβ dimer, and (ii) until 12 hours postmortem, such SDS-stable Aβ dimer is detected only faintly in PDAPP transgenic mice. The presence of Aβ dimer in the cortex may characterize the accumulation of Aβ in the human brain, which takes much longer than that in PDAPP transgenic mice. PMID:9916941

  6. Computational and biochemical characterization of two partially overlapping interfaces and multiple weak-affinity K-Ras dimers

    NASA Astrophysics Data System (ADS)

    Prakash, Priyanka; Sayyed-Ahmad, Abdallah; Cho, Kwang-Jin; Dolino, Drew M.; Chen, Wei; Li, Hongyang; Grant, Barry J.; Hancock, John F.; Gorfe, Alemayehu A.

    2017-01-01

    Recent studies found that membrane-bound K-Ras dimers are important for biological function. However, the structure and thermodynamic stability of these complexes remained unknown because they are hard to probe by conventional approaches. Combining data from a wide range of computational and experimental approaches, here we describe the structure, dynamics, energetics and mechanism of assembly of multiple K-Ras dimers. Utilizing a range of techniques for the detection of reactive surfaces, protein-protein docking and molecular simulations, we found that two largely polar and partially overlapping surfaces underlie the formation of multiple K-Ras dimers. For validation we used mutagenesis, electron microscopy and biochemical assays under non-denaturing conditions. We show that partial disruption of a predicted interface through charge reversal mutation of apposed residues reduces oligomerization while introduction of cysteines at these positions enhanced dimerization likely through the formation of an intermolecular disulfide bond. Free energy calculations indicated that K-Ras dimerization involves direct but weak protein-protein interactions in solution, consistent with the notion that dimerization is facilitated by membrane binding. Taken together, our atomically detailed analyses provide unique mechanistic insights into K-Ras dimer formation and membrane organization as well as the conformational fluctuations and equilibrium thermodynamics underlying these processes.

  7. Density functional Gaussian-type-orbital approach to theoretical study of nitric oxide dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursic, B.S.; Zdravkovski, Z.

    Structure and total energies of the cis NO dimer, the trans NO dimer, and the NO monomer were calculated by ab initio methods (UHF, UMP2, and MP3) and density functional theory methods (LSDA and BLYP) with different basis sets [from 3-21G* to 6-311++(3df,3pd)]. The system is especially hard to model because two NO molecules are weakly associated in a dimer that has very long N-N bond. The results obtained by different methods are compared and the necessity of correlational methods for studying these systems is discussed.

  8. Monomeric and dimeric hydrolysable tannins of Tamarix nilotica.

    PubMed

    Orabi, Mohamed A A; Taniguchi, Shoko; Hatano, Tsutomu

    2009-07-01

    An ellagitannin monomer, nilotinin M1 (1), and three dimers, nilotinins D1 (2), D2 (3), and D3 (4), were isolated from leaves of Tamarix nilotica (Ehrenb.) Bunge. Structures were elucidated based on analysis of spectroscopic data and chemical correlations with known compounds. In addition, six known tannins, hirtellin A (5) (dimer), remurin A (6), remurin B (7), 1,3-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucose (8), gemin D (9), and hippomanin A (10) (monomers), were isolated for the first time from this plant species. The reported (13)C NMR assignments of the dehydrodigalloyl moiety and glucose cores of 5 are revised, and the (13)C NMR spectroscopic data for 6 and 7 are also reported for the first time.

  9. NMR comparison of the native energy landscapes of DLC8 dimer and monomer.

    PubMed

    Krishna Mohan, P M; Barve, Maneesha; Chatterjee, Amarnath; Ghosh-Roy, Anindya; Hosur, Ramakrishna V

    2008-04-01

    Characterization of the low energy excited states on the energy landscape of a protein is one of the exciting and challenging problems in structural biology today. In this context, we present here residue level NMR description of the low energy excited states representing locally different alternative conformations in the dynein light chain protein, in its dimeric as well as monomeric forms. Important differences have been observed between the two cases and these are not necessarily restricted to the dimer interface. Simulations indicate that the low energy excited states are within a free energy of 2-3 kcal/mol above the native state. In both the monomer and the dimer the energy landscape is very sensitive to small pH perturbations. Nearly 25% of the residues (total of residues at pH 3.0 and 3.5 for the monomer, and at pH 7.0 and 6.0 for the dimer) access alternative conformations. The observations have been rationalized on the basis of protonation-deprotonation equilibria in the side chains; histidines in the case of the dimer and aspartates/glutamates in the case of the monomer. The possible relationship of the observed ruggedness of the native energy landscape with the protein structure, and its implications to protein adaptability and unfolding have been discussed.

  10. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2.

    PubMed

    Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana

    2017-07-19

    Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optical Properties of Vibronically Coupled Cy3 Dimers on DNA Scaffolds.

    PubMed

    Cunningham, Paul D; Kim, Young C; Díaz, Sebastián A; Buckhout-White, Susan; Mathur, Divita; Medintz, Igor L; Melinger, Joseph S

    2018-05-17

    We examine the effect of electronic coupling on the optical properties of Cy3 dimers attached to DNA duplexes as a function of base pair (bp) separation using steady-state and time-resolved spectroscopy. For close Cy3-Cy3 separations, 0 and 1 bp between dyes, intermediate to strong electronic coupling is revealed by modulation of the absorption and fluorescence properties including spectral band shape, peak wavelength, and excited-state lifetime. Using a vibronic exciton model, we estimate coupling strengths of 150 and 266 cm -1 for the 1 and 0 bp separations, respectively, which are comparable to those found in natural light-harvesting complexes. For the strongest electronic coupling (0 bp separation), we observe that the absorption band shape is strongly affected by the base pairs that surround the dyes, where more strongly hydrogen-bonded G-C pairs produce a red-shifted absorption spectrum consistent with a J-type dimer. This effect is studied theoretically using molecular dynamics simulation, which predicts an in-line dye configuration that is consistent with the experimental J-type spectrum. When the Cy3 dimers are in a standard aqueous buffer, the presence of relatively strong electronic coupling is accompanied by decreased fluorescence lifetime, suggesting that it promotes nonradiative relaxation in cyanine dyes. However, we show that the use of a viscous solvent can suppress this nonradiative recombination and thereby restore the dimer fluorescent emission. Ultrafast transient absorption measurements of Cy3 dimers in both standard aqueous buffer and viscous glycerol buffer suggest that sufficiently strong electronic coupling increases the probability of excited-state relaxation through a dark state that is related to Cy3 torsional motion.

  12. Impact of D-Dimer for Prediction of Incident Occult Cancer in Patients with Unprovoked Venous Thromboembolism.

    PubMed

    Han, Donghee; ó Hartaigh, Bríain; Lee, Ji Hyun; Cho, In-Jeong; Shim, Chi Young; Chang, Hyuk-Jae; Hong, Geu-Ru; Ha, Jong-Won; Chung, Namsik

    2016-01-01

    Unprovoked venous thromboembolism (VTE) is related to a higher incidence of occult cancer. D-dimer is clinically used for screening VTE, and has often been shown to be present in patients with malignancy. We explored the predictive value of D-dimer for detecting occult cancer in patients with unprovoked VTE. We retrospectively examined data from 824 patients diagnosed with deep vein thrombosis or pulmonary thromboembolism. Of these, 169 (20.5%) patients diagnosed with unprovoked VTE were selected to participate in this study. D-dimer was categorized into three groups as: <2,000, 2,000-4,000, and >4,000 ng/ml. Cox regression analysis was employed to estimate the odds of occult cancer and metastatic state of cancer according to D-dimer categories. During a median 5.3 (interquartile range: 3.4-6.7) years of follow-up, 24 (14%) patients with unprovoked VTE were diagnosed with cancer. Of these patients, 16 (67%) were identified as having been diagnosed with metastatic cancer. Log transformed D-dimer levels were significantly higher in those with occult cancer as compared with patients without diagnosis of occult cancer (3.5±0.5 vs. 3.2±0.5, P-value = 0.009, respectively). D-dimer levels >4,000 ng/ml was independently associated with occult cancer (HR: 4.12, 95% CI: 1.54-11.04, P-value = 0.005) when compared with D-dimer levels <2,000 ng/ml, even after adjusting for age, gender, and type of VTE (e.g., deep vein thrombosis or pulmonary thromboembolism). D-dimer levels >4000 ng/ml were also associated with a higher likelihood of metastatic cancer (HR: 9.55, 95% CI: 2.46-37.17, P-value <0.001). Elevated D-dimer concentrations >4000 ng/ml are independently associated with the likelihood of occult cancer among patients with unprovoked VTE.

  13. The dimerization domain in DapE enzymes is required for catalysis.

    PubMed

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  14. Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers.

    PubMed

    Sum, Tze Han; Sum, Tze Jing; Galloway, Warren R J D; Collins, Súil; Twigg, David G; Hollfelder, Florian; Spring, David R

    2016-09-16

    Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.

  15. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain

    PubMed Central

    Patel, Dipali; Kopec, Jolanta; Fitzpatrick, Fiona; McCorvie, Thomas J.; Yue, Wyatt W.

    2016-01-01

    The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme. PMID:27049649

  16. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  17. Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments

    NASA Astrophysics Data System (ADS)

    Richter, David; Moraga, Ignacio; Winkelmann, Hauke; Birkholz, Oliver; Wilmes, Stephan; Schulte, Markos; Kraich, Michael; Kenneweg, Hella; Beutel, Oliver; Selenschik, Philipp; Paterok, Dirk; Gavutis, Martynas; Schmidt, Thomas; Garcia, K. Christopher; Müller, Thomas D.; Piehler, Jacob

    2017-07-01

    The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand-receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.

  18. High-resolution Crystal Structure of Dimeric VP40 From Sudan ebolavirus.

    PubMed

    Clifton, Matthew C; Bruhn, Jessica F; Atkins, Kateri; Webb, Terry L; Baydo, Ruth O; Raymond, Amy; Lorimer, Donald D; Edwards, Thomas E; Myler, Peter J; Saphire, Erica Ollmann

    2015-10-01

    Ebolaviruses cause severe hemorrhagic fever. Central to the Ebola life cycle is the matrix protein VP40, which oligomerizes and drives viral budding. Here we present the crystal structure of the Sudan virus (SUDV) matrix protein. This structure is higher resolution (1.6 Å) than previously achievable. Despite differences in the protein purification, we find that it still forms a stable dimer in solution, as was noted for other Ebola VP40s. Although the N-terminal domain interface by which VP40 dimerizes is conserved between Ebola virus and SUDV, the C-terminal domain interface by which VP40 dimers may further assemble is significantly smaller in this SUDV assembly. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis

    2016-02-01

    ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulatormore » (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRR mon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCEBphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of

  20. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling*

    PubMed Central

    Singh, Deo R.; Ahmed, Fozia; King, Christopher; Gupta, Nisha; Salotto, Matt; Pasquale, Elena B.; Hristova, Kalina

    2015-01-01

    The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression. PMID:26363067

  2. Dimerization of BTas is required for the transactivational activity of bovine foamy virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Juan; Qiao Wentao; Xu Fengwen

    2008-06-20

    The BTas protein of bovine foamy virus (BFV) is a 249-amino-acid nuclear regulatory protein which transactivates viral gene expression directed by the long terminal repeat promoter (LTR) and the internal promoter (IP). Here, we demonstrate the BTas protein forms a dimeric complex in mammalian cells by using mammalian two hybrid systems and cross-linking assay. Functional analyses with deletion mutants reveal that the region of 46-62aa is essential for dimer formation. Furthermore, our results show that deleting the dimerization region of BTas did not affect the localization of BTas, but that it did result in the loss of its transactivational activitymore » on the LTR and IP. Furthermore, BTas ({delta}46-62aa) retained binding ability to the LTR and IP similar to that of the wild-type BTas. These data suggest the dimerization region is necessary for the transactivational function of BTas and is crucial to the replication of BFV.« less

  3. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors.

    PubMed

    de Aquino, Roney Anderson Nascimento; Modolo, Luzia Valentina; Alves, Rosemeire Brondi; de Fátima, Ângelo

    2013-12-28

    This study presents the synthesis of 15 new tacrine dimers as well as the Ki and IC50 results, studies of the kinetic mechanism, and molecular docking analysis of the dimers in relation to the cholinesterases hAChE, hBChE, EeAChE and eqBChE. In addition to spectroscopic characterization, X-ray structure determination was performed for two of the new compounds. These new dimers were found to be mixed nanomolar inhibitors of the evaluated targets with a broad and significant selectivity profile, and these properties are dependent on both the type of the linker and the volume of the hydroacridine alicyclic ring. The results indicate that the aromatic linkers play a significant role in generating specific interactions with the half-gorge region of the catalytic center. Thus, these types of linkers can positively modulate the electronic properties of the tacrine dimers studied with an improvement of their cholinesterase inhibition activity.

  4. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding

    PubMed Central

    Liko, Idlir; Degiacomi, Matteo T.; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V.

    2016-01-01

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance. PMID:27364008

  5. Excitation Localization/Delocalization Isomerism in a Strongly Coupled Covalent Dimer of 1,3-Diphenylisobenzofuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrauben, Joel N.; Akdag, Akin; Wen, Jin

    Two isomers of both the lowest excited singlet (S1) and triplet (T1) states of the directly para, para'-connected covalent dimer of the singlet-fission chromophore 1,3-diphenylisobenzofuran have been observed. In one isomer, excitation is delocalized over both halves of the dimer, and in the other, it is localized on one or the other half. For a covalent dimer in solution, such 'excitation isomerism' is extremely rare. The vibrationally relaxed isomers do not interconvert, and their photophysical properties, including singlet fission, differ significantly.

  6. Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths.

