Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.
2009-01-01
α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394
Bacterial Transformations of Naphthothiophenes
Kropp, K. G.; Andersson, J. T.; Fedorak, P. M.
1997-01-01
Naphthothiophenes are minor components of fossil fuels, and they can enter the environment from oil spills. Naphtho[2,1-b]thiophene, naphtho[2,3-b]thiophene, and 1-methylnaphtho[2,1-b]thiophene were synthesized and used in biodegradation studies with 1-methylnaphthalene (1-MN)-degrading Pseudomonas strains W1, F, and BT1. Cultures were incubated with one of the naphthothiophenes with or without 1-MN, acidified, and extracted with CH(inf2)Cl(inf2). The extracts were analyzed by gas chromatography with flame photometric and mass detectors to characterize sulfur-containing metabolites and with an atomic emission detector for quantification. Only strain W1 was able to grow on naphtho[2,1-b]thiophene, but strains F and BT1 cometabolized this compound if 1-MN was present. 1-MN was required by all three strains to metabolize naphtho[2,3-b]thiophene, which was more resistant to biodegradation than the [2,1-b] isomer. Two metabolites of naphtho [2,1-b]thiophene were purified, analyzed by (sup1)H nuclear magnetic resonance spectroscopy, and found to be 4-hydroxybenzothiophene-5-carboxylic acid (metabolite I) and 5-hydroxybenzothiophene-4-carboxylic acid (metabolite II). In cultures of strain W1 grown for 7 days on 52 (mu)mol of naphtho[2,1-b]thiophene, >84% of the substrate was degraded and metabolites I and II accounted for 19 and 9%, respectively, of the original amount of naphtho[2,1-b]thiophene. When 1-MN was present, strain W1 degraded >97% of the naphtho[2,1-b]thiophene and similar amounts of metabolite II were produced, but metabolite I did not accumulate. 1-MN was shown to promote the further degradation of metabolite I, but not of metabolite II, by strain W1. Thus, 1-MN enhanced the biodegradation of naphtho[2,1-b]thiophene. Approximately 70% of the 1-methylnaphtho [2,1-b]thiophene added to cultures of strain W1 with 1-MN was recovered as 4-hydroxy-3-methylbenzothiophene-5-carboxylic acid, the 3-methyl analog of metabolite I. The methyl substitution hindered further metabolism of 3-methyl-metabolite I even in the presence of 1-MN. Cometabolism of naphtho[2,3-b]thiophene yielded two products that were tentatively identified as 5-hydroxybenzothiophene-6-carboxylic and 6-hydroxybenzothiophene-5-carboxylic acids. PMID:16535687
Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen
2014-01-15
Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D
2017-06-01
In solid-state engineering, cocrystallization is a strategy actively pursued for pharmaceuticals. Two 1:1 cocrystals of 5-fluorouracil (5FU; systematic name: 5-fluoro-1,3-dihydropyrimidine-2,4-dione), namely 5-fluorouracil-5-bromothiophene-2-carboxylic acid (1/1), C 5 H 3 BrO 2 S·C 4 H 3 FN 2 O 2 , (I), and 5-fluorouracil-thiophene-2-carboxylic acid (1/1), C 4 H 3 FN 2 O 2 ·C 5 H 4 O 2 S, (II), have been synthesized and characterized by single-crystal X-ray diffraction studies. In both cocrystals, carboxylic acid molecules are linked through an acid-acid R 2 2 (8) homosynthon (O-H...O) to form a carboxylic acid dimer and 5FU molecules are connected through two types of base pairs [homosynthon, R 2 2 (8) motif] via a pair of N-H...O hydrogen bonds. The crystal structures are further stabilized by C-H...O interactions in (II) and C-Br...O interactions in (I). In both crystal structures, π-π stacking and C-F...π interactions are also observed.
The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery
ERIC Educational Resources Information Center
Nicholson, John W.; Wilson, Alan D.
2004-01-01
The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.
Synthesis of a ketone analogue of biotin via the intramolecular Pauson-Khand reaction.
McNeill, Eric; Chen, Irwin; Ting, Alice Y
2006-09-28
We report an improved synthesis of 5-(5-oxohexahydrocyclopenta[c]thiophen-1-yl)pentanoic acid (ketone biotin, 1) based on the intramolecular Pauson-Khand cyclization. The synthesis proceeds in eight steps and in 2.7% overall yield from cyclohexene.
Synthesis of a ketone analog of biotin via the intramolecular Pauson-Khand reaction
McNeill, Eric; Chen, Irwin; Ting, Alice Y.
2008-01-01
We report an improved synthesis of 5-(5-oxohexahydrocyclopenta[c]thiophen-1-yl)pentanoic acid (ketone biotin, 1) based on the intramolecular Pauson-Khand cyclization. The synthesis proceeds in 8 steps and in 2.7% overall yield from cyclohexene. PMID:16986958
Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.
Orozco, Lina M; Renz, Michael; Corma, Avelino
2016-09-08
Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.
Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.
Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the methodmore » is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less
Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; ...
2017-11-22
Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less
A Bio-Catalytic Approach to Aliphatic Ketones
Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun
2012-01-01
Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247
A bio-catalytic approach to aliphatic ketones.
Xiong, Mingyong; Deng, Jin; Woodruff, Adam P; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun
2012-01-01
Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid "Bio-Catalytic conversion" approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals.
(CF3CO)2O/CF3SO3H-mediated synthesis of 1,3-diketones from carboxylic acids and aromatic ketones
Kim, JungKeun; Shokova, Elvira; Tafeenko, Victor
2014-01-01
Summary A very simple and convenient reaction for 1,3-diketone preparation from carboxylic acids and aromatic ketones in TFAA/TfOH system is described. When the β-phenylpropionic acids were used as starting materials, they initially gave 1-indanones and then underwent further acylation with the formation of 2-(β-phenylpropionyl)-1-indanones as the main reaction products. In addition, the application of the proposed protocol allowed for the synthesis of selected polysubstituted pyrazoles in a one-pot procedure directly from acids and ketones. PMID:25298794
Histochemical Demonstration of Protein-Bound Alpha-Acylamido Carboxyl Groups
Barrnett, Russell J.; Seligman, Arnold M.
1958-01-01
A method has been developed to demonstrate the alpha-acylamido carboxyl groups of protein, taking advantage of the fact that acylamido carboxyl groups are converted to ketonic carbonyls by the action of acetic anhydride and absolute pyridine. The method utilizes deparaffinized sections of tissues fixed in a variety of fixatives. Following the conversion of carboxyls to the methyl ketones, the latter are stained with 2-hydroxy-3-naphthoic acid hydrazide. Control experiments have indicated that methylation of carboxyls prevented staining, as did carbonyl reagents after the carboxyls were transformed to methyl ketones. Leucofuchsin did not stain the ketonic carbonyls, and only elastic tissue stained with 2-hydroxy-3-naphthoic acid hydrazide without the previous use of the catalyzed reaction with anhydride. A brief survey of the reaction on various tissues of the albino rat was made, and the effects of various fixatives were assayed. Of particular interest were certain sites, such as acidophiles of the anterior pituitary gland, where an intense reaction occurred. The possibility exists that certain specific proteins rich in terminal acylamido carboxyl groups, by virtue of their protein side chains or low molecular weight, may be demonstrated by this method. PMID:13525430
Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K
2017-03-17
A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery
NASA Astrophysics Data System (ADS)
Nicholson, John W.; Wilson, Alan
2004-09-01
This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .
Sinterable Ceramic Powders from Laser-Heated Gases.
1988-02-01
ether . carboxylic acid. and aldehyde clases: water is also included.Acrigto William and Goodman.’ a single crystalline sili- The single-crstalline...represent commonly available organic families, Including aliphatic and aromatic hydrocarbons, chlorides, ethers , ketones , esters, alcohols, aldehydes...Hydrocarbons Ketone Amine Chlorides Low-alcohols 8f . Ether Ester - _Aldehyde Ether Ketones High-alcohols 04 Carboxylic Ester I acid Ether o . Nitrile
Tso, Shih-Chia; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L.; Qi, Xiangbing; Skvorak, Kristen J.; Dorko, Kenneth; Wallace, Amy L.; Morlock, Lorraine K.; Lee, Brendan H.; Hutson, Susan M.; Strom, Stephen C.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.
2014-01-01
The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation. BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC50 = 3.19 μm). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T½ = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations. PMID:24895126
Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols
NASA Astrophysics Data System (ADS)
Suárez, Andrés
2018-02-01
Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.
Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells.
Freitas, Flavio S; Clifford, John N; Palomares, Emilio; Nogueira, Ana F
2012-09-14
In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO(2)/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH(2)- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO(2) surface wettability, improving the TiO(2)/polymer contact. This effect is important to enhance exciton splitting and charge separation.
Crystal structures of functional building blocks derived from bis(benzo[b]thiophen-2-yl)methane.
Katzsch, Felix; Gruber, Tobias; Weber, Edwin
2016-09-01
The syntheses of three bis(benzo[b]thiophen-2-yl)methane derivatives, namely bis(benzo[b]thiophen-2-yl)methanone, C17H10OS2, (I), 1,1-bis(benzo[b]thiophen-2-yl)-3-(trimethylsilyl)prop-2-yn-1-ol, C22H20OS2Si, (II), and 1,1-bis(benzo[b]thiophen-2-yl)prop-2-yn-1-ol, C19H12OS2, (III), are described and their crystal structures discussed comparatively. The conformation of ketone (I) and the respective analogues are rather similar for most of the compounds compared. This is true for the interplanar angles, the Caryl-Cbridge-Caryl angles and the dihedral angles. The best resemblance is found for a bioisotere of (I), viz. 2,2'-dinaphthyl ketone, (VII). By way of interest, the crystal packings also reveal similarities between (I) and (VII). In (I), the edge-to-face interactions seen between two napthyl residues in (VII) are substituted by S...π contacts between the benzo[b]thiophen-2-yl units in (I). In the structures of the bis(benzo[b]thiophen-2-yl)methanols, i.e. (II) and (III), the interplanar angles are also quite similar compared with analogues and related active pharmaceutical ingredients (APIs) containing the dithiophen-2-ylmethane scaffold, though the dihedral angles show a larger variability and produce unsymmetrical molecules.
Molecular water oxidation catalyst
Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.
1993-01-01
A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.
Water-enhanced solvation of organic solutes in ketone and ester solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; Brunt, V. van; King, C.J.
1994-05-01
Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, andmore » 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.
Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presencemore » of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.« less
Zhang, Zhihui; Liebeskind, Lanny S.
2008-01-01
A new method for the synthesis of nitriles is described. As a complement to the classic cyanation of aryl halides using cyanide sources and a transition metal catalyst, the palladium-catalyzed cross-coupling of thiocyanates with boronic acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) affords nitriles in good to excellent yields. PMID:16956219
Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.
1995-01-01
Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.
Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.
2013-01-01
New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449
Friedel-Crafts Acylation with Amides
Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.
2012-01-01
Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740
1981-08-31
Interior Paairt r’ts RorzotalSapleIeun Forle Tranduer Figure I. Combustion Products Test Chamber. .. 2. *Sold hda 0 Ol~n kb 3’. 8.iIdg IN= W I Vll ue2...hydrocarbons (alkanes, alkenes, and alkynes), alcohols, aldehydes, ketones, ethers, carboxylic acids , aromatic hydrocarbons, polycyclic aromatic hydrocarbons...carboxylic acids , a few nitriles, acetaldehyde, and acetone. A few exotic fluorine containing organic compounds have unusually low refractive indices for
Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.
Zhang, Muliang; Li, Nan; Tao, Xingyu; Ruzi, Rehanguli; Yu, Shouyun; Zhu, Chengjian
2017-09-12
The direct reduction of carboxylic acids to aldehydes with hydrosilane was achieved through visible light photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps offers a novel and convenient approach to selective reduction of carboxylic acids to aldehydes. The method also features mild conditions, high yields, broad substrate scope, and good functional group tolerance, such as alkyne, ester, ketone, amide and amine groups.
Ultrafast third-order nonlinear optical response of pyrene derivatives
NASA Astrophysics Data System (ADS)
Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin
2017-05-01
Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.
Jennifer, Samson Jegan; Muthiah, Packianathan Thomas
2014-01-01
The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The structure of each compound depends on the dihedral angle between the carboxyl group and the nitrogenous base. All these compounds indicate three main synthons that regularly occur, namely linear heterodimer (HD), heterotrimer (HT) and heterotetramer (LHT).
Tan, Wei Wen; Yoshikai, Naohiko
2016-07-01
We report herein copper(II)-catalyzed cyclization reactions of silyl enol ethers derived from methyl ketones with α-diazo-β-ketoesters or α-diazoketones to afford 2-siloxy-2,3-dihydrofuran derivatives or 2,3,5-trisubstituted furans, respectively, under mild conditions. The former cyclization products serve as versatile 1,4-diketone surrogates, allowing facile preparation of 2,3,5-trisubstituted furans, pyrroles, and thiophenes.
Shi, Zhi-Qiang; Guo, Zi-Jian; Zheng, He-Gen
2015-05-14
Two luminescent Zn(II) metal-organic frameworks were prepared from a π-conjugated thiophene-containing carboxylic acid ligand. These two MOFs show strong luminescene and their luminescence could be quenched by a series of nitroaromatic explosives. Importantly, they exhibit very highly sensitive and selective detection of picric acid compared to other nitroaromatic explosives.
D-piece modifications of the hemiasterlin analog HTI-286 produce potent tubulin inhibitors.
Zask, Arie; Birnberg, Gary; Cheung, Katherine; Kaplan, Joshua; Niu, Chuan; Norton, Emily; Yamashita, Ayako; Beyer, Carl; Krishnamurthy, Girija; Greenberger, Lee M; Loganzo, Frank; Ayral-Kaloustian, Semiramis
2004-08-16
Modifications of the D-piece carboxylic acid group of the hemiasterlin analog HTI-286 gave tubulin inhibitors which were potent cytotoxic agents in taxol resistant cell lines expressing P-glycoprotein. Amides derived from proline had potency comparable to HTI-286. Reduction of the carboxylic acid to ketones and alcohols or its conversion to acidic heterocycles also gave potent analogs. Synthetic modifications of the carboxylic acid could be carried out selectively using a wide range of synthetic reagents. Proline analog 3 was found to be effective in a human xenograft model in athymic mice.
Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R
2013-09-01
An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Del Vecchio, R.; Schendorf, T. M.; Koech, K.; Blough, N. V.
2016-02-01
HS have been studied extensively over the last decades, yet the structural basis of their optical properties is still highly debated. Aromatic ketones, aldehydes and quinones along with carboxylic groups and phenolic moieties are significant constituents of HS, however their contribution to the optical properties has only recently been investigated. Chemical manipulation of selected functional groups thus represents an extremely promising approach to highlight the contribution of such groups to the HS (and CDOM) optical properties. Chemical reduction (and re-oxidation) along with pH titrations are employed herein to assess the relative contribution of aromatic ketones/aldehydes/quinones and carboxylic groups/phenolic moieties, respectively to the optical properties of HS (and CDOM). Results indicate that (a) the contribution of quinones to HS absorption and fluorescence is minor (or nil), while that of aromatic ketones (and aldehydes) is significant; (b) phenolic groups contribute more than carboxylic acids to the HS optical properties; (c) the effects of borohydride reduction and pH on the long-wavelength absorption and fluorescence is consistent with charge-transfer interactions between carbonyl and phenolic groups (as well as aromatic carboxylic acids, but to a smaller extent). Results will be presented within the context of our proposed charge-transfer model.
Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.
Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme
2015-05-01
An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei
1989-04-12
Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to thismore » interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.« less
Organic Reaction Mechanisms in the Sixth Form Part 2.
ERIC Educational Resources Information Center
Simpson, Peter
1989-01-01
Presents the mechanistic ideas underlying reactions between nucleophiles and carbonyl compounds as well as some popular misconceptions. Relates reactions of carboxylic acid derivatives to those of aldehydes and ketones. Discusses leaving group ability and the ability of carbonyl oxygen to accept a negative charge. (Author/MVL)
Truong, Eric C; Phuan, Puay W; Reggi, Amanda L; Ferrera, Loretta; Galietta, Luis J V; Levy, Sarah E; Moises, Alannah C; Cil, Onur; Diez-Cecilia, Elena; Lee, Sujin; Verkman, Alan S; Anderson, Marc O
2017-06-08
Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC 50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.
Seyfried, M; van Ginkel, C G; Boschung, A; Miffon, F; Fantini, P; Tissot, E; Baroux, L; Merle, P; Chaintreau, A
2015-07-01
The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula. Copyright © 2015 Elsevier Ltd. All rights reserved.
Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Nguyen, My Ann; Cameron, Jane; Fu, Shanlin
2017-07-01
The knowledge of metabolic profile of synthetic cannabinoids is important for the detection of drugs in urinalysis due to the typical absence or low abundance of parent cannabinoids in human urine. The fungus Cunninghamella elegans has been reported to be a useful tool for metabolism study and thus applicability to synthetic cannabinoid metabolism was examined. In this study, 8-quinolinyl 1-(5-fluoropentyl)-1H-indole-3-carboxylate (5F-PB-22), 8-quinolinyl 1-pentyl-1H-indole-3-carboxylate (PB-22), [1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (XLR-11) and (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144) were incubated with C. elegans and the metabolites were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry. The obtained metabolites were compared with reported human metabolites to assess the suitability of the fungus to extrapolate human metabolism. 5F-PB-22 underwent dihydroxylation, dihydrodiol formation, oxidative defluorination, oxidative defluorination to carboxylic acid, ester hydrolysis and glucosidation, alone and/or in combination. The metabolites of PB-22 were generated by hydroxylation, dihydroxylation, trihydroxylation, dihydrodiol formation, ketone formation, carboxylation, ester hydrolysis and glucosidation, alone and/or in combination. XLR-11 was transformed through hydroxylation, dihydroxylation, aldehyde formation, carboxylation, oxidative defluorination, oxidative defluorination to carboxylic acid and glucosidation, alone and/or in combination. UR-144 was metabolised by hydroxylation, dihydroxylation, trihydroxylation, aldehyde formation, ketone formation, carboxylation, N-dealkylation and combinations. These findings were consistent with previously reported human metabolism except for the small extent of ester hydrolysis observed and the absence of glucuronidation. Despite the limitations, C. elegans demonstrated the capacity to produce a wide variety of metabolites including some major human metabolites of XLR-11 and UR-144 at high abundance, showing the potential for metabolism of newly emerging synthetic cannabinoids.
Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R
2015-03-01
The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.
Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc
2016-05-01
The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.
DoganKoruznjak, Jasna; Slade, Neda; Zamola, Branimir; Pavelić, Kresimir; Karminski-Zamola, Grace
2002-05-01
The novel derivatives of thieno[3',2':4,5]thieno[2,3-c]quinolones 6a, 6b, 7, 10a and 10b were synthesized in multistep synthesis starting from thiophene-3-carboxaldehyde and malonic acid reacting in aldol condensation or from 3-bromothiophenes or methyl 4-bromothiophene-2-carboxylate reacting in Heck reaction. They resulted in corresponding substituted thienylacrylic acids 3a-c, which were cyclized into thieno[2,3-c]thiophene-2-carbonyl chlorides 4a-c and converted into thieno[2,3-c]thiophene-2-carboxamides 5a-d. Prepared carboxamides were photochemically dehydrohalogenated into corresponding substituted thieno[3',2':4,5]thieno[2,3-c]quinolones 6a-d. Compound 7 was prepared from 6d by alkylation with N-[3-(dimethylamino)propyl]chloride hydrochloride in the presence of NaH. Compounds 10a and 10b were prepared from 6c in the multistep synthesis over acid 8 and acid chloride 9. Compounds 6a, 6b, 7, 10a and 10b were found to exert cytostatic activities against malignant cell lines: pancreatic carcinoma (MiaPaCa2), breast carcinoma (MCF7), cervical carcinoma (HeLa), laryngeal carcinoma (Hep2), colon carcinoma (CaCo-2), melanoma (HBL), and human fibroblast cell lines (WI-38). The compound 6b, which bears the 3-dimethylaminopropyl substituent on quinolone nitrogen and methoxycarbonyl substituent on position 9, exhibited marked antitumor activity. On the contrary, compound 7, which also bears the 3-dimethylaminopropyl substituent on the quinolone nitrogen but anilido substituent on position 9, exhibited less antitumor activity than the others.
Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.
Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo
2010-12-28
In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.
Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.
Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard
2016-01-01
Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.
Synthesis and Antitubercular Activity of New Benzo[b]thiophenes.
Mahajan, Pravin S; Nikam, Mukesh D; Nawale, Laxman U; Khedkar, Vijay M; Sarkar, Dhiman; Gill, Charansingh H
2016-08-11
In vitro and ex vivo efficacies of four series of benzo[b]thiophene-2-carboxylic acid derivatives were studied against Mycobacterium tuberculosis H37Ra (MTB). Benzo[b]thiophenes were also tested in vitro against multidrug resistant Mycobacterium tuberculosis H37Ra (MDR-MTB), and 7b was found to be highly active against A- and D-MDR-MTB/MTB (MIC ranges 2.73-22.86 μg/mL). The activity of all benzo[b]thiophenes against M. bovis BCG (BCG) was also assessed grown under aerobic and under conditions of oxygen depletion. Compounds 8c and 8g showed significant activity with MICs of 0.60 and 0.61 μg/mL against dormant BCG. The low cytotoxicity and high selectivity index data against human cancer cell lines, HeLa, Panc-1, and THP-1 indicate the potential importance of the development of benzo[b]thiophene-based 1,3-diketones and flavones as lead candidates to treat mycobacterial infections. Molecular docking studies into the active site of DprE1 (Decaprenylphosphoryl-β-d-ribose-2'-epimerase) enzyme revealed a similar binding mode to native ligand in the crystal structure thereby helping to understand the ligand-protein interactions and establish a structural basis for inhibition of MTB. In summary, its good activity in in vitro and ex vivo model, as well as its activity against multidrug-resistant M. tuberculosis H37Ra in a potentially latent state, makes 7b an attractive drug candidate for the therapy of tuberculosis.
Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH
Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete
2013-01-01
Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions. PMID:24224646
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.
2013-01-01
Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.
Okado, Ryohei; Nowaki, Aya; Matsuo, Jun-Ichi; Ishibashi, Hiroyuki
2012-01-01
A catalytic amount of tin(IV) chloride catalyzed formal [4+2] cycloaddition reaction of di-tert-butyl 2-ethoxycyclobutane-1,1-carboxylate with ketones or aldehydes to give diethyl 6-ethoxydihydro-2H-pyran-3,3(4H)-dicarboxylates, whereas two equivalents of trimethylsilyl triflate promoted tandem [4+2] cycloaddition and lactonization to afford 3-oxo-2,6-dioxabicyclo[2.2.2]octane-4-carboxylate esters.
Reshak, Ali H; Kityk, I V; Khenata, R; Al-Douri, Y; Auluck, S
2012-09-01
An ab initio investigation of the optical constants of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystal is performed within a framework of local density approximation (LDA), and the Engel-Vosko generalized gradient approximation (EV-GGA) exchange correlation potentials. It is established that there are two independent molecules (A and B) exhibiting different intra-molecular interactions: C-H⋯O (A) and C-H⋯N (B). These intra-molecular interactions favor stabilization of the crystal structure for molecules A and B. It should be emphasized that there exist remarkable π-π interactions between the pyrimidine rings of the two neighbors B molecules giving extra strengths and stabilizations to the superamolecular structure. These different intra-molecular interactions C-H⋯O (A) and C-H⋯N (B) and the π-π interaction between the pyrimidine rings of the two neighbors B molecules give principal contribution to dispersion of optical properties. With a view to seek deeper insight into the electronic structure, the optical properties were investigated. Our calculations show that the optical constants are very anisotropic. The EVGGA calculation shows a blue spectral shift of around 0.024 eV with significant changes in the spectra compared to the LDA calculation. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernstein, Max P.; Moore, Marla H.; Elsila, Jamie E.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.
2003-01-01
Ices at ~15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1:100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmission-reflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization mass spectrometry. Just as in the case of UV photolysis, oxygen atoms are added to coronene, yielding, in the case of H2O ices, the addition of one or more alcohol (OH) and ketone (>CO) side chains to the coronene scaffolding. There are, however, significant differences between the products formed by proton irradiation and the products formed by UV photolysis of coronene containing CO and CO2 ices. The formation of a coronene carboxylic acid (COOH) by proton irradiation is facile in solid CO but not in CO2, the reverse of what was previously observed for UV photolysis under otherwise identical conditions. This work presents evidence that cosmic-ray irradiation of interstellar or cometary ices should have contributed to the formation of aromatics bearing ketone and carboxylic acid functional groups in primitive meteorites and interplanetary dust particles.
Ravelli, Davide; Zema, Michele; Mella, Mariella; Fagnoni, Maurizio; Albini, Angelo
2010-09-21
Benzoyl radicals are generated directly from (hetero)aromatic aldehydes upon tetrabutylammonium decatungstate ((n-Bu(4)N)(4)W(10)O(32)), TBADT) photocatalysis under mild conditions. In the presence of alpha,beta-unsaturated esters, ketones and nitriles radical conjugate addition ensues and gives the corresponding beta-functionalized aryl alkyl ketones in moderate to good yields (stereoselectively in the case of 3-methylene-2-norbornanone). Due to the mild reaction conditions the presence of various functional groups on the aromatic ring is tolerated (e.g. methyl, methoxy, chloro). The method can be applied to hetero-aromatic aldehydes whether electron-rich (e.g. thiophene-2-carbaldehyde) or electron-poor (e.g. pyridine-3-carbaldehyde).
Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara
2016-02-14
The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.
Organic Lecture Demonstrations.
ERIC Educational Resources Information Center
Silversmith, Ernest F.
1988-01-01
Provides a listing of 35 demonstrations designed to generate interest in organic chemistry and help put points across. Topics include opening lecture; molecular structure and properties; halogenation; nucleophilic substitution, alkenes and dienes, stereochemistry, spectroscopy, alcohols and phenols, aldehydes and ketones; carboxylic acids, amines,…
Intramolecular Isotopic Studies: Chemical Enhancements and Alternatives
NASA Astrophysics Data System (ADS)
Hayes, J. M.
2016-12-01
As mass spectroscopic and NMR-based methods now appropriately flourish, chemical techniques should not be forgotten. First, the methods developed by pioneering intramolecular analysts can be reapplied to new samples. Second, they can be extended. The synthesis of intramolecular isotopic standards is particularly important and straightforward. It requires only that a chemical reaction has no secondary products. An example is provided by the addition of carbon dioxide to a Grignard reagent. The reaction proceeds with an isotope effect. The isotopic composition of the carboxyl group in the acid which is produced is thus not equal to that of the starting carbon dioxide but the unconsumed CO2 can be recovered and analyzed. A simple titration can show that all the rest of the CO2 is in the product acid. The isotopic composition of the carboxyl group can then be calculated by difference. The product is an intramolecular isotopic standard, an organic molecule in which the isotopic composition of a specific carbon position is known accurately. Both analysts and reviewers can thus gain invaluable confidence in the accuracy of instrumental results. A second example: the haloform reaction quantitatively degrades methyl ketones, producing a carboxylic acid which can be decarboxylated to determine the isotopic composition of the parent carbonyl and a haloform (CHI3, for example) that can be combusted to determine the isotopic composition of the methyl group. Ketones thus analyzed can be combined with Grignard reagents to yield carbon skeletons in which the isotopic compositions of internal and terminal -CH2- and -CH3 groups are known accurately. In general, analysts accustomed to demanding quantitative reactions should remember the power of mass balances and recognize that many organic-chemical reactions, while not quantitative, lack side products and can be driven to the total consumption of at least one reactant.
C–H Functionalization of Cyclic Amines: Redox-Annulations with α,β-Unsaturated Carbonyl Compounds
Kang, YoungKu; Richers, Matthew T.; Sawicki, Conrad H.; Seidel, Daniel
2015-01-01
Cyclic amines such as pyrrolidine and 1,2,3,4-tetrahydroisoquinoline undergo redox-annulations with α,β-unsaturated aldehydes and ketones. Carboxylic acid promoted generation of a conjugated azomethine ylide is followed by 6π-electrocylization, and, in some cases, tautomerization. The resulting ring-fused pyrrolines are readily oxidized to the corresponding pyrroles or reduced to pyrrolidines. PMID:26051897
SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES
Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...
ALCOHOL OXIDATION - A COMPARATIVE STUDY OF DIFFERENT CATALYTIC PROCESSES
Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alco...
Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors.
Offermanns, Stefan
2014-01-01
Saturated and unsaturated free fatty acids (FFAs), as well as hydroxy carboxylic acids (HCAs) such as lactate and ketone bodies, are carriers of metabolic energy, precursors of biological mediators, and components of biological structures. However, they are also able to exert cellular effects through G protein-coupled receptors named FFA1-FFA4 and HCA1-HCA3. Work during the past decade has shown that these receptors are widely expressed in the human body and regulate the metabolic, endocrine, immune and other systems to maintain homeostasis under changing dietary conditions. The development of genetic mouse models and the generation of synthetic ligands of individual FFA and HCA receptors have been instrumental in identifying cellular and biological functions of these receptors. These studies have produced strong evidence that several FFA and HCA receptors can be targets for the prevention and treatment of various diseases, including type 2 diabetes mellitus, obesity, and inflammation.
NASA Astrophysics Data System (ADS)
Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon
2016-10-01
Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).
Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong
2017-04-04
A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.
A NEW NON-AMBIGUOUS ANALYTICAL TECHNIQUE FOR THE IDENTIFICATION OF AEROSOL OXYGENATED COMPOUNDS
The most important organic products identified in the particle phase from field samples and from smog chamber experiments are polar oxygenated compounds containing one, two, three or more oxygenated functional groups (e.g. hydroxyl, carboxylic acid, ketone). Current procedures ...
Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene
NASA Astrophysics Data System (ADS)
Palen, Edward J.; Allen, David T.; Pandis, Spyros N.; Paulson, Suzanne; Seinfeld, John H.; Flagan, Richard C.
The chemical composition of aerosol generated in the photooxidation of 1-octene was examined using infrared microscopy interfaced with a low pressure impactor. The low pressure impactor segregated the aerosol into eight size fractions and deposited the aerosol onto ZnSe impaction substrates. The ZnSe surfaces were transparent in the mid-infrared region and therefore allowed direct analysis of the aerosol, with no extraction, using infrared microscopy. Infrared spectra of the size segregated aerosol showed strong absorbances due to ketone, alcohol, carboxylic acid and organonitrate functional groups. Absorbance features were relatively independent of particle size, with the exception of the carboxylic acid absorbances, which were found only in the largest aerosol size fractions. Molar loadings for each of the groups were estimated, based on model compound calibration standards. The molar loadings indicate that most aerosol species are multifunctional, with an average of one ketone group per molecule, an alcohol group in two of every three molecules and an organonitrate group in one of every three molecules.
Murai, Kenichi; Takahara, Yusuke; Matsushita, Tomoyo; Komatsu, Hideyuki; Fujioka, Hiromichi
2010-08-06
A novel 2-step synthesis of oxazole-4-carboxylates from aldehydes was developed, which is characterized by the utilization of 3-oxazoline-4-carboxylates as synthetic intermediates. The facile preparation of 4-keto-oxazole derivatives from 3-oxazoline-4-carboxylates based on their interesting reactivity toward Grignard reagents is also described.
NASA Technical Reports Server (NTRS)
Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey
1995-01-01
An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purities, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role In the origin of metabolism or the origin of life.
NASA Technical Reports Server (NTRS)
Keefe, Anthony D.; Miller, Stanley L.; McDonald, Gene; Bada, Jeffrey
1995-01-01
An autotrophic theory of the origin of metabolism and life has been proposed in which carbon dioxide is reduced by ferrous sulfide and hydrogen sulfide by means of a reversed citric acid cycle, leading to the production of amino acids. Similar processes have been proposed for purine synthesis. Ferrous sulfide is a strong reducing agent in the presence of hydrogen sulfide and can produce hydrogen as well as reduce alkenes, alkynes, and thiols to saturated hydrocarbons and reduce ketones to thiols. However, the reduction of carbon dioxide has not been demonstrated. We show here that no amino acids, purines, or pyrimidines are produced from carbon dioxide with the ferrous sulfide and hydrogen sulfide system. Furthermore, this system does not produce amino acids from carboxylic acids by reductive amination and carboxylation. Thus, the proposed autotrophic theory, using carbon dioxide, ferrous sulfide, and hydrogen sulfide, lacks the robustness needed to be a geological process and is, therefore, unlikely to have played a role in the origin of metabolism or the origin of life.
Evaluation of certain food additives.
2009-01-01
This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives (in particular, flavouring agents). A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives (asparaginase from Aspergillus niger expressed in A. niger, calcium lignosulfonate (40-65), ethyl lauroyl arginate, paprika extract, phospholipase C expressed in Pichia pastoris, phytosterols, phytostanols and their esters, polydimethylsiloxane, steviol glycosides and sulfites [assessment of dietary exposure]) and 10 groups of related flavouring agents (aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper complexes, sodium and potassium salts; Fast Green FCF; guar gum and guar gum (clarified); iron oxides; isomalt; monomagnesium phosphate; Patent Blue V; Sunset Yellow FCF; and trisodium diphosphate. Re-evaluation of flavouring agents for which estimated intake was based on anticipated poundage data was carried out for 2-isopropyl- N,2,3-trimethylbutyramide (No. 1595) and L-monomenthyl glutarate (No. 1414). Annexed to the report are tables summarizing the Committee's recommendations for intakes and toxicological evaluations of the food additives considered.
Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A
2017-08-15
The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.
Heteroaromatic-based electrolytes for lithium and lithium-ion batteries
Cheng, Gang; Abraham, Daniel P.
2017-04-18
The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.
Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...
2017-06-21
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
Adrian, Neal R.; Suflita, Joseph M.
1994-01-01
The fate of several halogenated and nonhalogenated heterocyclic compounds in anoxic aquifer slurries was investigated Substrate depletion and methane formation were monitored in serum bottle incubations by HPLC and GC, respectively Pyridine, pyrimidine, thiophene, and furan were not mineralized following an 11-month incubation, but the corresponding carboxylated or oxygenated compounds were That is, >74% of the theoretically expected amount of methane was recovered from nicotinic acid, uracil, or 2-furoic acid Chlorinated derivatives, like 2 chloro- or 6-chloronicotinic acid, as well as 4 chloro- and 5-chlorouracil resisted mineralization However, 5-bromouracil was reductively dehalogenated to stoichiometric amounts of uracil, whereas 2-chloropyrimidine was metabolized to a more polar unidentified compound that resisted further anaerobic biodegradation Microorganisms acclimated to 5-bromouracil were unable to transform 4 chloro or 5 chlorouracil These findings illustrate how the structure of heterocyclic contaminants influences their susceptibility to anaerobic decay
Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong
2016-02-16
A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.