    PubMed

    Mohapatra, Swagat K; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared H; Timofeeva, Tatiana V; Brédas, Jean-Luc; Marder, Seth R; Barlow, Stephen

    2014-11-17

    The dimers of some Group 8 metal cyclopentadienyl/arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the X-ray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central CC σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these CC bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2 ]2 , rather similar (-1.97 to -2.15 V vs. FeCp2 (+/0) in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface characterization and orientation interaction between diamond- like carbon layer structure and dimeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.

    2017-01-01

    Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.

  8. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    PubMed

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  9. Covalent dimers of 1,3-diphenylisobenzofuran for singlet fission: synthesis and electrochemistry.

    PubMed

    Akdag, Akin; Wahab, Abdul; Beran, Pavel; Rulíšek, Lubomír; Dron, Paul I; Ludvík, Jiří; Michl, Josef

    2015-01-02

    The synthesis of covalent dimers in which two 1,3-diphenylisobenzofuran units are connected through one phenyl substituent on each is reported. In three of the dimers, the subunits are linked directly, and in three others, they are linked via an alkane chain. A seventh new compound in which two 1,3-diphenylisobenzofuran units share a phenyl substituent is also described. These materials are needed for investigations of the singlet fission process, which promises to increase the efficiency of solar cells. The electrochemical oxidation and reduction of the monomer, two previously known dimers, and the seven new compounds have been examined, and reversible redox potentials have been compared with results obtained from density functional theory. Although the overall agreement is satisfactory, some discrepancies are noted and discussed.

  10. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer.

    PubMed

    Bhattarai, Nisha; Gc, Jeevan B; Gerstman, Bernard S; Stahelin, Robert V; Chapagain, Prem P

    2017-04-26

    Filovirus infections cause hemorrhagic fever in humans and non-human primates that often results in high fatality rates. The Marburg virus is a lipid-enveloped virus from the Filoviridae family and is closely related to the Ebola virus. The viral matrix layer underneath the lipid envelope is formed by the matrix protein VP40 (VP40), which is also involved in other functions during the viral life-cycle. As in the Ebola virus VP40 (eVP40), the recently determined X-ray crystal structure of the Marburg virus VP40 (mVP40) features loops containing cationic residues that form a lipid binding basic patch. However, the mVP40 basic patch is significantly flatter with a more extended surface than in eVP40, suggesting the possibility of differences in the plasma membrane interactions and phospholipid specificity between the VP40 dimers. In this paper, we report on molecular dynamics simulations that investigate the roles of various residues and lipid types in PM association as well as the conformational changes of the mVP40 dimer facilitated by membrane association. We compared the structural changes of the mVP40 dimer with the mVP40 dimer in both lipid free and membrane associated conditions. Despite the significant structural differences in the crystal structure, the Marburg VP40 dimer is found to adopt a configuration very similar to the Ebola VP40 dimer after associating with the membrane. This conformational rearrangement upon lipid binding allows Marburg VP40 to localize and stabilize at the membrane surface in a manner similar to the Ebola VP40 dimer. Consideration of the structural information in its lipid-interacting condition may be important in targeting mVP40 for novel drugs to inhibit viral budding from the plasma membrane.

  11. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...

  12. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...

  13. Relaxation of exciton and photoinduced dimerization in crystalline C60

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Iida, Takeshi; Nasu, Keiichiro

    2000-01-01

    We numerically investigate the lattice relaxation of photogenerated exciton in crystalline C60 so as to clarify the mechanism of the photoinduced dimerization processes in this material. In our theory, we deal with the π electrons together with the interatomic effective potentials. Calculations are mainly based on the mean-field theory for interelectron interactions but are also reinforced by taking the electron-hole correlation into account, so that we can obtain the exciton effect. Using a cluster model, we calculate the adiabatic potential energy surfaces of the excitons relevant to the photoinduced dimerization processes occurring in a face-centered-cubic crystal of C60. The potential surfaces of the Frenkel excitons turned out to be quite uneven with several energy minimum points during the structural changes from the Franck-Condon state to the dimerized state. This leads to the conclusion that various structural defects exist at low temperatures even in the single crystal, as an intrinsic property of this molecular crystal with a complicated intermolecular interaction. From the analysis of the potential surfaces of the charge-transfer (CT) excitons, it is confirmed that the CT exciton relaxes down to its self-trapped state, wherein the adjacent two molecules get close together. This implies that the CT between adjacent two molecules is one of mechanisms that triggers the photodimerization or the photopolymerization. The oscillator strength distributions are also calculated for various intermediate structures along the lattice relaxation path. As the dimerization reaction proceeds, the oscillator strength grows in the energy region below the fundamental absorption edge, and the lowest-energy peak, originally at about 1.9 eV, finally shifts down to about 1.7 eV in the final dimerized structure. These results clarify the electronic origins of the luminescence observed in the C60 single crystal. Moreover, the origins of the photoinduced absorption spectra

  14. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, ketene, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Sinha, V.; Kumar, V.; Rupakheti, M.; Panday, A. K.; Mahata, K.; Rupakheti, D.; Kathayat, B.; Lawrence, M. G.

    2015-12-01

    During SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in the winter of 2012-2013, a comprehensive study was carried out to characterize the chemical composition of ambient Kathmandu air for speciated VOCs by deploying a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), the first time to be deployed in South Asia. Due to its high mass resolution (m/Δm > 4200) and temporal resolution (1 minute), 71 ion peaks were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the Valley. Of the 71, 38 species were found to have campaign average concentrations > 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers. Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m/z=69.070) and furan (m/z=69.033). Comparison with several sites elsewhere in the world showed mixing ratios of acetaldehyde (~ 9 ppb), acetonitrile (~1 ppb) and isoprene (~ 1 ppb) to be among the highest measured anywhere in the world. Two "new" ambient compounds namely, methanamide (m/z = 46.029) and acetamide (m/z=60.051) which can photochemically produce isocyanic acid in the atmosphere, are reported in this study alongwith nitromethane (a tracer for diesel exhaust) and ketene (a very reactive compound). Two distinct periods were identified during the campaign based on high daytime biogenic emissions of isoprene even in winter and biomass fired brick kiln emissions of acetonitrile, benzene and isocyanic acid. Biomass burning and biomass fired brick kiln emissions were found to be the dominant source for compounds such as propyne, propene, benzene and propanenitrile which correlated strongly with biomass burning tracer acetonitrile (r2 > 0.7). The calculated total VOC OH reactivity was dominated by acetaldehyde (20.1%), ketene (ethenone) (17.1%), isoprene (16.8 %) and

  15. Structural Characterization of Amyloid β17-42 Dimer by Potential of Mean Force Analysis: Insights from Molecular Dynamics Simulations.

    PubMed

    Dutta, Mary; Chutia, Rajkalyan; Mattaparthi, Venkata Satish Kumar

    2017-01-01

    Recent experiments with Amyloid β1-42 peptide have indicated that the initial dimerization of Aβ1-42 monomers to form amyloid dimers stand out as a key event in the generation of toxic oligomers. However, the structural characterization of Aβ1-42 dimer at the atomistic level and the dimerization mechanism by which Aβ1-42 peptides co-aggregate still remains not clear. In the present study, the process of Aβ17-42 peptide dimerization which is known to play an important role in the plaque formation in Alzheimer's disease was evaluated in terms of potential of mean force. The Aβ17-42 dimer was constructed using PatchDock server. We have used molecular dynamics (MD) simulation with the umbrella sampling methodology to compute the Potential of Mean Force for the dimerization of Aβ17-42. The global minima structure at the minimum distance of separation was isolated from the calculated free energy profile and the interactions involved in the formation of the dimer structure were examined. Protein-protein interfaces and the residueresidue interactions vital for generation of the dimer complexes were also evaluated. The simulation results elucidated the interaction between the monomeric units to be governed primarily by the hydrophobic and hydrogen bonds. The resultant Aβ17-42 dimer was found to have an increased β-strands propensity at the hydrophobic regions encompassing the CHC region. Furthermore, specific hydrophobic residues were found to play a vital role in the formation of the dimer complex. From the results we may therefore conclude hydrophobic region encompassing the CHC region to be crucial in dimerization process. The findings from this study provide detailed information for the complex process of early events of Aβ aggregation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility.

    PubMed

    Speer, David; Eichhorn, Ralf; Evstigneev, Mykhaylo; Reimann, Peter

    2012-06-01

    We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.

  17. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.

    PubMed

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin

    2017-05-24

    Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.

  18. Visualizing the Impurity Depletion Zone Around Holoferritin Crystals Growing in Gel with Ferritin Dimers

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Garcia-Ruiz, J. M.; Thomas, B. R.

    2000-01-01

    Colorless transparent apoferritin (Mr = 450KDa) crystals have been grown from gel with Cd(2+) as precipitant in the presence of reddish brown-colored ferritin dimers (Mr = 900KDa). In agreement with our previous measurements, showing preferential trapping of dimers (distribution coefficient K = 4), the apoferritin crystals become strongly colored while the gel solution around them became nearly colorless. The depth of the depletion with respect to the colored dimer impurity allowed us to visualize the impurity depletion zone. Depletion with respect to impurity as compared to the crystallizing protein is discussed.

  19. Dimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2014-04-01

    The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high-NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimers. A total of eight carboxylic acids and four dimers were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimers was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimers correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimers. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to

  20. Catalytic dimer nanomotors: continuum theory and microscopic dynamics.

    PubMed

    Reigh, Shang Yik; Kapral, Raymond

    2015-04-28

    Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.

  1. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  2. International survey on D-dimer test reporting: a call for standardization.

    PubMed

    Lippi, Giuseppe; Tripodi, Armando; Simundic, Ana-Maria; Favaloro, Emmanuel J

    2015-04-01

    D-dimer is the biochemical gold standard for diagnosing a variety of thrombotic disorders, but result reporting is heterogeneous in clinical laboratories. A specific five-item questionnaire was developed to gain a clear picture of the current standardization of D-dimer test results. The questionnaire was opened online (December 24, 2014-February 10, 2015) on the platform "Google Drive (Google Inc., Mountain View; CA)," and widely disseminated worldwide by newsletters and alerts. A total of 409 responses were obtained during the period of data capture, the largest of which were from Italy (136; 33%), Australia (55; 22%), Croatia (29; 7%), Serbia (26; 6%), and the United States (21; 5%). Most respondents belonged to laboratories in general hospitals (208; 51%), followed by laboratories in university hospitals (104; 26%), and the private sector (94; 23%). The majority of respondents (i.e., 246; 60%) indicated the use of fibrinogen equivalent unit for expressing D-dimer results, with significant heterogeneities across countries and health care settings. The highest prevalence of laboratories indicated they were using "ng/mL" (139; 34%), followed by "mg/L" (136; 33%), and "µg/L" (73; 18%), with significant heterogeneity across countries but not among different health care settings. Expectedly, the vast majority of laboratories (379; 93%) declared to be using a fixed cutoff rather than an age-adjusted threshold, with no significant heterogeneity across countries and health care settings. The results of this survey attest that at least 28 different combinations of measurement units are currently used to report D-dimer results worldwide, and this evidence underscores the urgent need for more effective international joined efforts aimed to promote a worldwide standardization of D-dimer results reporting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations.

    PubMed

    Zhang, Haiyang; Tan, Tianwei; Hetényi, Csaba; Lv, Yongqin; van der Spoel, David

    2014-04-03

    Dimerization of cyclodextrin (CD) molecules is an elementary step in the construction of CD-based nanostructured materials. Cooperative binding of CD cavities to guest molecules facilitates the dimerization process and, consequently, the overall stability and assembly of CD nanostructures. In the present study, all three dimerization modes (head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit water surrounding using molecular dynamics simulations. Total and individual contributions from the binding partners and solvent environment to the thermodynamics of these binding reactions are quantified in detail using free energy calculations. Cooperative drug binding to two CD cavities gives an enhanced binding strength for daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-head dimerization yields the most stable complexes for inclusion of the tested isoflavones (templates) and may be a promising building block for construction of template-stabilized CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify stabilization caused by cooperative effects in building blocks of nanostructured materials.

  4. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.

    PubMed

    Zheng, Xiaoxu; Ying, Lei; Liu, Juan; Dou, Dou; He, Qiong; Leung, Susan Wai Sum; Man, Ricky Y K; Vanhoutte, Paul M; Gao, Yuansheng

    2011-06-01

    Soluble guanylyl cyclase (sGC) is a heterodimer. The dimerization of the enzyme is obligatory for its function in mediating actions caused by agents that elevate cyclic guanosine monophosphate (cGMP). The present study aimed to determine whether sGC dimerization is modulated by thiol-reducing agents and whether its dimerization influences relaxations in response to nitric oxide (NO). The dimers and monomers of sGC and cGMP-dependent protein kinase (PKG) were analysed by western blotting. The intracellular cGMP content was measured by enzyme-linked immunosorbent assay. Changes in isometric tension were determined in organ chambers. In isolated porcine coronary arteries, the protein levels of sGC dimer were decreased by the thiol reductants dithiothreitol, l-cysteine, reduced l-glutathione and tris(2-carboxyethyl) phosphine. The effect was associated with reduced cGMP elevation and attenuated relaxations in response to nitric oxide donors. The dimerization of sGC and activation of the enzyme were also decreased by dihydrolipoic acid, an endogenous thiol antioxidant. Dithiothreitol at concentrations markedly affecting the dimerization of sGC had no significant effect on the dimerization of PKG or relaxation in response to 8-Br-cGMP. Relaxation of the coronary artery in response to a NO donor was potentiated by hypoxia when sGC was partly inhibited, coincident with an increase in sGC dimer and enhanced cGMP production. These effects were prevented by dithiothreitol and tris(2-carboxyethyl) phosphine. These results demonstrate that the dimerization of sGC is exquisitely sensitive to thiol reductants compared with that of PKG, which may provide a novel mechanism for thiol-dependent modulation of NO-mediated vasodilatation in conditions such as hypoxia.