Osman, Noha A; Ligresti, Alessia; Klein, Christian D; Allarà, Marco; Rabbito, Alessandro; Di Marzo, Vincenzo; Abouzid, Khaled A; Abadi, Ashraf H
2016-10-21
CB2-based therapeutics show strong potential in the treatment of diverse diseases such as inflammation, multiple sclerosis, pain, immune-related disorders, osteoporosis and cancer, without eliciting the typical neurobehavioral side effects of CB1 ligands. For this reason, research activities are currently directed towards the development of CB2 selective ligands. Herein, the synthesis of novel heterocyclic-based CB2 selective compounds is reported. A set of 2,5-dialkyl-1-phenyl-1H-pyrrole-3-carboxamides, 5-subtituted-2-(acylamino)/(2-sulphonylamino)-thiophene-3-carboxylates and 2-(acylamino)/(2-sulphonylamino)-tetrahydrobenzo[b]thiophene-3-carboxylates were synthesized. Biological results revealed compounds with remarkably high CB2 binding affinity and CB2/CB1 subtype selectivity. Compound 19a and 19b from the pyrrole series exhibited the highest CB2 receptor affinity (Ki = 7.59 and 6.15 nM, respectively), as well as the highest CB2/CB1 subtype selectivity (∼70 and ∼200-fold, respectively). In addition, compound 6b from the tetrahydrobenzo[b]thiophene series presented the most potent and selective CB2 ligand in this series (Ki = 2.15 nM and CB2 subtype selectivity of almost 500-fold over CB1). Compound 6b showed a full agonism, while compounds 19a and 19b acted as inverse agonists when tested in an adenylate cyclase assay. The present findings thus pave the way to the design and optimization of heterocyclic-based scaffolds with lipophilic carboxamide and/or retroamide substituent that can be exploited as potential CB2 receptor activity modulators. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Production of chemicals and fuels from biomass
Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John
2018-01-23
Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Manayil, Jinesh C; Osatiashtiani, Amin; Mendoza, Alvaro; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Michailof, Chrysoula; Heracleous, Eleni; Lappas, Angelos; Lee, Adam F; Wilson, Karen
2017-09-11
Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO 3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C 3 ) to 110 % (C 12 ). Macroporous-mesoporous PrSO 3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D. C.; Kim, Youngkyoo
2015-01-01
Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor. PMID:26656447
Mechanisms for radiation damage in DNA. Progress report, January 1, 1980-December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla, M D
1980-09-01
In this project several mechanisms are proposed for radiation damage to DNA constituents and DNA, and a series of experiments detailed utilizing electron spin resonance spectrometry to test the proposed mechanisms. Under current investigation are irradiated systems of DNA constituents which may shed light on indirect effects. In addition, studies of radiation effects on lipids have been undertaken which will shed light on the only other proposed site for cell kill, the membrane. Studies completed during the past year are: (1) ..pi.. cations produced in DNA bases by attack of oxidizing radicals; (2) INDO studies of radicals produced in peptidesmore » and carboxylic acid model compounds; (3) electron reactions with carboxylic acids, ketones and aldehydes; and (4) ..gamma..-irradiation of esters and triglycerides. Progress has been made this year in a study of radicals generated in model compounds for the sugar-phosphate backbone.« less
Trost, Barry M.; Michaelis, David J.; Truica, Mihai I.
2013-01-01
An enantioselective α-hydroxyacetate aldol reaction that employs N-acetyl pyrroles as activated ester equivalents and generates syn 1,2-diols in good yield and diastereoselectivity is reported. This dinuclear zinc Prophenol-catalyzed transformation proceeds with high enantioselectivity with a wide variety of substrates including aryl, alyl, and alkenyl aldehydes. The resulting α,β-dihydroxy activated esters are versatile intermediates for the synthesis of a variety of carboxylic acid derivatives including amides, esters, and unsymmetrical ketones. PMID:23947595
Mechanism for Ring-Opening of Aromatic Polymers by Remote Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Gonzalez, Eleazar; Barankin, Michael; Guschl, Peter; Hicks, Robert
2009-10-01
A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.
Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize
2014-11-26
Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.
Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam
2011-07-14
Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.
Polyak, Felix; Lubell, William D.
1998-08-21
Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance the use of alkyl-branched azabicycloalkane amino acids for the exploration of conformation-activity relationships of various biologically active peptides.
Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias
2015-10-01
Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Production of chemicals and fuels from biomass
Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John
2015-12-15
Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Ichinose, H; Nakamizo, M; Wariishi, H; Tanaka, H
2002-03-01
The fungal conversions of sulfur-containing heterocyclic compounds were investigated using the lignin-degrading basidiomycete Coriolus versicolor. The fungus metabolized a series of sulfur compounds--25 structurally related thiophene derivatives--via several different pathways. Under primary metabolic conditions, C. versicolor utilized thiophenes, such as 2-hydroxymethyl-, 2-formyl-, and 2-carboxyl-thiophenes, as a nutrient sulfur source for growth; thus, the fungus degraded these compounds more effectively in a non-sulfur-containing medium than in conventional medium. The product analysis revealed that several redox reactions, decarboxylation reactions, and C-S cleavage reactions were involved in the fungal conversion of non-aromatic thiophenes. On the other hand, benzothiophene (BT) and dibenzothiophene (DBT) skeletons were converted to water-soluble products. All the products and metabolic intermediates were more hydrophilic than the starting substrates. These metabolic actions seemed to be a chemical stress response against exogenously added xenobiotics. These metabolic reactions were optimized under ligninolytic conditions, also suggesting the occurrence of a fungal xenobiotic response. Furthermore, the fungus converted a series of BTs and DBTs via several different pathways, which seemed to be controlled by the chemical structure of the substrates. DBT, 4-methylDBT, 4, 6-dimethylDBT, 2-methylBT, and 7-methylBT were immediately oxidized to their S-oxides. BTs and DBTs with the hydroxymethyl substituent were converted to their xylosides without S-oxidation. Those with carboxyl and formyl substituents were reduced to form a hydroxymethyl group, then xylosidated. These observations strongly suggested the involvement of a fungal substrate-recognition and metabolic response mechanism in the metabolism of sulfur-containing heterocyclic compounds by C. versicolor.
Synthesis and Characterization of New Poly(alkyl/arylphosphazenes)
1991-11-26
substituted (silylamino) phosphines , 7, (eq 4) in good yields as thermally stable, distillable liquids. Subsequent oxidative halogenation to 8a, followed by...have been prepared simply by treating the anion with aldehydes or ketones, including those with potentially electroactive groups such as ferrocene 2 1...i.e., x:y = 2:1), but is as high as 45% for the ferrocene and thiophene derivatives. The T values of the alcohol derivatives show the expected
Giglio, Anita; Brandmayr, Pietro; Dalpozzo, Renato; Sindona, Giovanni; Tagarelli, Antonio; Talarico, Federica; Brandmayr, Tullia Zetto; Ferrero, Enrico A
2009-05-01
This study documents the defensive function of flavored humor secreted by the abdominal glands of Carabus lefebvrei pupae. The morphology and the ultrastructure of these glands were described and the volatile compounds of glands secretion were identified by gas chromatography/mass spectrometry. The ultrastructure analysis shows an acinose complex formed by about 50 clusters. Each cluster has 20 glandular units and the unit-composed of one secretory and one canal cell lying along a duct-belongs to the class 3 cell type of Quennedey (1998). In the cytoplasm, the secretory cell contains abundant rough endoplasmatic reticula, glycogen granules, numerous mitochondria, and many well-developed Golgi complexes producing electron-dense secretory granules. Mitochondria are large, elongated, and often adjoining electronlucent vesicles. The kind and the origin of secretory granules varying in size and density were discussed. The chemical analysis of the gland secretion revealed the presence of a mixture of low molecular weight terpenes, ketones, aldehydes, alcohols, esters, and carboxylic acids. Monoterpenes, especially linalool, were the major products. We supposed that ketones, aldehydes, alcohols, esters, and carboxylic acids have a deterrent function against the predators and monoterpenes provide a prophylaxis function against pathogens. (c) 2008 Wiley-Liss, Inc.
Le, Chi Chip; MacMillan, David W C
2015-09-23
In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO-C═OR bond-forming reaction, can subsequently undergo metal insertion-decarboxylation-recombination to generate Csp(2)-Csp(3) bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation-recombination protocol.
Daughton, Christian G.
1983-01-01
Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Inhibition of palm oil oxidation by zeolite nanocrystals.
Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh
2015-05-13
The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.
Influence of Biodegradation on the Organic Compounds Composition of Peat.
NASA Astrophysics Data System (ADS)
Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina
2016-06-01
Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Yen-Ju; Huang, Yu-Ching; Liu, Wei-Shin
The impact of the morphological stability of the donor/acceptor mixture under thermal stress on the photovoltaic properties of bulk heterojunction (BHJ) solar cells based on the poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']-di-thiophene-2,6-diyl-alt-(4-(2 ethylhexyl)-3-fluorothieno[3,4-b]-thiophene)-2-carboxylate-2,6-diyl]/phenyl-C61-butyric acid methylester (PTB7-Th/PC61BM) blend is extensively investigated. Both optical microscopy and transmission electron microscopy micrographs show that long-term high-temperature aging stimulates the formation of microscale clusters, the size of which, however, is about 1 order of magnitude smaller than those observed in thermally annealed poly(3hexylthiophene)/PC61BM composite film. The multilength-scale evolution of the morphology of PTB7-Th/PC61BM film from the scattering profiles of grazing incidence small-angle and wide-angle X-ray scattering indicates the PC61BM moleculesmore » spatially confine the self-organization of polymer chains into large domains during cast drying and upon thermal activation. Moreover, some PC61BM molecules accumulate into ~30-40 nm clusters, the number of which increases with heating time. Therefore, the hole mobility in the active layer decays much more rapidly than the electron mobility, leading to unbalanced charge transport and degraded cell performance. Importantly, the three-component blend that is formed by replacing a small amount of PC61BM in the active layer with the bis-adduct of PC61BM (bis-P61M) exhibits robust morphology against thermal stress. Accordingly, the PTB7-Th/PC61BM:bis-PC61BM (8 wt %) device has an extremely stable power conversion efficiency.« less
The failure of poly (ether ether ketone) in high speed contacts
NASA Astrophysics Data System (ADS)
Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.
1993-04-01
The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.
Thiophene-based covalent organic frameworks
Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea
2013-01-01
We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656
1994-08-01
Diels - Alder reactions (58-60), Claisen rearrangements (43-45), olefin isomerization (73), a O-elimination (74), an asymmetric ketone reduction (54...phosphorothioate hapten3 ........ 19 Figure 5. Carboxylic acid hydrolysis .................... 21 Figure 6. Reaction coordinates for antibody catalyzed ...and catalyze the reaction. Thus, it is important to design transition analogs that closely mimic the transition state in every possible chemical
Purifying contaminated water. [DOE patent application
Daughton, C.G.
1981-10-27
Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia
2015-04-01
The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.
Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.
Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less
Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules
DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; ...
2015-10-21
Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less
Mohamed, Gehad G; Omar, M M; Hindy, Ahmed M M
2005-12-01
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Omar, M. M.; Hindy, Ahmed M. M.
2005-12-01
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 °C and ionic strength μ = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(HL) 2](X) n· yH 2O (where M = Fe(III) (X = Cl, n = 3, y = 3), Co(II) (X = Cl, n = 2, y = 1.5), Ni(II) (X = Cl, n = 2, y = 1) and UO 2(II) (X = NO 3, n = 2, y = 0)) and [M(L) 2] (where M = Cu(II) (X = Cl) and Zn(II) (X = AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO 2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes
Chuprakov, Stepan; Worrell, Brady T.; Selander, Nicklas; Sit, Rakesh K.; Fokin, Valery V.
2014-01-01
Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild and convergent formal 1,3-insertion into N–H and O–H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bis-functionalized Z-olefins with perfect regio- and stereoselectively. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles. PMID:24295389
OBO-Protected Pyruvates as Reagents for the Synthesis of Functionalized Heteroaromatic Compounds.
Alves Esteves, C Henrique; Koyioni, Maria; Christensen, Kirsten E; Smith, Peter D; Donohoe, Timothy J
2018-06-15
Pd-catalyzed α-arylation of methyl-OBO-ketone (OBO = 4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl) gives rise to arylated OBO-protected pyruvates. By appropriate prefunctionalization of the aryl ring or by subsequent functionalization at the α-carbonyl position of the arylated OBO-ketones, useful diketo OBO-protected carboxylates can be generated. Cyclization, aromatization, and OBO deprotection of these intermediates, using two distinct routes, gives access to valuable α-acyl heteroaromatic compounds.
Le, Chi “Chip”; MacMillan, David W. C.
2015-01-01
In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO—C=OR bond-forming reaction, can subsequently undergo metal insertion–decarboxylation–recombination to generate Csp2–Csp3 bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation–recombination protocol. PMID:26333771
Ambade, Swapnil B; Ambade, Rohan B; Bagde, Sushil S; Lee, Soo-Hyoung
2016-12-28
The issue of work-function and surface energy is fundamental to "decode" the critical inorganic/organic interface in hybrid organic photovoltaics, which influences important photovoltaic events like exciton dissociation, charge transfer, photocurrent (J sc ), open-circuit voltage (V oc ), etc. We demonstrate that by incorporating an interlayer of cyanoacrylic acid small molecular layer (SML) on solution-processed, spin-coated, planar ZnO nanorods (P-ZnO NRs), higher photovoltaic (PV) performances were achieved in both inverted organic photovoltaic (iOPV) and hybrid organic photovoltaic (HOPV) devices, where ZnO acts as an "electron-transporting layer" and as an "electron acceptor", respectively. For the tuned range of surface energy from 52.5 to 33 mN/m, the power conversion efficiency (PCE) in bulk heterojunction (BHJ) iOPVs based on poly(3-hexylthiophene) (P3HT) and phenyl-C 60 -butyric acid methyl ester (PC 60 BM) increases from 3.16% to 3.68%, and that based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl)] (PTB7:Th):[6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) photoactive BHJ increases from 6.55% to 8.0%, respectively. The improved PV performance in iOPV devices is majorly attributed to enhanced photocurrents achieved as a result of reduced surface energy and greater electron affinity from the covalent attachment of the strong electron-withdrawing cyano moiety, while that in HOPV devices, where PCE increases from 0.21% to 0.79% for SML-modified devices, is ascribed to a large increase in V oc benefitted due to reduced work function effected from the presence of strong dipole moment in SML that points away from P-ZnO NRs.
Collection and analysis of organic gases from natural ecosystems - Application to poultry manure
NASA Technical Reports Server (NTRS)
Smith, M. S.; Francis, A. J.; Duxbury, J. M.
1977-01-01
Combined gas chromatography-mass spectrometry was used to identify volatile compounds generated from chicken manure and collected in Poropak QS-Carbosieve B traps. Various alcohols, ketones, esters, and carboxylic acids together with dimethyl sulfide and dimethyl disulfide were detected when the wastes were incubated in an argon atmosphere. Significant amounts of dimethyl sulfide and dimethyl disulfide but few other compounds were found when the manure was incubated in air
Mandal, Pijus Kumar; Kaluarachchi, Kumar K; Ogrin, Douglas; Bott, Simon G; McMurray, John S
2005-11-25
[reaction: see text] Azabicyclo[X.Y.0]alkane amino acids are rigid dipeptide mimetics that are useful tools for structure-activity studies in peptide-based drug discovery. Herein, we report an efficient synthesis of three diastereomers of 9-tert-butoxycarbonyl-2-oxo-3-(N-tert-butoxycarbonylamino)-1-azabicyclo[4.3.0]nonane (3S,6S,9S, 3S,6R,9R, and 3S,6R,9S). Methyl N-Boc-pyroglutamate is cleaved with vinylmagnesium bromide to produce an acyclic gamma-vinyl ketone. Michael addition of N-diphenylmethyleneglycine tert-butyl ester produces the N-Boc-delta-oxo-alpha,omega-diaminoazelate intermediate, which, on hydrogenloysis, gives the fused ring system. Acidolytic deprotection followed by Fmoc-protection provided building blocks suitable for solid-phase synthesis.
Schühle, Karola
2012-01-01
The anaerobic and aerobic metabolism of acetone and butanone in the betaproteobacterium “Aromatoleum aromaticum” is initiated by their ATP-dependent carboxylation to acetoacetate and 3-oxopentanoic acid, respectively. Both reactions are catalyzed by the same enzyme, acetone carboxylase, which was purified and characterized. Acetone carboxylase is highly induced under growth on acetone or butanone and accounts for at least 5.5% of total cell protein. The enzyme consists of three subunits of 85, 75, and 20 kDa, respectively, in a (αβγ)2 composition and contains 1 Zn and 2 Fe per heterohexamer but no organic cofactors. Chromatographic analysis of the ATP hydrolysis products indicated that ATP was exclusively cleaved to AMP and 2 Pi. The stoichiometry was determined to be 2 ATP consumed per acetone carboxylated. Purified acetone carboxylase from A. aromaticum catalyzes the carboxylation of acetone and butanone as the only substrates. However, the enzyme shows induced (uncoupled) ATPase activity with many other substrates that were not carboxylated. Acetone carboxylase is a member of a protein family that also contains acetone carboxylases of various other organisms, acetophenone carboxylase of A. aromaticum, and ATP-dependent hydantoinases/oxoprolinases. While the members of this family share several characteristic features, they differ with respect to the products of ATP hydrolysis, subunit composition, and metal content. PMID:22020645
Gottardi, Manuela; Grün, Peter; Bode, Helge B; Hoffmann, Thomas; Schwab, Wilfried; Oreb, Mislav; Boles, Eckhard
2017-12-01
Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yu, Ran; Duan, Lei; Jiang, Jingkun; Hao, Jiming
2017-03-01
The ozonation of hydroxyl compounds (e.g., sugars and alcohols) gives a broad range of products such as alcohols, aldehydes, ketones, and carboxylic acids. This study developed and optimized a two-step derivatization procedure for analyzing polar products of aldehydes and carboxylic acids from the ozonation of diethylene glycol (DEG) in a non-aqueous environment using gas chromatography-mass spectrometry. Experiments based on Central Composite Design with response surface methodology were carried out to evaluate the effects of derivatization variables and their interactions on the analysis. The most desirable derivatization conditions were reported, i.e., oximation was performed at room temperature overnight with the o-(2,3,4,5,6-pentafluorobenzyl) hydroxyl amine to analyte molar ratio of 6, silylation reaction temperature of 70°C, reaction duration of 70min, and N,O-bis(trimethylsilyl)-trifluoroacetamide volume of 12.5μL. The applicability of this optimized procedure was verified by analyzing DEG ozonation products in an ultrafine condensation particle counter simulation system. Copyright © 2016. Published by Elsevier B.V.
Jeong, Jaehoon; Seo, Jooyeok; Nam, Sungho; Han, Hyemi; Kim, Hwajeong; Anthopoulos, Thomas D; Bradley, Donal D C; Kim, Youngkyoo
2016-04-01
Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC 71 BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC 71 BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC 71 BM solar cells is significantly enhanced when UCF is attached.
Synthesis of 1-indanones with a broad range of biological activity
Turek, Marika; Szczęsna, Dorota; Koprowski, Marek
2017-01-01
This comprehensive review describes methods for the preparation of 1-indanones published in original and patent literature from 1926 to 2017. More than 100 synthetic methods utilizing carboxylic acids, esters, diesters, acid chlorides, ketones, alkynes, alcohols etc. as starting materials, have been performed. This review also covers the most important studies on the biological activity of 1-indanones and their derivatives which are potent antiviral, anti-inflammatory, analgesic, antimalarial, antibacterial and anticancer compounds. Moreover, they can be used in the treatment of neurodegenerative diseases and as effective insecticides, fungicides and herbicides. PMID:28382183
Lu, Xuequan; Zhou, Rong; Sharma, Indrajeet; Li, Xiaokai; Kumar, Gyanendra; Swaminathan, Subramanyam
2012-01-01
MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (Ki = 5.4 ± 0.1 nM) and a non-competitive inhibitor with respect to OSB (Ki = 11.2 ± 0.9 nM). These data are consistent with a bi uni uni bi ping-pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with Kiapp of 22 ± 8 nM and ecMenE with KiOSB=128±5nM. Putative active site residues, Arg-222, which may interact with the OSB aromatic carboxylate, and Ser-302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design. PMID:22109989
Chemical characterization of territorial marking fluid of male Bengal tiger, Panthera tigris.
Burger, B V; Viviers, M Z; Bekker, J P I; le Roux, M; Fish, N; Fourie, W B; Weibchen, G
2008-05-01
The territorial marking fluid of the male Bengal tiger, Panthera tigris, consists of a mixture of urine and a small quantity of lipid material that may act as a controlled-release carrier for the volatile constituents of the fluid. Using gas chromatography and gas chromatography-mass spectrometry, 98 volatile compounds and elemental sulfur were identified in the marking fluid. Another 16 volatiles were tentatively identified. The majority of these compounds were alkanols, alkanals, 2-alkanones, branched and unbranched alkanoic acids, dimethyl esters of dicarboxylic acids, gamma- and delta-lactones, and compounds containing nitrogen or sulfur. Several samples of the marking fluid contained pure (R)-3-methyl-2-octanone, (R)-3-methyl-2-nonanone, and (R)-3-methyl-2-decanone, but these ketones were partly or completely racemized in other samples. The gamma-lactone (S)-(+)-(Z)-6-dodecen-4-olide and the C(8) to C(16) saturated (R)-gamma-lactones and (S)-delta-lactones were present in high enantiomeric purities. The chiral carboxylic acids, 2-methylnonanoic acid, 2-methyldecanoic acid, 2-methylundecanoic acid, and 2-ethylhexanoic acid were racemates. Cadaverine, putrescine, and 2-acetylpyrroline, previously reported as constituents of tiger urine, were not detected. The dominant contribution of some ketones, fatty acids, and lactones to the composition of the headspace of the marking fluid suggests that these compounds may be important constituents of the pheromone. Although it constitutes only a small proportion, the lipid fraction of the fluid contained larger quantities of the volatile organic compounds than the aqueous fraction (urine). The lipid derives its role as controlled-release carrier of the chemical message left by the tiger, from its affinity for the volatiles of the marking fluid. Six proteins with masses ranging from 16 to 69 kDa, inter alia, the carboxylesterase-like urinary protein known as cauxin, previously identified in the urine of the domestic cat and other felid species, were identified in the urine fraction of the marking fluid.
Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program
NASA Technical Reports Server (NTRS)
Simoneit, B. R. T.; Burlingame, A. L.
1974-01-01
The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2015-11-01
An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129 g m-3) with increasing puff velocity (0.05 to 1 L min-1). A strong correlation existed between sampling volume and consumed solution mass (R2 = 0.9972 ± 0.0021 (n = 4)). In the EC solution, acetic acid was considerably high (25.8 μg mL-1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24 ± 0.15 μg mL-1 (n = 4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138 ± 250 μg m-3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL-1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid).
Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Ávila, Marta; Garde, Sonia; Nuñez, Manuel; Picon, Antonia
2017-09-01
The volatile fraction of 30 Iberian dry-cured hams of different physicochemical characteristics and the effect of high pressure processing (HPP) at 600MPa on volatile compounds were investigated. According to the analysis of variance carried out on the levels of 122 volatile compounds, intramuscular fat content influenced the levels of 8 benzene compounds, 5 carboxylic acids, 2 ketones, 2 furanones, 1 alcohol, 1 aldehyde and 1 sulfur compound, salt concentration influenced the levels of 1 aldehyde and 1 ketone, salt-in-lean ratio had no effect on volatile compounds, and water activity influenced the levels of 3 sulfur compounds, 1 alcohol and 1 aldehyde. HPP-treated samples of Iberian ham had higher levels of 4 compounds and lower levels of 31 compounds than untreated samples. A higher influence of HPP treatment on volatile compounds than physicochemical characteristics was observed for Iberian ham. Therefore, HPP treatment conditions should be optimized in order to diminish its possible effect on Iberian ham odor and aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enantioselective decarboxylative chlorination of β-ketocarboxylic acids
Shibatomi, Kazutaka; Kitahara, Kazumasa; Sasaki, Nozomi; Kawasaki, Yohei; Fujisawa, Ikuhide; Iwasa, Seiji
2017-01-01
Stereoselective halogenation is a highly useful organic transformation for multistep syntheses because the resulting chiral organohalides can serve as precursors for various medicinally relevant derivatives. Even though decarboxylative halogenation of aliphatic carboxylic acids is a useful and fundamental synthetic method for the preparation of a variety of organohalides, an enantioselective version of this reaction has not been reported. Here we report a highly enantioselective decarboxylative chlorination of β-ketocarboxylic acids to obtain α-chloroketones under mild organocatalytic conditions. The present method is also applicable for the enantioselective synthesis of tertiary α-chloroketones. The conversions of the resulting α-chloroketones into α-aminoketones and α-thio-substituted ketones via SN2 reactions at the tertiary carbon centres are also demonstrated. These results constitute an efficient approach for the synthesis of chiral organohalides and are expected to enhance the availability of enantiomerically enriched chiral compounds with heteroatom-substituted chiral stereogenic centres. PMID:28580951
Enantioselective decarboxylative chlorination of β-ketocarboxylic acids
NASA Astrophysics Data System (ADS)
Shibatomi, Kazutaka; Kitahara, Kazumasa; Sasaki, Nozomi; Kawasaki, Yohei; Fujisawa, Ikuhide; Iwasa, Seiji
2017-06-01
Stereoselective halogenation is a highly useful organic transformation for multistep syntheses because the resulting chiral organohalides can serve as precursors for various medicinally relevant derivatives. Even though decarboxylative halogenation of aliphatic carboxylic acids is a useful and fundamental synthetic method for the preparation of a variety of organohalides, an enantioselective version of this reaction has not been reported. Here we report a highly enantioselective decarboxylative chlorination of β-ketocarboxylic acids to obtain α-chloroketones under mild organocatalytic conditions. The present method is also applicable for the enantioselective synthesis of tertiary α-chloroketones. The conversions of the resulting α-chloroketones into α-aminoketones and α-thio-substituted ketones via SN2 reactions at the tertiary carbon centres are also demonstrated. These results constitute an efficient approach for the synthesis of chiral organohalides and are expected to enhance the availability of enantiomerically enriched chiral compounds with heteroatom-substituted chiral stereogenic centres.
Biochemical characteristics among Mycobacterium bovis BCG substrains.
Hayashi, Daisuke; Takii, Takemasa; Mukai, Tetsu; Makino, Masahiko; Yasuda, Emi; Horita, Yasuhiro; Yamamoto, Ryuji; Fujiwara, Akiko; Kanai, Keita; Kondo, Maki; Kawarazaki, Aya; Yano, Ikuya; Yamamoto, Saburo; Onozaki, Kikuo
2010-05-01
In order to evaluate the biochemical characteristics of 14 substrains of Mycobacterium bovis bacillus Calmette Guérin (BCG) - Russia, Moreau, Japan, Sweden, Birkhaug, Danish, Glaxo, Mexico, Tice, Connaught, Montreal, Phipps, Australia and Pasteur - we performed eight different biochemical tests, including those for nitrate reduction, catalase, niacin accumulation, urease, Tween 80 hydrolysis, pyrazinamidase, p-amino salicylate degradation and resistance to thiophene 2-carboxylic acid hydrazide. Catalase activities of the substrains were all low. Data for nitrate reduction, niacin accumulation, Tween 80 hydrolysis, susceptibility to hydrogen peroxide and nitrate, and optimal pH for growth were all variable among these substrains. These findings suggest that the heterogeneities of biochemical characteristics are relevant to the differences in resistance of BCG substrains to environmental stress. The study also contributes to the re-evaluation of BCG substrains for use as vaccines.
Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang
2011-07-15
We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of α-hydroxylic acids such as mandelic acid, given that it is currently a challenge to recognize these analytes with boronic acid fluorescent molecular sensors.
Volatile compounds of sulfur in the Fe-C-S system at 5.3 GPa and 1300°C
NASA Astrophysics Data System (ADS)
Zhimulev, E. I.; Sonin, V. M.; Bul'bak, T. A.; Chepurov, A. I.; Tomilenko, A. A.; Pokhilenko, N. P.
2015-05-01
This report presents the results of experimental studies of the fluid phase in the Fe-C-S system at high P and T values (5.3 GPa and 1300°C) conforming to diamond synthesis. The samples for experiments were mounted on air; therefore, the volatile compounds detected after the experiments are characterized by a wide variety and complicated composition involving both inorganic and organic components. Among the inorganic compounds, CO2, H2O, N2, SO2, CS2, and COS were detected. The GC/MS analysis revealed hydrocarbons (paraffins, olefins, and arenes), including high-molecular compounds. The formation of heavy hydrocarbons confirms their thermodynamic stability under high pressure. Oxygenated hydrocarbons (alcohols, aldehydes, ketones, carboxylic acids, and ethers) were also detected.
Bovolenta, S; Romanzin, A; Corazzin, M; Spanghero, M; Aprea, E; Gasperi, F; Piasentier, E
2014-12-01
The aim of this study was to analyze the volatile compounds, physicochemical characteristics, and sensory properties of Montasio, a semicooked pressed cheese, produced from the milk of the dual-purpose Italian Simmental cows grazing on alpine pastures. A total of 72 cows grazing on 2 pastures, which differed in botanical composition (nutrient-rich pasture vs. nutrient-poor pasture), received 2 different levels of supplementation (3.0 vs 1.5 kg/head per day). The experimental cheeses were produced from whole, raw milk and ripened for 60 d. Sixty-one volatile compounds, including alcohols (11), aldehydes (6), ketones (10), lactones (2), esters (6), hydrocarbons (3), carboxylic acids (6), phenolic compounds (4), monoterpenes (7), sesquiterpenes (1), sulfur compounds (4), and amines (1), were detected. The main families in terms of relative weight appeared to be carboxylic acids, esters, and alcohols. A panel of trained assessors described the experimental cheeses as having an intense color; small and evenly distributed eyes; an intense odor and flavor of milk-sour, milk, and cow; and a tender and creamy texture. The pasture type affected the volatile fraction, particularly ketones, phenolic compounds, and terpenes, which are overall higher in nutrient-poor pastures. A slight effect on the sensory analyses, in particular the effect of the cow attribute on odor and flavor, was perceived by the panelists. The cheeses produced on nutrient-rich pasture had higher b* (yellowness) index. These results were consistent with the color evaluation of the sensory panel. In addition, the pasture affected some textural attributes (adhesivity, creaminess, and granules) as perceived by the panelists. Concentrate supplementation, which is required to meet the feeding requirements of grazing cows, had no clear effect on either the volatile compounds or the sensory properties of the cheeses. Thus, at least within levels of integration adopted, it is expected not to alter the organoleptic characteristics of this product. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lu, Xuequan; Zhou, Rong; Sharma, Indrajeet; Li, Xiaokai; Kumar, Gyanendra; Swaminathan, Subramanyam; Tonge, Peter J; Tan, Derek S
2012-01-02
MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K(i) =5.4±0.1 nM) and a noncompetitive inhibitor with respect to OSB (K(i) =11.2±0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K(i)(app) =22±8 nM and ecMenE with K(i)(OSB) =128±5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.
Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenatedmore » to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was significant during hydrogenation; however, the inorganics at low concentrations had minimal impact at short times on stream, indicating that sulfur poisoning was the primary deactivation mode for the bio-oil hydrogenation catalyst. Reducing the sulfur content in bio-oil could significantly increase the lifetime of the hydrogenation catalyst used. The knowledge gained during this work will allow rational design of more effective catalysts and processes for stabilizing and upgrading bio-oils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.
Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple icesmore » dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.« less
Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and CO-Containing Ices
NASA Astrophysics Data System (ADS)
Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel
2015-10-01
Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa, Satoshi; Keasling, Jay D.; Katz, Leonard
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. Finally, we have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
Synthesis of chiral alpha-amino aldehydes linked by their amine function to solid support.
Cantel, Sonia; Heitz, Annie; Martinez, Jean; Fehrentz, Jean-Alain
2004-09-01
The anchoring of an alpha-amino-acid derivative by its amine function on to a solid support allows some chemical reactions starting from the carboxylic acid function. This paper describes the preparation of alpha-amino aldehydes linked to the support by their amine function. This was performed by reduction with LiAlH4 of the corresponding Weinreb amide linked to the resin. The aldehydes obtained were then involved in Wittig or reductive amination reactions. In addition, the linked Weinreb amide was reacted with methylmagnesium bromide to yield the corresponding ketone. After cleavage from the support, the compounds were obtained in good to excellent yields and characterized.
Liu, Cai-Ming; Xiong, Ming; Zhang, De-Qing; Du, Miao; Zhu, Dao-Ben
2009-08-07
6-Hydroxypyridine-3-carboxylic acid (6-HOPy-3-CO(2)H) reacts with Ln(2)O(3) (Ln = Nd, Sm, Eu, Gd) and oxalic acid (H(2)OX) under hydrothermal conditions to generate four novel lanthanide-organic coordination polymeric networks [Ln(2)(1H-6-Opy-3-CO(2))(2)(OX)(2)(H(2)O)(3)] x 2.5 H(2)O (Ln = Nd, 1; Sm, 2; 1H-6-Opy-3-CO(2)(-) = 1-hydro-6-oxopyridine-3-carboxylate) and [Ln(1H-6-Opy-3-CO(2))(OX)(H(2)O)(2)] x H(2)O (Ln = Eu, 3; Gd, 4). The new co-ligand 1H-6-Opy-3-CO(2)(-) anion was generated by the autoisomerization of the single deprotonated 6-HOPy-3-CO(2)(-) anion (from the enol form into the ketone one). 1 and 2 are isomorphous, they possess a three-dimensional architecture constructed from Ln(3+) ions bridged by oxalate anions and two types of 1H-6-Opy-3-CO(2)(-) bridges, showing a three-nodal (4,5)-connected topology (3.4(2).5(2).6(3).7.8)(2)(3.5(3).6(2))(2)(3(2).6.7(2).8) or a simplified uninodal 6-connected topology (3(3).4(6).5(5).6), both topologies are completely new; while only one type of 1H-6-Opy-3-CO(2)(-) bridge is used to construct the two-dimensional layer networks of 3 and 4 besides oxalate bridges, both complexes 3 and 4 are isostructural, exhibiting the honeycomb topology 6(3). The lanthanide contraction effect is believed to play a key role in directing the formation of a particular structure. A magnetic study of 1-3 indicated that the coupling interaction between Ln(3+) ions is weak.
Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58
Zhao, Qiang; Wang, Wei; Huang, Xian-Qing; Zhang, Xue-Hong
2017-01-01
ABSTRACT Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography–mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation. IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation. PMID:28188209
Emission of volatile aldehydes and ketones from wood pellets under controlled conditions.
Arshadi, Mehrdad; Geladi, Paul; Gref, Rolf; Fjällström, Pär
2009-11-01
Different qualities of biofuel pellets were made from pine and spruce sawdust according to an industrial experimental design. The fatty/resin acid compositions were determined by gas chromatography-mass spectrometry for both newly produced pellets and those after 2 and 4 weeks of storage. The aldehydes/ketones compositions were determined by high performance liquid chromatography at 0, 2, and 4 weeks. The designs were analyzed for the response variables: total fatty/resin acids and total aldehydes/ketones. The design showed a strong correlation between the pine fraction in the pellets and the fatty/resin acid content but the influence decreased over storage time. The amount of fatty/resin acids decreased approximately 40% during 4 weeks. The influence of drying temperature on the aldehyde/ketone emission of fresh pellets was also shown. The amounts of emitted aldehydes/ketones generally decreased by 45% during storage as a consequence of fatty/resin acid oxidation. The matrices of individual concentrations were subjected to multivariate data analysis. This showed clustering of the different experimental runs and demonstrated the important mechanism of fatty/resin acid conversion.