  5. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  6. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGES

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  7. The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer.

    PubMed

    O'Malley, Tiernan T; Witbold, William M; Linse, Sara; Walsh, Dominic M

    2016-11-08

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.

  8. Nucleotide-induced conformations in the neck region of dimeric kinesin

    PubMed Central

    Skiniotis, Georgios; Surrey, Thomas; Altmann, Stephan; Gross, Heinz; Song, Young-Hwa; Mandelkow, Eckhard; Hoenger, Andreas

    2003-01-01

    The neck region of kinesin constitutes a key component in the enzyme’s walking mechanism. Here we applied cryoelectron microscopy and image reconstruction to investigate the location of the kinesin neck in dimeric and monomeric constructs complexed to microtubules. To this end we enhanced the visibility of this region by engineering an SH3 domain into the transition between neck linker and neck coiled coil. The resulting chimeric kinesin constructs remained functional as verified by physiology assays. In the presence of AMP–PNP the SH3 domains allowed us to identify the position of the neck in a well defined conformation and revealed its high flexibility in the absence of nucleotide. We show here the double-headed binding of dimeric kinesin along the same protofilament, which is characterized by the opposite directionality of neck linkers. In this configuration the neck coiled coil appears fully zipped. The position of the neck region in dimeric constructs is not affected by the presence of the tubulin C-termini as confirmed by subtilisin treatment of microtubules prior to motor decoration. PMID:12660159

  9. Structures of closed and open conformations of dimeric human ATM

    PubMed Central

    Baretić, Domagoj; Pollard, Hannah K.; Fisher, David I.; Johnson, Christopher M.; Santhanam, Balaji; Truman, Caroline M.; Kouba, Tomas; Fersht, Alan R.; Phillips, Christopher; Williams, Roger L.

    2017-01-01

    ATM (ataxia-telangiectasia mutated) is a phosphatidylinositol 3-kinase–related protein kinase (PIKK) best known for its role in DNA damage response. ATM also functions in oxidative stress response, insulin signaling, and neurogenesis. Our electron cryomicroscopy (cryo-EM) suggests that human ATM is in a dynamic equilibrium between closed and open dimers. In the closed state, the PIKK regulatory domain blocks the peptide substrate–binding site, suggesting that this conformation may represent an inactive or basally active enzyme. The active site is held in this closed conformation by interaction with a long helical hairpin in the TRD3 (tetratricopeptide repeats domain 3) domain of the symmetry-related molecule. The open dimer has two protomers with only a limited contact interface, and it lacks the intermolecular interactions that block the peptide-binding site in the closed dimer. This suggests that the open conformation may be more active. The ATM structure shows the detailed topology of the regulator-interacting N-terminal helical solenoid. The ATM conformational dynamics shown by the structures represent an important step in understanding the enzyme regulation. PMID:28508083

  10. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2014-04-09

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to

  11. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction.

    PubMed

    Chang, Chih-Kang; Teng, Kuo-Hsun; Lin, Sheng-Wei; Chang, Tao-Hsin; Liang, Po-Huang

    2013-04-23

    Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.

  12. Novel Isochroman Dimers from Stachybotrys sp. PH30583: Fermentation, Isolation, Structural Elucidation and Biological Activities.

    PubMed

    Li, Wei; Yang, Ya-Bin; Yang, Xue-Qiong; Xie, Hui-Ding; Shao, Zhi-Hui; Zhou, Hao; Miao, Cui-Ping; Zhao, Li-Xing; Ding, Zhong-Tao

    2017-05-01

    The rare anishidiol and five new isochromans, including three novel dimers with unprecedented skeletons, were isolated from Stachybotrys sp. PH30583. Their structures were determined by spectral analyses. The bioactivities of these compounds were also investigated. The dimers ( 6 - 10 ) inhibited acetylcholinesterase at 50 µM, but the monomers did not. To investigate the biogenesis of the novel dimers, a time-course investigation of metabolite production was undertaken. Georg Thieme Verlag KG Stuttgart · New York.

  13. Localized surface plasmon resonance of nanotriangle dimers at different relative positions

    NASA Astrophysics Data System (ADS)

    Ren, Yatao; Qi, Hong; Chen, Qin; Wang, Shenling; Ruan, Liming

    2017-09-01

    The investigation of nanoparticle's optical properties is crucial for their biological and therapeutic applications. In the present work, a promising type of gold nanoparticle, the triangular prism which was reported to have multipolar surface plasmon peaks, was studied. The Plasmon ruler effect of nanotriangle dimers was observed and investigated for the first time. Well-defined trends of the extinction spectra maxima, which have a linear correlation with the triangle edge length, for lower order extinction corresponding to in-plane mode, were observed. On this basis, the optical property of nanotriangle dimers with different arrangements, including two nanotriangles aligned side-by-side, bottom-to-bottom, and in line, were studied. For the side-by-side arrangement, an additional peak was generated on the red shift side of the peak corresponding to dipole mode. When the distance between two prisms was scaled by the triangular side length, the relative plasmon shift can be approximated as an exponential function of the relative offset distance. Moreover, for dimers with nanotriangles arranged in line, there was a global blue shift of the extinction spectra with the approaching of two particles, including the higher order mode extinction. An interesting phenomenon was found for dimers with two nanotriangles aligned bottom-to-bottom. The resonance band split into two bands with the decreasing of the offset distance.

  14. Crystal Structure of a Human IκB Kinase β Asymmetric Dimer

    PubMed Central

    Liu, Shenping; Misquitta, Yohann R.; Olland, Andrea; Johnson, Mark A.; Kelleher, Kerry S.; Kriz, Ron; Lin, Laura L.; Stahl, Mark; Mosyak, Lidia

    2013-01-01

    Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKβ, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKβ (hIKKβ), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKβ protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKβ): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKβ and xIKKβ utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKβ, hIKKβ exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKβ may represent trans-phosphorylation steps that accompany IKKβ activation. PMID:23792959

  15. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  16. Developing Thermal Density Functional Theory Using the Asymmetric Hubbard Dimer

    NASA Astrophysics Data System (ADS)

    Smith, Justin Clifford

    In this dissertation, I introduce both ground-state and thermal density functional theory. Throughout I use the asymmetric two-site Hubbard model, called the Hubbard dimer for short, to better understand and/or develop these theories. This model is used because it can be solved analytically and it contains all the necessary physics while still being conceptually simple enough to tease apart the various aspects of density functional theory. Ground-state density functional theory has seen broad use in many disciplines including physics, chemistry, geology, and material science and has led to a number of important physical and technological successes. In the first two chapters I elucidate the behavior of the ground-state theory using the Hubbard dimer. The simplicity of the model allows me to showcase aspects of the theory that are common points of confusion within the electronic structure community, e.g. the fundamental gap problem. The next two chapters focus on thermal density functional theory which has been coming to prominence as the study of warm dense matter has become a growing interest at the national laboratories and in the astronomical body community. The Hubbard dimer allows me to do the first ever exact thermal density functional theory calculation. In this work I am better able to understand the approximations used in thermal density functional theory and can point to why they succeed and fail. This also allows me to illustrate old conditions and derive new ones. I conclude with an overview of the work and a few different directions in which the asymmetric Hubbard dimer could be used further.

  17. Glycolaldehyde Formation via the Dimerization of the Formyl Radical

    NASA Astrophysics Data System (ADS)

    Woods, Paul M.; Slater, Ben; Raza, Zamaan; Viti, Serena; Brown, Wendy A.; Burke, Daren J.

    2013-11-01

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  18. Impact of D-Dimer for Prediction of Incident Occult Cancer in Patients with Unprovoked Venous Thromboembolism

    PubMed Central

    Han, Donghee; ó Hartaigh, Bríain; Lee, Ji Hyun; Cho, In-Jeong; Shim, Chi Young; Chang, Hyuk-Jae; Hong, Geu-Ru; Ha, Jong-Won; Chung, Namsik

    2016-01-01

    Background Unprovoked venous thromboembolism (VTE) is related to a higher incidence of occult cancer. D-dimer is clinically used for screening VTE, and has often been shown to be present in patients with malignancy. We explored the predictive value of D-dimer for detecting occult cancer in patients with unprovoked VTE. Methods We retrospectively examined data from 824 patients diagnosed with deep vein thrombosis or pulmonary thromboembolism. Of these, 169 (20.5%) patients diagnosed with unprovoked VTE were selected to participate in this study. D-dimer was categorized into three groups as: <2,000, 2,000–4,000, and >4,000 ng/ml. Cox regression analysis was employed to estimate the odds of occult cancer and metastatic state of cancer according to D-dimer categories. Results During a median 5.3 (interquartile range: 3.4–6.7) years of follow-up, 24 (14%) patients with unprovoked VTE were diagnosed with cancer. Of these patients, 16 (67%) were identified as having been diagnosed with metastatic cancer. Log transformed D-dimer levels were significantly higher in those with occult cancer as compared with patients without diagnosis of occult cancer (3.5±0.5 vs. 3.2±0.5, P-value = 0.009, respectively). D-dimer levels >4,000 ng/ml was independently associated with occult cancer (HR: 4.12, 95% CI: 1.54–11.04, P-value = 0.005) when compared with D-dimer levels <2,000 ng/ml, even after adjusting for age, gender, and type of VTE (e.g., deep vein thrombosis or pulmonary thromboembolism). D-dimer levels >4000 ng/ml were also associated with a higher likelihood of metastatic cancer (HR: 9.55, 95% CI: 2.46–37.17, P-value <0.001). Conclusion Elevated D-dimer concentrations >4000 ng/ml are independently associated with the likelihood of occult cancer among patients with unprovoked VTE. PMID:27073982

  19. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    NASA Astrophysics Data System (ADS)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  20. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor.

    PubMed

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-07-25

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  1. Preferential recognition of undisruptable dimers of inducible nitric oxide synthase by a monoclonal antibody directed against an N-terminal epitope.

    PubMed

    Mazumdar, Tuhina; Eissa, N Tony

    2005-02-15

    Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.

  2. EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling.

    PubMed

    Singh, Deo R; Ahmed, Fozia; King, Christopher; Gupta, Nisha; Salotto, Matt; Pasquale, Elena B; Hristova, Kalina

    2015-11-06

    The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Li, Jingqiang; Yeh, Hui-Chun; Nolasco, Leticia; Zhou, Zhou; Bergeron, Angela; Frey, Eric W.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa

    2016-01-01

    Von Willebrand factor (VWF) multimers are large adhesive proteins that are essential to the initiation of hemostatic plugs at sites of vascular injury. The binding of VWF multimers to platelets, as well as VWF proteolysis, is regulated by shear stresses that alter VWF multimeric conformation. We used single molecule manipulation with atomic force microscopy (AFM) to investigate the effect of high fluid shear stress on soluble dimeric and multimeric forms of VWF. VWF dimers are the smallest unit that polymerizes to construct large VWF multimers. The resistance to mechanical unfolding with or without exposure to shear stress was used to evaluate VWF conformational forms. Our data indicate that, unlike recombinant VWF multimers (RVWF), recombinant dimeric VWF (RDVWF) unfolding force is not altered by high shear stress (100 dynes/cm2 for 3 min at 37°C ). We conclude that under the shear conditions used (100 dynes/cm2 for 3 min at 37°C ) , VWF dimers do not self-associate into a conformation analogous to that attained by sheared large VWF multimers.

  4. Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2011-01-01

    The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751

  5. D-dimer as an applicable test for detection of posttraumatic deep vein thrombosis in lower limb fracture.

    PubMed

    Bakhshi, Hooman; Alavi-Moghaddam, Mostafa; Wu, Karin C; Imami, Mohammad; Banasiri, Mohammad

    2012-06-01

    Measuring the plasma levels of D-dimer is an accurate and easy modality to detect deep vein thrombosis (DVT) in nontraumatic settings. However, the diagnostic reliability of D-dimer assays in detecting posttraumatic DVT among patients with lower limb fracture undergoing orthopedic surgery is not validated. In this study, 141 patients with lower limb fracture admitted through the emergency department and undergoing orthopedic surgery were enrolled. Postoperative venous blood samples for D-dimer assay were taken on the 1st, 7th, and 28th postoperative days. Color Doppler sonography examination of both lower limbs was performed at the same time as a standard test. Eight out of the 141 patients (6%) had acute DVT based on Color Doppler sonography. Mean D-dimer was 2160 ng/mL in DVT positive patients and 864 in DVT negative patients. D-dimer levels greater than 1000 ng/mL were 100% sensitive and 71% specific for detecting postoperative DVT. D-dimer assay is a useful and sensitive test for detecting posttraumatic DVT.

  6. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1.

    PubMed

    Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F

    1990-12-05

    The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.

  7. Dimer with gain and loss: Integrability and {P}{T}-symmetry restoration

    NASA Astrophysics Data System (ADS)

    Barashenkov, I. V.; Pelinovsky, D. E.; Dubard, P.

    2015-08-01

    A {P}{T}-symmetric nonlinear Schrödinger dimer is a two-site discrete nonlinear Schrödinger equation with one site losing and the other one gaining energy at the same rate. In this paper, two four-parameter families of cubic {P}{T}-symmetric dimers are constructed as gain-loss extensions of their conservative, Hamiltonian, counterparts. We prove that all these damped-driven equations define completely integrable Hamiltonian systems. The second aim of our study is to identify nonlinearities that give rise to the spontaneous {P}{T}-symmetry restoration. When the symmetry of the underlying linear dimer is broken and an unstable small perturbation starts to grow, the nonlinear coupling of the required type will divert an increasingly large percentage of energy from the gaining to the losing site. As a result, the exponential growth will be saturated and all trajectories remain trapped in a finite part of the phase space regardless of the value of the gain-loss coefficient.

  8. Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks.

    PubMed

    Yi, Xiaohui; Calvez, Guillaume; Daiguebonne, Carole; Guillou, Olivier; Bernot, Kevin

    2015-06-01

    Optimization of the reaction of [Ln(hfac)3]·2H2O and pyridine-N-oxide (PyNO), which is known to afford double-bridged dimers, leads to triple-bridged dimers of formula [(Ln(hfac)3)2(PyNO)3] (Ln = Gd (1), Dy (2)) from which the Dy derivative (2) behaves as a single-molecule magnet (SMM). The pseudo threefold axis symmetry of this zero-dimensional building block makes possible its extension into a tridimensional network. By changing PyNO for 4,4'-bipyridine N,N'-dioxide (4,4'BipyNO) a tridimensional compound of formula {[Ln(hfac)3]2(4,4'BipyNO)2]} (Ln = Eu (3), Gd (4), and Dy (5)) is then rationally obtained. This covalent three-dimensional (3D) network has a remarkably high cell volume (V = 24 419 A(3)) and is an arrangement of interpenetrated 3D subnetworks whose triple-bridged dimers still behave as SMMs.

  9. Chemically crosslinked protein dimers: stability and denaturation effects.

    PubMed Central

    Byrne, M. P.; Stites, W. E.

    1995-01-01

    Nine single substitution cysteine mutants of staphylococcal nuclease (nuclease) were preferentially crosslinked at the introduced cysteine residues using three different bifunctional crosslinking reagents; 1,6-bismaleimidohexane (BMH), 1,3-dibromo-2-propanol (DBP), and the chemical warfare agent, mustard gas (bis(2-chloroethyl)sulfide; mustard). BMH and mustard gas are highly specific reagents for cysteine residues, whereas DBP is not as specific. Guanidine hydrochloride (GuHCl) denaturations of the resulting dimeric proteins exhibited biphasic unfolding behavior that did not fit the two-state model of unfolding. The monofunctional reagent, epsilon-maleimidocaproic acid (MCA), was used as a control for the effects of alkylation. Proteins modified with MCA unfolded normally, showing that this unusual unfolding behavior is due to crosslinking. The data obtained from these crosslinked dimers was fitted to a three-state thermodynamic model of two successive transitions in which the individual subunits cooperatively unfold. These two unfolding transitions were very different from the unfolding of the monomeric protein. These differences in unfolding behavior can be attributed in large part to changes in the denatured state. In addition to GuHCl titrations, the crosslinked dimers were also thermally unfolded. In contrast to the GuHCl denaturations, analysis of this data fit a two-state model well, but with greatly elevated van't Hoff enthalpies in many cases. However, clear correlations between the thermal and GuHCl denaturations exist, and the differences in thermal unfolding can be rationalized by postulating interactions of the denatured crosslinked proteins. PMID:8580845

  10. Cooperative Formation of Icosahedral Proline Clusters from Dimers

    NASA Astrophysics Data System (ADS)

    Jacobs, Alexander D.; Jovan Jose, K. V.; Horness, Rachel; Raghavachari, Krishnan; Thielges, Megan C.; Clemmer, David E.

    2018-01-01

    Ion mobility spectrometry-mass spectrometry and Fourier transform infrared spectroscopy (FTIR) techniques were combined with quantum chemical calculations to examine the origin of icosahedral clusters of the amino acid proline. When enantiopure proline solutions are electrosprayed (using nanospray) from 100 mM ammonium acetate, only three peaks are observed in the mass spectrum across a concentration range of five orders of magnitude: a monomer [Pro+H]+ species, favored from 0.001 to 0.01 mM proline concentrations; a dimer [2Pro+H]+ species, the most abundant species for proline concentrations above 0.01 mM; and, the dimer and dodecamer [12Pro+2H]2+ for 1.0 mM and more concentrated proline solutions. Electrospraying racemic D/ L-proline solutions from 100 mM ammonium acetate leads to a monomer at low proline concentrations (0.001 to 0.1 mM), and a dimer at higher concentrations (>0.09 mM), as well as a very small population of 8 to 15 Pro clusters that comprise <0.1% of the total ion signals even at the highest proline concentration. Solution FTIR studies show unique features that increase in intensity in the enantiopure proline solutions, consistent with clustering, presumably from the icosahedral geometry in bulk solution. When normalized for the total proline, these results are indicative of a cooperative formation of the enantiopure 12Pro species from 2Pro. [Figure not available: see fulltext.

  11. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less

  12. Ortho and para hydrogen dimers on G/SiC(0001): combined STM and DFT study.

    PubMed

    Merino, P; Švec, M; Martínez, J I; Mutombo, P; Gonzalez, C; Martín-Gago, J A; de Andres, P L; Jelinek, P

    2015-01-01

    The hydrogen (H) dimer structures formed upon room-temperature H adsorption on single layer graphene (SLG) grown on SiC(0001) are addressed using a combined theoretical-experimental approach. Our study includes density functional theory (DFT) calculations for the full (6√3 × 6√3)R30° unit cell of the SLG/SiC(0001) substrate and atomically resolved scanning tunneling microscopy images determining simultaneously the graphene lattice and the internal structure of the H adsorbates. We show that H atoms normally group in chemisorbed coupled structures of different sizes and orientations. We make an atomic scale determination of the most stable experimental geometries, the small dimers and ellipsoid-shaped features, and we assign them to hydrogen adsorbed in para dimers and ortho dimers configuration, respectively, through comparison with the theory.

  13. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    PubMed

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-09

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class.

  14. The immunity-related GTPase Irga6 dimerizes in a parallel head-to-head fashion.

    PubMed

    Schulte, Kathrin; Pawlowski, Nikolaus; Faelber, Katja; Fröhlich, Chris; Howard, Jonathan; Daumke, Oliver

    2016-03-02

    The immunity-related GTPases (IRGs) constitute a powerful cell-autonomous resistance system against several intracellular pathogens. Irga6 is a dynamin-like protein that oligomerizes at the parasitophorous vacuolar membrane (PVM) of Toxoplasma gondii leading to its vesiculation. Based on a previous biochemical analysis, it has been proposed that the GTPase domains of Irga6 dimerize in an antiparallel fashion during oligomerization. We determined the crystal structure of an oligomerization-impaired Irga6 mutant bound to a non-hydrolyzable GTP analog. Contrary to the previous model, the structure shows that the GTPase domains dimerize in a parallel fashion. The nucleotides in the center of the interface participate in dimerization by forming symmetric contacts with each other and with the switch I region of the opposing Irga6 molecule. The latter contact appears to activate GTP hydrolysis by stabilizing the position of the catalytic glutamate 106 in switch I close to the active site. Further dimerization contacts involve switch II, the G4 helix and the trans stabilizing loop. The Irga6 structure features a parallel GTPase domain dimer, which appears to be a unifying feature of all dynamin and septin superfamily members. This study contributes important insights into the assembly and catalytic mechanisms of IRG proteins as prerequisite to understand their anti-microbial action.

  15. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-04

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation.

  16. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins.

    PubMed

    Ritter, Christian; Bobylev, Ilja; Lehmann, Helmar C

    2015-08-14

    Intravenous immunoglobulin (IVIg) is an effective treatment in chronic inflammatory demyelinating polyneuropathy (CIDP). In most patients, the optimal IVIg dose and regime is unknown. Polyvalent immunoglobulin (Ig) G form idiotypic/anti-idiotypic antibody pairs in serum and IVIg preparations. We determined IgG dimer levels before and after IVIg treatment in CIDP patients with the aim to explore their utility to serve as a surrogate marker for treatment response. IgG was purified from serum of five controls without treatment, as well as from serum of 16 CIDP patients, two patients with Miller Fisher syndrome (MFS), and one patient with myasthenia gravis before and after treatment with IVIg. IgG dimer levels were determined by size exclusion chromatography. IgG dimer formation was correlated with clinical response to IVIg treatment in CIDP. Re-monomerized IgG dimer fractions were analyzed for immunoreactivity against peripheral nerve tissue. IgG dimer levels were significantly higher in post- compared to pre-IVIg infusion samples. Low post-treatment IgG dimer levels in CIDP patients were associated with clinical worsening during IVIg treatment. Re-monomerized IgG dimer fractions from CIDP patients showed immunoreactivity against peripheral nerve tissue, whereas similarly treated samples from MFS patients showed immunoreactivity against GQ1b. Assessment of IgG dimer levels could be a novel approach to monitor CIDP patients during IVIg treatment, but further studies in larger cohorts are warranted to explore their utility to serve as a potential therapeutic biomarker for IVIg treatment response in CIDP.

  17. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    PubMed

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-11

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.

  18. Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere

    PubMed Central

    Meng, Lingjun; Hsu, Joseph K.; Zhu, Qubo; Lin, Tao; Tsai, Robert Y. L.

    2011-01-01

    TRF1 is a key component of the telomere-capping complex and binds double-strand telomeric DNA as homodimers. So far, it is not clear whether TRF1 dimerization coincides with its telomere binding or is actively controlled before it binds the telomere, and in the latter case, how this event might affect its telomere association. We previously found that TRF1 dimerization and its telomere binding can be increased by GNL3L, which is the vertebrate paralogue of nucleostemin (NS). Here, we show that NS and GNL3L bind TRF1 directly but competitively through two separate domains of TRF1. In contrast to GNL3L, NS prevents TRF1 dimerization through a mechanism not determined by its ability to displace TRF1-bound GNL3L. Furthermore, NS is capable of shortening the dynamic association of TRF1 with the telomere in normal and TRF2ΔBΔM-induced telomere-damaged cells without affecting the amount of telomere-bound TRF1 proteins in vivo. Importantly, NS displays a protective function against the formation of telomere-dysfunction-induced foci. This work demonstrates that TRF1 dimerization is actively and oppositely regulated by NS and GNL3L extrachromosomally. Changing the relative amount of TRF1 monomers versus dimers in the nucleoplasm might affect the dynamic association of TRF1 with the telomere and the repair of damaged telomeres. PMID:22045740

  19. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  20. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  1. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing

    NASA Astrophysics Data System (ADS)

    Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò; Vavassori, Paolo; van Dijken, Sebastiaan

    2018-05-01

    We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au dimer nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger.

  2. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo.

    PubMed

    Capra, Valérie; Mauri, Mario; Guzzi, Francesca; Busnelli, Marta; Accomazzo, Maria Rosa; Gaussem, Pascale; Nisar, Shaista P; Mundell, Stuart J; Parenti, Marco; Rovati, G Enrico

    2017-01-15

    Thromboxane A 2 is a potent mediator of inflammation and platelet aggregation exerting its effects through the activation of a G protein-coupled receptor (GPCR), termed TP. Although the existence of dimers/oligomers in Class A GPCRs is widely accepted, their functional significance still remains controversial. Recently, we have shown that TPα and TPβ homo-/hetero-dimers interact through an interface of residues in transmembrane domain 1 (TM1) whose disruption impairs dimer formation. Here, biochemical and pharmacological characterization of this dimer deficient mutant (DDM) in living cells indicates a significant impairment in its response to agonists. Interestingly, two single loss-of-function TPα variants, namely W29C and N42S recently identified in two heterozygous patients affected by bleeding disorders, match some of the residues mutated in our DDM. These two naturally occurring variants display a reduced potency to TP agonists and are characterized by impaired dimer formation in transfected HEK-293T cells. These findings provide proofs that lack of homo-dimer formation is a crucial process for reduced TPα function in vivo, and might represent one molecular mechanism through which platelet TPα receptor dysfunction affects the patient(s) carrying these mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    NASA Astrophysics Data System (ADS)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  4. Variations in the heterogeneity of the decay of the fluorescence in six procyanidin dimers

    Treesearch

    Donghwan Cho; Rujiang Tian; Lawrence J. Porter; Richard W. Hemingway; Wayne L. Mattice

    1990-01-01

    The decay of the fluorescence has been measured in 1,4-dioxane for six dimers of (2R,3R)-(-)-epicatechin and (2R,3S)-(+)-catechin, hereafter denoted simply epicatechin and catechin. The dimers are epicatechin-(4β→8)-catechin, epicatechin-(4β→8)-epicatechin...

  5. Dimerization Interface of 3-Hydroxyacyl-CoA Dehydrogenase Tunes the Formation of Its Catalytic Intermediate

    PubMed Central

    Jin, Ying-Hua; Fan, Jun; Sun, Fei

    2014-01-01

    3-hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60–80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects. PMID:24763278

  6. Binding Energies of Proton-Bound Dimers of Imidazole and n-Acetylalanine Methyl Ester Obtained by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Jockusch, Rebecca A.; Williams*, Evan R.

    2005-01-01

    The dissociation kinetics of protonated n-acetyl-L-alanine methyl ester dimer (AcAlaMEd), imidazole dimer, and their cross dimer were measured using blackbody infrared radiative dissociation (BIRD). Master equation modeling of these data was used to extract threshold dissociation energies (Eo) for the dimers. Values of 1.18 ± 0.06, 1.11 ± 0.04, and 1.12 ± 0.08 eV were obtained for AcAlaMEd, imidazole dimer, and the cross dimer, respectively. Assuming that the reverse activation barrier for dissociation of the ion–molecule complex is negligible, the value of Eo can be compared to the dissociation enthalpy (ΔHd°) from HPMS data. The Eo values obtained for the imidazole dimer and the cross dimer are in agreement with HPMS values; the value for AcAlaMEd is somewhat lower. Radiative rate constants used in the master equation modeling were determined using transition dipole moments calculated at the semiempirical (AM1) level for all dimers and compared to ab initio (RHF/3-21G*) calculations where possible. To reproduce the experimentally measured dissociation rates using master equation modeling, it was necessary to multiply semiempirical transition dipole moments by a factor between 2 and 3. Values for transition dipole moments from the ab initio calculations could be used for two of the dimers but appear to be too low for AcAlaMEd. These results demonstrate that BIRD, in combination with master equation modeling, can be used to determine threshold dissociation energies for intermediate size ions that are in neither the truncated Boltzmann nor the rapid energy exchange limit. PMID:16604163

  7. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  8. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    PubMed Central

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12. Images PMID:2155394

  9. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  10. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  11. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins.