Heringa, Maarten F; Slowik, Jay G; Goldmann, Maximilian; Signorell, Ruth; Hemberger, Patrick; Bodi, Andras
2017-12-15
The valence threshold photoionization of oleic acid has been studied using synchrotron VUV radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. An oleic acid aerosol beam was impacted on a copper thermodesorber, heated to 130 °C, to evaporate the particles quantitatively. Upon threshold photoionization, oleic acid produces the intact parent ion first, followed by dehydration at higher energies. Starting at ca. 10 eV, a large number of fragment ions slowly rise suggesting several fragmentation coordinates with quasi-degenerate activation energies. However, water loss is the dominant low-energy dissociation channel, and it is shown to be closely related to the unsaturated carbon chain. In the lowest-barrier process, one of the four allylic hydrogen atoms is transferred to the carboxyl group to form the leaving water molecule and a cyclic ketone fragment ion. A statistical model to analyze the breakdown diagram and measured rate constants yields a 0 K appearance energy of 9.77 eV, which can be compared with the density functional theory result of 9.19 eV. Alternative H-transfer steps yielding a terminal C=O group are ruled out based on energetics and kinetics arguments. Some of the previous photoionization mass spectrometric studies also reported 2 amu and 26 amu loss fragment ions, corresponding to hydrogen and acetylene loss. We could not identify such peaks in the mass spectrum of oleic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity
Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing
2013-01-01
To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645
Partial oxidation of methane by pulsed corona discharges
NASA Astrophysics Data System (ADS)
Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.
2014-09-01
Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.
The changes of oil palm roots cell wall lipids during pathogenesis of Ganoderma boninense
NASA Astrophysics Data System (ADS)
Alexander, A.; Dayou, J.; Abdullah, S.; Chong, K. P.
2017-07-01
One of the first physical defences of plants against fungal infection is their cell wall. Interaction between combinations of metabolism enzymes known as the “weapons” of pathogen and the host cell wall probably determines the fate of possible invasion of the pathogen in the host. The present work aims to study the biochemical changes of cell wall lipids of oil palm roots and to determine novel information on root cell wall composition during pathogenesis of Ganoderma boninense by using Gas Chromatography Mass Spectrometry. Based on Total Ion Chromatogram analysis, 67 compounds were found more abundant in the roots infected with G. boninense compared to the healthy roots (60 compounds). Interestingly, nine new compounds were identified from the cell wall lipids of roots infected with G. boninense. These includes Cyclohexane, 1,2-dimethyl-, Methyl 2-hydroxy 16-methyl-heptadecanoate, 2-Propenoic acid, methyl ester, Methyl 9-oxohexacosanoate, 5-[(3,7,11,15-Tetramethylhexadecyl)oxy]thiophene-2carboxylic acid, Ergosta-5,7,22,24(28)-tetraen-3beta-ol, 7-Hydroxy-3',4'-methylenedioxyflavan, Glycine and (S)-4'-Hydroxy-4-methoxydalbergione, this may involve as response to pathogen invasion. This paper provides an original comparative lipidomic analysis of oil palm roots cell wall lipids in plant defence during pathogenesis of G. boninense.
Saganuwan, Saganuwan A
2017-01-01
Central Nervous System (CNS) disorders are on increase perhaps due to genetic, enviromental, social and dietetic factors. Unfortunately, a large number of CNS drugs have adverse effects such as addiction, tolerance, psychological and physical dependence. In view of this, literature search was carried out with a view to identify functional chemical groups that may serve as lead molecules for synthesis of compounds that may have CNS activity. The search revealed that heterocycles that have heteroatoms such as nitrogen (N), sulphur (S) and oxygen (O) form the largest class of organic compounds. They replace carbon in a benzene ring to form pyridine. Compounds with furan, thiophene, pyrrole, pyridine, azole, imidazole, indole, purine, pyrimidine, esters, carboxylic acid, aldehyde, pyrylium, pyrone, pyrodine, barbituric acid, barbiturate, quinoline, quinolone, isoquinolone, coumarin, alkylpyridine, picoline, piperidine, diazine, carboxamide, flavonoid glycoside, oxindole, aminophenol, benzimidazole, benzoxazole, benzothiazole, and chromone chemical groups among others may have CNS effects ranging from depression passing through euphoria to convulsion. Examples of the compounds with the functional groups include but not limited to coal tar, pyridostigmine, pralidoxime, quinine, mefloquine, pyrilamine, pyronaridine, ciprofloxacin and piroxicam. A number of them can undergo keto-enol tautomerism. Chiral amines may be used for derivation of chiral carboxylic acids which are components of tautomers. Some tautomers may cause parkinsonism and Stevens Johnson syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for residues. 180.426 Section 180...-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid; tolerance for...)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid, in or on the raw agricultural commodity soybean...
Photoelectrochemical processes in polymer-tethered CdSe nanocrystals.
Shallcross, R Clayton; D'Ambruoso, Gemma D; Pyun, Jeffrey; Armstrong, Neal R
2010-03-03
We demonstrate the electrochemical capture of CdSe semiconductor nanocrystals (NCs), with thiophene-terminated carboxylic acid capping ligands, at the surfaces of electrodeposited poly(thiophene) films (i) poly((diethyl)propylenedixoythiophene), P(Et)(2)ProDOT; (ii) poly(propylenedioxythiophene), PProDOT; and (iii) poly(ethylenedioxythiophene), PEDOT, coupled with the exploration of their photoelectrochemical properties. Host polymer films were created using a kinetically controlled electrodeposition protocol on activated indium-tin oxide electrodes (ITO), producing conformal films that facilitate high rates of electron transfer. ProDOT-terminated, ligand-capped CdSe-NCs were captured at the outer surface of the host polymer films using a unique pulse-potential step electrodeposition protocol, providing for nearly close-packed monolayers of the NCs at the host polymer/solution interface. These polymer-confined CdSe NCs were used as sensitizers in the photoelectrochemical reduction of methyl viologen (MV(+2)). High internal quantum efficiencies (IQEs) are estimated for photoelectrochemical sensitized MV(+2) reduction using CdSe NCs ranging from 3.1 to 7.0 nm diameters. Cathodic photocurrent at high MV(+2) concentrations are limited by the rate of hole-capture by the host polymer from photoexcited NCs. The rate of this hole-capture process is determined by (a) the onset potential for reductive dedoping of the host polymer film; (b) the concentration ratio of neutral to oxidized forms of the host polymer ([P(n)]/[P(ox)]); and (c) the NC diameter, which controls its valence band energy, E(VB). These relationships are consistent with control of photoinduced electron transfer by Marcus-like excess free energy relationships. Our electrochemical assembly methods provide an enabling route to the capture of functional NCs in conducting polymer hosts in both photoelectrochemical and photovoltaic energy conversion systems.
NASA Astrophysics Data System (ADS)
Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu
2010-10-01
Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.
Sabbaghan, Maryam; Yavari, Issa; Hossaini, Zinatossadat
2010-11-01
An efficient synthesis of 4-alkyl-4-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-dione or 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones via reaction 4-hydroxycoumarin with Meldrum's acid and ketones or aldehydes is described.
Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi
2015-06-26
This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pharmacophore modeling, virtual screening and molecular docking of ATPase inhibitors of HSP70.
Sangeetha, K; Sasikala, R P; Meena, K S
2017-10-01
Heat shock protein 70 is an effective anticancer target as it influences many signaling pathways. Hence the study investigated the important pharmacophore feature required for ATPase inhibitors of HSP70 by generating a ligand based pharmacophore model followed by virtual based screening and subsequent validation by molecular docking in Discovery studio V4.0. The most extrapolative pharmacophore model (hypotheses 8) consisted of four hydrogen bond acceptors. Further validation by external test set prediction identified 200 hits from Mini Maybridge, Drug Diverse, SCPDB compounds and Phytochemicals. Consequently, the screened compounds were refined by rule of five, ADMET and molecular docking to retain the best competitive hits. Finally Phytochemical compounds Muricatetrocin B, Diacetylphiladelphicalactone C, Eleutheroside B and 5-(3-{[1-(benzylsulfonyl)piperidin-4-yl]amino}phenyl)- 4-bromo-3-(carboxymethoxy)thiophene-2-carboxylic acid were obtained as leads to inhibit the ATPase activity of HSP70 in our findings and thus can be proposed for further in vitro and in vivo evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tiernan, T. O.; Chang, C.; Cheng, C. C.
1980-01-01
A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several experimental parameters, including source pressure, relative proportions of the reagent and analyte, and other ion source parameters, on the observed chemical ionization mass spectra were also investigated. In a mixture of NF3 and n-butanol, for example, the ratio of the intensities of the ions characteristic of the alcohol to that of the (HF)nF− ion was found to decrease with increasing sample pressure, with increasing NF3 pressure, and with increasing electron energy. No significant effects on the spectra were observed to result from variation of the source repeller field or the source temperature. The addition of argon to the source as a potential moderator did not alter the F− chemical ionization spectrum significantly, but the use of oxygen appears to inhibit formation of the (HF)nF− cluster ion. The advantages of using F− as a chemical ionization reagent are discussed, and comparisons are made with other reagent ions. PMID:7428746
Harada, Toshiyuki; Nakagawa, Yoshiaki; Wadkins, Randy M.; Potter, Philip M.; Wheelock, Craig E.
2009-01-01
Carboxylesterases are enzymes that hydrolyze a broad suite of endogenous and exogenous ester-containing compounds to the corresponding alcohol and carboxylic acid. These enzymes metabolize a number of therapeutics including the anti-tumor agent CPT-11, the anti-viral drug oseltamivir, and the anti-thrombogenic agent clopidogrel as well as many agrochemicals. In addition, carboxylesterases are involved in lipid homeostasis, including cholesterol metabolism and transport with a proposed role in the development of atherosclerosis. Several different scaffolds capable of inhibiting carboxylesterases have been reported, including organophosphates, carbamates, trifluoromethyl ketone-containing structures (TFKs), and aromatic ethane-1,2-diones. Of these varied groups, only the 1,2-diones evidence carboxylesterase isoform-selectivity, which is an important characteristic for therapeutic application and probing biological mechanisms. This study constructed a series of classical and 3D-QSAR models to examine the physiochemical parameters involved in the observed selectivity of three mammalian carboxylesterases: human intestinal carboxylesterase (hiCE), human carboxylesterase 1 (hCE1), and rabbit carboxylesterase (rCE). CoMFA-based models for the benzil-analogs described 88%, 95% and 76% of observed activity for hiCE, hCE1 and rCE, respectively. For TFK-containing compounds, two distinct models were constructed using either the ketone or gem-diol form of the inhibitor. For all three enzymes, the CoMFA ketone models comprised more biological activity than the corresponding gem-diol models; however the differences were small with described activity for all models ranging from 85–98%. A comprehensive model incorporating both benzil and TFK structures described 92%, 85% and 87% of observed activity for hiCE, hCE1 and rCE, respectively. Both classical and 3D-QSAR analysis showed that the observed isoform-selectivity with the benzil-analogs could be described by the volume parameter. This finding was successfully applied to examine substrate selectivity, demonstrating that the relative volumes of the alcohol and acid moieties of ester-containing substrates were predictive for whether hydrolysis was preferred by hiCE or hCE1. Based upon the integrated benzil and TFK model, the next generation inhibitors should combine the A-ring and the 1,2-dione of the benzil inhibitor with the long alkyl chain of the TFK-inhibitor in order to optimize selectivity and potency. These new inhibitors could be useful for elucidating the role of carboxylesterase activity in fatty acid homeostasis and the development of atherosclerosis as well as effecting the controlled activation of carboxylesterase-based prodrugs in situ. PMID:19062296
Harada, Toshiyuki; Nakagawa, Yoshiaki; Wadkins, Randy M; Potter, Philip M; Wheelock, Craig E
2009-01-01
Carboxylesterases are enzymes that hydrolyze a broad suite of endogenous and exogenous ester-containing compounds to the corresponding alcohol and carboxylic acid. These enzymes metabolize a number of therapeutics including the anti-tumor agent CPT-11, the anti-viral drug oseltamivir, and the anti-thrombogenic agent clopidogrel as well as many agrochemicals. In addition, carboxylesterases are involved in lipid homeostasis, including cholesterol metabolism and transport with a proposed role in the development of atherosclerosis. Several different scaffolds capable of inhibiting carboxylesterases have been reported, including organophosphates, carbamates, trifluoromethyl ketone-containing structures (TFKs), and aromatic ethane-1,2-diones. Of these varied groups, only the 1,2-diones evidence carboxylesterase isoform-selectivity, which is an important characteristic for therapeutic application and probing biological mechanisms. This study constructed a series of classical and 3D-QSAR models to examine the physiochemical parameters involved in the observed selectivity of three mammalian carboxylesterases: human intestinal carboxylesterase (hiCE), human carboxylesterase 1 (hCE1), and rabbit carboxylesterase (rCE). CoMFA-based models for the benzil-analogs described 88%, 95% and 76% of observed activity for hiCE, hCE1 and rCE, respectively. For TFK-containing compounds, two distinct models were constructed using either the ketone or gem-diol form of the inhibitor. For all three enzymes, the CoMFA ketone models comprised more biological activity than the corresponding gem-diol models; however the differences were small with described activity for all models ranging from 85-98%. A comprehensive model incorporating both benzil and TFK structures described 92%, 85% and 87% of observed activity for hiCE, hCE1 and rCE, respectively. Both classical and 3D-QSAR analysis showed that the observed isoform-selectivity with the benzil-analogs could be described by the volume parameter. This finding was successfully applied to examine substrate selectivity, demonstrating that the relative volumes of the alcohol and acid moieties of ester-containing substrates were predictive for whether hydrolysis was preferred by hiCE or hCE1. Based upon the integrated benzil and TFK model, the next generation inhibitors should combine the A-ring and the 1,2-dione of the benzil inhibitor with the long alkyl chain of the TFK-inhibitor in order to optimize selectivity and potency. These new inhibitors could be useful for elucidating the role of carboxylesterase activity in fatty acid homeostasis and the development of atherosclerosis as well as effecting the controlled activation of carboxylesterase-based prodrugs in situ.
NASA Astrophysics Data System (ADS)
Qian, L.; Xu, Z.; Teng, F.; Duan, X.-X.; Jin, Z.-S.; Du, Z.-L.; Li, F.-S.; Zheng, M.-J.; Wang, Y.-S.
2007-06-01
Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)- p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.
Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo
2016-02-01
The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yuzawa, Satoshi; Keasling, Jay D; Katz, Leonard
2017-04-01
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
Synthesis and characterization of bifunctional surfaces with tunable functional group pairs
NASA Astrophysics Data System (ADS)
Galloway, John M.; Kung, Mayfair; Kung, Harold H.
2016-06-01
Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.
Engineering of bacterial methyl ketone synthesis for biofuels.
Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R
2012-01-01
We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.
Ketonization of Cuphea oil for the production of 2-undecanone
USDA-ARS?s Scientific Manuscript database
The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...
NASA Astrophysics Data System (ADS)
Lin, Jian-Di; Rong, Cheng; Lv, Ri-Xin; Wang, Zu-Jian; Long, Xi-Fa; Guo, Guo-Cong; Pan, Chun-Yang
2018-01-01
Self-assembly reaction of Pb(NO3)2 with thiophene-2, 5-dicarboxylic acid (H2TDC) led to an acentric three-dimensional (3D) metal-organic framework under solvothermal conditions, namely, Pb(TDC) (1). The 3D framework of 1 is a pillared-layer structure with the I2O1 type which is composed of a 2D inorganic Pb-O-Pb substructural layer and two independent μ6-TDC2- anions pillars. This 3D framework shows a six-connected pcu topological net according to the topological analysis. Compound 1 crystallizes in an acentric space group and displays potential ferroelectric property which could be due to the swing of the thiophene rings. The remnant polarization (Pr), coercive field (Ec) and saturation spontaneous polarization (Ps) of 1 are ca. 0.034 μC cm-2, 15.7 kV cm-1 and 0.0997 μC cm-2, respectively. Among the H2TDC-based MOFs, the present compound is the first example which shows ferroelectric property. In addition, 1 also exhibits photoluminescent property which can be attributed to ligand-to-metal charge transfer.
Cebrián-Prats, Anna; Rovira, Tiffani; Saura, Patricia; González-Lafont, Àngels; Lluch, José M
2017-12-28
Ebselen is a potent competitive inhibitor of the active form of rabbit 15-lipoxygenase, an enzyme involved in many inflammatory diseases. Light-induced Z-to-E isomerization of the ebselen-like 2-(3-benzylidene)-3-oxo-2,3-dihydrobenzo[b]thiophene-7-carboxylic acid methyl ester (BODTCM) molecule was used to convert the weak (Z)-BOTDCM inhibitor into the (E)-isomer with much higher inhibitory capacity. In this study, the binding modes of ebselen, (E)-BOTDCM and (Z)-BOTDCM, have been analyzed to provide molecular insights on the inhibitory potency of ebselen and on the geometric-isomer specificity of (E)- and (Z)-BOTDCM inhibitors. The inhibitor-enzyme structures obtained from docking and molecular dynamics simulations as well as from QM/MM calculations show that the inhibitor molecules are not coordinated to the nonheme iron in the active site. Thermal motion allows ebselen and (E)-BOTDCM to visit a wide range of the configurational space competing with the polyunsaturated fatty acid for binding at the active site. Both molecules present similar MM/PBSA binding free energies. The energy penalty for the bigger geometric deformation undergone by (E)-BODTCM would explain its lower inhibitor potency. The (Z)-isomer is the weakest inhibitor because thermal motion moves it to a region very far from the first coordination sphere of Fe, where it could not compete with the fatty acid substrate.
21 CFR 172.515 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate. Allyl cinnamate. Allyl...-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl isovalerate. Benzyl mercaptan; α-toluenethiol...
Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji
2013-09-01
Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gu, Zhi-Gang; Chen, Shan-Ci; Fu, Wen-Qiang; Zheng, Qingdong; Zhang, Jian
2017-03-01
Metal-organic framework (MOF) thin films are important in the application of sensors and devices. However, the application of MOF thin films in organic field effect transistors (OFETs) is still a challenge to date. Here, we first use the MOF thin film prepared by a liquid-phase epitaxial (LPE) approach (also called SURMOFs) to modify the SiO 2 dielectric layer in the OFETs. After the semiconductive polymer of PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]) was coated on MOF/SiO 2 and two electrodes on the semiconducting film were deposited sequentially, MOF-based OFETs were fabricated successfully. By controlling the LPE cycles of SURMOF HKUST-1 (also named Cu 3 (BTC) 2 , BTC = 1,3,5-benzenetricarboxylate), the performance of the HKUST-1/SiO 2 -based OFETs showed high charge mobility and low threshold voltage. This first report on the application of MOF thin film in OFETs will offer an effective approach for designing a new kind of materials for the OFET application.
Production of carboxylic acid and salt co-products
Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.
2014-09-09
This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.
Das, Debjit; Pratihar, Sanjay; Roy, Sujit
2012-09-21
Indeno[2,1-b]thiophene and indeno[1,2-b]indole motifs have been obtained in moderate to good yields from easily available substituted boronic acids, 2-bromo aryl/vinyl aldehydes, and nucleophiles such as arenes/heteroarenes and others using a catalytic combination of bimetallic "Pd-Sn" and AgPF(6). This formal three-component coupling involves a Suzuki reaction followed by nucleophile assisted tandem ring closure. The sequential synthesis of substituted heterocycle-fused indenes, benzofluorene, and fluorenes was also accomplished.
Isolation of hydrophilic organic acids from water using nonionic macroporous resins
Aiken, G.R.; McKnight, Diane M.; Thorn, K.A.; Thurman, E.M.
1992-01-01
A method has been developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite* * Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. XAD-4 resin. The method uses a two column array of XAD-8 and XAD-4 resins in series. The hydrophobic organic acids, composed primarily of aquatic fulvic acid, are removed from the sample on XAD-8, followed by the isolation of the more hydrophilic organic acids on XAD-4. For samples from a number of diverse environments, more of the dissolved organic carbon was isolated on the XAD-8 resin (23-58%) than on the XAD-4 resin (7-25%). For these samples, the hydrophilic acids have lower carbon and hydrogen contents, higher oxygen and nitrogen contents, and are lower in molecular weight than the corresponding fulvic acids. 13C NMR analyses indicate that the hydrophilic acids have a lower concentration of aromatic carbon and greater heteroaliphatic, ketone and carboxyl content than the fulvic acid. ?? 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng
By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less
21 CFR 172.515 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...
21 CFR 172.515 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...
21 CFR 172.515 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...
21 CFR 172.515 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...
Klingstedt, Therése; Blechschmidt, Cristiane; Nogalska, Anna; Prokop, Stefan; Häggqvist, Bo; Danielsson, Olof; Engel, W King; Askanas, Valerie; Heppner, Frank L; Nilsson, K Peter R
2013-03-18
Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s-IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co-localization with proteins reported to accumulate in s-IBM protein inclusion bodies. Compared with conventional amyloid ligands, LCOs identified a larger fraction of immunopositive inclusion bodies. When the conjugated thiophene backbone was extended with terminal carboxyl groups, the LCO revealed striking spectral differences between distinct protein inclusion bodies. We conclude that 1) LCOs are sensitive, rapid and powerful tools for identifying protein inclusion bodies and 2) LCOs identify a wider range of protein inclusion bodies than conventional amyloid ligands. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klingstedt, Therése; Blechschmidt, Cristiane; Nogalska, Anna; Prokop, Stefan; Häggqvist, Bo; Danielsson, Olof; Engel, W King; Askanas, Valerie; Heppner, Frank L; Nilsson, K Peter R
2013-01-01
Small hydrophobic ligands identifying intracellular protein deposits are of great interest, as protein inclusion bodies are the pathological hallmark of several degenerative diseases. Here we report that fluorescent amyloid ligands, termed luminescent conjugated oligothiophenes (LCOs), rapidly and with high sensitivity detect protein inclusion bodies in skeletal muscle tissue from patients with sporadic inclusion body myositis (s-IBM). LCOs having a conjugated backbone of at least five thiophene units emitted strong fluorescence upon binding, and showed co-localization with proteins reported to accumulate in s-IBM protein inclusion bodies. Compared with conventional amyloid ligands, LCOs identified a larger fraction of immunopositive inclusion bodies. When the conjugated thiophene backbone was extended with terminal carboxyl groups, the LCO revealed striking spectral differences between distinct protein inclusion bodies. We conclude that 1) LCOs are sensitive, rapid and powerful tools for identifying protein inclusion bodies and 2) LCOs identify a wider range of protein inclusion bodies than conventional amyloid ligands. PMID:23450708
Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via β-C(sp3)-H Activation.
Zhu, Ru-Yi; Liu, Luo-Yan; Park, Han Seul; Hong, Kai; Wu, Yongwei; Senanayake, Chris H; Yu, Jin-Quan
2017-11-15
We report Pd(II)-catalyzed β-C(sp 3 )-H (hetero)arylation of a variety of ketones using a commercially available 2,2-dimethyl aminooxyacetic acid auxiliary. Facile installation and removal of the auxiliary as well as its superior scope for both ketones and (hetero)aryl iodides overcome the significant limitations of the previously reported β-C(sp 3 )-H arylation of ketones. The ready availability of ketones renders this reaction a broadly useful method for alkyl-(hetero)aryl coupling involving both primary and secondary alkyls.
2015-03-24
Institute, Dayton, OH 45469 4 California State University, Long Beach, CA 90840 5 University of Michigan, Ann Arbor, MI 48109 2 Acknowledgements Ms. Yvonne...ppm) C2 Thiophenes 0.3 C3-C4 Thiophenes 1.4 C5 Thiophenes 3.7 C6 Thiophenes 3.5 C7 Thiophenes 4.1 C8 -C9 Thiophenes 2.9 C10 Thiophenes 0.6 C11...Thiophenes 6.3 C6 Thiophenes 6.1 C7 Thiophenes 5.8 C8 -C9 Thiophenes 4.9 C10 Thiophenes 1.3 C11 Thiophenes 0.9 C12+ Thiophenes 2.0 Standard Grade RP-1 (Errors
NASA Astrophysics Data System (ADS)
Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.
2018-01-01
This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.
Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor.
de Luna, Mark Daniel G; Briones, Rowena M; Su, Chia-Chi; Lu, Ming-Chun
2013-01-01
Acetaminophen (ACT), an analgesic and antipyretic substance, is one of the most commonly detected pharmaceutical compound in surface waters and wastewaters. In this study, fluidized-bed Fenton (FB-Fenton) was used to decompose ACT into its final degradation products. The 1.45-L cylindrical glass reactor had inlet, outlet and recirculating sections. SiO(2) carrier particles were supported by glass beads with 2-4 mm in diameter. ACT concentration was determined by high performance liquid chromatography (HPLC). During the first 40 min of reaction, a fast initial ACT removal was observed and the "two-stage" ACT degradation conformed to a pseudo reaction kinetics. The effects of ferrous ion dosage and [Fe(2+)]/[H(2)O(2)] (FH ratio) were integrated into the derived pseudo second-order kinetic model. A reaction pathway was proposed based on the intermediates detected through SPME/GC-MS. The aromatic intermediates identified were hydroquinone, benzaldehydes and benzoic acids while the non-aromatic substances include alcohols, ketones, aldehydes and carboxylic acids. Rapid initial ACT degradation rate can be accomplished by high initial ferrous ion concentration and/or low FH ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kanjan, Pochanart; Hongpattarakere, Tipparat
2016-09-01
The most abundance of anti-Salmonella lactic acid bacteria (LAB) was found in feces of naturally born, exclusively breastfed Thai infants. Six strains of Lactobacillus plantarum and one strain of Lactobacillus paracasei were selected and identified. In the co-cultivation assay, L. plantarum subsp. plantarum I62 showed the strongest and broadest antibacterial activity against Escherichia coli, Shigella sonnei, Salmonella Paratyphi A, and Salmonella Typhimurium SA 2093 under the mimicked proximal colon condition, in which glucose and other nutrients were limited. According to GC-MS analysis, the major antibacterial contribution of organic acids secreted by L. plantarum I62 grown in the presence of glucose was dramatically reduced from 95.8 to 41.9 % under glucose-limited niche. The production of low-pK a acids, such as lactic, 1,2-benzenedicarboxylic, and 3-phenyllactic acids, was remarkably dropped. Surprisingly, higher-pK a acids such as 5-chlorobenzimidazole-2-carboxylic, pyroglutamic, palmitic, and oleic acids were enhanced. Moreover, cyclic dipeptides, ketones, alkanes, alcohols, and miscellaneous compounds, which were pH-independent antibacterial metabolites, became dominant. The electron microscopy strongly supported the synergistic attacks of the multiple antibacterial components targeting outer and cytoplasmic membranes leading to severe leakage and cell disruption of Salmonella Typhimurium. This strain poses to be a potential probiotic candidate for effectively controlling and treating human foodborne bacterial infection.
Qin, Jian-Hua; Wang, Hua-Rui; Pan, Qi; Zang, Shuang-Quan; Hou, Hongwei; Fan, Yaoting
2015-10-28
Seven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role. Complex 1 exhibits single right-handed helices constructed by ptptp ligands and Mn(ii) ions. Complex 2 possesses octanuclear helicate structures in which two propeller-shaped [Mn(μ-ptptp)3](4-) units embrace two [Mn3(μ3-Cl)](5+) cluster cores inside. Complexes 3 and 4 are isostructural and display a 1D double chain formed by two kinds of pseudo meso-helices: (Mn-ptptp)n and (Mn-5-R-ip)n. Complex 5 has a 2D structure containing 1D Mn(ii) ion chains formed through carboxylates and [ptptp](2-)-N,N bridges. Complex 6 shows a 2D structure formed by a meso-helix (Mn-ptptp)n and the partly deprotonated Hbtc ligands. Complex 7 features a heterochiral [2 + 2] coaxially nested double-helical column formed by using the outer double-helices (Mn-ptptp)n as a template to encapsulate the inner double-helices (Mn-tdc)n with opposite orientation. All complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography and powder X-ray diffraction. The magnetic properties of 1-7 were also investigated.
Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana
2017-07-19
Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and diagenesis of strong-acid carboxyl groups in humic substances
Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.
2003-01-01
A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.
Reilly, Maureen K; Rychnovsky, Scott D
2010-11-05
Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (type I mechanism).
Production of methyl-vinyl ketone from levulinic acid
Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI
2011-06-14
A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.
Zhang, Angel; Stillman, Martin J
2018-05-09
The electronic structures of three previously synthesized Ni-coordinated chlorins with β-substituents of thioketone, fluorene, and ketone were investigated using magnetic circular dichroism spectroscopy (MCD) and density functional theory (DFT) for potential application as sensitizers for dye-sensitized solar cells (DSSCs). Computational studies on modeled Zn-coordinated chlorins allowed identification of charge transfer and d-d transitions of the Ni2+ coordinated chlorins. Two fictive Zn chlorins, M1 and M2, were designed with thiophene units based on the fluorene substituted chlorin. Substitution with thiophene altered the typical arrangement of the four Gouterman molecular orbitals (MOs) and red-shifted and greatly intensified the lowest energy absorption band (the Q band). The introduction of the thiophene-based MO as the LUMO below the usual Gouterman LUMO is predicted to increase the efficiency of electron transfer from the dye to the conduction band of the semiconductor in DSSCs. The addition of a donor group on the opposite pyrrole (M2) red-shifted the Q band further and introduced a donor-based MO between the typical Gouterman HOMO and HOMO-1. Despite the relatively small ΔHOMO, M1 and M2 exhibited remarkably intense Q bands. M2 would be a possible candidate for application in DSSCs due to its panchromatic absorption, intense and red-shifted Q band, and the presence of the substituent based MO properties. Another indicator of a successful dye is the alignment of the ground state and excited state oxidation potentials (GSOP and ESOP, respectively) with respect to the conduction band of the semiconductor. The GSOP for M2 lies 0.55 eV below the I-/I3- redox potential and the ESOP lies 0.48 eV above the TiO2 conduction band. The impact of the thiophene dominance in the LUMO also supports the prediction of efficient sensitization properties. The remarkably intense Q band of M2 predicted to be at 777 nm with a ΔHOMO of just 1.04 eV provides a synthetic route to tetrapyrroles with extremely intense, red Q bands without the need for aza nitrogens of the phthalocyanines. This study illustrates the value of guided synthesis using MCD spectral analysis and computational methods for optimizing the design of porphyrin dyes.
Recent developments in the metal-catalyzed reactions of metallocarbenoids from propargylic esters.
Marco-Contelles, José; Soriano, Elena
2007-01-01
The transition-metal-catalyzed intramolecular cycloisomerization of propargylic carboxylates provides functionalized bicyclo[n.1.0]enol esters in a very diastereoselective manner and, depending on the structure, with partial or complete transfer of chirality from enantiomerically pure precursors. The subsequent methanolysis gives bicyclo[n.1.0] ketones, hence resulting in a very efficient two-step protocol for the syntheses of alpha,beta-unsaturated cyclopropyl ketones, key intermediates for the preparation of natural products. The results from mechanistic computational studies suggest that they probably proceed through cyclopropyl metallocarbenoids, formed by endo-cyclopropanation, that undergo a 1,2-acyl migration. Finally, the potential of the intermolecular reaction and the related pentannulation of propargylic esters bearing pendant aromatic rings are also discussed.
Inborn errors of ketogenesis and ketone body utilization.
Sass, Jörn Oliver
2012-01-01
Ketone bodies acetoacetate and 3-hydroxy-n-butyric acid are metabolites derived from fatty acids and ketogenic amino acids such as leucine. They are mainly produced in the liver via reactions catalyzed by the ketogenic enzymes mitochondrial 3-hydroxy-3-methylglutary-coenzyme A synthase and 3-hydroxy-3-methylglutary-coenzyme A lyase. After prolonged starvation, ketone bodies can provide up to two-thirds of the brain's energy requirements. The rate-limiting enzyme of ketone body utilization (ketolysis) is succinyl-coenzyme A:3-oxoacid coenzyme A transferase. The subsequent step of ketolysis is catalyzed by 2-methylactoacetyl-coenzyme A thiolase, which is also involved in isoleucine catabolism. Inborn errors of metabolism affecting those four enzymes are presented and discussed in the context of differential diagnoses. While disorders of ketogenesis can present with hypoketotic hypoglycemia, inborn errors of ketolysis are characterized by metabolic decompensations with ketoacidosis. If those diseases are considered early and appropriate treatment is initiated without delay, patients with inborn errors of ketone body metabolism often have a good clinical outcome.
NASA Astrophysics Data System (ADS)
Sharma, Swati; Yawer, Mohd; Kariem, Mukaddus; Sheikh, Haq Nawaz
2016-08-01
Two new 3D MOFs [Nd2(TDA)3(DEF)2(H2O)]n (1) and [Y4(TDA)6(DEF)4]n (2) [Thiophene-2,5-dicarboxylic acid (H2TDA) and N,N‧-diethylformamide (DEF)] were synthesized by solvothermal method. They were characterized by elemental analyses, infrared spectroscopy and single crystal X-ray diffraction studies. The two MOFs (1) and (2) belong to the monoclinic system with space group P21/n and C 2 respectively. Structural characterizations by single-crystal X-ray crystallography reveal that 1 and 2 adopt three-dimensional frameworks constructed by cross-linking of rod shaped infinite chain secondary building unit (SBU) by thiophene-2,5-dicarboxylates as linker. These frameworks feature rhomboidal channels, inside which coordinated DEF/H2O solvent molecules are located. DEF plays pivotal role in reaction and design of MOFs. Thermogravimetric analysis shows that both MOFs are thermally robust.
Lauback, R G; Balitz, D F; Mays, D L
1976-05-01
An improved gas chromatographic method is described for the simultaneous determination of carboxylic acid chlorides and related carboxylic acids used in the production of some commercial semisynthetic penicillins. The acid chloride reacts with diethylamine to form the corresponding diethylamide. Carboxylic acid impurities are converted to trimethylsilyl esters. The two derivatives are separated and quantitated in the same chromatographic run. This method, an extension of the earlier procedure of Hishta and Bomstein (1), has been applied to the acid chlorides used to make oxacillin, cloxacillin, dicloxacillin, and methicillin (Figure 1); it shows promise of application to other acid chlorides. The determination is more selective than the usual titration methods, which do not differentiate among acids with similar pK's. Relative standard deviations of the acid chloride determination are 1.0-2.5%. Residual carboxylic acid can be repetitively determined within a range of 0.6% absolute.
Kumar, C S Chidan; Kwong, Huey Chong; Mah, Siau Hui; Chia, Tze Shyang; Loh, Wan-Sin; Quah, Ching Kheng; Lim, Gin Keat; Chandraju, Siddegowda; Fun, Hoong-Kun
2015-10-16
Adamantyl-based compounds are commercially important in the treatments for neurological conditions and type-2 diabetes, aside from their anti-viral abilities. Their values in drug design are chronicled as multi-dimensional. In the present study, a series of 2-(adamantan-1-yl)-2-oxoethyl benzoates, 2(a-q), and 2-(adamantan-1-yl)-2-oxoethyl 2-pyridinecarboxylate, 2r, were synthesized by reacting 1-adamantyl bromomethyl ketone with various carboxylic acids using potassium carbonate in dimethylformamide medium at room temperature. Three-dimensional structures studied using X-ray diffraction suggest that the adamantyl moiety can serve as an efficient building block to synthesize 2-oxopropyl benzoate derivatives with synclinal conformation with a looser-packed crystal packing system. Compounds 2a, 2b, 2f, 2g, 2i, 2j, 2m, 2n, 2o, 2q and 2r exhibit strong antioxidant activities in the hydrogen peroxide radical scavenging test. Furthermore, three compounds, 2p, 2q and 2r, show good anti-inflammatory activities in the evaluation of albumin denaturation.