    PubMed

    Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna

    2013-09-17

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Silyl Ketene Acetals/B(C₆F₅)₃ Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers.

    PubMed

    Hu, Lu; Zhao, Wuchao; He, Jianghua; Zhang, Yuetao

    2018-03-15

    This work reveals the silyl ketene acetal (SKA)/B(C₆F₅)₃ Lewis pair-catalyzed room-temperature group transfer polymerization (GTP) of polar acrylic monomers, including methyl linear methacrylate (MMA), and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL) and α-methylene-γ-butyrolactone (MBL) as well. The in situ NMR monitored reaction of SKA with B(C₆F₅)₃ indicated the formation of Frustrated Lewis Pairs (FLPs), although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C₆F₅)₃-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C₆F₅)₃-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C₆F₅)₃ is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS). Moreover, using this method, we have successfully synthesized well-defined PMMBL- b -PMBL, PMMBL- b -PMBL- b -PMMBL and random copolymers with the predicated molecular weights ( M n ) and narrow molecular weight distribution (MWD).

  13. Electronic signatures of dimerization in IrTe2

    NASA Astrophysics Data System (ADS)

    Dai, Jixia; Wu, Weida; Oh, Yoon Seok; Cheong, S.-W.; Yang, J. J.

    2014-03-01

    Recently, the mysterious phase transition around Tc ~ 260 K in IrTe2 has been intensively studied. A structural supermodulation with q =1/5 was identified below Tc. A variety of microscopic mechanisms have been proposed to account for this transition, including charge-density wave due to Fermi surface nesting, Te p-orbital driven structure instability, anionic depolymerization, ionic dimerization, and so on. However, there has not been an unified picture on the nature of this transition. To address this issue, we have performed low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) experiments on IrTe2 and IrTe2-xSex. Our STM data clearly shows a strong bias dependence in both topography and local density of states (STS) maps. High resolution spectroscopic data further confirms the stripe-like electronic states modulation, which provides insight to the ionic dimerization revealed by X-ray diffraction.

  14. The VUV dimer spectra excited in condensed krypton

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennady N.; Krylov, Boris E.; Hallin, Reinhold

    2004-05-01

    The vacuum ultraviolet (VUV) emission spectra of krypton homonuclear molecules (dimers) were observed in the wavelength range 120-200 nm. The krypton dimers were excited in a DC capillary discharge and the wall of tube could be cooled with liquid nitrogen. The homogeneous DC discharge was a straight channel in the middle of capillary tube. The gas krypton pressure in the discharge channel could be stabilized in the pressure range from 3 hPa to 1000 hPa. The DC discharge current density and the electron concentration were ~ 10 A/cm2 and ~ 2-4 1014 cm-3, respectively. The VUV krypton spectra excited in vicinity of solid krypton were compared with the spectra recorded without condensed krypton. The VUV spectral lines intensities were observed as nonlinear function of the discharge length. This nonlinear increase of intensity with the length of the tube has still to be explained.

  15. Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species.

    PubMed

    Wang, Wei; Barger, Steven W

    2012-06-01

    Serine racemase (SR) is the only identified enzyme in mammals responsible for isomerization of L-serine to D-serine, a coagonist at N-methyl-D-aspartate (NMDA) receptors in the forebrain. Our previous data showed that an apparent SR dimer resistant to sodium dodecyl sulfate and β-mercaptoethanol was elevated in microglial cells after proinflammatory activation. Because the activation of microglia is typically associated with an oxidative burst, oxidative cross-linking between SR subunits was speculated. In this study, an siRNA technique was employed to confirm the identity of this SR dimer band. The oxidative species potentially responsible for the cross-linking was investigated with recombinant SR protein. The data indicate that nitric oxide, peroxynitrite, and hydroxyl radical were the likely candidates, whereas superoxide and hydrogen peroxide per se failed to contribute. Furthermore, the mechanism of formation of SR dimer by peroxynitrite oxidation was studied by mass spectrometry. A disulfide bond between Cys₆ and Cys₁₁₃ was identified in 3-morpholinosydnonimine hydrochloride (SIN-1)-treated SR monomer and dimer. Activity assays indicated that SIN-1 treatment decreased SR activity, confirming our previous conclusion that noncovalent dimer is the most active form of SR. These findings suggest a compensatory feedback in which the consequences of neuroinflammation might dampen D-serine production to limit excitotoxic stimulation of NMDA receptors. Copyright © 2012 Wiley Periodicals, Inc.

  16. Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning

    PubMed Central

    Rondard, Philippe; Huang, Siluo; Monnier, Carine; Tu, Haijun; Blanchard, Bertrand; Oueslati, Nadia; Malhaire, Fanny; Li, Ying; Trinquet, Eric; Labesse, Gilles; Pin, Jean-Philippe; Liu, Jianfeng

    2008-01-01

    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABAB1 and GABAB2. GABAB1 binds agonists, whereas GABAB2 is required for trafficking GABAB1 to the cell surface, increasing agonist affinity to GABAB1, and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABAB1 VFT leads to GABAB2 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABAB VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABAB2, including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation. PMID:18388862

  17. 99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand.

    PubMed

    Wang, Jianjun; Kim, Young-Seung; Liu, Shuang

    2008-03-01

    In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.

  18. Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazehoski, Kristina O., E-mail: pazehosk@pitt.edu; Cobine, Paul A., E-mail: pac0006@auburn.edu; Winzor, Donald J.

    2011-03-11

    Research highlights: {yields} A metal-binding protein domain is directly involved in protein dimerization. {yields} Fusing the metal-binding domain to a monomeric protein induces dimerization. {yields} Frontal size-exclusion chromatography measures the strength of dimer interaction. {yields} Ultracentrifugation studies confirm the influence of metal binding on dimerization. -- Abstract: Metal binding to the C-terminal region of the copper-responsive repressor protein CopY is responsible for homodimerization and the regulation of the copper homeostasis pathway in Enterococcus hirae. Specific involvement of the 38 C-terminal residues of CopY in dimerization is indicated by zonal and frontal (large zone) size-exclusion chromatography studies. The studies demonstrate thatmore » the attachment of these CopY residues to the immunoglobulin-binding domain of streptococcal protein G (GB1) promotes dimerization of the monomeric protein. Although sensitivity of dimerization to removal of metal from the fusion protein is smaller than that found for CopY (as measured by ultracentrifugation studies), the demonstration that an unrelated protein (GB1) can be induced to dimerize by extending its sequence with the C-terminal portion of CopY confirms the involvement of this region in CopY homodimerization.« less

  19. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  20. A Uranyl Peroxide Dimer in the Gas Phase

    DOE PAGES

    Dau, Phuong D.; Dau, Phuong V.; Rao, Linfeng; ...

    2017-03-14

    For this study, the gas-phase uranyl peroxide dimer, [(UO 2) 2(O2)(L) 2] 2+ where L = 2,2'-trifluoroethylazanediyl)bis(N,N'-dimethylacetamide), was synthesized by electrospray ionization of a solution of UO 2 2+ and L. Collision-induced dissociation of this dimer resulted in endothermic O atom elimination to give [(UO 2) 2(O)(L) 2] 2+, which was found to spontaneously react with water via exothermic hydrolytic chemisorption to yield [(UO 2) 2(OH) 2(L) 2] 2+. Density functional theory computations of the energies for the gas-phase reactions are in accord with observations. The structures of the observed uranyl dimer were computed, with that of the peroxide ofmore » particular interest, as a basis to evaluate the formation of condensed phase uranyl peroxides with bent structures. The computed dihedral angle in [(UO 2) 2(O 2)(L) 2] 2+ is 145°, indicating a substantial deviation from the planar structure with a dihedral angle of 180°. Energies needed to induce bending in the most elementary gas-phase uranyl peroxide complex, [(UO 2) 2(O 2)] 2+, were computed. It was found that bending from the lowest-energy planar structure to dihedral angles up to 140° required energies of <10 kJ/mol. The gas-phase results demonstrate the inherent stability of the uranyl peroxide moiety and support the notion that the uranyl-peroxide-uranyl structural unit is intrinsically planar, with only minor energy perturbations needed to form the bent structures found in studtite and uranyl peroxide nanostructures.« less

  1. Photodissociation spectroscopy of (benzene-toluene) +. Charge delocalization in the hetero-dimer ion

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuhiko; Nakane, Youko; Inokuchi, Yoshiya; Nakai, Yasuhiro; Nishi, Nobuyuki

    1998-12-01

    The electronic spectrum of the benzene-toluene hetero-dimer ion is measured in the 380-1400 nm region. The spectrum shows intense bands around 1175 and 670 nm and a weaker band around 920 nm, which correspond to charge resonance (CR) bands of homo-dimer ions. The observation indicates that the positive charge stays on the benzene part in some probability, although the ionization potential of benzene is 0.4162 eV higher than that of toluene. A local excitation (LE) band is observed around 420 nm, where a π←π transition is locally excited in the charged benzene or toluene molecule. On the basis of the positions of the CR-like bands, as well as the intensity of the LE band relative to that of homo-dimer ions, the probability of finding the charge on the benzene molecule is analyzed to be approximately 36%.

  2. Alteration of Antithrombin III and D-dimer Levels in Clinically Localized Prostate Cancer

    PubMed Central

    Ko, Dong Woo; Park, Juhyun; Kim, In Sung; Doo, Seung Hwan; Yoon, Cheol Yong; Park, Hongzoo; Lee, Won Ki; Kim, Dae Sung; Jeong, Seong Jin; Byun, Seok-Soo; Lee, Sang Eun

    2010-01-01

    Purpose We performed a comparative analysis of the plasma levels of antithrombin (AT) III, plasminogen, fibrinogen, and D-dimer among patients with and without clinically localized prostate cancer to investigate the clinical significance of the coagulation profile in prostate cancer. Materials and Methods A prospective study was performed in which plasma levels of AT III, plasminogen, fibrinogen, and D-dimer were assessed in patients before they underwent prostate biopsy. According to the results of the biopsy, the patients were categorized into the cancer group or the control group. Levels of the four coagulation factors were then compared between the cancer and control groups. Also, levels of the four coagulation factors were correlated with tumor stage and grade in the cancer group. Results The cancer group had significantly lower levels of AT III activity and higher plasma D-dimer levels than did the control group (p=0.007 and p=0.018, respectively). Within the cancer group, no significant differences were observed in the levels of AT III, plasminogen, fibrinogen, or D-dimer between those with a pathological Gleason score of ≥7 and otherwise. Regarding pathologic stage of prostate cancer, the subjects with organ-confined disease and those with extraprostatic extension of a tumor demonstrated no significant differences in the preoperative levels of the four coagulation factors analyzed. Conclusions Our results suggest that plasma levels of AT III and D-dimer are altered in patients with prostate cancer. Further study is needed to elucidate the underlying mechanism and clinical significances of such a phenomenon among patients with clinically localized prostate cancer. PMID:20414406

  3. Elevation of serum CA 125 and D-dimer levels associated with rupture of ovarian endometrioma.

    PubMed

    Uharcek, P; Mlyncek, M; Ravinger, J

    2007-01-01

    Patients with endometriosis rarely have a serum CA 125 concentration >100 IU/mL. A raised plasma level of D-dimer indicates active fibrinolysis, either secondary to clot formation or primarily activated. This condition is seldom diagnosed in patients with endometriosis. A 53-year-old woman was referred to our institution for acute abdominal pain. Laparoscopic surgery revealed a large ovarian cyst with rupture on the left side. Preoperative laboratory tests detected high serum CA 125 and D-dimer levels. Adnexectomy was performed, resulting in a sharp decrease in serum CA 125 and D-dimer concentration. We describe the clinical course of the patient. Rupture of a large ovarian endometrioma can lead to a high serum concentration of CA 125, a condition which, in addition to the detected pelvic mass, may mimic a malignant process. The increased D-dimer plasma level indicated that a ruptured endometriotic cyst can induce coagulation reactions.

  4. What factors control dimerization of coniferyl alcohol?

    Treesearch

    Carl J. Houtman

    1999-01-01

    Data suggest that the dimerization of coniferyl alcohol is not under thermodynamic control. In this study, molecular dynamics calculations were used to estimate the effect of the solvent environment. In water, the coniferyl alcohol radicals were forced to associate by the formation of a solvent cage. In glycerol, the solvent cage effect appeared to be absent. These...

  5. Proline Substitution of Dimer Interface β-strand Residues as a Strategy for the Design of Functional Monomeric Proteins

    PubMed Central

    Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna

    2013-01-01

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001

  6. Fragment-based protein-protein interaction antagonists of a viral dimeric protease

    PubMed Central

    Gable, Jonathan E.; Lee, Gregory M.; Acker, Timothy M.; Hulce, Kaitlin R.; Gonzalez, Eric R.; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J.; Craik, Charles S.

    2016-01-01

    Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose response determination was performed as a confirmation screen and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed via NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80% of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogs. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. PMID:26822284

  7. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Mitchell; J Smith; M Mason

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that ismore » directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.« less

  8. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  9. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).

    PubMed

    Poulikakos, Poulikos I; Persaud, Yogindra; Janakiraman, Manickam; Kong, Xiangju; Ng, Charles; Moriceau, Gatien; Shi, Hubing; Atefi, Mohammad; Titz, Bjoern; Gabay, May Tal; Salton, Maayan; Dahlman, Kimberly B; Tadi, Madhavi; Wargo, Jennifer A; Flaherty, Keith T; Kelley, Mark C; Misteli, Tom; Chapman, Paul B; Sosman, Jeffrey A; Graeber, Thomas G; Ribas, Antoni; Lo, Roger S; Rosen, Neal; Solit, David B

    2011-11-23

    Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.

  10. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E)

    PubMed Central

    Poulikakos, Poulikos I.; Persaud, Yogindra; Janakiraman, Manickam; Kong, Xiangju; Ng, Charles; Moriceau, Gatien; Shi, Hubing; Atefi, Mohammad; Titz, Bjoern; Gabay, May Tal; Salton, Maayan; Dahlman, Kimberly B.; Tadi, Madhavi; Wargo, Jennifer A.; Flaherty, Keith T.; Kelley, Mark C.; Misteli, Tom; Chapman, Paul B.; Sosman, Jeffrey A.; Graeber, Thomas G.; Ribas, Antoni; Lo, Roger S.; Rosen, Neal; Solit, David B.

    2011-01-01

    Summary Activated RAS promotes dimerization of members of the RAF kinase family1-3. ATP-competitive RAF inhibitors activate ERK signaling4-7 by transactivating RAF dimers4. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumor-specific inhibition of ERK signaling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbor mutant BRAF(V600E)8. However, resistance invariably develops. Here, we identify a novel resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61kd variant form of BRAF(V600E) that lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) exhibits enhanced dimerization in cells with low levels of RAS activation, as compared to full length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signaling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumors of six of 19 patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signaling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner. PMID:22113612

  11. Ion Mobility Measurements of Multianionic Metalloporphyrin Dimers: Structural Changes Induced by Countercation Exchange

    NASA Astrophysics Data System (ADS)

    Schneider, Erik; Brendle, Katrina; Jäger, Patrick; Weis, Patrick; Kappes, Manfred M.

    2018-04-01

    We present gas-phase structures of dimers of MnIII and FeIII meso-tetra(4-sulfonatophenyl)porphyrin multianions with various amounts of sodium and hydrogen counterions. The structural assignments are achieved by combining mass spectrometry, ion mobility measurements, quantum chemical calculations, and trajectory method collision cross section calculations. For a common charge state, we observe significant topological variations in the dimer structures of [(MTPPS)2+nX](6-n)- (M=MnIII, FeIII; X=H, Na; n = 1-3) induced by replacing hydrogen counterions by sodium. For sodium, the dimer structures are much more compact, a finding that can be rationalized by the stronger interactions of the sodium cations with the anionic sulfonic acid groups of the porphyrins as compared to hydrogen. [Figure not available: see fulltext.

  12. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target

    PubMed Central

    Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin

    2016-01-01

    The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697

  13. Repair of cyclobutyl pyrimidine dimers in human skin: variability among normal humans in nucleotide excision and in photorepair.

    PubMed

    Sutherland, Betsy M; Hacham, Haim; Bennett, Paula; Sutherland, John C; Moran, Michael; Gange, R W

    2002-06-01

    Photoreactivation (PR) of cyclobutyl pyrimidine dimers (CPD) in human skin remains controversial. Recently Whitmore et al. (1) reported negative results of experiments using two photorepair light (PRL) sources on UV-irradiated skin of volunteers. However, their PRL sources induced substantial levels of dimers in skin, suggesting that the additional dimers formed could have obscured PR. We met a similar problem of dimer induction by a PRL source. We designed and validated a PRL source of sufficient intensity to catalyse PR, but that did not induce CPD, and used it to measure photorepair in human skin. Using a solar simulator filtered with three types of UV-filters, we found significant dimer formation in skin, quantified by number average length analysis using electrophoretic gels of isolated skin DNA. To prevent scattered UV from reaching the skin, we interposed shields between the filters and skin, and showed that the UV-filtered/shielded solar simulator system did not induce damage in isolated DNA or in human skin. We exposed skin of seven healthy human volunteers to 302 nm radiation, then to the improved PRL source (control skin areas were kept in the dark for measurement of excision repair). Using a high intensity PRL source that did not induce dimers in skin, we found that three of seven subjects carried out rapid photorepair of dimers; two carried out moderate or slow dimer photorepair, and three did not show detectable photorepair. Excision repair was similarly variable in these volunteers. Subjects with slower excision repair showed rapid photorepair, whereas those with rapid excision generally showed little or no photoreactivation.

  14. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  15. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers

    PubMed Central

    Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping

    2017-01-01

    In order to understand the pyrolysis mechanism of β-O-4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β-O-4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β-O-4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β-O-4 type lignin dimers. PMID:29120350

  16. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.

    PubMed

    Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping

    2017-11-09

    In order to understand the pyrolysis mechanism of β- O -4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β- O -4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β- O -4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β- O -4 type lignin dimers.

  17. Antagonizing STAT3 dimerization with a rhodium(III) complex.

    PubMed

    Ma, Dik-Lung; Liu, Li-Juan; Leung, Ka-Ho; Chen, Yen-Ting; Zhong, Hai-Jing; Chan, Daniel Shiu-Hin; Wang, Hui-Min David; Leung, Chung-Hang

    2014-08-25

    Kinetically inert metal complexes have arisen as promising alternatives to existing platinum and ruthenium chemotherapeutics. Reported herein, to our knowledge, is the first example of a substitutionally inert, Group 9 organometallic compound as a direct inhibitor of signal transducer and activator of transcription 3 (STAT3) dimerization. From a series of cyclometalated rhodium(III) and iridium(III) complexes, a rhodium(III) complex emerged as a potent inhibitor of STAT3 that targeted the SH2 domain and inhibited STAT3 phosphorylation and dimerization. Significantly, the complex exhibited potent anti-tumor activities in an in vivo mouse xenograft model of melanoma. This study demonstrates that rhodium complexes may be developed as effective STAT3 inhibitors with potent anti-tumor activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-electron/24-center (2e/24c) bonding in novel diradical π-dimers.

    PubMed

    Gao, Feng-Wei; Zhong, Rong-Lin; Sun, Shi-Ling; Xu, Hong-Liang; Su, Zhong-Min

    2016-10-26

    A series of diradical π-dimers 2 with interesting pancake-shaped 2e/24c π-π bonding character were designed and investigated based on the famous phenalenyl (PLY) π-dimer with 2e/12c π-π bonding character. The position of stronger interaction between two layers of radicals was found by the Wiberg bond index (WBI) maximum component. Further, the different contributions of the interaction energy were analyzed quantitatively by energy decomposition analysis (EDA). Among these new diradical π-dimers, 2180 has the smallest layer distance and the largest interaction between two layers of radicals. The unusual PLY analogues can provide new insights into the unique features of two-electron/multicenter (2e/mc) π-π bonding.

  19. Detecting specific cytotoxic T lymphocytes against SARS-coronavirus with DimerX HLA-A2:Ig fusion protein.

    PubMed

    Wang, Yue-Dan; Chen, Wei Feng

    2004-11-01

    To assess specific cytotoxic T lymphocytes (CTLs) against Severe acute respiratory syndrome (SARS)-coronavirus, a modified DimerX flow cytometry assay was performed with peripheral blood mononuclear cell (PBMC) from HLA-A2+ SARS-recovered donors at different time points post disease. CD8+DimerX-S1203+ CTLs were detected in the PBMC from these donors up to 3 months after recovery. The percentages of CD8+DimerX-S1203+ cells paralleled the numbers of interferon-gamma-positive spots in an ELISPOT assay using the same antigenic peptide. In conclusion, DimerX-based flow cytometry staining may prove to be a real-time method to screen for CTL directed at epitopes from a newly identified virus.

  20. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    NASA Astrophysics Data System (ADS)

    Xiao, Weizhan; Hu, Yongjun; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2015-01-01

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH) ṡ H+ (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH2O ṡ (C2H5OH)H+ (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH) ṡ (CH3)+ (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH) ṡ H+ and CH2O ṡ (C2H5OH)H+ have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  1. Dimerization of the Bacterial Biotin Carboxylase Subunit Is Required for Acetyl Coenzyme A Carboxylase Activity In Vivo

    PubMed Central

    Smith, Alexander C.

    2012-01-01

    Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807–818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function. PMID:22037404

  2. Primary and Secondary Dimer Interfaces of the FGFR3 Transmembrane Domain: Characterization via Multiscale Molecular Dynamics Simulations

    PubMed Central

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A.; Chetwynd, Alan; Sansom, Mark S.P.

    2016-01-01

    Receptor tyrosine kinases are single pass membrane proteins which form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. The fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position relative of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface which is more highly populated in heterodimer and mutant configurations which may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer so as to enable interactions of the arginine sidechain with lipid head group phosphates. PMID:24397339

  3. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Young; Song, Kyung-A; Samsung Biomedical Research Institute

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation.more » In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  4. Acylphenols and dimeric acylphenols from Myristica maxima Warb.

    PubMed

    Othman, Muhamad Aqmal; Sivasothy, Yasodha; Looi, Chung Yeng; Ablat, Abdulwali; Mohamad, Jamaludin; Litaudon, Marc; Awang, Khalijah

    2016-06-01

    Giganteone E (1), a new dimeric acylphenol was isolated as a minor constituent from the bark of Myristica maxima Warb. The structure of 1 was established on the basis of 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Malabaricones A-C (2-4), giganteones A and C (5 and 6), maingayones A and B (7 and 8), maingayic acid B (9) and β-sitosteryl oleate (10) were also characterized in this plant for the first time. Compound 10 was identified for the first time in the Myristicaceae. Compounds 2 and 5 were active against human prostate cancer cell-lines, thus making this the first report on the prostate cancer inhibiting potential of acylphenols and dimeric acylphenols. Compounds 1, 4, 5, 7 and 8 exhibited potent DPPH free radical scavenging activity. This is the first report on their free radical scavenging capacity. Copyright © 2016. Published by Elsevier B.V.

  5. Dichroism, chirality, and polarization eigenstates in Babinet nanoslot-dimer membrane metamaterials

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergei V.; Chigrin, Dmitry N.; Kremers, Christian; Lavrinenko, Andrei V.

    2013-11-01

    We present a detailed theoretical description of the optical properties of planar metamaterials comprising a metal membrane patterned with openings (microslots) arranged in closely located couples (dimers). Using the covariant coupled-dipole approach, the effective material tensors of such a metamaterial are recovered, and contributions responsible for elliptical dichroism and optical activity are identified. Polarization conversion properties of II-shaped and V-shaped dimers are determined and explained in terms of elliptically polarized eigenmodes of the metamaterial. Good agreement with direct numerical simulations is demonstrated. The results obtained are promising for the design of thin-film frequency selective polarization shapers for terahertz waves.

  6. Image storage in coumarin-based copolymer thin films by photoinduced dimerization.

    PubMed

    Gindre, Denis; Iliopoulos, Konstantinos; Krupka, Oksana; Champigny, Emilie; Morille, Yohann; Sallé, Marc

    2013-11-15

    We report a technique to encode grayscale digital images in thin films composed of copolymers containing coumarins. A nonlinear microscopy setup was implemented and two nonlinear optical processes were used to store and read information. A third-order process (two-photon absorption) was used to photoinduce a controlled dimer-to-monomer ratio within a defined tiny volume in the material, which corresponds to each recorded bit of data. Moreover, a second-order process (second-harmonic generation) was used to read the stored information, which has been found to be highly dependent upon the monomer-to-dimer ratio.

  7. Isolation and reversible dimerization of a selenium-selenium three-electron σ-bond.

    PubMed

    Zhang, Senwang; Wang, Xingyong; Su, Yuanting; Qiu, Yunfan; Zhang, Zaichao; Wang, Xinping

    2014-06-11

    Three-electron σ-bonding that was proposed by Linus Pauling in 1931 has been recognized as important in intermediates encountered in many areas. A number of three-electron bonding systems have been spectroscopically investigated in the gas phase, solution and solid matrix. However, X-ray diffraction studies have only been possible on simple noble gas dimer Xe∴Xe and cyclic framework-constrained N∴N radical cations. Here, we show that a diselena species modified with a naphthalene scaffold can undergo one-electron oxidation using a large and weakly coordinating anion, to afford a room-temperature-stable radical cation containing a Se∴Se three-electron σ-bond. When a small anion is used, a reversible dimerization with phase and marked colour changes is observed: radical cation in solution (blue) but diamagnetic dimer in the solid state (brown). These findings suggest that more examples of three-electron σ-bonds may be stabilized and isolated by using naphthalene scaffolds together with large and weakly coordinating anions.

  8. Effect of amino acid mutations on intra-dimer tubulin-tubulin binding strength of microtubules.

    PubMed

    Liu, Ning; Pidaparti, Ramana; Wang, Xianqiao

    2017-12-11

    Energetic interactions inside αβ-tubulin dimers of a microtubule (MT) with atomic resolutions are of importance in determining the mechanical properties and structural stability of the MT as well as designing self-assembled functional structures from it. Here, we carry out several comprehensive atomistic simulations to investigate the interaction properties within αβ-tubulin dimers and effect of residue mutations on the intra-dimer tubulin-tubulin (IDTT) binding strength. Results indicate that the force-displacement responses of the dimer could be roughly divided into three stages involving increasing, decreasing, and fluctuating forces. Energetic analysis shows that electrostatic interactions dominate the IDTT binding strength. Further per-residue energetic analysis shows that the major part of the interface interaction energy (approximately 72% for α-tubulin and 62% for β-tubulin) comes from amino acid residues with net charges, namely arginine (ARG), lysine (LYS), glutamic acid (GLU), aspartic acid (ASP). Residue mutations are completed for ARG105 on α-tubulin and ASP251 on β-tubulin to study the effect of mutations on the IDTT binding strength. Results indicate that stiffness, rupture force, and interface interaction energy of αβ-tubulin dimer can be improved by up to 28%, 13% and 28%, respectively. Overall, our results provide a thorough atomistic understanding of the IDTT binding strength within αβ-tubulin heterodimers and help pave the way for eventually designing and controlling the self-assembled functional structures from MTs.

  9. Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp.