NASA Astrophysics Data System (ADS)
Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.
2011-05-01
The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.
Rhodes, M.W.; Kator, H.; McNabb, A.; Deshayes, C.; Reyrat, J.-M.; Brown-Elliott, B. A.; Wallace, R.; Trott, K.A.; Parker, J.M.; Lifland, B.; Osterhout, G.; Kaattari, I.; Reece, K.; Vogelbein, W.; Ottinger, C.A.
2005-01-01
A group of slowly growing photochromogenic mycobacteria was isolated from Chesapeake Bay striped bass (Morone saxatilis) during an epizootic of mycobacteriosis. Growth characteristics, acid-fastness and 16S rRNA gene sequencing results were consistent with those of the genus Mycobacterium. Biochemical reactions, growth characteristics and mycolic acid profiles (HPLC) resembled those of Mycobacterium shottsii, a non-pigmented mycobacterium also isolated during the same epizootic. Sequencing of the 16S rRNA genes, the gene encoding the exported repeated protein (erp) and the gene encoding the 65 kDa heat-shock protein (hsp65) and restriction enzyme analysis of the hsp65 gene demonstrated that this group of isolates is unique. Insertion sequences associated with Mycobacterium ulcerans, IS2404 and IS2606, were detected by PCR. These isolates could be differentiated from other slowly growing pigmented mycobacteria by their inability to grow at 37 ??C, production of niacin and urease, absence of nitrate reductase, negative Tween 80 hydrolysis and resistance to isoniazid (1 ??g ml-1), p-nitrobenzoic acid, thiacetazone and thiophene-2-carboxylic hydrazide. On the basis of this polyphasic study, it is proposed that these isolates represent a novel species, Mycobacterium pseudoshottsii sp. nov. The type strain, L15T, has been deposited in the American Type Culture Collection as ATCC BAA-883T and the National Collection of Type Cultures (UK) as NCTC 13318T. ?? 2005 IUMS.
The carbon functional group budget of a peatland
NASA Astrophysics Data System (ADS)
Moody, Catherine; Worrall, Fred; Clay, Gareth; Apperley, David
2016-04-01
Organic matter samples were taken from each organic matter reservoir and fluvial flux found in a peatland and analysed by elemental analysis for carbon, hydrogen, nitrogen and oxygen content, and by 13C solid state nuclear magnetic resonance (NMR) for functional group composition. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, four different depths from a peat core, and monthly samples of fluvial particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK. The proportion of carbon atoms from each of the eight carbon functional groups (C-alkyl, N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C, aromatic/unsaturated C, phenolic C, aldehyde/ketone C and amide/carboxyl C) from each type of organic matter were combined with an existing carbon budget from the same site, to give a functional group carbon budget. The budget results show that the ecosystem is accumulating N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C and phenolic C groups, but losing C-alkyl, aromatic/unsaturated C, amide/carboxyl C and aldehyde/ketone C. Comparing the functional group compositions between the sampled organic matter pools shows that DOM arises from two distinct sources; from the peat itself and from a vegetation source.
NASA Astrophysics Data System (ADS)
Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.
2007-07-01
Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The vibrational spectroscopy results also suggest that much of the "Type I" signal observed in the HMBC spectrum is due to carboxylic acid esters and possibly α-substituted alicyclic acids.
Reilly, Maureen K.; Rychnovsky, Scott D.
2010-01-01
Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (Type I mechanism). PMID:20942379
Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.
Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas
2015-10-16
The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.
Aqueous infrared carboxylate absorbances: Aliphatic di-acids
Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.
1998-01-01
Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng
Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less
Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W
2002-10-01
Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.
Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V
2012-07-21
Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.
Prasannakumar, S P; Gowtham, H G; Hariprasad, P; Shivaprasad, K; Niranjana, S R
2015-11-01
The bacterial strain designated as WGR-UOM-BT1 isolated from rhizosphere of Rauwolfia serpentina exhibited broad-spectrum antifungal activity and also improved early plant growth. Based on morphological, biochemical and 16S rRNA gene sequence analyses, the strain BT1 was identified as Delftia tsuruhatensis (KF727978). Under in vitro conditions, the strain BT1 suppressed the growth of wide range of fungal phytopathogens. Purified antimicrobial metabolite from the strain BT1 was identified as nitrogen-containing heterocyclic compound, 'amino(5-(4-methoxyphenyl)-2-methyl-2-(thiophen-2-yl)-2,3-dihydrofuran-3-yl)methanol' (AMTM), with molecular mass of 340•40 and molecular formula of C17 H19 NO3 S. The strain BT1 was positive for rhizosphere colonization (tomato), IAA production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. Under laboratory and greenhouse conditions, the strain BT1 promoted plant growth and suppressed foliar and root fungal pathogens of tomato. Therefore, antimicrobial and disease protection properties of strain BT1 could serve as an effective biological control candidate against devastating fungal pathogens of vegetable plants. Besides, the production of IAA, P solubilization and ACC deaminase activity enhance its potential as a biofertilizer and may stabilize the plant performance under fluctuating environmental conditions. In this study, we reported that Delftia tsuruhatensis WGR-UOM-BT1 strain has the plant growth promotion activities such as rhizosphere colonization (tomato), IAA production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. This bacterial strain was found producing an antimicrobial nitrogen-containing heterocyclic compound identified as 'amino(5-(4-methoxyphenyl)-2-methyl-2-(thiophen-2-yl)-2,3-dihydrofuran-3-yl)methanol' [C17 H19 NO3 S] (AMTM), which is new to the bacterial world. © 2015 The Society for Applied Microbiology.
Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.
De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger
2014-07-09
We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.
A chromene and prenylated benzoic acid from Piper aduncum.
Baldoqui, D C; Kato, M J; Cavalheiro, A J; Bolzani, V da S; Young, M C; Furlan, M
1999-08-01
In addition to nerolidol, 2',6'-dihydroxy-4'-methoxydihydrochalcone, methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate, methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate and methyl 8-hydroxy-2,2-dimethyl-2H-1-chromene-6-carboxylate, two new natural products were isolated from the leaves of Piper aduncum, 2,2-dimethyl-2H-1-chromene-6-carboxylic acid and 3-(3',7'-dimethyl-2',6'-octadienyl)-4-methoxybenzoic acid. The structures of the isolates were established based on analysis of spectroscopic data, including ES-MS. The DNA-damaging activity of the isolated compounds was also investigated against mutant strains of Saccharomyces cerevisiae.
Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A
2013-08-20
A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.
Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.
Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra
2016-01-01
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni
2014-07-01
To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less
Rhodes, M.W.; Kator, H.; Kotob, S.; van Berkum, P.; Kaattari, I.; Vogelbein, W.; Quinn, F.; Floyd, M.M.; Butler, W.R.; Ottinger, C.A.
2003-01-01
Slowly growing, non-pigmented mycobacteria were isolated from striped bass (Morone saxatilis) during an epizootic of mycobacteriosis in the Chesapeake Bay. Growth characteristics, acid-fastness and results of 16S rRNA gene sequencing were consistent with those of the genus Mycobacterium. A unique profile of biochemical reactions was observed among the 21 isolates. A single cluster of eight peaks identified by analysis of mycolic acids (HPLC) resembled those of reference patterns but differed in peak elution times from profiles of reference species of the Mycobacterium tuberculosis complex. One isolate (M175T) was placed within the slowly growing mycobacteria by analysis of aligned 16S rRNA gene sequences and was proximate in phylogeny to Mycobacterium ulcerans and Mycobacterium marinum. However, distinct nucleotide differences were detected in the 16S rRNA gene sequence among M175T, M. ulcerans and M. marinum (99.2% similarity). Isolate M175T could be differentiated from other slowly growing, non-pigmented mycobacteria by its inability to grow at 37??C, production of niacin and urease, absence of nitrate reductase and resistance to isoniazid (1 ??g ml-1), thiacetazone and thiophene-2-carboxylic hydrazide. Based upon these genetic and phenotypic differences, isolate M175T (= ATCC 700981T = NCTC 13215T) is proposed as the type strain of a novel species, Mycobacterium shottsii sp. nov.
NASA Astrophysics Data System (ADS)
Neumann, Katharina; Thelakkat, Mukundan
2012-09-01
The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.
Mabkhot, Yahia Nasser; Kaal, Nahed Ahmed; Alterary, Seham; Al-Showiman, Salim S; Barakat, Assem; Ghabbour, Hazem A; Frey, Wolfgang
2015-05-14
Ethyl 5-acetyl-4-methyl-2-(phenylamino)thiophene-3-carboxylate (2) and there derivatives 3a-c, 4, 6a-c and 9a-f were synthesized. The structure of compound 2 was deduced by 1H-NMR, 13C-NMR, FT-IR, MS, microanalysis, and single-crystal X-ray crystallography. The compound crystallized in the monoclinic system, with space group P21/c and cell coordinates a = 8.5752(16) Å, b = 21.046(4) Å, c = 8.2941(12) Å, β = 101.131(6)°, V = 1468.7(4) Å3, and Z = 4. Compounds 2, 3a-c, 4, 5a-c and 9a-f were subjected into in vitro antimicrobial activity tests. Compounds 3a and 3c were more potent than standard drug amphotericin B, showing MIC values of 23.8 ± 0.42 and 24.3 ± 0.68, respectively, against Aspergillus fumigatus while the standard drug MIC was 23.7 ± 0.1. Compound 3c was also more potent (MIC 24.8 ± 0.64) than the standard drug amphotericin B (MIC 19.7 ± 0.2) against Syncephalastrum racemosum. Compounds 4 and 9f also showed promising anti-microbial activity. Molecular modeling was performed for the most active compounds.
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.
Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C
2015-05-06
The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.
Zzaman, Wahidu; Bhat, Rajeev; Yang, Tajul Aris; Easa, Azhar Mat
2017-10-01
Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated. The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg -1 ) at 200°C for 10 min. The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Synthesis of the 1-Monoester of 2-Ketoalkanedioic Acids, e.g., Octyl α-Ketoglutarate
Jung, Michael E.; Deng, Gang
2012-01-01
Oxidative cleavage of cycloalkene-1-carboxylates, made from the corresponding carboxylic acids, and subsequent oxidation of the resulting ketoaldehyde afforded the important 1-monoesters of 2-ketoalkanedioic acids. Thus ozonolysis of octyl cyclobutene-1-carboxylate followed by sodium chlorite oxidation afforded the 1-monooctyl 2-ketoglutarate. This is a cell-permeable prodrug form of α-ketoglutarate, an important intermediate in the tricarboxylic acid (TCA, Krebs) cycle and a promising therapeutic agent in its own right. PMID:23163977
Åberg, Veronica; Das, Pralay; Chorell, Erik; Hedenström, Mattias; Pinkner, Jerome S.; Hultgren, Scott J.; Almqvist, Fredrik
2009-01-01
Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic E. coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here we present the synthesis and biological evaluation of carboxylic acid isosteres, including e.g. tetrazoles, acyl sulfonamides and hydroxamic acids, of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli. PMID:18499455
Double Reformatsky reaction: divergent synthesis of δ-hydroxy-β-ketoesters.
Mineno, Masahiro; Sawai, Yasuhiro; Kanno, Kazuaki; Sawada, Naotaka; Mizufune, Hideya
2013-06-21
The double Reformatsky reaction, tandem addition of two molecules of zinc alkanoate to a carbonyl compound, and its synthetic application to a series of δ-hydroxy-β-ketoesters has been developed. The key to accelerate the double Reformatsky reaction is considered to be a complex-induced proximity effect of the in situ generated zinc alkoxide coordinated with the pyridyl group of the substrate or bidentate amines. A noteworthy feature of the reaction system is its high tolerance of functional groups due to the moderate nucleophilicity of organozinc reagents and the mild reaction conditions. Moreover, spectroscopic and crystallographic analyses of the zinc complex of the double Reformatsky product support the proposed mechanism of reaction site discrimination for ketones, aldehydes, nitriles, carboxylic acid anhydrides, and esters.
NASA Astrophysics Data System (ADS)
Legrand, M.; Preunkert, S.; Jourdain, B.
2003-04-01
Multiple year-round concentrations of acetic and formic acids were measured both in gas and aerosol phases at Dumont d'Urville (DDU, a coastal Antarctic site: 66^o40'S, 140^o01'E) by using mist chamber and aerosol filter sampling. Aerosol levels of the 2 carboxylates range from less than one ng m-3 in winter to 5--10 ng m-3 in summer. Comparison with gas phase concentrations shows that almost 99% of the 2 carboxylic acids are present in the gas phase. Concentrations of formic acid in the gas phase are minima in June--July (70 ng m-3) and increase regularly towards summer months when levels reach ˜400 ng m-3. Concentrations of acetic acid in the gas phase exhibit a more well-marked seasonal cycle with values remaining close to 50 ng m-3 from April to October and strongly increase during summer months (mean value of 800 ng m-3). Such a strong seasonal cycle of carboxylic acids in the high southern latitude marine boundary layer displays with observations made at numerous continental sites where a more weak seasonality is generally observed. It is suggested that carboxylic acids present at DDU mainly originate from biogenic emissions from the Antarctic ocean which are expected to closely follow annual cycle of the sea ice extent and solar radiation, affecting in particular photochemical production of alkenes from dissolved organic carbon released from phytoplancton. Summer levels of carboxylic acids are discussed in terms of air-sea fluxes of NMHCs and photochemical production of carboxylic acids from ozone-alkene reactions and HO_2 reaction with peroxyacetal radical in these poor NOx environments.
Synthesis and biological evaluation of naphthyldesferrithiocin iron chelators.
Bergeron, R J; Wiegand, J; Wollenweber, M; McManis, J S; Algee, S E; Ratliff-Thompson, K
1996-04-12
The synthesis and iron-clearing properties of the naphthyldesferrithiocins 2-(2'-hydroxynaphth-1'-yl)-delta2-thiazoline-(4R)-carboxylic acid, 2-(2'-hydroxynaphth-1'-yl)-delta2-thiazoline-(4S)-carboxylic acid, 2-(3'-hydroxynaphth-2'-yl)-delta2-thiazoline-(4R)-carboxylic acid, and 2-(3'-hydroxynaphth-2'-yl)-delta2-thiazoline-(4S)-carboxylic acid are described. While the bile duct-cannulated rat model clearly demonstrates that the 3'-hydroxynaphthyl-2'-yl compounds are orally active iron-clearing agents and the corresponding 2'-hydroxynaphthyl-1'-yl compounds are not, in the primate model none of the benz-fused desazadesferrithiocin analogues are active. Oral versus subcutaneous administration of these ligands strongly suggests that metabolism is a key issue in their iron-clearing properties and that these benz-fused desferrithiocins are not good candidates for orally active iron-clearing drugs.
Determination of Perfluorocarboxylic Acids in Sludge
Methods were developed for the extraction from wastewater-treatment sludge and quantitation by LC/MS/MS of perfluorocarboxylic acids (PFCAs, C6 to C12), 7-3 fluorotelomer carboxylic acid (7-3 FTCA) and 8-2 fluorotelomer 2-unsaturated carboxylic acid (8-2 FTUCA) using LC/MS/MS.
Zheng, Miao; Ishiguro-Oonuma, Toshina; Iwanaga, Toshihiko
2014-01-01
The monocarboxylate transporter (MCT)-1 plays an important role in the transfer of monocarboxylate metabolites such as lactate, ketone bodies, and acetic acid. The present study revealed the selective localization of MCT1 in reticular cells of the murine lymph node. An intense MCT1 immunoreactivity was found in the reticular cells forming a cellular network together with sinus-lining cells in the medullary sinuses and in cells covering the inside of subcapsular sinuses.Electron-microscopically, MCT1 was localized along the plasma membrane of the reticular cells.The medullary reticular cells vigorously ingested carboxylate-modified latex particles, but any reticular cells within the cortical lymphoid follicles and medullary cords neither expressed MCT1 nor incorporated latex particles. MCT1-immunoreactive reticular cells also expressed LYVE-1,which is a hyaluronan receptor abundant in both the lymphatic endothelium and hepatic sinusoidal epithelium. The selective localization of MCT1 and LYVE-1 suggests a high level of activity for lymphoid reticular cells in the uptake of carboxylate-modified and hyaluronate waste substances circulating in the body.
Vysotsky, Yu B; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Aksenenko, E V; Miller, R
2009-04-02
In the framework of the semiempirical PM3 method, the thermodynamic parameters of cis isomers of unsaturated carboxylic acids at the air/water interface are studied. The model systems used are unsaturated cis fatty acid of the composition Delta = 12-15 and omega = 6-11, where Delta and omega refer to the number of carbon atoms between the functional group and double bond, and that between the double bond and methyl group, respectively. For dimers, trimers, and tetramers of the four acid series, the thermodynamic parameters of clusterization are calculated. It is shown that the position of the double bond does not significantly affect the values of thermodynamic parameters of formation and clusterization of carboxylic acids for equal chain lengths (n = Delta + omega). The calculated results show that for cis unsaturated fatty acid with odd Delta values the spontaneous clusterization threshold corresponds to n = 17-18 carbon atoms in the alkyl chain, while for monounsaturated acids with even Delta values this threshold corresponds to n = 18-19 carbon atoms in the alkyl chain. These differences in the clusterization threshold between the acids with even and odd Delta values are attributed to the formation of additional intermolecular hydrogen bonds between the ketonic oxygen atom of one monomer and the hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with odd Delta values or between the hydroxyl oxygen atom of one monomer and hydrogen atom linked to the alpha-carbon atom of the second monomer for the acids with even Delta values. The results obtained in the study agree satisfactorily with our experimental data for cis unsaturated nervonic (Delta15, omega9) and erucic acids (Delta13, omega9), and published data for some fatty acids, namely cis-16-heptadecenoic (Delta16, omega1), cis-9-hexadecenoic (Delta7, omega9), cis-11-eicosenoic (Delta11, omega9) and cis-9-octadecenoic acid (Delta9, omega9).
2014-01-06
as a source of –SH [23]. Nitrogen dioxide (NO2) is an acidic , corrosive , and toxic gas present in the atmosphere. The main sources of NO2 pollution is...occurring are the Lewis acid –base reactions. These reactions are facilitated by the formation of nitric Schematic reaction between the urea incorporated in...of zirconium– carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions Zirconium–carboxylic ligand-based porous
Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea
2015-03-01
Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances. © 2014 Diabetes Technology Society.
Low-energy electron-induced reactions in condensed matter
NASA Astrophysics Data System (ADS)
Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.
2010-01-01
The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative electron attachment plays an important role in the electron-induced single strand breaks in DNA leading to mutagenic damage. Studies such as these not only provide insight into the fundamentals of electron-molecule interactions in the condensed phase but also may provide information valuable to (a) furthering cost-efficient destruction of hazardous chemicals, (b) understanding the electron-induced decomposition of feed gases used in the plasma processing of semiconductor devices, (c) clarifying the role, if any, of low-energy electrons, produced by cosmic rays, contributing to the formation of the ozone hole by interacting with halocarbons and producing Cl atoms, (d) illuminating the dynamics of electron-induced oligomerization and/or polymerization, and (e) explicating the astrochemistry of icy grains.
Grayson, Matthew N; Goodman, Jonathan M
2013-09-06
1,1'-Bi-2-naphthol (BINOL)-derived catalysts catalyze the asymmetric propargylation of ketones. Density functional theory (DFT) calculations show that the reaction proceeds via a closed six-membered transition structure (TS) in which the chiral catalyst undergoes an exchange process with the original cyclic boronate ligand. This leads to a Lewis acid type activation mode, not a Brønsted acid process, which accurately predicts the stereochemical outcome observed experimentally.
Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill
2003-05-16
The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.
Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.
Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric
2010-07-21
Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed.
Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao
2016-01-01
The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.
Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.
Altaf, Muhammad; Stoeckli-Evans, Helen
2017-10-01
Tranexamic acid [systematic name: trans -4-(amino-meth-yl)cyclo-hexane-1-carb-oxy-lic acid], is an anti-fibrinolytic amino acid that exists as a zwitterion [ trans -4-(ammonio-meth-yl)cyclo-hexane-1-carboxyl-ate] in the solid state. Its reaction with copper chloride leads to the formation of a compound with a copper(II) paddle-wheel structure that crystallizes as a hexa-hydrate, [Cu 2 Cl 2 (C 8 H 15 NO 2 ) 4 ] 2+ ·2Cl - ·6H 2 O. The asymmetric unit is composed of a copper(II) cation, two zwitterionic tranexamic acid units, a coordinating Cl - anion and a free Cl - anion, together with three water mol-ecules of crystallization. The whole structure is generated by inversion symmetry, with the Cu⋯Cu axle of the paddle-wheel dication being located about a center of symmetry. The cyclo-hexane rings of the zwitterionic tranexamic acid units have chair conformations. The carboxyl-ate groups that bridge the two copper(II) cations are inclined to one another by 88.4 (8)°. The copper(II) cation is ligated by four carboxyl-ate O atoms in the equatorial plane and by a Cl - ion in the axial position. Hence, it has a fivefold O 4 Cl coordination sphere with a perfect square-pyramidal geometry and a τ 5 index of zero. In the crystal, the paddle-wheel dications are linked by a series of N-H⋯Cl hydrogen bonds, involving the coordinating and free Cl - ions, forming a three-dimensional network. This network is strengthened by a series of N-H⋯O water , O water -H⋯Cl and O water -H⋯O hydrogen bonds.
New trends and applications in carboxylation for isotope chemistry.
Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S
2018-05-08
Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis
Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.
2016-01-01
The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929
Acid-base and hormonal abnormalities in dogs with naturally occurring diabetes mellitus.
Durocher, Lawren L; Hinchcliff, Kenneth W; DiBartola, Stephen P; Johnson, Susan E
2008-05-01
To examine acid-base and hormonal abnormalities in dogs with diabetes mellitus. Cross-sectional study. 48 dogs with diabetes mellitus and 17 healthy dogs. Blood was collected and serum ketone, glucose, lactate, electrolytes, insulin, glucagon, cortisol, epinephrine, norepinephrine, nonesterified fatty acid, and triglyceride concentrations were measured. Indicators of acid-base status were calculated and compared between groups. Serum ketone and glucose concentrations were significantly higher in diabetic than in healthy dogs, but there was no difference in venous blood pH or base excess between groups. Anion gap and strong ion difference were significantly higher and strong ion gap and serum bicarbonate concentration were significantly lower in the diabetic dogs. There were significant linear relationships between measures of acid-base status and serum ketone concentration, but not between measures of acid-base status and serum lactate concentration. Serum insulin concentration did not differ significantly between groups, but diabetic dogs had a wider range of values. All diabetic dogs with a serum ketone concentration > 1,000 micromol/L had a serum insulin concentration < 5 microU/mL. There were strong relationships between serum ketone concentration and serum glucagon-insulin ratio, serum cortisol concentration, and plasma norepinephrine concentration. Serum beta-hydroxybutyrate concentration, expressed as a percentage of serum ketone concentration, decreased as serum ketone concentration increased. Results suggested that ketosis in diabetic dogs was related to the glucagon-insulin ratio with only low concentrations of insulin required to prevent ketosis. Acidosis in ketotic dogs was attributable largely to high serum ketone concentrations.
Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.
2012-01-01
Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610
2012-05-11
their uses: Table 10. Types of Solid Sorbent Tubes Tube Type Typical Uses Anasorb® 747 Methyl Ethyl Ketone , Ethylene Oxide Charcoal Tube...Silica Gel Aliphatic Amines, Methanol, Aldehydes , Acid Mist 2.5.3 Passive Samplers. Passive samplers do not require a sampling pump (Figure 9). They...often encountered within the first 6 inches of soil. Water-soluble contaminants such as metals, acids, ketones , and alcohols will be encountered at
Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten
2016-02-01
Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.
2015-01-01
Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.
1-Aminocyclopentane-1,2,4-tricarboxylic acids screening on glutamatergic and serotonergic systems.
Gelmi, Maria Luisa; Caputo, Francesco; Clerici, Francesca; Pellegrino, Sara; Giannaccini, Gino; Betti, Laura; Fabbrini, Laura; Schmid, Lara; Palego, Lionella; Lucacchini, Antonio
2007-12-15
Enantiopure constrained 1-aminocyclopentane-1,2,4-tricarboxylic acids containing the glutamic acid skeleton were prepared as two diastereomers characterized by having the carboxylic groups in position two and four cis-oriented to each other and trans with respect to 1-carboxylic group and all cis-oriented carboxylic groups, respectively. A biochemical screening of activity of the above amino acids was investigated on glutamate and 5-HT receptors to find a possible metabotropic agonist, acting on the serotoninergic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai
We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less
Liao, Yuan-Xi; Hu, Qiao-Sheng
2010-01-01
Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092
The nutritional phenome of EMT-induced cancer stem-like cells.
Cuyàs, Elisabet; Corominas-Faja, Bruna; Menendez, Javier A
2014-06-30
The metabolic features of cancer stem (CS) cells and the effects of specific nutrients or metabolites on CS cells remain mostly unexplored. A preliminary study to delineate the nutritional phenome of CS cells exploited the landmark observation that upon experimental induction into an epithelial-to-mesenchymal (EMT) transition, the proportion of CS-like cells drastically increases within a breast cancer cell population. EMT-induced CS-like cells (HMLERshEcad) and isogenic parental cells (HMLERshCntrol) were simultaneously screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput metabolic phenotyping platform comprising >350 wells that were pre-loaded with different carbohydrates/starches, alcohols, fatty acids, ketones, carboxylic acids, amino acids, and bi-amino acids. The generation of "phenetic maps" of the carbon and nitrogen utilization patterns revealed that the acquisition of a CS-like cellular state provided an enhanced ability to utilize additional catabolic fuels, especially under starvation conditions. Crucially, the acquisition of cancer stemness activated a metabolic infrastructure that enabled the vectorial transfer of high-energy nutrients such as glycolysis end products (pyruvate, lactate) and bona fide ketone bodies (β-hydroxybutyrate) from the extracellular microenvironment to support mitochondrial energy production in CS-like cells. Metabolic reprogramming may thus constitute an efficient adaptive strategy through which CS-like cells would rapidly obtain an advantage in hostile conditions such as nutrient starvation following the inhibition of tumor angiogenesis. By understanding how specific nutrients could bioenergetically boost EMT-CS-like phenotypes, "smart foods" or systemic "metabolic nichotherapies" may be tailored to specific nutritional CSC phenomes, whereas high-resolution heavy isotope-labeled nutrient tracking may be developed to monitor the spatiotemporal distribution and functionality of CS-like cells in real time.
Can Güven, Selçuk; Laska, Matthias
2012-01-01
Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. PMID:22479594
Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling.
Melucci, Manuela; Barbarella, Giovanna; Sotgiu, Giovanna
2002-12-13
The purpose of this study was to obtain a rapid, efficient, and environmentally friendly methodology for the synthesis of highly pure thiophene oligomers. The solvent-free, microwave-assisted coupling of thienyl boronic acids and esters with thienyl bromides, using aluminum oxide as the solid support, allowed us to rapidly check the reaction trends on changing times, temperature, catalyst, and base and easily optimize the experimental conditions to obtain the targeted product in fair amounts. This procedure offers a novel, general, and very rapid route to the preparation of soluble thiophene oligomers. Thus, for example, quaterthiophene was obtained in 6 min by reaction of 2-bromo-2,2'-bithiophene with bis(pinacolato)diboron (isolated yield 65%), whereas quinquethiophene was obtained in 11 min by reaction of dibromoterthiophene with thienylboronic acid (isolated yield 74%). The synthesis of new chiral 2,2'-bithiophenes is reported. The detailed analysis of the byproducts of some reactions allowed us to elucidate a few aspects of reaction mechanisms. While the use of microwaves proved to be very convenient for the coupling between conventional thienyl moieties, the same was not true for the coupling of thienyl rings to thienyl-S,S-dioxide moieties. Indeed, in this case, the targeted product was obtained in low yields because of the competitive, accelerated, Diels-Alder reaction that affords a variety of condensation products.
Preliminary Assessment/Site Investigation, Tooele Army Depot, Utah. Volume 2. South Area. Appendixes
1988-12-01
METHYL BENZOATE BZOTHP BENZO [B) THIOPHENE BZOTRZ 1H-BENZOThIAZOLE / 1,* 2 , 3 -SENZOThIAZO! E BZPA BENZENEPHOSPHONIC ACID BZYLBR BENZYL BROMIDE / ALPH.A...DEFINITIONS ~ STEST-NAMLE Cil MENECANE C12 DODECANE CI2AMM 8-KETHYLDECANOIC ACID , METHYL ESTER C12DCE CIS-l , 2 -DICHLOROETHENE C13 TRIDECANE C13DCP CIS-1 , 3 ...DBTSPY 4,5-DIMETHYL-2,6-BIS(ThIMETHYLSILOXY)PYRINIDINE DSZFIJR DIBDNZOFURAN DBZTHP DIBENZOThIOPHENE DCAKIBA 2 -METHOXY- 3 ,6-DICHLOROBENZOIC ACID DCBPH
USDA-ARS?s Scientific Manuscript database
The stabilization and upgrading of pyrolysis oil requires the neutralization of the acidic components of the oil. The conversion of small organic acids, particularly acetic acid, to ketones is one approach to addressing the instability of the oils caused by low pH. In the ketonization reaction, acet...
Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan
2016-02-01
Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.
The reactions of thiophene on Mo(110) and Mo(110)-p(2×2)-S
NASA Astrophysics Data System (ADS)
Roberts, Jeffrey T.; Friend, C. M.
1987-07-01
The reactions of thiophene and 2,5-dideuterothiophene on Mo(110) and Mo(110)-p(2×2)-S have been investigated under ultrahigh vacuum conditions using temperature programmed reaction spectroscopy and Auger electron spectroscopy. Thiophene chemisorbed on Mo(110) decomposes during temperature programmed reaction to yield only gaseous dihydrogen, surface carbon, and surface sulfur. At low thiophene exposures, dihydrogen evolves from Mo(110) in a symmetric peak at 440 K. At saturation exposures, three dihydrogen peaks are detected at 360 K, at 420 K and at 565 K. Multilayers of thiophene desorb at 180 K. Temperature programmed reaction of 2,5-dideuterothiophene demonstrates that at high thiophene coverages, one of the α-C-H bonds (those nearest sulfur) breaks first. No bond breaking selectivity is observed at low thiophene exposures. The Mo(110)-p(2×2)-S surface is less active for thiophene decomposition. Thiophene adsorbed on Mo(110)-p(2×2)-S to low coverages decomposes to surface carbon surface sulfur, and hydrogen at 430 K. At reaction saturation, dihydrogen production is observed at 375 and 570 K. In addition, at moderate and high exposures, chemisorbed thiophene desorbs from Mo(110)-p(2×2)-S. At saturation the desorption temperature of the reversibly chemisorbed state is 215 K. Experiments with 2,5-dideuterothiophene demonstrate no surface selectivity for α-C-H bond breaking reactions on Mo(110)-p(2×2)-S. The decomposition mechanism and energetics of thiophene decomposition are proposed to be dependent on the coverage of thiophene. At low thiophene exposures, the ring is proposed to bond parallel to the surface. All C-H bonds in the parallel geometry are sterically available for activation by the surface, accounting for the lack of selectivity in C-H bond breaking. High thiophene coverages are suggested to result in perpendicularly bound thiophene which undergoes selective α-dehydrogenation to an α)-thiophenyl intermediate. The presence of sulfur leads to a high energy pathway for cleavage of C-H bonds in a thiophene derived intermediate. Carbon-hydrogen bonds survive on the surface up to temperatures of 650 K. Comparison of this study with work on Mo(100) demonstrates that the reaction of thiophene on molybdenum is relatively insensitive to the surface geometric structure.
Chen, Wei; Qian, Chen; Liu, Xiao-Yang; Yu, Han-Qing
2014-10-07
The elucidation of the interaction between TiO2 nanoparticles (NPs) and natural organic matter (NOM) can help one to better understand the fates, features, and environmental impacts of NPs. In this work, two-dimensional (2D) Fourier transformation infrared (FTIR) correlation spectroscopy (CoS) assisted by the fluorescence excitation-emission matrix (EEM) method is used to explore the interaction mechanism of humic acid (HA) with TiO2 NPs at a molecular level. The results show that the C═O bonds (carboxylate, amide, quinone, or ketone) and C-O bonds (phenol, aliphatic C-OH, and polysaccharide) of HA play important roles in their interaction with TiO2 NPs. The adsorption process of HA onto the surface of TiO2 NPs is different from the bonding process of the two species in solution. The forms of the relevant groups of HA and their consequent reaction with TiO2 NPs are affected to a great extent by the solution pH and the surface charge of NPs. The 2D-FTIR-CoS method is found to be able to construct a comprehensive picture about the NOM-TiO2 NPs interaction process. This 2D-FTIR-CoS approach might also be used to probe other complicated interaction processes in natural and engineered environments.
The Preparation and Physical Properties of Several Aliphatic Hydrocarbons and Intermediates
1947-05-01
34. •: • : - •’•«-" In’ order to-determine the optimum conditions for conversion of the glycol to 2,3-&imethyl-i,3~’butadiene, a series of- test runs were made...pentene to ^,lt--dimethyl-2-pentanone (methyl neopentyl ketone), (b) oxida- tion of this ketone to t-butylacetic acid, (c) conversion, of the acid to...Kenneth C: The Dehydration of Tertiary Alcohols Containing a Neopentyl System. H - Methyliso- propyl-tert-butylcarbinol, Methyldl-tert-butylcarbinol
Wahab, M Farooq; Ibrahim, Mohammed E A; Lucy, Charles A
2013-06-18
Stationary phases for hydrophilic interaction liquid chromatography (HILIC) are predominantly based on silica and polymer supports. We present porous graphitic carbon particles with covalently attached carboxylic acid groups (carboxylate-PGC) as a new HILIC stationary phase. PGC particles were modified by adsorbing the diazonium salt of 4-aminobenzoic acid onto the PGC, followed by reduction of the adsorbed salt with sodium borohydride. The newly developed carboxylate-PGC phase exhibits different selectivity than that of 35 HPLC columns, including bare silica, zwitterionic, amine, reversed, and unmodified PGC phases. Carboxylate-PGC is stable from pH 2.0 to 12.6, yielding reproducible retention even at pH 12.6. Characterization of the new phase is presented by X-ray photoelectron spectroscopy, thermogravimetry, zeta potentials, and elemental analysis. The chromatographic performance of carboxylate-PGC as a HILIC phase is illustrated by separations of carboxylic acids, nucleotides, phenols, and amino acids.
The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream.