    PubMed

    Purohit, Anirban; England, Jennifer K; Douma, Lauren G; Tondnevis, Farzaneh; Bloom, Linda B; Levitus, Marcia

    2017-08-22

    Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less

  11. Role of D-dimer in the Development of Portal Vein Thrombosis in Liver Cirrhosis: A Meta-analysis

    PubMed Central

    Dai, Junna; Qi, Xingshun; Li, Hongyu; Guo, Xiaozhong

    2015-01-01

    Background and Aims: A meta-analysis was performed to explore the role of the D-dimer in the development of portal vein thrombosis (PVT) in liver cirrhosis. Methods: All papers were searched via PubMed, EMBASE, China National Knowledge Infrastructure, Wan Fang, and VIP databases. A standardized mean difference (SMD) with 95% confidence interval (CI) was pooled. Results: Overall, 284 studies were initially identified, of which 21 were included. Cirrhotic patients with PVT had a significantly higher D-dimer concentration than those without PVT (pooled SMD = 1.249, 95%CI = 0.740–1.758). After the portal hypertension-related surgery, cirrhotic patients with PVT had a similar preoperative D-dimer concentration to those without PVT (pooled SMD = 0.820, 95%CI = −0.122–0.286), but a higher postoperative value of D-dimer concentration than those without PVT (pooled SMD = 2.505, 95%CI = 0.975–4.036). Notably, the D-dimer concentration at the 1st postoperative day was similar between cirrhotic patients with and without PVT (pooled SMD = 0.137, 95%CI = −0.827–1.101), but that at the 7th post-operative day was higher in cirrhotic patients with PVT than in those without PVT (pooled SMD = 1.224, 95%CI = 0.277–2.171). Conclusion: D-dimer might be regarded as a diagnostic marker for PVT in liver cirrhosis. In addition, postoperative D-dimer testing is worthwhile for the diagnosis of PVT after portal hypertension-related surgery. PMID:26021776

  12. Plasma D-dimer as a Prognostic Marker in ICU Admitted Egyptian Children with Traumatic Brain Injury.

    PubMed

    Foaud, Hala Mohamed Amin; Labib, John Rene; Metwally, Hala Gabr; El-Twab, Khaled Mohamed Abd

    2014-09-01

    Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children. This study aimed at evaluation of the D-dimer blood levels as a new marker to predict prognosis and outcome of traumatic brain injuries among children. This case control study was conducted at the Paediatric Intensive Care Unit (ICU), Alharm Hospital in Giza, Egypt during 2012-2013, on 46 Paediatric cases admitted to ICU with head injury and 20 normal age-matched controls. Clinical data and venous blood samples were prospectively collected at 1(st), 3(rd) and 14(th) day of admission, in addition to examination finding as Glasgow coma scale (GCS), cranial brain computed tomography (CT), routine laboratory investigations (CBC, CRP, SGOT, SGPT, urea, creatinine, random blood glucose, Na, K and arterial blood gases) plasma D-dimer, INR, PT, aPTT and PC. Data analysis was carried out accordingly and ROC curve was performed to explore the discriminating ability of D-dimer through estimation of its accuracy in differentiating temporal survivorship of those with TBI. Cases were classified according to outcome into survivors and non-survivors. Significant difference was observed between cases and controls and between survivors and non-survivors during 1(st), 3(rd) and 14(th) day of the follow up including GCS, blood levels of D-dimer, PT and aPTT. ROC curve analysis for D-dimer showed decline in both sensitivity from 89.5% to 73.7% and specificity from 100% to 81.5% along the study days respectively. D-dimer time measurements showed significant decline among survivors from 4.2 to 0.7, while in the non survivor group this decline was much higher from 27.9 to 1.4. Low plasma D-dimer suggests the absence of brain injury, and good prognosis.

  13. Plasma D-dimer Can Effectively Predict the Prospective Occurrence of Ascites in Advanced Schistosomiasis Japonica Patients.

    PubMed

    Wu, Xiaoying; Ren, Jianwei; Gao, Zulu; Xu, Yun; Xie, Huiqun; Li, Tingfang; Cheng, Yanhua; Hu, Fei; Liu, Hongyun; Gong, Zhihong; Liang, Jinyi; Shen, Jia; Liu, Zhen; Wu, Feng; Sun, Xi; Niu, Zhongzheng; Ning, An

    2017-04-01

    China still has more than 30,000 patients of advanced schistosomiasis while new cases being reported consistently. D-dimer is a fibrin degradation product. As ascites being the dominating symptom in advanced schistosomiasis, the present study aimed to explore a prediction model of ascites with D-dimer and other clinical easy-achievable indicators. A case-control study nested in a prospective cohort was conducted in schistosomiasis-endemic area of southern China. A total of 291 patients of advanced schistosomiasis were first investigated in 2013 and further followed in 2014. Information on clinical history, physical examination, and abdominal ultrasonography, including the symptom of ascites was repeatedly collected. Result showed 44 patients having ascites. Most of the patients' ascites were confined in the kidney area with median area of 20 mm 2 . The level of plasma D-dimer and pertinent liver function indicators were measured at the initial investigation in 2013. Compared with those without ascites, cases with ascites had significantly higher levels of D-dimer (0.71±2.44 μg/L vs 0.48±2.12 μg/L, P =0.005), as well ALB (44.5 vs 46.2, g/L) and Type IV collagen (50.04 vs 44.50 μg/L). Receiver operating characteristic curve analyses indicated a moderate predictive value of D-dimer by its own area under curve (AUC) of 0.64 (95% CI: 0.54-0.73) and the cutoff value as 0.81 μg/L. Dichotomized by the cutoff level, D-dimer along with other categorical variables generated a prediction model with AUC of 0.76 (95% CI: 0.68-0.89). Risks of patients with specific characteristics in the prediction model were summarized. Our study suggests that the plasma D-dimer level is a reliable predictor for incident ascites in advanced schistosomiasis japonica patients.

  14. Plasma D-dimer Can Effectively Predict the Prospective Occurrence of Ascites in Advanced Schistosomiasis Japonica Patients

    PubMed Central

    Wu, Xiaoying; Ren, Jianwei; Gao, Zulu; Xu, Yun; Xie, Huiqun; Li, Tingfang; Cheng, Yanhua; Hu, Fei; Liu, Hongyun; Gong, Zhihong; Liang, Jinyi; Shen, Jia; Liu, Zhen; Wu, Feng; Sun, Xi; Niu, Zhongzheng; Ning, An

    2017-01-01

    China still has more than 30,000 patients of advanced schistosomiasis while new cases being reported consistently. D-dimer is a fibrin degradation product. As ascites being the dominating symptom in advanced schistosomiasis, the present study aimed to explore a prediction model of ascites with D-dimer and other clinical easy-achievable indicators. A case-control study nested in a prospective cohort was conducted in schistosomiasis-endemic area of southern China. A total of 291 patients of advanced schistosomiasis were first investigated in 2013 and further followed in 2014. Information on clinical history, physical examination, and abdominal ultrasonography, including the symptom of ascites was repeatedly collected. Result showed 44 patients having ascites. Most of the patients’ ascites were confined in the kidney area with median area of 20 mm2. The level of plasma D-dimer and pertinent liver function indicators were measured at the initial investigation in 2013. Compared with those without ascites, cases with ascites had significantly higher levels of D-dimer (0.71±2.44 μg/L vs 0.48±2.12 μg/L, P=0.005), as well ALB (44.5 vs 46.2, g/L) and Type IV collagen (50.04 vs 44.50 μg/L). Receiver operating characteristic curve analyses indicated a moderate predictive value of D-dimer by its own area under curve (AUC) of 0.64 (95% CI: 0.54–0.73) and the cutoff value as 0.81 μg/L. Dichotomized by the cutoff level, D-dimer along with other categorical variables generated a prediction model with AUC of 0.76 (95% CI: 0.68–0.89). Risks of patients with specific characteristics in the prediction model were summarized. Our study suggests that the plasma D-dimer level is a reliable predictor for incident ascites in advanced schistosomiasis japonica patients. PMID:28506039

  15. Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily

    PubMed Central

    Ohnishi, Satoshi; Tochio, Naoya; Tomizawa, Tadashi; Akasaka, Ryogo; Harada, Takushi; Seki, Eiko; Sato, Manami; Watanabe, Satoru; Fujikura, Yukiko; Koshiba, Seizo; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Kigawa, Takanori; Yokoyama, Shigeyuki

    2008-01-01

    The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a β-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355–Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 × 102 M−1. We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355–Glu401), as the formation of an extra α-helix was predicted. An NMR structural determination confirmed the formation of an α-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal α-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain. PMID:18562638

  16. Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily.

    PubMed

    Ohnishi, Satoshi; Tochio, Naoya; Tomizawa, Tadashi; Akasaka, Ryogo; Harada, Takushi; Seki, Eiko; Sato, Manami; Watanabe, Satoru; Fujikura, Yukiko; Koshiba, Seizo; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Kigawa, Takanori; Yokoyama, Shigeyuki

    2008-09-01

    The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a beta-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355-Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 x 10(2) M(-1). We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355-Glu401), as the formation of an extra alpha-helix was predicted. An NMR structural determination confirmed the formation of an alpha-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal alpha-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain.

  17. An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1.

    PubMed

    Andera, L; Schneider, G J; Geiduschek, E P

    1994-01-01

    TF1 is the Bacillus subtilis bacteriophage-encoded dimeric type II DNA-binding protein. This relative of the eubacterial HU proteins and of the Escherichia coli integration host factor binds preferentially to 5-(hydroxymethyluracil)-containing DNA. We have examined the dynamics of exchange of monomer subunits between molecules of dimeric TF1. The analysis takes advantage of the fact that replacement of phenylalanine with arginine at amino acid 61 in the beta-loop 'arm' of TF1 alters DNA-bending and -binding properties, generating DNA complexes with distinctively different mobilities in gel electrophoresis. New species of DNA-protein complexes were formed by mixtures of wild type and mutant TF1, reflecting the formation of heterodimeric TF1, and making the dynamics of monomer exchange between TF1 dimers accessible to a simple gel retardation analysis. Exchange was rapid at high protein concentrations, even at 0 degrees C, and is proposed to be capable of proceeding through an interaction of molecules of TF1 dimer rather than exclusively through dissociation into monomer subunits. Evidence suggesting that DNA-bound TF1 dimers do not exchange subunits readily is also presented.

  18. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  19. Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.

    2018-02-01

    Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.

  20. The dynamics of a polariton dimer in a disordered coupled array of cavities

    NASA Astrophysics Data System (ADS)

    Aiyejina, Abuenameh; Andrews, Roger

    2018-03-01

    We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent - 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.

  1. Inducing Propulsion of Colloidal Dimers by Breaking the Symmetry in Electrohydrodynamic Flow.

    PubMed

    Ma, Fuduo; Yang, Xingfu; Zhao, Hui; Wu, Ning

    2015-11-13

    We show that dielectric colloidal dimers with broken symmetry in geometry, composition, or interfacial charges can all propel in directions that are perpendicular to the applied ac electric field. The asymmetry in particle properties ultimately results in an unbalanced electrohydrodynamic flow on two sides of the particles. Consistent with scaling laws, the propulsion direction, speed, and orientation of dimers can be conveniently tuned by frequency. The new propulsion mechanism revealed here is important for building colloidal motors and studying collective behavior of active matter.

  2. D-dimer and risk of thromboembolic and bleeding events in patients with atrial fibrillation--observations from the ARISTOTLE trial.

    PubMed

    Christersson, C; Wallentin, L; Andersson, U; Alexander, J H; Ansell, J; De Caterina, R; Gersh, B J; Granger, C B; Hanna, M; Horowitz, J D; Huber, K; Husted, S; Hylek, E M; Lopes, R D; Siegbahn, A

    2014-09-01

    D-dimer is related to adverse outcomes in arterial and venous thromboembolic diseases. To evaluate the predictive value of D-dimer level for stroke, other cardiovascular events, and bleeds, in patients with atrial fibrillation (AF) treated with oral anticoagulation with apixaban or warfarin; and to evaluate the relationship between the D-dimer levels at baseline and the treatment effect of apixaban vs. warfarin. In the ARISTOTLE trial, 18 201 patients with AF were randomized to apixaban or warfarin. D-dimer was analyzed in 14 878 patients at randomization. The cohort was separated into two groups; not receiving vitamin K antagonist (VKA) treatment and receiving VKA treatment at randomization. Higher D-dimer levels were associated with increased frequencies of stroke or systemic embolism (hazard ratio [HR] [Q4 vs. Q1] 1.72, 95% confidence interval [CI] 1.14-2.59, P = 0.003), death (HR [Q4 vs. Q1] 4.04, 95% CI 3.06-5.33) and major bleeding (HR [Q4 vs. Q1] 2.47, 95% CI 1.77-3.45, P < 0.0001) in the no-VKA group. Similar results were obtained in the on-VKA group. Adding D-dimer level to the CHADS2 score improved the C-index from 0.646 to 0.655 for stroke or systemic embolism, and from 0.598 to 0.662 for death, in the no-VKA group. D-dimer level improved the HAS-BLED score for prediction of major bleeds, with an increase in the C-index from 0.610 to 0.641. There were no significant interactions between efficacy and safety of study treatment and D-dimer level. In anticoagulated patients with AF, the level of D-dimer is related to the risk of stroke, death, and bleeding, and adds to the predictive value of clinical risk scores. The benefits of apixaban were consistent, regardless of the baseline D-dimer level. © 2014 International Society on Thrombosis and Haemostasis.

  3. Endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 1 targets misfolded HLA-B27 dimers for endoplasmic reticulum-associated degradation.