Balthazar, Celso F; Silva, Hugo L A; Esmerino, Erick A; Rocha, Ramon S; Moraes, Jeremias; Carmo, Mariana A V; Azevedo, Luciana; Camps, Ihosvany; K D Abud, Yuri; Sant'Anna, Celso; Franco, Robson M; Freitas, Mônica Q; Silva, Marcia C; Raices, Renata S L; Escher, Graziela B; Granato, Daniel; Senaka Ranadheera, C; Nazarro, Filomena; Cruz, Adriano G
2018-04-25
The effect of the Lactobacillus casei 01 and inulin addition on sheep milk ice cream during storage (-18 °C, 150 days) was investigated. Control, probiotic and synbiotic ice cream (10% w/w sheep milk cream; 10% w/w sheep milk cream, L. casei 01, 6 log CFU/mL; 10% w/w inulin, L. casei 01, 6 log CFU/mL, respectively) were manufactured. Microbiological counts (probiotic count, survival after in vitro gastrointestinal resistance, Caco-2 cell adhesion), bioactivity and microstructure were analysed. Physical and textural characteristics, colour parameters, thermal analysis and organic acids/volatile compounds were also evaluated. All formulations supported L. casei 01 viability and maintained above the minimum therapeutic level (>6 log CFU/mL) during storage. Inulin did not affect L. casei 01 survival after the passage through simulated gastrointestinal tract and adhesion to Caco-2 cells while improved the ACE-inhibitory and antioxidant activity. L. casei 01 addition produced several volatile compounds, such as carboxylic acids, alcohols, aldehydes and ketones. Also, scanning electron microscopy showed an interaction between probiotic bacteria and inulin fibre on synbiotic ice cream and the adhesion of L. casei to Caco-2 cells was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discovery of a Novel Series of CRTH2 (DP2) Receptor Antagonists Devoid of Carboxylic Acids
2011-01-01
Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (Ki < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 μM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development. PMID:24900284
Preferential deprotonation and conformational stability of dicarboxylic acids: A packing effect
NASA Astrophysics Data System (ADS)
Barooah, Nilotpal; Singh, W. Marjit; Baruah, Jubaraj B.
2008-03-01
Crystal structures of a series of salts of (6-carboxymethyl-1,3,5,7-tetraoxo-3,5,6,7-tetrahydro-1 H-pyrrolo[3,4- f]isoindol-2-yl)-acetic acid ( 1) and 2-carboxymethyl-1,3-dioxo-2,3-dihydro-1 H-isoinodole-5-carboxylic acid ( 2) with different polynuclear nitrogen containing heterocyclic compounds, namely, quinoline, 1,10-phenanthroline and 8-hydroxyquinoline are determined. In the case of salt of 1 with quinolinium and 1,10-phenanthrolinium cations syn disposition between the carboxylate anion and carboxylic acid groups is observed; whereas in the case of the 8-hydroxyquinolinium salt of 1, it is the anti disposition. It is also found that the solid state structure of 1,10-phenanthrolinium salt of 2 has deprotonation at the aromatic end, whereas in 8-hydroxy-quinolinium salt of 2 is formed by deprotonation of carboxylic acid group on the aliphatic side. The dicarboxylic acid 2 forms 1:2 co-crystals with quinoline. From crystallographic study it is shown that the weak interactions become prominent in stabilising the observed conformers and also in stabilising specific deprotonated species.
Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands
NASA Technical Reports Server (NTRS)
Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.
2005-01-01
[reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.
Determination of carboxylic acids using non-suppressed conductivity and UV detections is described. The background conductance of 1-octanesulfonic acid, hexane sulfonic acid and sulfuric acid at varying concentrations was determined. Using 0.2 mM 1-octanesulfonic acid as a mobile...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orazov, Marat; Davis, Mark E.
The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.
27 CFR 21.117 - Methyl isobutyl ketone.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
27 CFR 21.117 - Methyl isobutyl ketone.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
Giampietro, Letizia; Ammazzalorso, Alessandra; Giancristofaro, Antonella; Lannutti, Fabio; Bettoni, Giancarlo; De Filippis, Barbara; Fantacuzzi, Marialuigia; Maccallini, Cristina; Petruzzelli, Michele; Morgano, Annalisa; Moschetta, Antonio; Amoroso, Rosa
2009-10-22
A series of 2-heteroarylthioalkanoic acids were synthesized through systematic structural modifications of clofibric acid and evaluated for human peroxisome proliferator-activated receptor alpha (PPARalpha) transactivation activity, with the aim of obtaining new hypolipidemic compounds. Some thiophene and benzothiazole derivatives showing a good activation of the receptor alpha were screened for activity against the PPARgamma isoform. The gene induction of selected compounds was also investigated in the human hepatoma cell line.
Crystal structure of ethyl (E)-4-(4-chlorophen-yl)-4-meth-oxy-2-oxobut-3-enoate.
Flores, Darlene Correia; Vicenti, Juliano Rosa de Menezes; Pereira, Bruna Ávila; da Silva, Gabriele Marques Dias; Zambiazi, Priscilla Jussiane
2014-09-01
In the title compound, C13H13ClO4, the dihedral angle between the chloro-benezene ring and the least-squares plane through the 4-meth-oxy-2-oxobut-3-enoate ethyl ester residue (r.m.s. deviation = 0.0975 Å) is 54.10 (5)°. In the crystal, mol-ecules are connected by meth-oxy-ketone and benzene-carboxyl-ate carbonyl C-H⋯O inter-actions, generating a supra-molecular layer in the ac plane.
Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo
2013-05-01
Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flore, J.A.; Bukovac, M.J.
S-Ethyl dipropylthiocarbamate (EPTC, 2.24 kg/ha) altered wax composition on developing leaves of cabbage (Brassica oleracea L. (Capitata group) cv. Market Prize), but did not affect cutin composition. The alkane, ketone and secondary alcohol content of the epicuticular wax was reduced and ester content increased. C/sub 29/ constituents (alkane, ketone, aldehyde and sec-alcohol) accounted for 72.5% (34.1 ..mu..g/cm/sup 2/) and 40.2% (7.2 ..mu..g/cm/sup 2/) of the epicuticular wax on control and EPTC-treated leaves respectively. Homlog composition within a chemical group was not changed. Chemical composition was similar for abaxial and adaxial leaf surfaces, and the EPTC-induced change in chemical composition wasmore » similar for both surfaces. In contrast with epicuticular wax, cuticular wax contained higher percentages of fatty acids and primary alcohols, and lower percentages of alkanes, and ketones. All constituents except the unidentified polar materials and fatty acids were lower in cuticular wax extracted from EPTC-treated than non-treated plants. The main component of the cutin fraction from both control and EPTC-treated plants was identified as dihydroxyhexadecanoic acid. Cutin acids were not quantitatively changed by the EPTC treatment. 27 references, 3 figures, 5 tables.« less
Basher, Muftah M; Corilo, Yuri E; Sparrapan, Regina; Benassi, Mario; Augusti, Rodinei; Eberlin, Marcos N; Riveros, José M
2012-11-01
Gas-phase reactions of model carbosulfonium ions (CH(3)-S(+)=CH(2;) CH(3)CH(2)-S(+)=CH(2) and Ph-S(+)=CH(2)) and an O-analogue carboxonium ion (CH(3)-O(+)=CH(2)) with acyclic (isoprene, 1,3-butadiene, methyl vinyl ketone) and cyclic (1,3-cyclohexadiene, thiophene, furan) conjugated dienes were systematically investigated by pentaquadrupole mass spectrometry. As corroborated by B3LYP/6-311 G(d,p) calculations, the carbosulfonium ions first react at large extents with the dienes forming adducts via simple addition. The nascent adducts, depending on their stability and internal energy, react further via two competitive channels: (1) in reactions with acyclic dienes via cyclization that yields formally [4+2(+)] cycloadducts, or (2) in reactions with the cyclic dienes via dissociation by HSR loss that yields methylenation (net CH(+) transfer) products. In great contrast to its S-analogues, CH(3)-O(+)=CH(2) (as well as C(2)H(5)-O(+)=CH(2) and Ph-O(+)=CH(2) in reactions with isoprene) forms little or no adduct and proton transfer is the dominant reaction channel. Isomerization to more acidic protonated aldehydes in the course of reaction seems to be the most plausible cause of the contrasting reactivity of carboxonium ions. The CH(2)=CH-O(+)=CH(2) ion forms an abundant [4+2(+)] cycloadduct with isoprene, but similar to the behavior of such α,β-unsaturated carboxonium ions in solution, seems to occur across the C=C bond. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rivaton, A.; Cambon, S.; Gardette, J.-L.
2005-01-01
This paper is devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing under oxygen atmosphere of ethylene-propylene-diene monomer (EPDM) and ethylene-propylene rubber (EPR) films containing the same molar ratio of ethylene/propylene. IR and UV-Vis analysis showed that radiooxidation produces a complex mixture of different products and provokes the consumption of the diene double bond. The radiochemical yields of formation of ketones, carboxylic acids, hydroperoxides and alcohols were determined by combining IR analysis with derivatisation reactions and chemical titration. The contributions of secondary and tertiary structures of these two types of -OH groups were separated. Esters and γ-lactones were formed in low concentration. The oxidation products distribution in irradiated films was determined by micro-FTIR spectroscopy. Crosslinking was evaluated by gel fraction methods. In complement, the gas phase composition was analysed by mass spectrometry.
Methanol ice VUV photoprocessing: GC-MS analysis of volatile organic compounds
NASA Astrophysics Data System (ADS)
Abou Mrad, Ninette; Duvernay, Fabrice; Chiavassa, Thierry; Danger, Grégoire
2016-05-01
Next to water, methanol is one of the most abundant molecules in astrophysical ices. A new experimental approach is presented here for the direct monitoring via gas chromatography coupled to mass spectrometry (GC-MS) of a sublimating photoprocessed pure methanol ice. Unprecedentedly, in a same analysis, compelling evidences for the formation of 33 volatile organic compounds are provided. The latter are C1-C6 products including alcohols, aldehydes, ketones, esters, ethers and carboxylic acids. Few C3 and all C4 detected compounds have been identified for the first time. Tentative detections of few C5 and C6 compounds are also presented. GC-MS allows for the first time the direct quantification of C2-C4 photoproducts and shows that their abundances decrease with the increase of their carbon chain length. These qualitative and quantitative measurements provide important complementary results to previous experiments, and present interesting similarities with observations of sources rich in methanol.
Martínez-Pardo, Pablo; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R; Sanz-Marco, Amparo; Vila, Carlos
2018-03-15
A multicatalytic approach that combines a bifunctional Brønsted base-squaramide organocatalyst and Ag + as Lewis acid has been applied in the reaction of unactivated ketones with tert-butyl isocyanoacetate to give chiral oxazolines bearing a quaternary stereocenter. The formal [3+2] cycloaddition provided high yields of the corresponding cis-oxazolines with good diastereoselectivity and excellent enantioselectivity, being applied to aryl-alkyl and alkyl-alkyl ketones.
The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo
Chowdhury, Golam MI; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L
2014-01-01
The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-13C2]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (VacCoA-kbN) and pyruvate (VpdhN), and the glutamate-glutamine cycle (Vcyc) were determined by metabolic modeling of 13C label trapped in major brain amino acid pools. VacCoA-kbN increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (VtcaN), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons. PMID:24780902
Regioselective Ni-Catalyzed Carboxylation of Allylic and Propargylic Alcohols with Carbon Dioxide.
Chen, Yue-Gang; Shuai, Bin; Ma, Cong; Zhang, Xiu-Jie; Fang, Ping; Mei, Tian-Sheng
2017-06-02
An efficient Ni-catalyzed reductive carboxylation of allylic alcohols with CO 2 has been successfully developed, providing linear β,γ-unsaturated carboxylic acids as the sole regioisomer with generally high E/Z stereoselectivity. In addition, the carboxylic acids can be generated from propargylic alcohols via hydrogenation to give allylic alcohol intermediates, followed by carboxylation. A preliminary mechanistic investigation suggests that the hydrogenation step is made possible by a Ni hydride intermediate produced by a hydrogen atom transfer from water.
27 CFR 21.118 - Methyl n-butyl ketone.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
27 CFR 21.118 - Methyl n-butyl ketone.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...
An enhanced procedure for measuring organic acids and methyl esters in PM2.5
NASA Astrophysics Data System (ADS)
Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.
2015-11-01
A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.
Rao, V Mohana
2012-01-01
Summary The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are α-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis. PMID:23019476
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Liang, Jingwen; Xie, Jingyi; Liu, Xin; Zhu, Dongsheng; Dong, Yuan
2017-10-01
Organotin carboxylates based on an amide carboxylic acid 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid (HL): [(Bn2Sn)2O2L]2·2C6H6 (1) (Bn = benzyl group) and (Ph2Sn)(L)2 (2) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analysis. Complex 1 is dimeric carboxylate tetraorganodistannoxane and show a "ladder-like" molecular structure. Complex 2 is a dialkyltin carboxylate monomer possessing crystallographically imposed two-fold symmetry. Ligand in 1 and 2 adopts unidentate and bidentate coordination respectively. Both 1 and 2 form 1D, 2D and 3D supramolecular organizations in the solid state mediated through Csbnd H⋯O and π⋯π interactions which are discussed in detail. The luminescent properties and preliminary antitumor activities about this series of complexes were also studied.
A nickel catalyst for the addition of organoboronate esters to ketones and aldehydes.
Bouffard, Jean; Itami, Kenichiro
2009-10-01
A Ni(cod)(2)/IPr catalyst promotes the intermolecular 1,2-addition of arylboronate esters to unactivated aldehydes and ketones. Diaryl, alkyl aryl, and dialkyl ketones show good reactivity under mild reaction conditions (< or = 80 degrees C, nonpolar solvents, no strong base or acid additives). A dramatic ligand effect favors either carbonyl addition (IPr) or C-OR cross-coupling (PCy(3)) with aryl ether substrates. A Ni(0)/Ni(II) catalytic cycle initiated by the oxidative cyclization of the carbonyl substrate is proposed.
NASA Astrophysics Data System (ADS)
Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi
2012-02-01
Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Calcium Salt Maleic Anhydride Methacrylic Acid *Methacrylic Acid Esters Methane Methyl Ethyl Ketone Methyl Methacrylate Methyl Tert-Butyl Ether Methylisobutyl Ketone *n-Alkanes n-Butyl Alcohol n-Butylacetate n... Acid Nylon Salt Oxalic Acid *Oxo Aldehydes—Alcohols Pentaerythritol Pentane *Pentenes *Petroleum...
Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte; Demmer, Charles S; Hansen, Jeanette; Han, Liwei; Monrad, Rune N; Nielsen, Birgitte; Tapken, Daniel; Pickering, Darryl S; Kastrup, Jette S; Frydenvang, Karla; Bunch, Lennart
2015-08-13
Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate. The 3-carboxyphenyl ring of 2e and 2f forms contacts comparable to those of the distal carboxylate in kainate.
Takagi, H; Shichiri, M; Takemura, M; Mohri, M; Nakamori, S
2000-08-01
We discovered on the chromosome of Saccharomyces cerevisiae Sigma 1278b novel genes involved in L-proline analogue L-azetidine-2-carboxylic acid resistance which are not present in the standard laboratory strains. The 5.4 kb-DNA fragment was cloned from the genomic library of the L-azetidine-2-carboxylic acid-resistant mutant derived from a cross between S. cerevisiae strains S288C and Sigma 1278b. The nucleotide sequence of a 4.5-kb segment exhibited no identity with the sequence in the genome project involving strain S288C. Deletion analysis indicated that one open reading frame encoding a predicted protein of 229 amino acids is indispensable for L-azetidine-2-carboxylic acid resistance. The protein sequence was found to be a member of the N-acetyltransferase superfamily. Genomic Southern analysis and gene disruption showed that two copies of the novel gene with one amino acid change at position 85 required for L-azetidine-2-carboxylic acid resistance were present on chromosomes X and XIV of Sigma 1278b background strains. When this novel MPR1 or MPR2 gene (sigma 1278b gene for L-proline analogue resistance) was introduced into the other S. cerevisiae strains, all of the recombinants were resistant to L-azetidine-2-carboxylic acid, indicating that both MPR1 and MPR2 are expressed and have a global function in S. cerevisiae.
Sattler, Wesley; Palmer, Joshua H.; Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.; Parkin, Gerard
2013-01-01
The molecular structures of a series of 1,3-propanedithiols that contain carboxylic acid groups, namely rac- and meso-2,4-dimercaptoglutaric acid (H4DMGA) and 2-carboxy-1,3-propanedithiol (H3DMCP), have been determined by X-ray diffraction. Each compound exhibits two centrosymmetric intermolecular hydrogen bonding interactions between pairs of carboxylic acid groups, which result in a dimeric structure for H3DMCP and a polymeric tape-like structure for rac- and meso-H4DMGA. Significantly, the hydrogen bonding motifs observed for rac- and meso-H4DMGA are very different to those observed for the 1,2-dithiol, rac-2,3-dimercaptosuccinic acid (rac-H4DMSA), in which the two oxygen atoms of each carboxylic acid group hydrogen bond to two different carboxylic acid groups, thereby resulting in a hydrogen bonded sheet-like structure rather than a tape. Density functional theory calculations indicate that 1,3-dithiolate coordination to mercury results in larger S–Hg–S bond angles than does 1,2-dithiolate coordination, but these angles are far from linear. As such, κ2-S2 coordination of these dithiolate ligands is expected to be associated with mercury coordination numbers of greater than two. In vivo studies demonstrate that both rac-H4DMGA and H3DMCP reduce the renal burden of mercury in rats, although the compounds are not as effective as either 2,3-dimercaptopropane-1-sulfonic acid (H3DMPS) or meso-H4DMSA. PMID:24187425
Bioenvironmental Engineer’s Guide to TVA-1000B Toxic Vapor Analyzer
2014-01-01
chemicals including aromatics, unsaturated chlorinated hydrocarbons, aldehydes , ketones , ethylene oxide, hydrogen sulfide, and glycol ether solvents. The...Dimethoxyethane 9.65 Diethyl ketone 9.32 Ethyl amine 8.86 1,1-Dimethylhydrazine 7.28 Diethyl sulfide 8.43 Ethyl benzene 8.76 1,2-Dibromoethene 9.45...Chemical IP (eV) Chemical IP (eV) Chemical IP (eV) Freon 13 (chlorotrifluoromethane) 12.91 Isobutyric acid 10.02 Methyl butyl ketone 9.34
Marco, J L; de los Ríos, C; Carreiras, M C; Baños, J E; Badía, A; Vivas, N M
2001-03-01
The synthesis and preliminary results for acetylcholinesterase and butyrylcholinesterase inhibition activity of a series of pyrano[2,3-b]quinolines (2, 3) and benzonaphthyridines (5, 6) derivatives are described. These molecules are tacrine-like analogues which have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyrans and 6-amino-5-cyanopyridines]-3-carboxylates via Friedlander condensation with selected ketones. These compounds showed moderate acetylcholinesterase inhibition activity, the more potent (2e, 5b) being 6 times less active than tacrine. The butyrylcholinesterase activity of some of these molecules is also discussed.
USDA-ARS?s Scientific Manuscript database
The primary mechanism of biocontrol by Pseudomonas fluorescens strains HC1-07 and HC9-07 is production of a cyclic lipopeptide (CLP) and phenazine-1-carboxylic acid, respectively. We introduced the seven-gene operon for the synthesis of phenazine-1-carboxylic acid (PCA) from P. synxantha 2-79 into P...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, K.; Okuwaki, A.; Verheyen, T.
In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less
Evidence for an Inducible Nucleotide-Dependent Acetone Carboxylase in Rhodococcus rhodochrous B276
Clark, Daniel D.; Ensign, Scott A.
1999-01-01
The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this activity. Acetone metabolism by R. rhodochrous was CO2 dependent, and 14CO2 fixation occurred concomitant with this process. A nucleotide-dependent acetone carboxylase was partially purified from cell extracts of acetone-grown R. rhodochrous by DEAE-Sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the acetone carboxylase was composed of three subunits with apparent molecular masses of 85, 74, and 16 kDa. Acetone metabolism by the partially purified enzyme was dependent on the presence of a divalent metal and a nucleoside triphosphate. GTP and ITP supported the highest rates of acetone carboxylation, while CTP, UTP, and XTP supported carboxylation at 10 to 50% of these rates. ATP did not support acetone carboxylation. Acetoacetate was determined to be the stoichiometric product of acetone carboxylation. The longer-chain ketones butanone, 2-pentanone, 3-pentanone, and 2-hexanone were substrates. This work has identified an acetone carboxylase with a novel nucleotide usage and broader substrate specificity compared to other such enzymes studied to date. These results strengthen the proposal that carboxylation is a common strategy used for acetone catabolism in aerobic acetone-oxidizing bacteria. PMID:10217764
Yamashita, Shugo; Katsumi, Hidemasa; Hibino, Nozomi; Isobe, Yugo; Yagi, Yumiko; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira
2017-09-28
In this study, we aimed to develop a polyethylene glycol (PEG)-conjugated third generation polyamidoamine (PAMAM) dendrimer with multiple carboxylic acids as a bone-targeting carrier for the treatment of bone diseases. We conjugated PAMAM backbones to various carboxylic acids [aspartic acid (Asp), glutamic acid (Glu), succinic acid (Suc), or aconitic acid (Aco)] to obtain four different types of carboxylic acid-modified PAMAMs. PEG was covalently bound to carboxylic acid-modified PAMAMs to obtain PEGylated carboxylic acid-modified PAMAMs. In a tissue distribution study, the amount of 111 In-labeled unmodified PAMAM taken up by the bone after intravenous injection in mice was 11.3%. In contrast, the dose of 111 In-labeled PEG(5)-Asp-PAMAM, PEG(5)-Glu-PAMAM, PEG(5)-Suc-PAMAM, or PEG(5)-Aco-PAMAM that accumulated in the bone after injection was approximately 46.0, 15.6, 22.6, and 24.5%, respectively. The bone clearance rates of 111 In-labeled PEGylated carboxylic acid-modified PAMAMs were proportional to their affinities to hydroxyapatite and Ca 2+ . An intra-bone distribution study showed that fluorescein isothiocyanate-labeled PEG(5)-Asp-PAMAM predominantly accumulated on eroded and quiescent surfaces, a pattern associated with the pathogenesis of bone diseases, such as rheumatoid arthritis and osteoporosis. Our findings indicate that PEG(5)-Asp-PAMAM is a promising drug carrier for efficient drug targeting to the bones. Copyright © 2017 Elsevier B.V. All rights reserved.
One-pot synthesis of β-acetamido ketones using boric acid at room temperature.
Karimi-Jaberi, Zahed; Mohammadi, Korosh
2012-01-01
β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.
One-Pot Synthesis of β-Acetamido Ketones Using Boric Acid at Room Temperature
Karimi-Jaberi, Zahed; Mohammadi, Korosh
2012-01-01
β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products. PMID:22666168
Selenophene transition metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Carter James
1994-07-27
This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η 5- and the η 1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand.more » In the final paper, the C-H bond activation of η 1(S)-bound thiophenes, η 1(S)-benzothiophene and η 1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η 1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh 3)Re(2-benzothioenylcarbene)]O 3SCF 3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η 1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.« less
On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices
NASA Astrophysics Data System (ADS)
McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.
2016-06-01
The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.
Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.
Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin
2016-08-01
Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.
Elementary photocatalytic chemistry on TiO2 surfaces.
Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming
2016-07-07
Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models.
Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir
Walsh, Aaron M.; Crispie, Fiona; Kilcawley, Kieran; O’Sullivan, Orla; O’Sullivan, Maurice G.; Claesson, Marcus J.
2016-01-01
ABSTRACT Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. Author Video: An author video summary of this article is available. PMID:27822552
Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.
Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D
2016-01-01
Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides . Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods.
[Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].
Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J
2004-08-01
The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.
Presence and potential significance of aromatic-ketone groups in aquatic humic substances
Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.
1987-01-01
Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.
A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules
NASA Astrophysics Data System (ADS)
Smith, David; Wang, Tianshu; Spanel, Patrik
2003-11-01
A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.
Seaborg, G.T.
1961-08-01
A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)
Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C
2012-08-23
X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.
Reactive Capture of Gold Nanoparticles by Strongly Physisorbed Monolayers on Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiaoliang; Tong, Wenjun; Fidler, Vlastimil
2012-12-01
Anthracene Diels Alder adducts (DAa) bearing two long side chains (H-(CH2)22O(CH2)6OCH2-) at the 1- and 5-positions form self-assembled monolayers (SAMs) at the phenyloctane - highly oriented pyrolytic graphite (HOPG) interface. The long DAa side chains promote strong physisorption of the monolayer to HOPG and maintain the monolayer morphology upon rinsing or incubation in ethanol and air-drying of the substrate. Incorporating a carboxylic acid group on the DAa core enables capture of 1 - 4 nm diameter gold nanoparticles (AuNP) provided (i) the monolayer containing DAa-carboxylic acids is treated with Cu2+ ions and (ii) the organic coating on the AuNP containsmore » carboxylic acids (11-mercaptoundecanoic acid, MUA-AuNP). AuNP capture by the monolayer proceeds with formation of Cu2+ - carboxylate coordination complexes. The captured AuNP appear as mono- and multi-layered clusters at high coverage on HOPG. The surface density of the captured AuNPs can be adjusted from AuNP multi-layers to isolated AuNPs by varying incubation times, MUA-AuNP concentration, the number density of carboxylic acids in the monolayer, the number of MUA per AuNP, and the post-incubation treatments.« less
Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu
2012-01-01
3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.
NASA Astrophysics Data System (ADS)
Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M.; Anandan, Sambandam
2015-06-01
Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η = 4.7%) with a short circuit current density (JSC) 15.3 mA/cm2, an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm2) compared to diphenylamine based device.
Sources and concentrations of aldehydes and ketones in indoor environments in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crump, D.R.; Gardiner, D.
1989-01-01
Individual aldehydes and ketones can be separated, identified and quantitatively estimated by trapping the 2,4-dinitrophenylhydrazine (DNPH) derivatives and analysis by HPLC. Appropriate methods and detection limits are reported. Many sources of formaldehyde have been identified by this means and some are found to emit other aldehydes and ketones. The application of this method to determine the concentration of these compounds in the atmospheres of buildings is described and the results compared with those obtained using chromotropic acid or MBTH.
RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS
Ader, M.
1963-11-19
A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)
Ketone body metabolism and cardiovascular disease
Cotter, David G.; Schugar, Rebecca C.
2013-01-01
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451
Water-soluble conductive polymers
Aldissi, Mahmoud
1989-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, Mahmoud
1990-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, M.
1988-02-12
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Lu, Yao; Wei, Xian-Yong; Cao, Jing-Pei; Li, Peng; Liu, Fang-Jing; Zhao, Yun-Peng; Fan, Xing; Zhao, Wei; Rong, Liang-Ce; Wei, Yan-Bin; Wang, Shou-Ze; Zhou, Jun; Zong, Zhi-Min
2012-07-01
Detailed compositional analysis of a bio-oil (BO) from pyrolysis of rice husk was carried out. The BO was extracted sequentially with n-hexane, CCl(4), CS(2), benzene and CH(2)Cl(2). In total, 167 organic species were identified with GC/MS in the extracts and classified into alkanes, alcohols, hydroxybenzenes, alkoxybenzenes, dioxolanes, aldehydes, ketones, carboxylic acids, esters, nitrogen-containing organic compounds and other species. The benzene ring-containing species (BRCCs) were attributed to the degradation of lignin while most of the rests were derived from the degradation of cellulose and hemicellulose. Along with guaiacyl and p-hydroxyphenyl units as the main components, a new type of linkage was suggested, i.e., C(ar)-CH(2)-C(ar) in 4,4'-methylenebis(2,6-dimethoxyphenol). Based on the species identified, a possible macromolecular structure of the lignin and the mechanism for its pyrolysis are proposed. The BO was also extracted with petroleum ether in ca. 17.8% of the extract yield and about 82.1% of the extracted components are BRCCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEntee, Monica; Tang, Wenjie; Neurock, Matthew
Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less
McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...
2014-12-12
Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less
Cheon, Cheol Hong; Yamamoto, Hisashi
2010-01-01
The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to Brønsted acid itself depending on the reaction temperature. PMID:20465277
Cheon, Cheol Hong; Yamamoto, Hisashi
2010-06-04
The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to the Brønsted acid itself depending on the reaction temperature.
USDA-ARS?s Scientific Manuscript database
Six known thiophenes, 5-(3,4-diacetoxybut-1-ynyl)-2,2'-bithiophene (3), 2-(penta-1,3-diynyl)-5-(3,4-diacetoxybut-1-ynyl)thiophene (4), 5-(4-acetoxy-3-hydroxybut-1-ynyl)-2,2'-bithiophene (5), 2-(penta-1,3-diynyl)-5-(4-acetoxy-3-hydroxybut-1-ynyl)thiophene (6), 2-(penta-1,3-diynyl)-5-(3-acetoxy-4-hydr...
Liu, Joe; Obando, Daniel; Schipanski, Liam G; Groebler, Ludwig K; Witting, Paul K; Kalinowski, Danuta S; Richardson, Des R; Codd, Rachel
2010-02-11
Desferrioxamine B (DFOB) conjugates with adamantane-1-carboxylic acid, 3-hydroxyadamantane-1-carboxylic acid, 3,5-dimethyladamantane-1-carboxylic acid, adamantane-1-acetic acid, 4-methylphenoxyacetic acid, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid (N-acetic acid derivative of deferiprone), or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (deferasirox) were prepared and the integrity of Fe(III) binding of the compounds was established from electrospray ionization mass spectrometry and RP-HPLC measurements. The extent of intracellular (59)Fe mobilized by the DFOB-3,5-dimethyladamantane-1-carboxylic acid adduct was 3-fold greater than DFOB alone, and the IC(50) value of this adduct was 6- or 15-fold greater than DFOB in two different cell types. The relationship between logP and (59)Fe mobilization for the DFOB conjugates showed that maximal mobilization of intracellular (59)Fe occurred at a logP value approximately 2.3. This parameter, rather than the affinity for Fe(III), appears to influence the extent of intracellular (59)Fe mobilization. The low toxicity-high Fe mobilization efficacy of selected adamantane-based DFOB conjugates underscores the potential of these compounds to treat iron overload disease in patients with transfusional-dependent disorders such as beta-thalassemia.
He, Ping; Lu, Yong; Dong, Cheng-Guo; Hu, Qiao-Sheng
2008-01-01
Anionic four electron donor-based palladacycle-catalyzed 1,4-additions of arylboronic acids with α,β-unsaturated ketones and 1,2-additions of arylboronic acids with aldehydes and α-ketoesters are described. Our study demonstrated that palladacycles were highly efficient, practical catalysts for these addition reactions. The work described here not only opened a new paradigm for the application of palladacycles, but may also pave the road for other metalacycles as practically useful catalysts for such addition reactions including asymmetric ones. PMID:17217300
Novel thiophene-based cycloruthenated compounds: synthesis, characterization, and reactivity.
Cuesta, Luciano; Maluenda, Irene; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P
2011-01-03
The reactions between a series of thiophene-based imines with [(η(6)-C(6)H(6))RuCl(μ-Cl)](2), in a basic medium, and in MeCN give a family of ruthenacycles of stoichiometry [Ru(C^N)(NCMe)(4)]PF(6) (C^N = orthometalated thiopheneimine). In these species, the C-H activation process is produced in most cases at the thiophene ring. When two C-H bonds are competing (thiophene vs aryl), the cyclometalation can be driven regioselectively to the thiophene unit or to the aryl ring as a function of the location of the iminic C=N bond. Cyclometalation can also be oriented to positions 2 or 3 of the thiophene depending on the situation of the imine in the heterocycle (3 or 2, respectively). In all studied cases, the η(6)-C(6)H(6) ligand was substituted by acetonitrile. The X-ray structures of two representative complexes have been determined. These thiophene-based metallacycles react with iodine under very mild conditions affording, after hydrolysis, substituted 3-iodo-2-formyl(benzo)thiophenes or substituted 2-iodo-3-formyl(benzo)thiophenes, as a function of the organometallic precursor.
Bakir, Mohammed; Lawrence, Mark A W; McBean, Shameal
2015-07-05
The reaction between [dpktch] and [M(OAc)2] (M=group 12 metal atom) in refluxing CH3CN gave [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O (n=0 or 1). The infrared and (1)H NMR spectra are consistent with the coordination of [η(2)-O,O-OAc] and [η(3)-N,N,O-dpktch-H](-) and the proposed formulations. The electronic absorption spectra of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O measured in non-aqueous solvents revealed a highly intense intra-ligand-charge transfer (ILCT) transition due to π-π∗ of dpk followed by dpk→thiophene charge transfer. The electronic transitions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O are solvent and concentration dependent. Spectrophotometric titrations of dmso solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O with benzoic acid revealed irreversible inter-conversion between [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O and it conjugate acid [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch)]·nH2O pointing to ligand exchange between the acetate and benzoate anions. When CH2Cl2 solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O were titrated with dmso, changes appeared pointing to solvolysis or ligand exchange reactions. Electrochemical measurements on dmso solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O divulged irreversible redox transformations consistent with electrochemical decomposition of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O. The solid state structure of a single crystal of [Cd(η(3)-N,N,O-dpktch-H)2] obtained from a dmso solution of [Cd(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O confirmed the ligand scrambling of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O. The extended structure of [Cd(η(3)-N,N,O-dpktch-H)2] revealed stacks of [Cd(η(3)-N,N,O-dpktch-H)2] locked via a network of hydrogen bonds. A significant amount of empty space (35.5%) was observed in the solid state structure of [Cd(η(3)-N,N,O-dpktch-H)2]. Copyright © 2015 Elsevier B.V. All rights reserved.
Lyngby, Janne G; Court, Michael H; Lee, Pamela M
2017-08-01
The clopidogrel active metabolite (CAM) is unstable and challenging to quantitate. The objective was to validate a new method for stabilization and quantitation of CAM, clopidogrel, and the inactive metabolites clopidogrel carboxylic acid and 2-oxo-clopiodgrel in feline plasma. Two healthy cats administered clopidogrel to demonstrate assay in vivo utility. Stabilization of CAM was achieved by adding 2-bromo-3'methoxyacetophenone to blood tubes to form a derivatized CAM (CAM-D). Method validation included evaluation of calibration curve linearity, accuracy, and precision; within and between assay precision and accuracy; and compound stability using spiked blank feline plasma. Analytes were measured by high performance liquid chromatography with tandem mass spectrometry. In vivo utility was demonstrated by a pharmacokinetic study of cats given a single oral dose of 18.75mg clopidogrel. The 2-oxo-clopidogrel metabolite was unstable. Clopidogrel, CAM-D, and clopidogrel carboxylic acid appear stable for 1 week at room temperature and 9 months at -80°C. Standard curves showed linearity for CAM-D, clopidogrel, and clopidogrel carboxylic acid (r > 0.99). Between assay accuracy and precision was ≤2.6% and ≤7.1% for CAM-D and ≤17.9% and ≤11.3% for clopidogrel and clopidogrel carboxylic acid. Within assay precision for all three compounds was ≤7%. All three compounds were detected in plasma from healthy cats receiving clopidogrel. This methodology is accurate and precise for simultaneous quantitation of CAM-D, clopidogrel, and clopidogrel carboxylic acid in feline plasma but not 2-oxo-clopidogrel. Validation of this assay is the first step to more fully understanding the use of clopidogrel in cats. Copyright © 2017 Elsevier B.V. All rights reserved.
SOLVENT EXTRACTION PROCESS FOR PROTACTINIUM
Hyde, E.K.; Katzin, L.I.; Wolf, M.J.
1961-04-01
A process is described for separating protactinium from thorium present together as the nitrates in a 0.1 to 10 N nitric acid solution. The separation is carried out by extraction with an aliphatic alcohol, ketone, and/or ester having at least six carbon atoms, such as n-amyl acetate, 2-ethyl hexanol, and diisopropyl ketone.
Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong
2014-07-09
A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.
Chemical Preparation Laboratory IND Candidate Compounds.
1986-01-21
filtered. The filtrate was neutralized with hydrochloric acid (3.2 L) and the resulting precipitate was collected by filtration. The product was dried...lit. 242-244-) 1.2.4-Triazole-3-carboxylic acid (4)9: 5-Amino-l,2,4-triazole-3- carboxylic acid (1 Kg, 7.8 mol) was dissolved in hot hydrochloric acid ...300 mL), cooled in an ice bath, and adjusted to pH 1 with con- centrated hydrochloric acid (25 mL). The resulting oil started to crystal- lize and the
Process for conversion of levulinic acid to ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa M.; Dagle, Robert A.
A method for generating desired platform chemicals from feedstocks such as cellulosic biomass feedstocks containing levulinic acid by decarboxylating a feed stock comprising levulinic acid to generate ketones. This is done by passing a feed stock comprising levulinic acid in a gas phase over a non-precious metal catalyst on a neutral support.
Cudjoe, Elvis; Younesi, Mousa; Cudjoe, Edward; Akkus, Ozan; Rowan, Stuart J
2017-04-10
An electrochemical process has been used to compact cellulose nanocrystals (CNC) and access aligned micron-sized CNC fibers. Placing a current across aqueous solutions of carboxylic acid functionalized CNCs (t-CNC-COOH) or carboxylic acid/primary amine functionalized CNCs (t-CNC-COOH-NH 2 ) creates a pH gradient between the electrodes, which results in the migration and concentration of the CNC fibers at their isoelectric point. By matching the carboxylic acid/amine ratio of CNCs and collagen (ca. 30:70 carboxylic acid:amine ratio), it is possible to coelectrocompact both nanofibers and access aligned nanocomposite fibers. t-CNC-COOH-NH 2 /collagen fibers showed a maximum increase in mechanical properties at 5 wt % of t-CNC-COOH-NH 2 . Compared to collagen/CNC films which have no alignment in the plane of the films, the tensile properties of the aligned fibers show a significant enhancement in the wet mechanical properties (40 MPa vs 230 MPa) for the 5 wt % of t-CNC-COOH-NH 2 /collagen films and fiber, respectively.
Carbonate-Promoted Hydrogenation of Carbon Dioxide to Multicarbon Carboxylates
2018-01-01
CO2 hydrogenation is a potential alternative to conventional petrochemical methods for making commodity chemicals and fuels. Research in this area has focused mostly on transition-metal-based catalysts. Here we show that hydrated alkali carbonates promote CO2 hydrogenation to formate, oxalate, and other C2+ carboxylates at elevated temperature and pressure in the absence of transition-metal catalysts or solvent. The reactions proceed rapidly, reaching up to 56% yield (with respect to CO32–) within minutes. Isotope labeling experiments indicate facile H2 and C–H deprotonations in the alkali cation-rich reaction media and identify probable intermediates for the C–C bond formations leading to the various C2+ products. The carboxylate salts are in equilibrium with volatile carboxylic acids under CO2 hydrogenation conditions, which may enable catalytic carboxylic acid syntheses. Our results provide a foundation for base-promoted and base-catalyzed CO2 hydrogenation processes that could complement existing approaches. PMID:29806007
Bosire, G. O.; Ngila, J. C.; Parshotam, H.
2016-01-01
The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730
Purification Or Organic Acids Using Anion Exchange Chromatography.
Ponnampalam; Elankovan
2001-09-04
Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.
Brown, G.K.; MacCarthy, P.; Leenheer, J.A.
1999-01-01
The equilibrium binding of Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ with unfractionated Suwannee river fulvic acid (SRFA) and an enhanced metal binding subfraction of SRFA was measured using Schubert's ion-exchange method at pH 6.0 and at an ionic strength (??) of 0.1 (NaNO3). The fractionation and subfractionation were directed towards obtaining an isolate with an elevated metal binding capacity or binding strength as estimated by Cu2+ potentiometry (ISE). Fractions were obtained by stepwise eluting an XAD-8 column loaded with SRFA with water eluents of pH 1.0 to pH 12.0. Subfractions were obtained by loading the fraction eluted from XAD-8 at pH 5.0 onto a silica gel column and eluting with solvents of increasing polarity. Schuberts ion exchange method was rigorously tested by measuring simultaneously the conditional stability constants (K) of citric acid complexed with the five metals at pH 3.5 and 6.0. The logK of SRFA with Ca2+, Ni2+, Cd2+, Cu2+ and Zn2+ determined simultaneously at pH 6.0 follow the sequence of Cu2+>Cd2+>Ni2+>Zn2+>Ca2+ while all logK values increased for the enhanced metal binding subfraction and followed a different sequence of Cu2+>Cd2+>Ca2+>Ni2+>Zn2+. Both fulvic acid samples and citric acid exhibited a 1:1 metal to ligand stochiometry under the relatively low metal loading conditions used here. Quantitative 13C nuclear magnetic resonance spectroscopy showed increases in aromaticity and ketone content and decreases in aliphatic carbon for the elevated metal binding fraction while the carboxyl carbon, and elemental nitrogen, phosphorus, and sulfur content did not change. The more polar, elevated metal binding fraction did show a significant increase in molecular weight over the unfractionated SRFA. Copyright (C) 1999 Elsevier Science B.V.
Catalytic processing of lactic acid over Pt/Nb(2)O(5).
Serrano-Ruiz, Juan Carlos; Dumesic, James A
2009-01-01
Dilute aqueous solutions of lactic acid (30 %wt.) can be catalytically processed at 573 K and 57 bar over a low-metal-content Pt(0.1 %)/Nb(2)O(5) catalyst in a spontaneously separating organic phase rich in valuable products such as C(4)-C(7) ketones. An increase in the lactic acid concentration to 60 wt % allows conversion of approximately 50 % of the carbon feed in this organic layer, while maintaining good stability of the catalyst. Experiments at low conversion showed that lactic acid reacts first over Pt(0.1 %)/Nb(2)O(5) to produce acetaldehyde and propanoic acid (along with CO and CO(2) in the gas phase). These compounds (less oxygenated than lactic acid but still reactive) are the key intermediates in the overall process, and they react differently depending on the nature of the catalyst support. In particular, reaction kinetics studies with propanoic acid as feed showed that Pt(0.1 %)/Nb(2)O(5) favored the formation of pentanones by ketonization reactions, whereas a monofunctional Pt(0.1 %)/carbon catalyst produced ethane and CO(x) by decomposition reactions. In the same manner, acetaldehyde was preferentially hydrogenated to ethanol over Pt(0.1 %)/carbon, whereas the presence of niobia allowed this intermediate to react (by successive aldol condensations) to form C(4)-C(7) condensation products stored in the organic phase. Finally, reaction pathways are proposed to explain the catalytic processing of lactic acid over bifunctional Pt(0.1 %)/Nb(2)O(5). In this scheme, metal sites catalyze hydrogenation reactions and niobia promotes C--C coupling processes (ketonization and aldol condensation), in contrast to C--C cleavage reactions which take place preferentially over Pt(0.1 %)/carbon and lead to loss of carbon in the gas effluent as CO, CO(2), and methane.
Doubly Vinylogous Aldol Reaction of Furoate Esters with Aldehydes and Ketones.
Hartwig, William T; Sammakia, Tarek
2017-01-06
The use of bulky Lewis acids, aluminum tris(2,6-diphenylphenoxide) (ATPH) and aluminum tris(2,6-di-2-naphthylphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and aldehydes or ketones is described. These reactions proceed smoothly and in high yields with both enolizable and non-enolizable substrates. This C-C bond-forming reaction enables a new bond construction for the synthesis of functionalized furans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin
2016-08-15
The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less
Uchiyama, Shigehisa; Matsushima, Erika; Aoyagi, Shohei; Ando, Masanori
2004-10-01
A new method for the simultaneous determination of aliphatic carboxylic acids and aldehydes in air is described. In this work, carboxylic acids were allowed to react with 2,4-dinitrophenylhydrazine (DNPH) to form the corresponding carboxylic 2,4-dinitrophenylhydrazides. These derivatives have excellent thermal stability, with melting points higher than those of the corresponding hydrazones by 32-50 degrees C. C1-C4 carboxylic acid 2,4-dinitrophenylhydrazides exhibited maximum absorption wavelengths of 331-334 nm and molar absorption coefficients of 1.4 x 10(4) L/mol/cm. They were completely separated by high-performance liquid chromatography (HPLC) with an RP-Amide C16 column. Cartridges packed with DNPH-coated silica particles (DNPH cartridge) were used for sampling formic acid and aldehydes. Formic acid was physically adsorbed on the silica particles as the first step of the sampling mechanism. Gradual reaction with DNPH followed. Formic acid reacted very slowly with DNPH at room temperature (20 degrees C), but reacted completely at 80 degrees C over 4 h. In field measurements, the sample air was drawn through a DNPH cartridge. After sampling, the cartridges were heated at 80 degrees C for 5 h and extracted with acetonitrile for HPLC analysis. Under these optimized conditions, the LOD is 0.4 ug/m(3) for an air sample collected for 24 h at 100 mL/min (144 L).
New Drugs for Pretreatment of Organophosphonate Intoxication
1990-02-20
amineHydrochlorides 40 1 -Phenylcyclohexane-l-carboxylic Acid 41 Dialkylaminoalkyl 1 -Phenylcycloalkane-l-carboxylate Hydrochlorides 41 3 -Formyl-4,5...cyclopropyl-CH2)- 3 -(Dimethylamino)propyl 1 -Phenylcyclopropane-l-carboxylate Hydrochloride (PRE-150). The recrystallized yield was 18.2 g (53...Arylcycloalkyl)methyl]amines 8 ct,a-Dialkylphenethylamines 9 Dialkylaminoalkyl 1 -Phenylcycloalkane-l-carboxylates 10 3 -Dialkylaminoalkyl-4,5
2016-03-31
photolysis # Compound # Compound 1 1,4-Dinitrobenzene 9 Azulene 2 1,2-Dinitrobenzene 10 4-Cyanophenol 3 Ferrocene 11 2-Nitrotoluene 4 4-Phenylphenol 12...Anthracene 4-Hydroxy-3-methoxybenzoic acid Cyclohexane Dithieno[3,2-b:2’,3’-d] thiophene Ferrocene Dimthylaniline Benzene 1,4- Diazabicyclo[2.2.2
Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.
Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K
2016-12-19
The use of sourdough fermented with specific strains of antifungal lactic acid bacteria can reduce chemical preservatives in bakery products. The main objective of this study was to investigate the production of antifungal carboxylic acids after sourdough fermentation of quinoa and rice flour using the antifungal strains Lactobacillus reuteri R29 and Lactobacillus brevis R2Δ as bioprotective cultures and the non-antifungal L. brevis L1105 as a negative control strain. The impact of the fermentation substrate was evaluated in terms of metabolic activity, acidification pattern and quantity of antifungal carboxylic acids. These in situ produced compounds (n=20) were extracted from the sourdough using a QuEChERS method and detected by a new UHPLC-MS/MS chromatography. Furthermore, the sourdough was applied in situ using durability tests against environmental moulds to investigate the biopreservative potential to prolong the shelf life of bread. Organic acid production and TTA values were lowest in rice sourdough. The sourdough fermentation of the different flour substrates generated a complex and significantly different profile of carboxylic acids. Extracted quinoa sourdough detected the greatest number of carboxylic acids (n=11) at a much higher concentration than what was detected from rice sourdough (n=9). Comparing the lactic acid bacteria strains, L. reuteri R29 fermented sourdoughs contained generally higher concentrations of acetic and lactic acid but also the carboxylic acids. Among them, 3-phenyllactic acid and 2-hydroxyisocaproic acid were present at a significant concentration. This was correlated with the superior protein content of quinoa flour and its high protease activity. With the addition of L. reuteri R29 inoculated sourdough, the shelf life was extended by 2 days for quinoa (+100%) and rice bread (+67%) when compared to the non-acidified controls. The L. brevis R2Δ fermented sourdough bread reached a shelf life of 4 days for quinoa (+100%) and rice (+33%). However, the shelf life was similar to the chemically acidified control indicating that the preservation effect of the carboxylic acids seems to have a minor contribution effect on the antifungal activity in gluten-free breads. Copyright © 2016 Elsevier B.V. All rights reserved.
Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao
2015-01-01
Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267
Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao
2015-12-25
Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Strathmann, Timothy J.; Myneni, Satish C. B.
2004-09-01
Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).
NASA Astrophysics Data System (ADS)
Zou, Hua-Hong; Zhang, Shu-Hua; Zeng, Ming-Hua; Zhou, Yan-Ling; Liang, Hong
2008-08-01
A novel linear trimeric-based, Mn(II)-carboxylate chain well separated by long-linking flexible aliphatic tricarballylic acid ligands in a 3D coordination polymer [Mn 3(C 6H 5O 6) 2(H 2O) 4] n ( 1, C 6H 5O 6dbnd CH (COO -)(CH 2COO -) 2, TCA) exhibits low-dimensional antiferromagnetic order at 3.0 K. Such magnetic behavior is arises from the alternate Antiferro-Antiferro-Antiferro' ( J1J1J2) repeating interactions sequence, based on the nature of the binding modes of Mn(II)-carboxylate chain and the effect of interchains arrangement of 1. The reported carboxylate-bridged metal chain systems display a new structurally authenticated example of linear homometallic spin arranged antiferromagnet among metal carboxylates.
Zheng, Zong-Ping; Ma, Jinyu; Cheng, Ka-Wing; Chao, Jianfei; Zhu, Qin; Chang, Raymond Chuen-Chung; Zhao, Ming; Lin, Zhi-Xiu; Wang, Mingfu
2010-12-01
Two sulfur-containing compounds, (S)-2-amino-5-((R)-1-carboxy-2-((E)-3-(4-hydroxy-3-methoxyphenyl)allylthio)ethyl-amino)-5-oxopentanoic acid (1) and (S)-2-amino-5-((R)-1-(carboxymethylamino)-3-((E)-3-(4-hydroxyphenyl)allylthio)-1-oxopropan-2-ylamino)-5-oxopentanoic acid (2), and one 1H-pyrrole-2-carboxylic acid derivative, 6-(3-(1H-pyrrole-2-carbonyloxy)-2-hydroxypropoxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-carboxylic acid (3), together with eighteen known phenolic compounds, were isolated from the fruits of pineapple. Their structures were elucidated by a combination of spectroscopic analyses. Some of these compounds showed inhibitory activities against tyrosinase. The half maximal inhibitory concentration values of compounds 1, 4, 5, 6, 7 are lower than 1 mM. These compounds may contribute to the well-known anti-browning effect of pineapple juice and be potential skin whitening agents in cosmetic applications. Copyright © 2010 Elsevier Ltd. All rights reserved.
King, C. Judson; Husson, Scott M.
1999-01-01
Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with an organic solution of alkylamine thus forming an alkylamine/carboxylic acid complex which is decomposed with improved efficiency to the desired carboxylic acid and the alkylamine. Carbon dioxide addition can be used to improve the adsorption or the carboxylic acids by the solid phase sorbent.
NASA Astrophysics Data System (ADS)
Muche, Simon; Müller, Matthias; Hołyńska, Małgorzata
2018-03-01
The condensation reaction of ortho-vanillin and L-cysteine leads to formation of a racemic mixture of (2RS,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid and not, as reported in the available literature, to a Schiff base. The racemic mixture was fully characterized by 1D and 2D NMR techniques, ESI-MS and X-ray diffraction. Addition of ZnCl2 led to formation of crystals in form of colorless needles, suitable for X-ray diffraction studies. The measured crystals were identified as the diastereomer (2R,4R)-2-(2-hydroxy-3-methoxyphenyl)thiazolidine-4-carboxylic acid 1. The bulk material is racemic. Thiazolidine exists as zwitterion in solid state, as indicated by the crystal structure.
Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng
2011-01-01
Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1′-spirobiindane-7,7′-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. PMID:21417359
Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng
2011-04-15
Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society
Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes
2014-03-15
The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo.
Chowdhury, Golam M I; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L
2014-07-01
The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-(13)C₂]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (V(acCoA-kbN)) and pyruvate (V(pdhN)), and the glutamate-glutamine cycle (V(cyc)) were determined by metabolic modeling of (13)C label trapped in major brain amino acid pools. V(acCoA-kbN) increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (V(tcaN)), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons.
Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo; Nozaki, Tomoyoshi
2014-11-04
L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of L-cysteine in E. histolytica. [U-(13)C3, (15)N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite, L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly oxygenated tissues in the intestine and the liver. It is well known that E. histolytica needs a comparatively high concentration of L-cysteine for its axenic cultivation. However, the reason for and the metabolic fate of L-cysteine in this parasite are not well understood. Here, using a metabolomic and stable-isotope-labeled approach, we investigated the metabolic fate of this amino acid in these parasites. We found that L-cysteine inside the cell rapidly reacts with aldehydes to form 2-(R)-thiazolidine-4-carboxylic acid. We showed that these 2-(R)-thiazolidine-4-carboxylic derivatives serve as an L-cysteine source, promote growth, and protect cells against oxidative stress by scavenging aldehydes and reducing the ROS level. Our findings represent the first demonstration of 2-(R)-thiazolidine-4-carboxylic acids and their roles in protozoan parasites. Copyright © 2014 Jeelani et al.
NASA Astrophysics Data System (ADS)
Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.
2015-11-01
The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.
Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.
Reddy, Narendra; Li, Ying; Yang, Yiqi
2009-01-01
We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.
Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang
2014-08-15
The reference standards methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate (10b) and corresponding precursors 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11a), methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylic acid (11b) were synthesized from methyl crotonate and 3-amino-4-methylbenzoic acid in multiple steps with moderate to excellent yields. The target tracer [(11)C]methyl 4-(2-methyl-5-(methoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([(11)C]10a) and [(11)C]methyl 4-(2-methyl-5-(ethoxycarbamoyl)phenylamino)-5-methylpyrrolo[2,1-f][1,2,4]triazine-6-carboxylate ([(11)C]10b) were prepared from their corresponding precursors with [(11)C]CH3OTf under basic condition through O-[(11)C]methylation and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields at end of bombardment (EOB) with 185-555 GBq/μmol specific activity at end of synthesis (EOS). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Riganakos, K. A.; Koller, W. D.; Ehlermann, D. A. E.; Bauer, B.; Kontominas, M. G.
1999-05-01
Volatile compounds produced in flexible food packaging materials (LDPE, EVAc, PET/PE/EVOH/PE) during electron beam irradiation were isolated by purge and trap technique and identified by combined gas chromatography-mass spectrometry (GC/MS), after thermal desorption and concentration. For comparison purposes non-irradiated films were also studied. Film samples were irradiated at low (5 kGy, corresponding to cold pasteurization), intermediate (20 kGy, corresponding to cold sterilization) and high (100 kGy) doses. It was observed that a number of volatile compounds are produced after irradiation in all cases. Furthermore the amounts of all volatile compounds increase with increasing irradiation dose. Both primary (methyl-derivatives etc.) as well as secondary i.e. oxidation products (ketones, aldehydes, alcohols, carboxylic acids etc.) are produced upon irradiation. These products may affect organoleptic properties and thus shelf-life of prepackaged irradiated foods. No significant changes were observed in the structure of polymer matrices as exhibited by IR spectra after irradiation of the materials at doses tested. Likewise, no significant changes were observed in O 2, H 2O and CO 2 permeability values of plastic packaging materials after irradiation.
NASA Astrophysics Data System (ADS)
Müller, K.; van Pinxteren, D.; Plewka, A.; Svrcina, B.; Kramberger, H.; Hofmann, D.; Bächmann, K.; Herrmann, H.
An extensive set of gaseous and particulate organic compounds was quantified before an orographic cloud passage at the upwind site of the research region in Thüringer Wald. Samples were collected with two different time resolutions, 2 h for gaseous species and spray absorber samples and the whole cloud event duration to determine the concentrations of ketones, aldehydes, monocarboxylic acids, dicarboxylic acids (DCA), hydrocarbons, biogenic sugars and alcohols in both the gas and particle phase. The measurement of different groups of organic compounds delivered size-segregated concentrations at the upwind site of a cloud experiment. The size distribution of DCA showed a peak in the mass-rich impactor stage 3 (0.42-1.2 μm). The concentrations of DCA from the filters, the impactor foils as well as the spray absorber samples decreased with increasing C-number. The time resolved measurements revealed an increasing mixing ratio from night time to midday for carboxylic and DCA, and related carbonyl compounds. The biogenic compounds xylitol (up to 103 ng m -3), levoglucosan (up to 62 ng m -3) and pinonaldehyde (up to 34 ng m -3) were the compounds found in highest concentrations in the particle phase beside the oxalate (up to 104 ng m -3). The organic trace gases with the highest mixing ratios identified were formaldehyde (up to 1.47 ppbv), acetaldehyde (up to 0.84 ppbv) and acetone (up to 0.65 ppbv), acetic acid (up to 0.43 ppbv) and formic acid (up to 0.41 ppbv).
A new alkaloid from Portulaca oleracea L. and its antiacetylcholinesterase activity.
Xiu, Fen; Li, Xuetao; Zhang, Wenjie; He, Fan; Ying, Xixiang; Stien, Didier
2018-04-18
A new alkaloid, (10E, 12E)-9-ureidooctadeca-10, 12-dienoic acid, named oleraurea (1) and 10 known compounds, p-hydroxybenzaldehyde (2), p-hydroxybenzoic acid (3), p-hydroxyacetophenone (4), benzamide (5), (E)-p-coumaramide (6), (E)-ferulamide (7), soyalkaloid A (8), β-carboline-3-carboxylic acid (9), 2, 3, 4, 9-tetrahydro-1H-pyrido [3, 4-b] indole-3-carboxylic acid (10), (1S, 3S)-1-methyl-1, 2, 3, 4-tetrahydro-β-carboline-3-carboxylic acid (11) were obtained from Portulaca oleracea L., in which, compounds 4, 5, 8-11 were isolated from the plant for the first time. The structure of the compound 1 was identified using spectroscopic methods including 1D and 2D NMR, HR-ESI-TOF-MS. The compounds 1, 5-11 presented anticholinesterase activities, but the P. oleracea extract (POE) presented very low anticholinesterase activity.
Synthesis of 2-acyl-1,4-diketones via the diacylation of {alpha},{beta}-unsaturated ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, N.S.; Yu, S.; Kabalka, G.W.
1998-08-17
The first example of a diacylation of the carbon-carbon double bond in {alpha},{beta}-unsaturated ketones is described. The reaction of acylcyanocuprate reagents with {alpha},{beta}-unsaturated ketones, followed by C-acylation, produces 2-acyl-1,4-diketones in good yields (50--89%). The 1,4-addition of organocuprate reagents to conjugated enones, followed by trapping of the enolate intermediates with various electrophiles, is one of the most useful synthetic reactions. However, to the best of the authors` knowledge, 1,4-acylation followed by trapping of the enolate intermediates with acid chloride has not been reported.
Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, Grorge
2001-01-01
Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.
Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132).
Brisbane, P G; Janik, L J; Tate, M E; Warren, R F
1987-01-01
A phenazine antibiotic (mp, 243 to 244 degrees C), isolated in a yield of 134 micrograms/ml from cultures of Pseudomonas fluorescens 2-79 (NRRL B-15132), was indistinguishable in all of its measured physicochemical (melting point, UV and infrared spectra, and gas chromatography-mass spectrometry data) and biological properties from synthetic phenazine-1-carboxylic acid. Gurusiddaiah et al. (S. Gurusiddaiah, D. M. Weller, A. Sarkar, and R. J. Cook, Antimicrob. Agents Chemother. 29:488-495, 1986) attributed a dimeric phenazine structure to an antibiotic with demonstrably similar properties obtained from the same bacterial strain. Direct comparison of the physicochemical properties of the authentic antibiotic obtained from D. M. Weller with synthetic phenazine-1-carboxylic acid and with the natural product from the present study established that all three samples were indistinguishable within the experimental error of each method. No evidence to support the existence of a biologically active dimeric species was obtained. Phenazine-1-carboxylic acid has a pKa of 4.24 +/- 0.01 (25 degrees C; I = 0.09), and its carboxylate anion shows no detectable antimicrobial activity compared with the active uncharged carboxylic acid species. These data suggest that phenazine-1-carboxylic acid is probably not an effective biological control agent for phytopathogens in environments with a pH greater than 7. Images PMID:3125789
Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning
2018-01-01
In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemiluminescence of Secondary Peroxyesters.
1980-11-14
phenylethylperoxybenzoates was investiqlated. Thermolysis in benzene gives acetophenone and the corresponding carboxYlic acid . The study of the reactiol...these compounds undergo unimolecular thermolysis to qenerate the appropriate carboxylic acid add carbonyl compound; eq. 2. We estimated, using...prepared by reaction of 1 -phenylethyl hydroperoxide with the appropriate activated acid precursor. We prepared the hydroperoxide by two different routes
Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum.
Cavarra, M S; del Mónaco, S M; Kotsias, B A
2004-07-01
A two-electrode, voltage-clamp technique was used to measure the effect of the Cl(-) channel blockers, 9-anthracene carboxylic acid and niflumic acid, upon the ionic currents of oocytes of the South American toad Bufo arenarum. The main results were: (1) both blockers produced a reversible increase of the outward currents on a dose-dependent manner; (2) the activated outward current was voltage dependent; (3) the 9-anthracene carboxylic acid-sensitive current was blocked with barium; and (4) the effect of 9-anthracene carboxylic acid was more pronounced in a zero-K(+) solution than in standard (2 mmol l(-1)) or high (20 mmol l(-1)) K(+) solutions, indicating that a K(+) conductance is activated. The effect of the Cl(-) channel blockers could be due to a direct interaction with endogenous cationic channels. Another possible explanation is that Cl(-) that enter the cell during depolarizing steps in control solution inhibit this cationic conductance; thus, the blockade of Cl(-) channels by 9-anthracene carboxylic acid and niflumic acid would remove this inhibition, allowing the cationic current to flow freely.
Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al
USDA-ARS?s Scientific Manuscript database
The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...
Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization
Zhang, Hong-Hai; Ma, Chuanxu; Bonnesen, Peter V.; ...
2016-07-12
Whereas Poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI) and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small angle x-ray scattering (SAXS) and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5- 2 butyl-2,3-thiophene) (P5BT) on highly oriented pyrolyticmore » graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV-vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5- thiophene) (P3HT) (λ = 450 nm) indicated that the degree of conjugation of the backbone in P5HT is less than in P3HT, which may be a consequence of the helical geometry of the former compared to the more planar geometry of the latter. Moreover, we found that P5HT can emit green fluorescence under UV (λ = 360 nm) irradiation« less
NASA Astrophysics Data System (ADS)
Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed
2015-03-01
This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.
Chemistry of anti-AIDS and anticancer compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S.
1992-01-01
Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dailey, K.K.; Rauchfuss, T.B.
Diasteriomeric iminium thiolato complexes were prepared by the addition of S-(-)-{alpha}-methylbenzylamine to the {pi}-thiophene complexes [(C{sub 6}Me{sub 6})Ru(2-RC{sub 4}H{sub 3}S)]{sup 2+}, where R = Me(1{sup 2+}), CH{sub 2}OH (3{sup 2+}), and 2-C{sub 4}H{sub 3}S(6{sup 2+}). After chromatographic separation, the diastereomers were treated with HOTf to generate optically pure {pi}-thiophene complexes. The absolute configuration of [(C{sub 6}Me{sub 6})RuSCMeC{sub 2}H{sub 2}(CHNHCHMePh)]OTf, (-)-2(OTf), was determined by a single-crystal X-ray diffraction; the monohydrate crystallized in the acentric space group P2{sub 1}2{sub 1}2{sub 1}. Base hydrolysis of (-)-1{sup 2+} gave the formyl thiolato complex (-)-9{sub kin}, which isomerized to (+)-9{sub therm} with inversion of configurationmore » at Ru, as indicated by circular dichroism measurements. The methyl ester of the amino acid (L)-phenylalanine was shown to add to (C{sub 6}Me{sub 6})Ru(C{sub 4}H{sub 4}S){sup 2+} to give a 2:1 mixture of diastereomeric iminium thiolato complexes. 19 refs., 3 figs., 2 tabs.« less
Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.
Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L
2011-12-01
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.
Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo
Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L
2011-01-01
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use. PMID:21731032
Carboxylic acid sorption regeneration process
King, C. Judson; Poole, Loree J.
1995-01-01
Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.
40 CFR 721.2950 - Carboxylic acid glycidyl esters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl ester...
Structure Property Relationships of Carboxylic Acid Isosteres.
Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo
2016-04-14
The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.
Hostnik, Gregor; Vlachy, Vojko; Bondarev, Dmitrij; Jiří, Vohlídal; Cerar, Janez
2012-09-01
The title polymer, PTAA, practically free of ester groups was obtained by oxidative polymerization of methyl thiophen-3-ylacetate and subsequent basic hydrolysis of primary polymer. Poly(thiophen-3-ylacetic acid) has been thoroughly characterized by NMR, IR, Raman, and UV/Vis spectroscopy. The polyacid behavior during neutralization titrations with lithium and sodium hydroxides, carried out under nitrogen atmosphere, has been studied by conductometry and potentiometry. Henderson-Hasselbach plots of potentiometric titration curves show a break point at pH around 6, where the curve slope drops from 1.8 (at lower pH) to a value from 1.05 to 1.3 (at higher pH values). The UV/Vis spectra monitored during back titration show: (i) monotonous decrease of both λmax and εmax as pH decreases, (ii) the presence of the isosbestic point at 401 nm that can be ascribed to conformational transition of PTAA chains, and (iii) absence of the isosbestic point at 392 nm reported previously by other authors.
Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage
Royce, Liam A.; Boggess, Erin; Fu, Yao; Liu, Ping; Shanks, Jacqueline V.; Dickerson, Julie; Jarboe, Laura R.
2014-01-01
Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic. PMID:24586888
NASA Astrophysics Data System (ADS)
Khan, M. Anwar H.; Cooke, Michael; Utembe, Steve; Archibald, Alexander; Derwent, Richard; Jenkin, Mike; Lyons, Kyle; Kent, Adam; Percival, Carl; Shallcross, Dudley E.
2016-04-01
Gas phase reactions of ozone with unsaturated compounds form stabilized Criegee intermediates (sCI) which play an important role in controlling the budgets of many tropospheric species including OH, organic acids and secondary organic aerosols (SOA). Recently sCI has been proposed to play a significant role in atmospheric sulfate and nitrate chemistry by forming sulfuric acid (promoter of aerosol formation) and nitrate radical (a powerful oxidizing agent). sCI can also undergo association reactions with water, alcohols, and carboxylic acids to form hydroperoxides and with aldehydes and ketones to form secondary ozonides. The products from these reactions are low volatility compounds which can contribute to the formation of SOA. The importance of plant emitted alkenes (isoprene, monoterpenes, sesquiterpenes) in the production of SOA through sCI formation have already been investigated in laboratory studies. However, the SOA formation from these reactions are absent in current global models. Thus, the formation of SOA has been incorporated in the global model, STOCHEM-CRI, a 3-D global chemistry transport model and the role of CI chemistry in controlling atmospheric composition and climate, and the influence of water vapor has been discussed in the study.
Halogenated Explosives to Defeat Biological Agents
2015-09-01
The synthetic transformation of difluoramination of ketones by difluoramine (HNF2)29 is a specialized, hazardous process that is not likely to become...defluorination in triflic acid; even 4-(trifluoromethyl)propiophenone (ethyl phenyl ketone ) does not undergo C–F cleavage.45 The prospect of this...trifluoroacetaldehyde hydrate to generate trifluoroacet- aldehyde gas, which reacts with liquefied ammonia at low temperature. Upon warming, the hemiaminal
Carboxylic acid sorption regeneration process
King, C.J.; Poole, L.J.
1995-05-02
Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.
Pan, Shen; Huang, Yangen; Qing, Feng-Ling
2016-10-20
A tunable decarboxylative trifluoromethylthiolation of cinnamic acids with AgSCF 3 was developed to afford trifluoromethylthiolated alkenes or ketones by using transition metal-mediated conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru
2014-12-01
Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Drożdż, Agnieszka; Chrobok, Anna
2016-01-21
A new method for the asymmetric chemo-enzymatic Baeyer-Villiger oxidation of prochiral 4-methylcyclohexanone to (R)-4-methylcaprolactone in the presence of (±)-4-methyloctanoic acid, Candida Antarctica lipase B and 30% aq. H2O2 has been developed. A mechanism for the asymmetric induction based on kinetic resolution of racemic carboxylic acids is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, K.; Okuwaki, A.; Verheyen, T.V.
In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.
Kinetic modeling of the oxidative degradation of additive free PE in bleach disinfected water
NASA Astrophysics Data System (ADS)
Mikdam, Aïcha; Colin, Xavier; Billon, Noëlle; Minard, Gaëlle
2016-05-01
The chemical interactions between PE and bleach were studied at 60°C in immersion in bleach solutions kept at a free chlorine concentration of 100 ppm and a pH of 5 or 7.2. It was found that the polymer undergoes a severe oxidation from the earliest weeks of exposure, in a superficial layer whose thickness (of about 50-70 µm) is almost independent of the pH value, although the superficial oxidation rate is faster in acidic than in neutral medium. Oxidation leads to the formation and accumulation of a large variety of carbonyl products (mostly ketones and carboxylic acids) and, after a few weeks, to a decrease in the average molar mass due to the large predominance of chain scissions over crosslinking. A scenario was elaborated for explaining such unexpected results. According to this scenario, the non-ionic molecules (Cl2 and ClOH) formed from the disinfectant in the water phase, would migrate deeply into PE and dissociate into highly reactive radicals (Cl• and HO•) in order to initiate a radical chain oxidation. A kinetic model was derived from this scenario for predicting the general trends of the oxidation kinetics and its dependence on environmental factors such as temperature, free chlorine concentration and pH. The validity of this model was successfully checked by comparing the numerical simulations with experimental data.
Prabhudeva, Malledevarapura Gurumurthy; Bharath, Srinivasan; Kumar, Achutha Dileep; Naveen, Shivalingegowda; Lokanath, Neratur Krishnappagowda; Mylarappa, Bantaganahalli Ningappa; Kumar, Kariyappa Ajay
2017-08-01
Oxidative-stress induces inflammatory diseases and infections caused by drug-resistant microbial strains are on the rise necessitating the discovery of novel small-molecules for intervention therapy. The current study presents an effective and new green protocol for the synthesis of thiophene-appended pyrazoles through 3+2 annulations method. Chalcones 3(a-g) were prepared from 5-chloro-2-acetylthiophene and aromatic aldehydes by Claisen-Schmidt approach. The reaction of chalcones 3(a-g) with phenylhydrazine hydrochlorides 4(a-b) in acetic acid (30%) medium and also with freshly prepared citrus extract medium under reflux conditions produced the thiophene appended pyrazoles 5(a-l) in moderate yields. Structures of synthesized new pyrazoles were confirmed by spectral studies, elemental analysis and single crystal X-ray diffraction studies. Further, preliminary assessment of the anti-inflammatory properties of the compounds showed that, amongst the series, compounds 5d, 5e and 5l have excellent anti-inflammatory activities. Further, compounds 5c, 5d, 5g, and 5i exhibited excellent DPPH radical scavenging abilities in comparison with the standard ascorbic acid. Furthermore, using detailed structural modeling and docking efforts, combined with preliminary SAR, we show possible structural and chemical features on both the small-molecules and the protein that might contribute to the binding and inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.
Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation.
Offermanns, Stefan; Schwaninger, Markus
2015-04-01
Neuroinflammation is a pathology common to many neurological diseases, including multiple sclerosis (MS) and stroke. However, therapeutic attempts to modulate neuroinflammation have proved difficult. Neuroinflammatory cells express HCA2, a receptor for the endogenous neuroprotective ketone body β-hydroxybutyrate (BHB) as well as for the drugs dimethyl fumarate (DMF) and nicotinic acid, which have established efficacy in the treatment of MS and experimental stroke, respectively. This review summarizes the evidence that HCA2 is involved in the therapeutic effects of DMF, nicotinic acid, and ketone bodies in reducing neuroinflammation. Furthermore, we discuss the mechanisms underlying the beneficial effects of HCA2 activation in neuroinflammatory diseases and the therapeutic potential of recently developed synthetic ligands of HCA2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Odor detection of mixtures of homologous carboxylic acids and coffee aroma compounds by humans.
Miyazawa, Toshio; Gallagher, Michele; Preti, George; Wise, Paul M
2009-11-11
Mixture summation among homologous carboxylic acids, that is, the relationship between detection probabilities for mixtures and detection probabilities for their unmixed components, varies with similarity in carbon-chain length. The current study examined detection of acetic, butyric, hexanoic, and octanoic acids mixed with three other model odorants that differ greatly from the acids in both structure and odor character, namely, 2-hydroxy-3-methylcyclopent-2-en-1-one, furan-2-ylmethanethiol, and (3-methyl-3-sulfanylbutyl) acetate. Psychometric functions were measured for both single compounds and binary mixtures (2 of 5, forced-choice method). An air dilution olfactometer delivered stimuli, with vapor-phase calibration using gas chromatography-mass spectrometry. Across the three odorants that differed from the acids, acetic and butyric acid showed approximately additive (or perhaps even supra-additive) summation at low perithreshold concentrations, but subadditive interactions at high perithreshold concentrations. In contrast, the medium-chain acids showed subadditive interactions across a wide range of concentrations. Thus, carbon-chain length appears to influence not only summation with other carboxylic acids but also summation with at least some unrelated compounds.
Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.
Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Ho, Christopher R; Bell, Alexis T
2017-10-17
Growing concern with the environmental impact of CO 2 emissions produced by combustion of fuels derived from fossil-based carbon resources has stimulated the search for renewable sources of carbon. Much of this focus has been on the development of methods for producing transportation fuels, the major source of CO 2 emissions today, and to a lesser extent on the production of lubricants and chemicals. First-generation biofuels such as bioethanol, produced by the fermentation of sugar cane- or corn-based sugars, and biodiesel, produced by the transesterification reaction of triglycerides with alcohols to form a mixture of long-chain fatty esters, can be blended with traditional fuels in limited amounts and also arise in food versus fuel debates. Producing molecules that can be drop-in solutions for fossil-derived products used in the transportation sector allows for efficient use of the existing infrastructure and is therefore particularly interesting. In this context, the most viable source of renewable carbon is abundantly available lignocellulosic biomass, a complex mixture of lignin, hemicellulose, and cellulose. Conversion of the carbohydrate portion of biomass (hemicellulose and cellulose) to fuels requires considerable chemical restructuring of the component sugars in order to achieve the energy density and combustion properties required for transportation fuels-gasoline, diesel, and jet. A different set of constraints must be met for the conversion of biomass-sourced sugars to lubricants and chemicals. This Account describes strategies developed by us to utilize aldehydes, ketones, alcohols, furfurals, and carboxylic acids derived from C 5 and C 6 sugars, acetone-butanol-ethanol (ABE) fermentation mixtures, and various biomass-derived carboxylic acids and fatty acids to produce fuels, lubricants, and chemicals. Oxygen removal from these synthons is achieved by dehydration, decarboxylation, hydrogenolysis, and hydrodeoxygenation, whereas reactions such as aldol condensation, etherification, alkylation, and ketonization are used to build up the number of carbon atoms in the final product. We show that our strategies lead to high-octane components that can be blended into gasoline, C 9 -C 22 compounds that possess energy densities and properties required for diesel and jet fuels, and lubricants that are equivalent or superior to current synthetic lubricants. Replacing a fraction of the crude-oil-derived products with such renewable sources can mitigate the negative impact of the transportation sector on overall anthropogenic greenhouse gas (GHG) emissions and climate change potential. While ethanol is a well-known fuel additive, there is significant interest in using ethanol as a platform molecule to manufacture a variety of valuable chemicals. We show that bioethanol can be converted with high selectivity to butanol or 1,3-butadiene, providing interesting alternatives to the current production from petroleum. Finally, we report that several of the strategies developed have the potential to reduce GHG emissions by 55-80% relative to those for petroleum-based processes.
Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.
The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL.« less
NASA Astrophysics Data System (ADS)
Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi
2011-01-01
Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.
Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.
2011-01-01
A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197
Engineering ..beta..-Oxidation in Yarrowia lipolytica for Methyl Ketone Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez i Nogue, Violeta; Ramirez, Kelsey J; Singer, Christine
Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal ..beta..-oxidation by chromosomal deletion of pot1 resulted in themore » biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones.« less
Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.
Hanko, Erik K R; Denby, Charles M; Sànchez I Nogué, Violeta; Lin, Weiyin; Ramirez, Kelsey J; Singer, Christine A; Beckham, Gregg T; Keasling, Jay D
2018-05-28
Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C 13 -C 23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Nandi, Ganesh Chandra; Singh, Maya Shankar
2016-07-15
Metal-free, p-toluenesulfonic acid (p-TSA)-mediated, straightforward propargylation of β-ketothioamides with aryl propargyl alcohol has been achieved at room temperature. In addition, the reaction also provided thiazole rings as byproducts. Furthermore, the propargylated thioamides undergo intramolecular 1,5-cyclization to afford fully substituted (hydro)thiophenes in the presence of base. Notably, the approach is pot, atom, and step economical (PASE).
Carboxylic Acids as Indicators of Parent Body Conditions
NASA Technical Reports Server (NTRS)
Lerner N. R.; Chang, Sherwood (Technical Monitor)
1995-01-01
Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002
A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less
Shimizu, Masaki; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro
2009-05-01
The direct oxidative coupling of 2-amino- and 2-hydroxybenzoic acids with internal alkynes proceeds efficiently in the presence of a rhodium/copper catalyst system under air to afford the corresponding 8-substituted isocoumarin derivatives, some of which exhibit solid-state fluorescence. Depending on conditions, 4-ethenylcarbazoles can be synthesized selectively from 2-(arylamino)benzoic acids. The oxidative coupling reactions of heteroarene carboxylic acids as well as aromatic diacids with an alkyne are also described.
Microbial Transformation of Esters of Chlorinated Carboxylic Acids
Paris, D. F.; Wolfe, N. L.; Steen, W. C.
1984-01-01
Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459
Hynninen, P H; Räisänen, R
2001-01-01
Preparative-scale separation of substituted anthraquinones by multiple liquid-liquid partition was studied using isopropylmethyl ketone (IMK)/aqueous phosphate buffer (aq.) as the solvent system and the Hietala apparatus with 100 partition units as the partition equipment. The lower (aq.) phase was chosen as mobile, while the upper (IMK) phase remained stationary. Hence, the principle of stepwise pH-gradient elution could be utilized to separate the components in two complex mixtures of hydroxyanthraquinones and hydroxyanthraquinone carboxylic acids, isolated from the fungus Dermocybe sanguinea. In spite of the nonlinearity of the partition isotherms for these anthraquinones, implying deviations from the Nernst partition law, remarkable separations were achieved for the components in each mixture. Every anthraquinone carboxylic acid showed markedly irregular partition behavior, appearing in the effluent as two more or less resolved concentration zones. Such splitting was attributed to the formation of relatively stable sandwich-dimers, which were in a slow equilibrium with the monomers in the more nonpolar organic phase. At lower pH-values, only the polar monomers were distributed into the mobile aqueous phase and moved forward, whereas the nonpolar sandwich-dimers remained almost entirely in the stationary organic phase and lagged behind. When the pH of the mobile aqueous phase was raised high enough, the firmly linked dimers were monomerized and emerged from the apparatus as a second concentration profile. Intermolecular hydrogen bonding and pi-pi interaction between the pi-systems of two anthraquinone molecules in a parallel orientation were considered responsible for the nonlinear and markedly irregular partition behavior of the natural anthraquinones studied. The nonlinearity of the partition behavior of the hydroxyanthraquinones lacking the carboxyl group, appeared merely as excessive broadening of the experimental concentration profile, which impaired the resolution between the components only insignificantly. Thus, e.g. the main components, dermocybin and emodin, could both be obtained from Separation 1 in a purity of at least 99%.
Stockton, Amanda M; Tjin, Caroline Chandra; Chiesl, Thomas N; Mathies, Richard A
2011-01-01
The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (μCE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 °C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules. © Mary Ann Liebert, Inc.
1-Azaniumylcyclobutane-1-carboxylate monohydrate
NASA Technical Reports Server (NTRS)
Butcher, Ray J.; Brewer, Greg; Burton, Aaron S.; Dworkin, Jason
2014-01-01
In the title compound, C5H9NO2H2O, the amino acid is in the usual zwitterionic form involving the carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7) and0.118 (7). In the crystal, NH O and OH O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+) and donor (through a single carboxylate O from two different aminocyclobutane carboxylatemoities)], resulting in a two-dimensional layered structure lying parallel to (100).
[Differentiation of species within the Mycobacterium tuberculosis complex by molecular techniques].
Herrera-León, Laura; Pozuelo-Díaz, Rodolfo; Molina Moreno, Tamara; Valverde Cobacho, Azucena; Saiz Vega, Pilar; Jiménez Pajares, María Soledad
2009-11-01
The Mycobacterium tuberculosis complex includes the following species: Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium bovis-BCG, Mycobacterium microti, Mycobacterium caprae, Mycobacterium pinnipedii, and Mycobacterium canettii. These species cause tuberculosis in humans and animals. Identification of mycobacterial strains has classically been performed by phenotype study. Over the last years, laboratories have developed several molecular techniques to differentiate between these species. The aim of this study is to evaluate these methods and develop a simple, fast, identification scheme. We analyzed 251 strains randomly obtained from the strains studied in 2004, and 797 strains received by the Reference Laboratory between 2005 and 2007. Phenotype characterization of 4183 strains isolated during that period was done by studying the colony morphology, characteristics in culture, nitrate reduction, niacin accumulation, and growth in the presence of thiophen-2-carboxylic acid hydrazide 10 microg/mL and pyrazinamide 50 microg/mL. The molecular identification scheme designed was as follows: 1) gyrB PCR-RFLP with RsaI, TaqI or SacII and hsp65 RFLP/PCR with HhaI., and 2) multiplex-PCR to determine the presence/absence of the RD9 and RD1 regions. The results showed 100% agreement between phenotype study and the molecular scheme. This molecular identification scheme is a simple and fast method, with 100% sensitivity and specificity, that can be implemented in most clinical laboratories at a low cost.
NASA Astrophysics Data System (ADS)
Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.
2016-01-01
Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.
Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo
2014-01-01
ABSTRACT l-Cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, l-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, l-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled l-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of l-cysteine in E. histolytica. [U-13C3, 15N]l-cysteine was rapidly metabolized into three unknown metabolites, besides l-cystine and l-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of l-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of l-cysteine. Liberation of l-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these l-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. PMID:25370494
Burnette, Ronald R; Weinhold, Frank
2006-07-20
The 13C chemical shift for the carboxylic acid carbon provides a powerful diagnostic probe to determine the preferred isomeric dimer structures of benzoic acid derivatives undergoing intra- and intermolecular H-bonding in the gas, solution and crystalline phases. We have employed hybrid density functional calculations and natural bond orbital analysis to elucidate the electronic origins of the observed 13C shieldings and their relationship to isomeric stability. We find that delocalizing interactions from the carbonyl oxygen lone pairs (nO) into vicinal carbon-oxygen and carbon-carbon antibonds (sigmaCO*,sigmaCC*) make critical contributions to the 13C shieldings, and these nO --> sigmaCO*, nO --> sigmaCC* interactions are in turn sensitive to the intramolecular interactions that dictate dimer structure and stability. The carboxyl carbon atom can thus serve as a useful detector of subtle structural and conformational features in this pharmacologically important class of carboxylic acid interactions.
Electrochemistry and spectroelectrochemistry of bioactive hydroxyquinolines: a mechanistic study.
Sokolová, Romana; Nycz, Jacek E; Ramešová, Šárka; Fiedler, Jan; Degano, Ilaria; Szala, Marcin; Kolivoška, Viliam; Gál, Miroslav
2015-05-21
The oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV-vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.7 electron oxidation process. This was rationalized by the autodeprotonation reaction by another two starting molecules of hydroxyquinoline, so that the overall oxidation mechanism involves two electrons and three starting molecules. Both the electrochemical and spectroelectrochemical results showed that the oxidation mechanism is not influenced by the presence of the carboxylic group in the chemical structure of hydroxyquinolines, as results from oxidation of 2,7-dimethyl-5-hydroxyquinoline (6). In the presence of a strong proton acceptor such as pyridine, the oxidation ECEC process involves two electrons and two protons per one molecule of the hydroxyquinoline derivative. The electron transfer efficiency of hydroxyquinolines in biosystems may be related to protonation of biocompounds containing nitrogen bases. Molecular orbital calculations support the experimental findings.
Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi
2004-06-01
Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.
NASA Astrophysics Data System (ADS)
Tu-ya; Yang, Ping; Sun, Su-qin; Zhou, Qun; Bao, Xiao-hua; Noda, Isao
2010-06-01
Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR)) are employed to analyze various processed products and ether extracts of Radix Aconiti kusnezoffii. There is a resemblance among the spectra of different processed products. The major difference lies in the absorption peak at 1641 cm -1 in the IR spectra, which reflects the transformation of raw aconite to the processed products. There are distinctive differences in the absorption peaks in the range of 1800-1500 cm -1 in the second derivative spectra, which has better resolution, of different processed products. 2D-IR spectra, which elevate the resolution further, can present even more differences among the products in the range of 1800-800 cm -1. Analysis of ether extracts of various processed products proves that there are alcohols, esters, carboxylic acids or ketones in all of them. However, their contents in different samples have obvious differences. With the advantages of high resolution, high-speed and convenience, IR can quickly and precisely distinguish various processed products of Radix A. kusnezoffii, and can be applied to predict the tendency of transformation of the complicated chemical mixture systems under heat perturbation.
Williams, David R; Donnell, Andrew F; Kammler, David C; Ward, Sarah A; Taylor, Levin
2016-11-04
Studies describe formation of the lithium enolate of N-(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α,β-unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition-state arrangements leading to the formation of Felkin-Anh and anti-Felkin products. Examples illustrate the direct incorporation of monocyclic β-lactams into a variety of molecular architectures. The utility of 1 as an enolate synthon of homoglycine (β-alanine) is illustrated by the efficient synthesis of novel β-amino acid derivatives, including complex 4-hydroxy-2-pyridinones.
Li, Hui; Wang, Siyuan; Huang, Zhongliang; Yuan, Xingzhong; Wang, Ziliang; He, Rao; Xi, Yanni; Zhang, Xuan; Tan, Mengjiao; Huang, Jing; Mo, Dan; Li, Changzhu
2018-07-01
Effect of hydrothermal carbonization (HTC) on the hydrochar pelletization and the aldehydes/ketones emission from pellets during storage was investigated. Pellets made from the hydrochar were stored in sealed apparatuses for sampling. The energy consumption during pelletization and the pellets' properties before/after storage, including dimension, density, moisture content, hardness, aldehyde/ketones emission amount/rate and unsaturated fatty acid amount, were analyzed. Compared with untreated-sawdust-pellets, the hydrochar-pellets required more energy consumption for pelletization, and achieved the improved qualities, resulting in the higher stability degree during storage. The species and amount of unsaturated fatty acids in the hydrochar-pellets were higher than those in the untreated-sawdust-pellets. The unsaturated fatty acids content in the hydrochar-pellets was decreased with increasing HTC temperature. Higher aldehydes/ketones emission amount and rates with a longer emission period were found for the hydrochar-pellets, associated with variations of structure and unsaturated fatty acid composition in pellets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin
2017-02-01
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.
40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...
40 CFR 721.10550 - Rare earth salt of a carboxylic acid (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth salt of a carboxylic acid... Specific Chemical Substances § 721.10550 Rare earth salt of a carboxylic acid (generic). (a) Chemical... as rare earth salt of a carboxylic acid (PMN P-05-324) is subject to reporting under this section for...
Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids
Matthessen, Roman; Fransaer, Jan; Binnemans, Koen
2014-01-01
Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120
Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu
2017-01-01
Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...
Determination of carboxyl groups in wood fibers by headspace gas chromatography
X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia
2003-01-01
The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...
21 CFR 862.1435 - Ketones (nonquantitative) test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...
21 CFR 862.1435 - Ketones (nonquantitative) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...
21 CFR 862.1435 - Ketones (nonquantitative) test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...
Zhao, Baisuo; Liu, Jie; Frear, Craig; Holtzapple, Mark; Chen, Shulin
2016-12-01
This study employed mixed-culture consolidated bioprocessing (CBP) to digest microalgal biomass in an anaerobic sequencing batch reactor (ASBR). The primary objectives are to evaluate the impact of hydraulic residence time (HRT) on the productivity of carboxylic acids and to characterize the bacterial community. HRT affects the production rate and patterns of carboxylic acids. For the 5-L laboratory-scale fermentation, a 12-day HRT was selected because it offered the highest productivity of carboxylic acids and it synthesized longer chains. The variability of the bacterial community increased with longer HRT (R 2 =0.85). In the 5-L laboratory-scale fermentor, the most common phyla were Firmicutes (58.3%), Bacteroidetes (27.4%), and Proteobacteria (11.9%). The dominant bacterial classes were Clostridia (29.8%), Bacteroidia (27.4%), Tissierella (26.2%), and Betaproteobacteria (8.9%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y
2009-10-01
Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.
NASA Astrophysics Data System (ADS)
Kawasaki, K.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.
2007-03-01
With increasing environmental awareness and crude oil price, biodiesel fuel (BDF) is gaining recognition as a renewable fuel which may be used as an alternative diesel fuel without any modification to the engine. The cold flow and viscosity of BDF, however, is a major drawback that limited its use in cold area. In this study, therefore, we investigated that partial oxidation of high molecular weight unsaturated carboxylic acids in subcritical water, which major compositions in BDF, to upgrade biodiesel fuel. Oleic acid, (HOOC(CH2)7CH=CH(CH2)7CH3), was selected as a model compound of high molecular weight unsaturated carboxylic acids. All experiments were performed with a batch reactor made of SUS 316 with an internal volume of 5.7 cm3. Oleic acid was oxidized at 300 °C with oxygen supply varying from 1-10 %. Results showed that a large amount of carboxylic acids and aldehydes having 8-9 carbon atoms were formed. These experimental results suggest that the hydrothermal oxidative cleavage may mainly occur at double bonds and the cleavage of double bonds could improve the cold flow and viscosity of BDF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokatzian, Samantha S.; Stover, Michele L.; Plummer, Chelsea E.
Using mass spectrometry and correlated molecular orbital theory, three deprotonated structures were revealed for the amino acid tyrosine. The structures were distinguished experimentally by ion/molecule reactions involving proton transfer and trimethylsilyl azide. Gas-phase acidities from proton transfer reactions and from G3(MP2) calculations generally agree well. The lowest energy structure, which was only observed experimentally using electrospray ionization from aprotic solvents, is deprotonated at the carboxylic acid group and is predicted to be highly folded. A second unfolded carboxylate structure is several kcal/mol higher in energy and primarily forms from protic solvents. Protic solvents also yield a structure deprotonated at themore » phenolic side chain, which experiments find to be intermediate in energy to the two carboxylate forms. G3(MP2) calculations indicate that the three structures differ in energy by only 2.5 kcal/mol, yet they are readily distinguished experimentally. Structural abundance ratios are dependent upon experimental conditions, including the solvent and accumulation time of ions in a hexapole. Under some conditions, carboxylate ions may convert to phenolate ions. For phenylalanine, which lacks a phenolic group, only one deprotonated structure was observed experimentally when electrosprayed from protic solvent. This agrees with G3(MP2) calculations that find the folded and unfolded carboxylate forms to differ by 0.3 kcal/mol.« less
Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection
Bencsik, Péter; Kupai, Krisztina; Görbe, Anikó; Kenyeres, Éva; Varga, Zoltán V.; Pálóczi, János; Gáspár, Renáta; Kovács, László; Weber, Lutz; Takács, Ferenc; Hajdú, István; Fabó, Gabriella; Cseh, Sándor; Barna, László; Csont, Tamás; Csonka, Csaba; Dormán, György; Ferdinandy, Péter
2018-01-01
The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction. PMID:29674965
Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W
2015-06-05
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats
Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.
2015-01-01
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A
With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less
King, C.J.; Tung, L.A.
1992-07-21
Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.
NASA Astrophysics Data System (ADS)
Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab
2015-02-01
A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface area nano-substrate which can be used for subsequent efficient bioconjugation applications.
USDA-ARS?s Scientific Manuscript database
Immunoassays contribute greatly to veterinary drug residue analysis and food safety, but there are no reported immunoassays on simultaneously detecting MQCA and QCA, the marker residues for carbadox and olaquindox. It is extremely difficult to produce broad-specificity antibodies that bind both res...
Molecular-level Design of Heterogeneous Chiral Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilfred T. Tysoe
2007-04-25
It has been shown previously that the adsorption of a chiral 2-butanol template on Pd(111) leads to enantioselective adsorption of chiral propylene oxide probe molecules. Enantioselectivity is expressed over a narrow coverage range where the maximum value of enantioselectivity ratio (ER defined as Θ(R-propylene oxide)/Θ(S-propylene oxide), where Θ is the coverage) reaches ~2. Probe coverages in this case were measured using either reflection-absorption infrared spectroscopy (RAIRS) or temperature-programmed desorption (TPD) [1,2]. The enantioselectivity disappears when the 2-butanol-covered surface was heated to ~200 K since the adsorbed butoxy species decomposes by a β-hydride elimination reaction to yield a non-chiral ketone. Montemore » Carlo calculations of the effect of chiral modifiers have yielded results that are consistent with these experimental observations [3,4]. Similar experiments using 2-methyl butanoic acid as a template, where the chiral center is identical to that in 2-butanol but is now anchored by a carboxylate group rather than by an alkoxide, shows no enantioselectivity. In this case, propylene oxide coverages were measured using the King and Wells method. RAIRS experiments and density functional calculations suggest that the 2-butyl group of the 2-butoxy species is oriented parallel to the surface. A possible origin for the lack of enantioselectivity of a 2-methyl butanoic acid-covered surface may be that the 2-butyl group is farther from the surface, allowing it to rotate more freely, averaging out any asymmetry, resulting in a loss of chirality. In order to test this idea, the alkyl group on the carboxylic acid was functionalized with an amine to anchor the chiral center to the surface. Using the amino-acids alanine and 2-amino butanoic acid as templates restored the enantioselectivity and yielded ER values of 2.0 ± 0.2 and 1.75 ± 0.15 respectively. These results suggest that a two-point attachment of the chiral template is required, one for surface adsorption and the other to allow the enantioselectivity to be expressed. Low-energy electron diffraction (LEED) intensity versus energy (I/E) measurements are used to measure the structure of templates and probes on the Pd(111) surface, where these results will be compared with calculations carried out by the Sholl group. Since the aminoacids are relatively large, initial experiments were carried out to determine the structure of carboxylates on the surface to determine the carboxylate group anchoring site. Since carboxylates do not form ordered structures on Pd(111), we have exploited a method recently developed in collaboration with Professor Saldin to measure structures of disordered overlayers [5]. Results show that the formate OCO plane is oriented perpendicular to the surface with the oxygen atoms located across a short bridge on the (111) surface. The effect of the size of the functional group on the amino acid template (RCH(NH2)COOH) was also investigated where the maximum ER values obtained using propylene oxide were 2.0 ± 0.2 (R=CH3), 1.75 ± 0.15 (R=C2H5), 1.65 ± 0.15 (R=C3H6) and 1.30 ± 0.15 (R=CH2CH(CH3)2) thus showing a decreasing trend with increasing size of the side chain. The enantioselectivity of S-(1-naphthyl) ethylamine-covered surfaces have been explored using propylene oxide as a probe, but these systems showed no enantioselectivity. However, using 2-butanol as a probe lead to enantioselective chemisorption implying that one-to-one modification requires a direct hydrogen-bonding interaction between the probe and modifier. 1. Enantioselective Chemisorption on a Chirally Patterned Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxy-Covered Pd(111), D. Stacchiola, L. Burkholder and W.T. Tysoe, J. Am. Chem. Soc., 124, 8984 (2002) 2. Enantioselective Chemisorption on a Chirally Modified Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxide-Covered Pd(111), Darío Stacchiola, Luke Burkholder and Wilfred T. Tysoe, J. Mol. Catal A: Chemical, 216, 215 (2004) 3. Theoretical Analysis of the Coverage Dependence of Enantioselective Chemisorption on a Chirally Patterned Surface, F. Roma, D. Stacchiola, G. Zgrablich and W. T. Tysoe, Journal of Chemical Physics, 118, 6030 (2003) 4. Lattice-gas Modeling of Enantioselective Adsorption by Template Chiral Substrates, F. Romá, D. Stacchiola, W.T. Tysoe and G. Zgrablich, Physica A., 338, 493 (2004) 5. Structure Determination of Disordered Organic Molecules on Surfaces from the Bragg Spots of Low Energy Electron Diffraction and Total Energy Calculations, H. C. Poon, M. Weinert, D. K. Saldin, D. Stacchiola, T. Zheng and W. T. Tysoe, Phys. Rev. B., 69, 35401 (2004)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li
2013-09-15
Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less
Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.
Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A
2017-01-17
Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨d O-O ⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pK a . This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.
2006-09-01
SVOC Dithiane isomer 170 J u1/I SVOC Hexadecenoic acid , Z- 11- JN 95 ug// SVOC Naphtho[2,3-b]thiophene, 4,9-dimethyl- 650 JN ug/l SVOC Oxirane, 2,3...were operated at ambient room temperature (23 to 25 ’C). Because the biodegradation of TDG produces sulfuric acid , pH control is essential. A pH... acid 3.00 NaOH Enough to allow Nitrilotriacetic acid to dissolve MgC12 4H20 6.95 MnC12 0.66 FeC12 0.23 CaC12 2H 20 0.07 COC12 6H 20 0.10 ZnC12
Sarvary, I; Almqvist, F; Frejd, T
2001-05-18
Reductions performed with Ti(IV) complexes of ligands based on bicyclo[2.2.2]octane diols 5 and 6 are effective catalysts in the reduction of prochiral ketones to optically active alcohols, with catecholborane as the reducing agent. Methyl ketones are favored and enantiomeric excesses (ee) of < or =98% have been achieved with acetophenone as the substrate. Several other substrates were tested, among them 2-octanone, which gave 2-octanol in 87% ee. Further details of the method were examined, for example, temperature, solvent composition, amount of molecular sieves (4 A), and catecholborane quality, as well as the sensitivity of the ligands towards acids. NMR spectroscopic methods were used to gain some insight into the complexes formed between the ligands and [Ti(OiPr)4]. A dimeric structure is proposed for the pre-catalyst.
Solvent empirical scales and their importance for the study of intermolecular interactions
NASA Astrophysics Data System (ADS)
Babusca, Daniela; Benchea, Andreea Celia; Morosanu, Ana Cezarina; Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa
2017-01-01
The solvent empirical scales were developed in order to classify the solvents regarding their influence on the absorption or fluorescence spectra of different spectrally active molecules. The intermolecular interactions in binary solutions of three molecule having an intramolecular charge transfer visible absorption band are studied in this paper: 5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophene-2-carbaldehyde (QTC), 1-cyano-2-{5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophen-2-yl}-vinyl)-phosphonic acid diethyl ester (QTCP) and p-phenyl pyridazinium-p-nitro-phenacylid (PPNP). The solvent empirical scales with a single parameter (Z scale of Kosower, ET (30) or ETN scale of Reichardt and Dimroth) can be used to describe the strength of intermolecular interactions. The contributions of each type of interactions to the total spectral shift are evaluated using the solvent multiple parameters empirical scales defined by Kamlet and Taft and by Catalan et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.
2015-11-30
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3-H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure inmore » real seawater. The Na 2CO 3-H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.« less
Musikavong, Charongpun; Wattanachira, Suraphong
2013-01-01
The characteristic and quantity of dissolved organic matter (DOM) as trihalomethanes precursors in water from the U-Tapao Basin, Songkhla, Thailand was investigated. The sources of water in the basin consisted of two reservoirs and the U-Tapao canal. The canal receives water discharge from reservoirs, treated and untreated wastewater from agricultural processes, communities and industries. Water downstream of the canal is utilized as a raw water supply. Water samples were collected from two reservoirs, upstream and midstream of the canal, and the raw water supply in the rainy season and summer. The DOM level in the canal water was higher than that of the reservoir water. The highest trihalomethane formation potential (THMFP) was formed in the raw water supply. Fourier-transform infrared peaks of the humic acid were detected in the reservoir and canal waters. Aliphatic hydrocarbon and organic nitrogen were the major chemical classes in the reservoir and canal water characterized by a pyrolysis gas chromatography mass spectrometer. The optimal condition of the poly aluminum chloride (PACl) coagulation was obtained at a dosage of 40 mg/L at pH 7. This condition could reduce the average UV-254 to 57%, DOC to 64%, and THMFP to 42%. In the coagulated water, peaks of O-H groups or H-bonded NH, C˭O of cyclic and acyclic compounds, ketones and quinines, aromatic C˭C, C-O of alcohols, ethers, and carbohydrates, deformation of COOH, and carboxylic acid salts were detected. The aliphatic hydrocarbon, organic nitrogen and aldehydes and ketones were the major chemical classes. These DOM could be considered as the prominent DOM for the water supply plant that utilized PACl as a coagulant.
Improvement in wettability of porous Si by carboxylate termination
NASA Astrophysics Data System (ADS)
Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya
2018-02-01
The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.
Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T
2016-03-01
Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.
NASA Technical Reports Server (NTRS)
Mullins, D. W., Jr.; Lacey, J. C., Jr.
1980-01-01
The data presented in this paper show that the ease of nonenzymatic activation of carboxylic acids by ATP at pH 5 varies directly with the pKa of the carboxyl group, and is consistent with the idea that it is the protonated form of the carboxyl group which participates in the activation reaction. Consequently, since most N-blocked amino acids have higher pKas than do their unblocked forms, they are activated more readily, and it has been demonstrated that this principle applies to peptides as well, which are activated more rapidly than single amino acids. It is proposed that this fact may be partly responsible for the origin of two important features still observed in contemporary protein synthesis: (1) initiation in prokaryotes is accomplished with an N-blocked amino acid, and (2) elongation in all living systems occurs at the carboxyl end of the growing peptide.
Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R
2010-09-01
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.
NASA Astrophysics Data System (ADS)
Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García
2016-10-01
Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).
Paternò, G M; Skoda, M W A; Dalgliesh, Robert; Cacialli, F; Sakai, V García
2016-10-04
Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).
Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García
2016-01-01
Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs). PMID:27698410
NASA Astrophysics Data System (ADS)
Doudin, Khalid; Törnroos, Karl W.
2017-06-01
Attempts to prepare [Se(CH2CH2COOH)3]+Cl- from Se(CH2CH2COOH)2 and H2Cdbnd CHCOOH in concentrated hydrochloric acid, for the corresponding sulfonium salt, led exclusively to the Se-betaine, Se(CH2CH2COOH)2(CH2CH2COO). The Se-betaine crystallises in the space group P2l/c with the cell dimensions at 223 K, a = 5.5717(1), b = 24.6358(4), c = 8.4361(1) Å, β = 104.762(1)°, V = 1119.74(3) Å3, Z = 4, Dcalc = 1.763 Mgm- 3, μ = 3.364 Mm-1. The structure refined to RI = 0.0223 for 2801 reflections with Fo > 4σ(Fo). In the crystalline state the molecule is intermolecularly linked to neighbouring molecules by a number of hydrogen bonds; a very strong carboxylic-carboxylate bond with an O⋯O distance of 2.4435(16) Å, a medium strong carboxylic-carboxylate bond with an O⋯O distance of 2.6431(16) Å and several weak O⋯H(CH2) with O⋯C distances between 3.2 and 3.3 Å. In the carboxylic group involved in the very strong hydrogen bond the O⋯H bond is antiperiplanar to the Cdbnd O bond while the Osbnd H bond is periplanar to the Cdbnd O bond in the second carboxylic group. Based upon the Csbnd O bond lengths and the elongation of the Osbnd H bond involved in the strong hydrogen bond one may describe the compound as strongly linked units of Se(CH2CH2COOH)(CH2CH2COO)2 rather than Se(CH2CH2COOH)2(CH2CH2COO). The selenium atom forms two strong intramolecular 1,5-Se⋯O contacts, with a carboxylate oxygen atom, 2.9385(12) Å, and with a carboxylic oxygen atom, 2.8979(11) Å. To allow for these contacts the two organic fragments have been forced into the periplanar conformation. The molecule is only slightly asymmetric with regard to the Csbnd Sesbnd C bond angles but is very asymmetric with regard to the torsion angles.
Synthesis and antiplatelet activity of thioaryloxyacids analogues of clofibric acid.
Ammazzalorso, Alessandra; Amoroso, Rosa; Baraldi, Mario; Bettoni, Giancarlo; Braghiroli, Daniela; De Filippis, Barbara; Giampietro, Letizia; Tricca, Maria L; Vezzalini, Francesca
2005-09-01
The thiophene-, benzothiazole- and pyridine-thioaryloxyacids analogues of clofibric acid were synthesized and their antiplatelet activity was screened. Some compounds exhibited antiaggregating properties. The platelet-related haemostasis was measured on a PFA-100 analyzer using bull blood.
Li, Xuechen; Danishefsky, Samuel J.
2008-01-01
Thermolysis of isonitriles with carboxylic acids provides, in one step, N-formyl imides (see, for example 8 + 19 → 21). The resultant N-formyl group can be converted to N-H, NCH2OH or NCH3. This chemistry allows for a new route for synthesizing β-N (asparagine) linked glycosyl amino acids. PMID:18370392
2011-01-01
A facile synthesis of azabicycloadducts is described by 1,3-dipolar cycloaddition reactions of thioisatin with thiazolidine-2-carboxylic acid in the presence of various electron rich and electron deficient dipolarophiles. Theoritical calculations have been performed to study the regioselectivity of products. The geometrical and energetic properties have been analyzed for the different reactants, transition states and cycloadducts formed. PMID:22373364
A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.
Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran
2017-09-01
Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P < 0.0001). During the 2-h glucose clamps, insulin levels were twofold higher (31 vs 16 mU·L, P < 0.01) and glucose uptake 32% faster (1.66 vs 1.26 g·kg, P < 0.001). The ketone drink increased by 61 g, the total glucose infused for 2 h, from 197 to 258 g, and muscle glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P < 0.05) than after the control drink. In the presence of constant high glucose concentrations, a ketone ester drink increased endogenous insulin levels, glucose uptake, and muscle glycogen synthesis.
Xu, Rongguo; Zhang, Kai; Liu, Xi; Jin, Yaocheng; Jiang, Xiao-Fang; Xu, Qing-Hua; Huang, Fei; Cao, Yong
2018-01-17
Solution-processable highly transparent and thickness-insensitive hybrid electron-transport layer (ETL) with enhanced electron-extraction and electron-transport properties for high-performance polymer solar cell was reported. With the incorporation of Cs 2 CO 3 into the poly[(9,9-bis(6'-((N,N-diethyl)-N-ethylammonium)-hexyl)-2,7-fluorene)-alt-1,4-diphenylsulfide]dibromide (PF6NPSBr) ETL, the power conversion efficiency (PCE) of resulted polymer solar cells (PSCs) was significantly enhanced due to the favorable interfacial contact, energy-level alignment, and thus facile electron transport in the PSC device. These organic-inorganic hybrid ETLs also exhibited high transparency and high electron mobility. All of these combined properties ensured us to design novel thickness-insensitive ETLs that avoid the parasitic absorption of ETL itself simultaneously. With the conventional device structure with poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th) as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM) as an acceptor, devices with hybrid ETLs exhibited PCE of 8.30-9.45% within a wide range of ETL thickness. A notable PCE of 10.78% was achieved with the thick active layer poly(2,5-thiophene-alt-5,5'-(5,10-bis(4-(2-octyldodecyl)thiophen-2-yl)naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)) (PTNT812):PC 71 BM. These findings indicated that doping alkali salt into the organic interfacial materials can be a promising strategy to design highly efficient and thickness-insensitive ETL, which may be suitable for large-area PSC modules device fabrication with roll-to-roll printing technique.
Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang
2010-01-15
Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.
Simple one-pot conversion of aldehydes and ketones to enals.
Valenta, Petr; Drucker, Natalie A; Bode, Jeffrey W; Walsh, Patrick J
2009-05-21
A simple and efficient method to convert aldehydes into alpha,beta-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH(3).SMe(2) generates tris(ethoxyvinyl) borane. Transmetalation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride, the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure.
NASA Technical Reports Server (NTRS)
Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.
1992-01-01
The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.
2,3-Diamino-pyridinium sorbate-sorbic acid (1/1).
Hemamalini, Madhukar; Goh, Jia Hao; Fun, Hoong-Kun
2012-01-01
In the title mol-ecular salt-adduct, C(5)H(8)N(3) (+)·C(6)H(7)O(2) (-)·C(6)H(8)O(2), the 2,3-diamino-pyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid mol-ecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N-H⋯O hydrogen bonds, forming an R(1) (2)(6) ring motif. The carboxyl groups of the sorbic acid mol-ecules and the carboxyl-ate groups of the sorbate anions are connected via O-H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral mol-ecules are connected via inter-molecular N-H⋯O hydrogen bonds, forming sheets lying parallel to (100).
Tsukamoto, Tadaaki; Chiba, Yukie; Nakazaki, Atsuo; Ishikawa, Yuki; Nakane, Yoshiki; Cho, Yuko; Yotsu-Yamashita, Mari; Nishikawa, Toshio; Wakamori, Minoru; Konoki, Keiichi
2017-03-01
Crambescin B carboxylic acid, a synthetic analog of crambescin B, was recently found to inhibit the voltage-sensitive sodium channels (VSSC) in a cell-based assay using neuroblastoma Neuro 2A cells. In the present study, whole-cell patch-clamp recordings were conducted with three heterologously expressed VSSC subtypes, Na v 1.2, Na v 1.6 and Na v 1.7, in a human embryonic kidney cell line HEK293T to further characterize the inhibition of VSSC by crambescin B carboxylic acid. Contrary to the previous observation, crambescin B carboxylic acid did not inhibit peak current evoked by depolarization from the holding potential of -100mV to the test potential of -10mV in the absence or presence of veratridine (VTD). In the presence of VTD, however, crambescin B carboxylic acid diminished VTD-induced sustained and tail currents through the three VSSC subtypes in a dose-dependent manner, whereas TTX inhibited both the peak current and the VTD-induced sustained and tail currents through all subtypes of VSSC tested. We thus concluded that crambescin B carboxylic acid does not block VSSC in a similar manner to TTX but modulate the action of VTD, thereby causing an apparent block of VSSC in the cell-based assay. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ketone body metabolism and its defects.
Fukao, Toshiyuki; Mitchell, Grant; Sass, Jörn Oliver; Hori, Tomohiro; Orii, Kenji; Aoyama, Yuka
2014-07-01
Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with "mild" SCOT mutations may have nonketotic periods. T2-deficient patients with "mild" mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylon, Rebecca A. L.; Sun, Junming; Kovarik, Libor
Complementary characterizations, such as nitrogen sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), visible Raman, scanning transmission electron microscopy (STEM) coupled with elemental mapping, NH3/CO2 temperature programmed desorption (NH3/CO2-TPD), infrared spectroscopic analysis of adsorbed pyridine (Py-IR), and CO2-IR, have been employed to identify the structure and surface chemistry (i.e., acid-base) of mixed Zn xZr yO z oxide catalysts of varied ratios of Zn/Zr. Atomically dispersed Zn2+ species are present in the framework within a thin surface shell (1.5-2.0 nm) of ZrO2 particles when the Zn/Zr ratio is smaller than 1/10; when the ratio is above this, both atomically dispersed Zn2+more » and ZnO clusters coexist in mixed Zn xZr yO z oxide catalysts. The presence of ZnO clusters shows no significant side effect but only a slight increase of selectivity to CO2, caused by steam reforming. The incorporation of atomic Zn2+ into the ZrO2 framework was found to not only passivate strong Lewis acid sites (i.e., Zr-O-Zr) on ZrO2, but to also generate new Lewis acid-base site pairs with enhanced Lewis basicity on the bridged O (i.e., ). In the mixed ketone (i.e., acetone and methyl ethyl ketone (MEK)) reactions, while the passivation of strong acid sites can be correlated to the inhibition of side reactions, such as ketone decomposition and coking, the new Lewis acid-base pairs introduced enhance the cascade aldolization and self-deoxygenation reactions involved in olefin (C3=-C6=) production. More importantly, the surface acid-base properties change with varying Zn/Zr ratios, which in turn affect the cross- and self-condensation reactivity and subsequent distribution of olefins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylon, Rebecca A. L.; Sun, Junming; Kovarik, Libor
Here, complementary characterizations, such as nitrogen sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), visible Raman, scanning transmission electron microscopy (STEM) coupled with elemental mapping, NH 3/CO 2 temperature programmed desorption (NH 3/CO 2-TPD), infrared spectroscopic analysis of adsorbed pyridine (Py-IR), and CO 2-IR, have been employed to identify the structure and surface chemistry (i.e., acid-base) of mixed Zn xZr yO z oxide catalysts of varied ratios of Zn/Zr. Atomically dispersed Zn 2+ species are present in the framework within a thin surface shell (1.5-2.0 nm) of ZrO 2 particles when the Zn/Zr ratio is smaller than 1/10; when the ratio is above this, both atomically dispersed Zn 2+ and ZnO clusters coexist in mixed Zn xZr yO z oxide catalysts. The presence of ZnO clusters shows no significant side effect but only a slight increase of selectivity to CO 2, caused by steam reforming. The incorporation of atomic Zn 2+ into the ZrO 2 framework was found to not only passivate strong Lewis acid sites (i.e., Zr-O-Zr) on ZrO 2, but to also generate new Lewis acid-base site pairs with enhanced Lewis basicity on the bridged O (i.e., Zr—omore » $$\\curvearrowleft\\atop{e\\atop—}$$Zn). In the mixed ketone (i.e., acetone and methyl ethyl ketone (MEK)) reactions, while the passivation of strong acid sites can be correlated to the inhibition of side reactions, such as ketone decomposition and coking, the new Lewis acid-base pairs introduced enhance the cascade aldolization and self-deoxygenation reactions involved in olefin (C 3 =-C 6 =) production. More importantly, the surface acid-base properties change with varying Zn/Zr ratios, which in turn affect the cross- and self-condensation reactivity and subsequent distribution of olefins.« less
Baylon, Rebecca A. L.; Sun, Junming; Kovarik, Libor; ...
2018-04-22
Here, complementary characterizations, such as nitrogen sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), visible Raman, scanning transmission electron microscopy (STEM) coupled with elemental mapping, NH 3/CO 2 temperature programmed desorption (NH 3/CO 2-TPD), infrared spectroscopic analysis of adsorbed pyridine (Py-IR), and CO 2-IR, have been employed to identify the structure and surface chemistry (i.e., acid-base) of mixed Zn xZr yO z oxide catalysts of varied ratios of Zn/Zr. Atomically dispersed Zn 2+ species are present in the framework within a thin surface shell (1.5-2.0 nm) of ZrO 2 particles when the Zn/Zr ratio is smaller than 1/10; when the ratio is above this, both atomically dispersed Zn 2+ and ZnO clusters coexist in mixed Zn xZr yO z oxide catalysts. The presence of ZnO clusters shows no significant side effect but only a slight increase of selectivity to CO 2, caused by steam reforming. The incorporation of atomic Zn 2+ into the ZrO 2 framework was found to not only passivate strong Lewis acid sites (i.e., Zr-O-Zr) on ZrO 2, but to also generate new Lewis acid-base site pairs with enhanced Lewis basicity on the bridged O (i.e., Zr—omore » $$\\curvearrowleft\\atop{e\\atop—}$$Zn). In the mixed ketone (i.e., acetone and methyl ethyl ketone (MEK)) reactions, while the passivation of strong acid sites can be correlated to the inhibition of side reactions, such as ketone decomposition and coking, the new Lewis acid-base pairs introduced enhance the cascade aldolization and self-deoxygenation reactions involved in olefin (C 3 =-C 6 =) production. More importantly, the surface acid-base properties change with varying Zn/Zr ratios, which in turn affect the cross- and self-condensation reactivity and subsequent distribution of olefins.« less
Lin, Lu; Bai, Xiangbin; Ye, Xinyi; Zhao, Xiaowei; Tan, Choon-Hong; Jiang, Zhiyong
2017-10-23
The first catalytic asymmetric photoreduction of 1,2-diketones and α-keto ketimines under visible light irradiation is reported. A transition-metal-free synergistic catalysis platform harnessing dicyanopyrazine-derived chromophore (DPZ) as the photoredox catalyst and a non-covalent chiral organocatalyst is effective for these transformations. With the flexible use of a chiral Brønsted acid or base in H + transfer interchange to control the elusive enantioselective protonation, a variety of chiral α-hydroxy ketones and α-amino ketones were obtained with high yields and enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sittaramane, Vinoth; Padgett, Jihan; Salter, Philip; Williams, Ashley; Luke, Shauntelle; McCall, Rebecca; Arambula, Jonathan F; Graves, Vincent B; Blocker, Mark; Van Leuven, David; Bowe, Keturah; Heimberger, Julia; Cade, Hannah C; Immaneni, Supriya; Shaikh, Abid
2015-11-01
In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chau, Lai-Kwan; Porter, Marc D.
1990-03-01
Monolayer films of n-perfluorocarboxylic acids (CF 3(CF 2) nCOOH, where n = 0-2, 5-8) have been formed by spontaneous adsorption at silver. Infrared reflection spectroscopy, optical ellipsometry, and contact angle measurements indicate that these films exhibit low surface free energies, that the carboxylic acid group is symmetrically bound at the silver substrate as a carboxylate bridging ligand, and that the structure is composed of tilted (≈ 40° from the surface normal) perfluorocarbon chains and small structural defects.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
21 CFR 74.2705 - FD&C Yellow No. 5.
Code of Federal Regulations, 2010 CFR
2010-04-01
... salt, not more than 0.2 percent. 4,5-Dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid, disodium salt, not more than 0.2 percent. Ethyl or methyl 4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3...-sulfophenyl)azo]-1H-pyrazole-3-carboxylic acid (CAS Reg. No. 1934-21-0). To manufacture the additive, 4...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Bright; Tamayo, Arnold; Duong, Duc T.
The solubilities of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(TBFu)₂) and [6,6]-phenyl-C₇₁-butyric acid methyl ester (PC₇₁BM) in a series of solvents are measured, and this data is used to calculate the Hansen solubility parameters of the two materials. The dispersion, polar, and H-bonding parameters of DPP(TBFu)₂ and PC₇₁BM were found to be (19.3, 4.8, 6.3) and (20.2, 5.4, 4.5) MPa{sup 1/2}, respectively, with an error of ± 0.8 MPa{sup 1/2}. Based on the solubility properties of the two materials, three new solvents (thiophene, trichloroethylene and carbon disulfide) were utilized for the DPP(TBFu)₂:PC₇₁BM system which, after device optimization, led to power conversion efficiencies up to 4.3%.
Mita, Tsuyoshi; Sugawara, Masumi; Saito, Keisuke; Sato, Yoshihiro
2014-06-06
A catalytic enantioselective silylation of N-tert-butylsulfonylimines using a Cu-secondary diamine complex was demonstrated. The resulting optically active α-amino silanes could be carboxylated under a CO2 atmosphere (1 atm) to afford the corresponding α-amino acids in a stereoretentive manner. This two-step sequence provides a new synthetic protocol for optically active α-amino acids from gaseous CO2 and imines in the presence of a catalytic amount of a chiral source.
NASA Astrophysics Data System (ADS)
Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe
2017-02-01
A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai
Two series of lanthanide-carboxylates, [Ln(2,2′-dtba)(2,2′-Hdtba)(EtOH)]{sub n} (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2′-dtba)(2,2′-Hdtba)(4,4′-bpy){sub 0.5}]{sub n} (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2′-H{sub 2}dtba=2,2′-dithiodibenzoic acid, 4,4′-bpy=4,4′-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H{sub 2}dtba organic ligand was generated by in situ S–S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2′-dtba)]{sup +} chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation. - Graphical abstract: Two series of lanthanide-carboxylates have beenmore » in situ synthesized under hydrothermal conditions. The lanthanide-carboxylates exhibit strong lanthanide characteristic emission bands and good photocatalytic activity for degradation of Rhodamine-B. - Highlights: • 2D layered lanthanide-carboxylates with 2,2′-dithiodibenzoic acid. • In situ S–S reaction of 2-mercaptobenzoic acid under hydrothermal condition. • The Emission spectra of I and II exhibit the characteristic transition of lanthanide ions. • Compounds 1b and 2a exhibit good photocatalytic activity for degradation of Rhodamine-B.« less
Producing biofuels using polyketide synthases
Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D
2013-04-16
The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.
2016-05-01
distribution is unlimited. PA Clearance #16274 2 Overall Process DISTRIBUTION A. Approved for public release; distribution unlimited. 3 Sulfur in Fuels...Mercaptans (Thiols) The presence of sulfur in fuels leads to many detrimental effects: • Coking on rocket engine injector plates • Deposit formation in... Sulfur Compounds by GC-SCD ( Sulfur Speciation) Concentration (ppm) C2 Thiophenes 0.3 C3-C4 Thiophenes 1.4 C5 Thiophenes 3.7 C6 Thiophenes 3.5 C7
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Yelda Bingöl; Ünver, Yasemin
2017-12-01
Thiol-thione tautomerism of 1,2,4-triazole derivative with Schiff base was investigated by spectroscopic methods and quantum mechanical calculations. Theoretical study of thiol-thione tautomeric forms of 1,2,4-triazole derivative with Schiff base; 1,2,4-triazole-thiol form, 1-((5-mercapto-4-(thiophene-2-ylmethyleneamino)-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1H-1,2,4-triazole-5(4H)-one (I) and 1,2,4-triazole-thione form, 3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1-((4-(thiophene-2-ylmethyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-1H-1,2,4-triazole-5(4H)-one (II) was performed by the density functional theory (DFT) method with 6-311++G(d,p) basis set. Structural parameters were obtained and spectral parameters of NMR, FTIR and UV-vis were compared with experimental ones to determine structural details. In vitro antileishmanial activity was studied against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. The results indicate that 1,2,4-triazole derivative exists in both thiol and thione form and, can be evaluated as antiparasitic in term of antileishmanial activity.
Applications of Carboxylic Acid Reductases in Oleaginous Microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resch, Michael G.; Linger, Jeffrey; McGeehan, John
2016-05-26
Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.
Boyd, Michael J; Bandarage, Upul K; Bennett, Hamilton; Byrn, Randal R; Davies, Ioana; Gu, Wenxin; Jacobs, Marc; Ledeboer, Mark W; Ledford, Brian; Leeman, Joshua R; Perola, Emanuele; Wang, Tiansheng; Bennani, Youssef; Clark, Michael P; Charifson, Paul S
2015-05-01
VX-787 is a first in class, orally bioavailable compound that offers unparalleled potential for the treatment of pandemic and seasonal influenza. As a part of our routine SAR exploration, carboxylic acid isosteres of VX-787 were prepared and tested against influenza A. It was found that the negative charge is important for maintaining potency and selectivity relative to kinase targets. Neutral carboxylic acid replacements generally resulted in compounds that were significantly less potent and less selective relative to the charged species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Venkata Mohan, S
2015-04-01
Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam
2017-02-01
For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.
Rapid Intravenous Sodium Acetoacetate Infusion in Man METABOLIC AND KINETIC RESPONSES
Owen, O. E.; Reichard, G. A.; Markus, H.; Boden, G.; Mozzoli, M. A.; Shuman, C. R.
1973-01-01
The metabolic and kinetic responses to rapidly intravenously administered sodium acetoacetate (1.0 mmol/kg body wt) was studied after an overnight fast in 12 male and female adults weighing between 88 and 215% of average body weight. Blood was obtained before, during, and after the infusion for determination of circulating concentrations of immunoreactive insulin, glucose, acetoacetate, β-hydroxybutyrate and free fatty acids. In three obese subjects the studies were repeated after 3 and 24 days of total starvation. After the overnight fast acetoacetate rose rapidly reaching a peak concentration at the end of the infusion; β-hydroxybutyrate concentrations also increased rapidly and exceeded those of acetoacetate 10 min postinfusion. Total ketone body concentration at the end of the infusion period was comparable to that found after prolonged starvation. After the initial mixing period, acetoacetate, β-hydroxybutyrate and total ketone bodies rapidly declined in a parallel manner. There were no obvious differences between the subjects with regard to their blood concentrations of ketone bodies. The mean plasma free fatty acid concentration decreased significantly during the 20th to 90th min postinfusion period; for example the control concentration of 0.61 mmol/liter fell to 0.43 mmol/liter at 60 min. In the three obese subjects studied repeatedly, fasting plasma free fatty acids decreased with acetoacetate infusion from 0.92 to 0.46 mmol/liter after the 3 day fast and from 1.49 to 0.71 mmol/liter after the 24 day fast. Acetoacetate infusion caused no changes in blood glucose concentration after an overnight fast. However, in the three obese subjects restudied after 3- and 24-day fasts blood glucose decreased, respectively, from 3.49 to 3.22 mmol/liter and from 4.07 to 3.49 mmol/liter. The mean serum insulin concentration in all subjects significantly increased from 21 to 46 μU/ml at the completion of the infusion and rapidly declined. In the three obese subjects restudied after 3- and 24-day fasts an approximate two-fold increase of serum insulin was observed after each acetoacetate infusion. The mean fractional utilization rate of exogenously derived ketone bodies for all 12 subjects after an overnight fast was 2.9% min-1. In the three obese subjects studied after an overnight, 3 and 24 day fast the mean fractional utilization rates were 2.1%, 1.5%, and 0.6% min-1, respectively. Ketone body volumes of distribution in the overnight fasted subjected varied from about 18% to 31% of body wt, suggesting that ketone bodies are not homogenously distributed in the body water. In the three obese subjects restudied after 3- and 24-day fasts volumes of distribution remained approximately constant. When total ketone body concentrations in the blood were below 2.0 mmol/liter, there was a linear relationship between ketone body utilization rates and ketone body concentrations; no correlation was found when blood concentrations were higher. Images PMID:4729054
Heshmat, Mojgan; Privalov, Timofei
2017-07-06
By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.
Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk
2016-12-01
This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.
Zeng, Mingfei; Cao, Huachuan
2018-04-15
Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.
The Failing Heart Relies on Ketone Bodies as a Fuel.
Aubert, Gregory; Martin, Ola J; Horton, Julie L; Lai, Ling; Vega, Rick B; Leone, Teresa C; Koves, Timothy; Gardell, Stephen J; Krüger, Marcus; Hoppel, Charles L; Lewandowski, E Douglas; Crawford, Peter A; Muoio, Deborah M; Kelly, Daniel P
2016-02-23
Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.A. Jr.
1962-08-01
I. Methyl 2-methyl-2-thiazoline-4-carboxylate was synthesized and converted to the corresponding acid. The behavior of the carboxythiazoline in various concentrations of mineral acids was studied spectrophotometrically. The cyclization of N-acetylcysteine to form a thiazoline-ring compound in concentrated mineral acids was also studied by this means. N-Acetylcysteine in concentrated mineral acid solutions yielded 2-methyl-2-thiazoline-4-carboxylic acid, which also was obtained by controlied hydrolysis of the corresponding methyl ester. Hydrolysis of methyl 2-methyl2-thiazoline-4-carboxylate, pK 3.05, in 0.1M sodium hydroxide yielded the corresponding carboxythiazoline in solution, pK 2.20 and 4.95. The carboxythiazoline was hydrolyzed very slowly in 7M hydrochloric acid, but the velocity of reactionmore » increased with decreasing acid concentration to a maximum at about pH 1.7; the products were N- and Sacetylcysteine, as well as cysteine and acetic acid. At acid concentrations below 0.2M, the last two products were formed slowly, and a pseudo-equilibrium could be established between thiazolinium ion, N-, and S-acetylcysteine. Equilibrium constants were determined. II. 4,4'-Dithiobis (benzenesulfonic acid) (I) and 4,4'-dithiobis(1-naphthalenesulfonic acid) (II) were synthesized from sulfanilic and naphthionic acids, respectively. The absorption spectra of I and II and of the corresponding mercaptans were determined. The thiol-disuifide interchange reactions were studied by spectrophotometric means for the reactions of cysteine with I and with II, and the equilibrium constants were determined. The systems had spectra very similar to those of the respective mixed disuifides with cysteine, and it was not possible to determine the concentrations from absorbancy measurements. On the other hand, the mercaptide ions had spectra different from the other species, with maxima at 285 and 348 m mu , respectively, and the concentrations of the corresponding mercaptans could be calculated from the absorbancies at these wavelengths. By appropriate choice of the initial concentrations and of pH, the equilibrium concentrations could be made negligible, and the equilibrium constants determined.« less
Carbon dioxide utilization via carbonate-promoted C-H carboxylation.
Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W
2016-03-10
Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.
Fatty acid-induced astrocyte ketone production and the control of food intake
Le Foll, Christelle
2016-01-01
Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where “metabolic sensing neurons” integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. PMID:27122369
NASA Astrophysics Data System (ADS)
Saygılı, Rukiye; Ulus, Ramazan; Yeşildağ, İbrahim; Kübra İnal, E.; Kaya, Muharrem; Murat Kalfa, O.; Zeybek, Bülent
2015-03-01
Four novel compounds of 1,8-dioxoacridine carboxylic acid derivatives (4-(3,3,6,6-tetramethyl-1,8-dioxo-9-phenyl-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(4-cyanophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(4-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid, 4-(9-(2,4-dichlorophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)benzoic acid) were prepared by the reaction of the 4-substitute benzaldehyde (hydrogen, hydroxyl, cyano, and 2,4-dichloro), 4-aminobenzoic acid, and 5,5-dimethylcyclohexane-1,3-dione in the presence of p-dodecylbenzenesulfonic acid. They were characterized by using FT-IR, 1H-NMR, 13C-NMR, GC-MS spectroscopic techniques. The stoichiometric ionization constants of these compounds were determined in ethanol-water mixtures of 50%, 60% and 70% ethanol (v/v) by potentiometric titration method and the ionization constants were calculated with three different ways. The effects of solvent composition and substituent groups on ionization constants of 1,8-dioxoacridine carboxylic acids were also discussed.
Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers
NASA Astrophysics Data System (ADS)
Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.
1994-07-01
A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.
Developing clean fuels: Novel techniques for desulfurization
NASA Astrophysics Data System (ADS)
Nehlsen, James P.
The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this system and is justified with a thermodynamic analysis and an experimental determination of the reaction rate law.
Dan, Tong; Jin, Rulin; Ren, Weiyi; Li, Ting; Chen, Haiyan; Sun, Tiansong
2018-04-11
The lactic acid bacterium Streptococcus thermophilus is a major starter culture for the production of dairy products. In this study, the physiochemical characteristics of milk fermented by the MGA45-4 isolate of S. thermophilus were analyzed. Our data indicate that milk fermented using S. thermophilus MGA45-4 maintained a high viable cell count (8.86 log10 colony-forming units/mL), and a relatively high pH (4.4), viscosity (834.33 mPa·s), and water holding capacity (40.85%) during 14 days of storage. By analyzing the volatile compound profile using solid-phase microextraction and gas chromatography/mass spectrometry, we identified 73 volatile compounds in the fermented milk product, including five carboxylic acids, 21 aldehydes, 13 ketones, 16 alcohols, five esters, and 13 aromatic carbohydrates. According to the odor activity values, 11 of these volatile compounds were found to play a key role in producing the characteristic flavor of fermented milk, particularly octanal, nonanal, hexanal, 2,3-butanedione, and 1-octen-3-ol, which had the highest odor activity values among all compounds analyzed. These findings thus provide more insights in the chemical/molecular characteristics of milk fermented using S. thermophilus , which may provide a basis for improving dairy product flavor/odor during the process of fermentation and storage.
NASA Astrophysics Data System (ADS)
Naik, Lohit; Deshapande, Narahari; Khazi, Imtiyaz Ahamed M.; Malimath, G. H.
2018-02-01
In the present work, we have carried out energy transfer studies using newly synthesised derivatives of thiophene substituted 1,3,4-oxadiazoles namely, 2-(-4-(thiophene-3-yl)phenyl)-5-(5-(thiophene-3-yl)thiophene-2-yl)-1,3,4-oxadiazole [TTO], 2-(-4-(benzo[b]thiophene-2-yl)phenyl)-5-(5-(benzo[b]thiophene-2-yl)-1,3,4-oxadiozole [TBO] and 2-(4-(4-(trifluoromethyl)phenyl)phenyl)-5-(5-(4-(trifluoromethyl)phenyl)thiophen-2-yl)-1,3,4-oxadiazole [TMO] as donors and laser dye coumarin-334 as acceptor in ethanol and dye-doped polymer (poly(methyl methacrylate) (PMMA)) media following steady-state and time-resolved fluorescence methods. Bimolecular quenching constant ( k q), translation diffusion rate parameter ( k d), diffusion length ( D l), critical transfer distance ( R 0), donor- acceptor distance ( r) and energy transfer efficiency ( E T) are calculated. It is observed that, critical transfer distance is more than the diffusion length for all the pairs. Further, bimolecular quenching constant is also more than the translation diffusion rate parameter. Hence, our experimental findings suggest that overall energy transfer is due to Förster resonance energy transfer (FRET) between donor and acceptor in both the media and for all the pairs. In addition, considerable increase in fluorescence intensity and energy transfer efficiency is observed in dye-doped polymer matrix systems as compared to liquid media. This suggests that, these donor-acceptor pairs doped in PMMA matrix may be used for applications such as energy transfer dye lasers (ETDL) to improve the efficiency and photostability, to enhance tunability and for plastic scintillation detectors.
Coro, Julieta; Pérez, Rolando; Rodríguez, Hortensia; Suárez, Margarita; Vega, Celeste; Rolón, Miriam; Montero, David; Nogal, Juan José; Gómez-Barrio, Alicia
2005-05-16
Two new series of several alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids were synthesized in a two step procedure from the corresponding alkyl bis-dithiocarbamic salt intermediary. The novel compounds were evaluated for their activity in vitro against Trypanosoma cruzi strain CL (clone CL B5) and Trichomonas vaginalis strain JH 31A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Félix, Juliana S., E-mail: jfelix@unizar.es; Domeño, Celia, E-mail: cdomeno@unizar.es; Nerín, Cristina, E-mail: cnerin@unizar.es
Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by theirmore » composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.« less
Role of Automobile Exhaust on the Photoreductive Solubilization of Atmospheric Iron
NASA Astrophysics Data System (ADS)
Haynes, J.; Majestic, B. J.; Cutler, E.
2016-12-01
Atmospheric iron (Fe) plays an essential role in the carbon cycle, affecting the Earth's energy balance and human health. Fe catalyzes oxidations of organic carbon species and serves as a limiting nutrient for phytoplankton in about half of the world's oceans. Wind-blown dust is the major source of atmospheric insoluble Fe while urban areas are correlated with relatively high percentages of soluble Fe. The occurrence of elevated levels of soluble Fe near urban and industrial regions suggests a correlation between Fe solubilization and organic combustion products, including polycyclic aromatic hydrocarbons (PAH). Fossil fuel consumption for internal combustion engines produce atmospheric PAH as a major component of automobile exhaust. Under light, PAH transform into oxidized components such as ketones and carboxylic acids. For example, phthalic acid (formed from naphthalene) inhibits Fe oxidation reactions and therefore may contribute to Fe reduction and increased solubility. The wind-blown dust and PAH-containing combustion products undergo long-range atmospheric transport leading to mixing and metal-organic interactions. The current study focuses on how a saturated PAH suspension affects the production of soluble Fe. Reactions of soil-based Fe and saturated solutions of PAH are performed under controlled conditions simulating natural sunlight. Samples are analyzed by ICPMS for soluble Fe before and after solar exposure reactions; soluble Fe is separated from total Fe by filtration and total Fe by acid-assisted microwave digestion. Data indicate an increase in Fe solubility (1.2% to 4.2%) in the presence of PAH, as compared to soil in water alone, and an even greater increase in Fe solubility (4.2% to 8.4%) when exposed to solar radiation. Research is ongoing to determine the dependence of oxidized PAH on kinetic and overall Fe solubility.
Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A
2012-11-01
A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.
Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.
2000-07-14
Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety ofmore » applications such as scavenging of heavy metals.« less
Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan
2017-12-01
The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1 = 3.56 ± 0.07 and pKa 1 = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2 = 8.58 ± 0.12 and pKa 2 = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.
King, C. Judson; Tung, Lisa A.
1992-01-01
Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.
Carbon dioxide utilization via carbonate-promoted C-H carboxylation
NASA Astrophysics Data System (ADS)
Banerjee, Aanindeeta; Dick, Graham R.; Yoshino, Tatsuhiko; Kanan, Matthew W.
2016-03-01
Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)—a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.
Cross-dehydrogenative coupling for the intermolecular C–O bond formation
Krylov, Igor B; Vil’, Vera A
2015-01-01
Summary The present review summarizes primary publications on the cross-dehydrogenative C–O coupling, with special emphasis on the studies published after 2000. The starting compound, which donates a carbon atom for the formation of a new C–O bond, is called the CH-reagent or the C-reagent, and the compound, an oxygen atom of which is involved in the new bond, is called the OH-reagent or the O-reagent. Alcohols and carboxylic acids are most commonly used as O-reagents; hydroxylamine derivatives, hydroperoxides, and sulfonic acids are employed less often. The cross-dehydrogenative C–O coupling reactions are carried out using different C-reagents, such as compounds containing directing functional groups (amide, heteroaromatic, oxime, and so on) and compounds with activated C–H bonds (aldehydes, alcohols, ketones, ethers, amines, amides, compounds containing the benzyl, allyl, or propargyl moiety). An analysis of the published data showed that the principles at the basis of a particular cross-dehydrogenative C–O coupling reaction are dictated mainly by the nature of the C-reagent. Hence, in the present review the data are classified according to the structures of C-reagents, and, in the second place, according to the type of oxidative systems. Besides the typical cross-dehydrogenative coupling reactions of CH- and OH-reagents, closely related C–H activation processes involving intermolecular C–O bond formation are discussed: acyloxylation reactions with ArI(O2CR)2 reagents and generation of O-reagents in situ from C-reagents (methylarenes, aldehydes, etc.). PMID:25670997
Tunable polymeric sorbent materials for fractionation of model naphthenates.
Mohamed, Mohamed H; Wilson, Lee D; Headley, John V
2013-04-04
The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was observed among the sorbents investigated.
Bisht, Rajesh; Singh, Saumya; Krishnamoorthy, Kothandam; Nithyanandhan, Jayaraj
2018-05-25
3',5'-Dimethoxybenzoin esters are important photoremovable protecting groups which form 2-phenylbenzofuran derivatives upon photo-release. We utilized a similar concept to test a photochemical method of installing a benzofuran moiety to the conjugated backbone by subjecting O-acetylated (3',5'-dimethylphenyl)heteroaryl acyloin derivatives through direct photo irradiation and a photo-induced electron transfer reaction. These photochemical methods were explored for a variety of heteroaromatic substrates appended on the ketone part of the O-acetylated cross-acyloin derivatives. The furan, thiophene and bithiophene derivatives led to the expected cyclized (benzofuran capped) products but the derivatives with extended conjugation decomposed under direct irradiation. However, under irradiation in the presence of an electron donor such as triethylamine, the extended acyloin derivatives afforded both cyclized and deacetoxylated products. The semiconducting nature of the extended cyclized products was also explored and tested for solution-processed organic field effect transistors, providing a maximum hole mobility of 1.3 × 10-6 cm2 V-1 s-1.
NASA Astrophysics Data System (ADS)
Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping
2015-01-01
A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.
Sak-Bosnar, M; Kovar, K
2005-10-01
This paper describes the use of potentiometric titration to determine the relevant acid-base properties of 5-hydroxypyrazine-2-carboxylic acid (5OH-PYCA), an important intermediate in the production of tuberculostatics. The data obtained were used for calculation of the dissociation constants of 5OH-PYCA. It was found that 5OH-PYCA dissociates in two steps, with the corresponding dissociation constants pK (a1)=3.42 and pK (a2)=7.96, designating 5OH-PYCA as a medium weak acid (1st step). The distribution diagram of dissociated species and the buffer-strength diagram of 5OH-PYCA provide useful information about its behaviour at different pH. The ionic equilibria data obtained can be used for selection of the optimum pH for biotransformation of pyrazine-2-carboxylic acid (PYCA) and for prediction of pH changes during the biotransformation. These data can also be used for selection of the optimum pH for precipitating 5OH-PYCA in downstream processing. All computations have been optimized by mathematical modelling using Solver.
Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.
2010-01-01
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850
Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L
2010-08-20
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.
Li, Jian; Zhang, Baisheng; Zhang, Zhiqiang; Yan, Kefeng; Kang, Lixun
2014-12-01
The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.
Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi
2004-09-06
As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.
Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...
2015-11-30
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less