    PubMed

    Guiliano, David B; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J; Campbell, Elaine C; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J; Kellam, Paul; Hebert, Daniel N; Gould, Keith G; Powis, Simon J; Antoniou, Antony N

    2014-11-01

    HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). This study was undertaken to define the role of the UPR-induced ER-associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. HeLa cell lines expressing only 2 copies of a carboxy-terminally Sv5-tagged HLA-B27 were generated. The ER stress-induced protein ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) was overexpressed by transfection, and dimer levels were monitored by immunoblotting. EDEM1, the UPR-associated transcription factor X-box binding protein 1 (XBP-1), the E3 ubiquitin ligase hydroxymethylglutaryl-coenzyme A reductase degradation 1 (HRD1), and the degradation-associated proteins derlin 1 and derlin 2 were inhibited using either short hairpin RNA or dominant-negative mutants. The UPR-associated ERAD of HLA-B27 was confirmed using ER stress-inducing pharamacologic agents in kinetic and pulse chase assays. We demonstrated that UPR-induced machinery can target HLA-B27 dimers and that dimer formation can be controlled by alterations to expression levels of components of the UPR-induced ERAD pathway. HLA-B27 dimers and misfolded major histocompatibility complex class I monomeric molecules bound to EDEM1 were detected, and overexpression of EDEM1 led to inhibition of HLA-B27 dimer formation. EDEM1 inhibition resulted in up-regulation of HLA-B27 dimers, while UPR-induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1, and derlins 1 and 2. The present findings indicate that the UPR ERAD pathway can dispose of HLA-B27 dimers, thus presenting a potential novel therapeutic target for modulation of HLA-B27-associated inflammatory disease. Copyright © 2014 by the American College of Rheumatology.

  4. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    PubMed

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  5. D-Dimer in African Americans: Whole Genome Sequence Analysis and Relationship to Cardiovascular Disease Risk in the Jackson Heart Study.

    PubMed

    Raffield, Laura M; Zakai, Neil A; Duan, Qing; Laurie, Cecelia; Smith, Joshua D; Irvin, Marguerite R; Doyle, Margaret F; Naik, Rakhi P; Song, Ci; Manichaikul, Ani W; Liu, Yongmei; Durda, Peter; Rotter, Jerome I; Jenny, Nancy S; Rich, Stephen S; Wilson, James G; Johnson, Andrew D; Correa, Adolfo; Li, Yun; Nickerson, Deborah A; Rice, Kenneth; Lange, Ethan M; Cushman, Mary; Lange, Leslie A; Reiner, Alex P

    2017-11-01

    Plasma levels of the fibrinogen degradation product D-dimer are higher among African Americans (AAs) compared with those of European ancestry and higher among women compared with men. Among AAs, little is known of the genetic architecture of D-dimer or the relationship of D-dimer to incident cardiovascular disease. We measured baseline D-dimer in 4163 AAs aged 21 to 93 years from the prospective JHS (Jackson Heart Study) cohort and assessed association with incident cardiovascular disease events. In participants with whole genome sequencing data (n=2980), we evaluated common and rare genetic variants for association with D-dimer. Each standard deviation higher baseline D-dimer was associated with a 20% to 30% increased hazard for incident coronary heart disease, stroke, and all-cause mortality. Genetic variation near F3 was associated with higher D-dimer (rs2022030, β=0.284, P =3.24×10 -11 ). The rs2022030 effect size was nearly 3× larger among women (β=0.373, P =9.06×10 -13 ) than among men (β=0.135, P =0.06; P interaction =0.009). The sex by rs2022030 interaction was replicated in an independent sample of 10 808 multiethnic men and women ( P interaction =0.001). Finally, the African ancestral sickle cell variant ( HBB rs334) was significantly associated with higher D-dimer in JHS (β=0.507, P =1.41×10 -14 ), and this association was successfully replicated in 1933 AAs ( P =2.3×10 -5 ). These results highlight D-dimer as an important predictor of cardiovascular disease risk in AAs and suggest that sex-specific and African ancestral genetic effects of the F3 and HBB loci contribute to the higher levels of D-dimer among women and AAs. © 2017 American Heart Association, Inc.

  6. Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents

    PubMed Central

    Goldberg, Burt; Bona, Constantin

    2011-01-01

    Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177

  7. Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH4+, molecular crowding environment and jatrorrhizine derivatives.

    PubMed

    Tan, Wei; Yi, Long; Zhu, Zhentao; Zhang, Lulu; Zhou, Jiang; Yuan, Gu

    2018-03-01

    A guanine-rich human mature microRNA, miR-1587, was discovered to form stable intramolecular G-quadruplexes in the presence of K + , Na + and low concentration of NH 4 + (25mM) by electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism (CD) spectroscopy. Furthermore, under high concentration of NH 4 + (100mM) or molecular crowding environments, miR-1587 formed a dimeric G-quadruplex through 3'-to-3' stacking of two monomeric G-quadruplex subunits with one ammonium ion sandwiched between the interfaces. Specifically, two synthesized jatrorrhizine derivatives with terminal amine groups could also induce the dimerization of miR-1587 G-quadruplex and formed 1:1 and 2:1 complexes with the dimeric G-quadruplex. In contrast, jatrorrhizine could bind with the dimeric miR-1587 G-quadruplex, but could not induce dimerization of miR-1587 G-quadruplex. These results provide a new strategy to regulate the functions of miR-1587 through induction of G-quadruplex formation and dimerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  9. Elastic and viscous properties of the nematic dimer CB7CB

    NASA Astrophysics Data System (ADS)

    Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.

    2017-12-01

    We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.

  10. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  11. Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stogios, Peter J.; Cuesta-Seijo, Jose Antonio; Chen, Lu

    2010-09-22

    The BTB domain is a widely distributed protein-protein interaction motif that is often found at the N-terminus of zinc finger transcription factors. Previous crystal structures of BTB domains have revealed tightly interwound homodimers, with the N-terminus from one chain forming a two-stranded anti-parallel {beta}-sheet with a strand from the other chain. We have solved the crystal structures of the BTB domains from Fanconi anemia zinc finger (FAZF) and Miz1 (Myc-interacting zinc finger 1) to resolutions of 2.0 {angstrom} and 2.6 {angstrom}, respectively. Unlike previous examples of BTB domain structures, the FAZF BTB domain is a nonswapped dimer, with each N-terminalmore » {beta}-strand associated with its own chain. As a result, the dimerization interface in the FAZF BTB domain is about half as large as in the domain-swapped dimers. The Miz1 BTB domain resembles a typical swapped BTB dimer, although it has a shorter N-terminus that is not able to form the interchain sheet. Using cysteine cross-linking, we confirmed that the promyelocytic leukemia zinc finger (PLZF) BTB dimer is strand exchanged in solution, while the FAZF BTB dimer is not. A phylogenic tree of the BTB fold based on both sequence and structural features shows that the common ancestor of the BTB domain in BTB-ZF (bric a brac, tramtrack, broad-complex zinc finger) proteins was a domain-swapped dimer. The differences in the N-termini seen in the FAZF and Miz1 BTB domains appear to be more recent developments in the structural evolution of the domain.« less

  12. Hydrogen dimer structures in the far-infrared spectra of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Frommhold, L.; Samuelson, R.; Birnbaum, G.

    1984-01-01

    On the basis of a spectral line shape computation and radiative transfer calculations, it is shown that the unexplained, diminutive structures seen in the Voyager IRIS Jovian spectra near the hydrogen S0(0) and S0(1) rotational frequencies are due to bound-free transitions involving hydrogen dimers. The absorption intensities of these transitions, as well as of the collision-induced background, are given. These dimer structures may possibly prove to be useful for determining the helium/hydrogen ratio and the para-hydrogen fraction in the atmospheres of the outer planets.

  13. Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease.

    PubMed

    Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M; Hulce, Kaitlin R; Gonzalez, Eric R; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J; Craik, Charles S

    2016-04-19

    Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photomodulation of the nucleating activity of a photocleavable crosslinked actin dimer.

    PubMed

    Marriott, G; Miyata, H; Kinosita, K

    1992-04-01

    The ability to generate substrate concentration jumps through photo-deprotection of amine, carboxyl and phosphate groups has been an important development for investigations of protein activity in complex systems. To broaden the versatility and applications of photo-deprotection techniques for the photomodulation of protein activity we describe the synthesis and characterisation of a reagent for generating free thiol from thioether groups and a related photocleavable, heterobifunctional crosslinking reagent. Chemical and spectroscopic studies of a model thiol protected derivative were used to show some features of thiol group photodeprotection. To demonstrate how the photocleavable crosslinking reagent may be used to modulate the activity of proteins we investigated the effect of light on the nucleating activity of crosslinked actin dimer; thus following near-ultraviolet irradiation of the actin dimer the crosslink was cleaved, presumeably at the thioether bond, resulting in the concomitant dissociation of dimer, loss of nucleating activity and creation of a concentration jump of polymerisable G-actin monomer. On the basis of this initial study we discuss applications and limitations of these reagents for the photomodulation of protein activity in vitro and in vivo.

  15. Modulation of dimerization by residues distant from the interface in bovine neurophysin-II.

    PubMed

    Zheng, C; Peyton, D; Breslow, E

    1997-09-01

    The crystal structure of bovine neurophysin-II in its liganded state (Chen et al. [1991] Proc. Natl. Acad. Sci. USA 88, 4240-4244) indicates that the 1-6 sequence has a disordered conformation, lacks noncovalent contacts to other regions of the protein and is distant from the monomer-monomer interface. Cleavage of the 1-6 sequence by Staphylococcus protease V8 yielded a protein that, for the first time, crystallized in both liganded and unliganded states. Insights into the role of the 1-6 sequence in the unliganded state were obtained by NMR and related biophysical comparisons of the native and des-1-6 proteins. NMR spectra demonstrated that the environment and/or conformation of residues in the 1-6 sequence differed in liganded and unliganded states. Additionally, the unliganded des-1-6 protein exhibited a dimerization constant four to five times that of the native protein, potentially accounting for the observation that its peptide affinity was also increased. NMR studies further indicated that the increased dimerization constant of the des-1-6 protein correlated with the presence in the native protein of two isoenergetic forms of the monomer, in contrast to only a single form in the des-1-6 protein, as evidenced by signals from an internal dimerization-sensitive alpha-proton. Thus, the 1-6 sequence reduces the dimerization constant by stabilization of an alternative monomer conformation. A second product of Staphylococcus protease V8 digestion of the native protein was identified as the des-1-6 protein with an internal clip after binding site residue Glu-47, the clip presumably breaking the short 3,10 helix that most directly connects the interface to the interface to the binding site. This product, although unable to bind peptide, retained the dimerization constant of the des-1-6 protein, suggesting a lack of importance of the helix in dimerization and contrasting with the effects of the 1-6 sequence. A model is proposed in which the 1-6 sequence stabilizes the

  16. On the intermolecular Coulombic decay of singly and doubly ionized states of water dimer.

    PubMed

    Stoychev, Spas D; Kuleff, Alexander I; Cederbaum, Lorenz S

    2010-10-21

    A semiquantitative study of the intermolecular Coulombic decay (ICD) of singly and doubly ionized water dimer has been carried out with the help of ab initio computed ionization spectra and potential energy curves (PECs). These PECs are particular cuts through the (H(2)O)(2), (H(2)O)(2) (+), and (H(2)O)(2) (++) hypersurfaces along the distance between the two oxygen atoms. A comparison with the recently published experimental data for the ICD in singly ionized water dimers [T. Jahnke, H. Sann, T. Havermeier et al., Nat. Phys. 6, 139 (2010)] and in large water clusters [M. Mucke, M. Braune, S. Barth et al., Nat. Phys. 6, 143 (2010)] shows that such a simplified description in which the internal degrees of freedom of the water molecules are frozen gives surprisingly useful results. Other possible decay channels of the singly ionized water dimer are also investigated and the influence of the H-atom participating in the hydrogen bond on the spectra of the proton-donor and proton-acceptor molecules in the dimer is discussed. Importantly, the decay processes of one-site dicationic states of water dimer are discussed and an estimate of the ICD-electron spectra is made. More than 33% of the dications produced by Auger decay are found to undergo ICD. The qualitative results show that the ICD following Auger decay in water is also expected to be an additional source of low-energy electrons proven to be extremely important for causing damages to living tissues.

  17. High-speed atomic force microscopy reveals structural dynamics of α -synuclein monomers and dimers

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Hashemi, Mohtadin; Lv, Zhengjian; Williams, Benfeard; Popov, Konstantin I.; Dokholyan, Nikolay V.; Lyubchenko, Yuri L.

    2018-03-01

    α-Synuclein (α-syn) is the major component of the intraneuronal inclusions called Lewy bodies, which are the pathological hallmark of Parkinson's disease. α-Syn is capable of self-assembly into many different species, such as soluble oligomers and fibrils. Even though attempts to resolve the structures of the protein have been made, detailed understanding about the structures and their relationship with the different aggregation steps is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. Here we report the structural flexibility of α-syn monomers and dimers in an aqueous solution environment as probed by single-molecule time-lapse high-speed AFM. In addition, we present the molecular basis for the structural transitions using discrete molecular dynamics (DMD) simulations. α-Syn monomers assume a globular conformation, which is capable of forming tail-like protrusions over dozens of seconds. Importantly, a globular monomer can adopt fully extended conformations. Dimers, on the other hand, are less dynamic and show a dumbbell conformation that experiences morphological changes over time. DMD simulations revealed that the α-syn monomer consists of several tightly packed small helices. The tail-like protrusions are also helical with a small β-sheet, acting as a "hinge". Monomers within dimers have a large interfacial interaction area and are stabilized by interactions in the non-amyloid central (NAC) regions. Furthermore, the dimer NAC-region of each α-syn monomer forms a β-rich segment. Moreover, NAC-regions are located in the hydrophobic core of the dimer.

  18. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  19. Direct Assessment of the Effect of the Gly380Arg Achondroplasia Mutation on FGFR3 Dimerization Using Quantitative Imaging FRET

    PubMed Central

    Placone, Jesse; Hristova, Kalina

    2012-01-01

    The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand. PMID:23056398

  20. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.