Sample records for kev 56fe ions

  1. Study on the keV neutron capture reaction in 56Fe and 57Fe

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  2. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  3. Thermal neutron capture cross section for 56Fe(n ,γ )

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmikloṡi, L.; Tomandl, I.

    2017-01-01

    The 56Fe(n ,γ ) thermal neutron capture cross section and the 57Fe level scheme populated by this reaction have been investigated in this work. Singles γ -ray spectra were measured with an isotopically enriched 56Fe target using the guided cold neutron beam at the Budapest Reactor, and γ γ -coincidence data were measured with a natural Fe target at the LWR-15 research reactor in Řež, Czech Republic. A detailed level scheme consisting of 448 γ rays populating/depopulating 97 levels and the capture state in 57Fe has been constructed, and ≈99 % of the total transition intensity has been placed. The transition probability of the 352-keV γ ray was determined to be Pγ(352 ) =11.90 ±0.07 per 100 neutron captures. The 57Fe level scheme is substantially revised from earlier work and ≈33 previously assigned levels could not be confirmed while a comparable number of new levels were added. The 57Feγ -ray cross sections were internally calibrated with respect to 1H and 32Sγ -ray cross section standards using iron(III) acetylacetonate (C15H21FeO6) and iron pyrite (FeS2) targets. The thermal neutron cross section for production of the 352-keV γ -ray cross section was determined to be σγ(352 ) =0.2849 ±0.015 b. The total 56Fe(n ,γ ) thermal radiative neutron cross section is derived from the 352-keV γ -ray cross section and transition probability as σ0=2.394 ±0.019 b. A least-squares fit of the γ rays to the level scheme gives the 57Fe neutron separation energy Sn=7646.183 ±0.018 keV.

  4. Radiation Stability of Metal Fe0.56Ni0.44 Nanowires Exposed to Powerful Pulsed Ion Beams

    NASA Astrophysics Data System (ADS)

    Bedin, S. A.; Ovchinnikov, V. V.; Remnev, G. E.; Makhin'ko, F. F.; Pavlov, S. K.; Gushchina, N. V.; Zagorskiy, D. L.

    2018-01-01

    The resistance of Fe0.56Ni0.44 alloy nanowires (fabricated by template synthesis using polymer track membranes) 60 and 100 nm in diameter to radiation with powerful pulsed 85% C+ + 15% H+ ions ( E = 20 keV, j = 100 A/cm2, τ = 90 ns) has been investigated. The conclusion that nanosized regions of explosive energy release, so-called thermal spikes, which are thermalized regions of dense cascades of atomic displacements heated to several thousand degrees (in which the thermal pressure can reach several tens of GPa), play an important role in the nanowire structure change is drawn. These are observed as melted nanosized regions on the nanowire surface. Calculations have shown that energy supplied by an ion beam during the action of a single pulse in the used mode (provided that thermal radiation and thermal conductivity serve as energy sinks) can be both sufficient and insufficient to completely melt nanowires depending on their orientation with respect to the ion beam. The bending and failure of nonmelted nanowires is explained by the generation and propagation of post-cascade shock waves.

  5. Antimutagenicity of WR-1065 in L5178Y cells exposed to accelerated (56)Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Evans, T. E.; Horng, M. F.

    2002-01-01

    The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.

  6. Projectile fragmentation of 500 A MeV 56Fe in nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Li, Jun-Sheng; Zhang, Dong-Hai; Li, Hui-Ling; Yasuda, N.

    2013-07-01

    N-4 stacks of nuclear emulsion were exposed to 500 A MeV 56Fe ions at the HIMAC NIRS. Particle production was investigated in 56Fe-Em interactions. The multiplicity distribution of projectile fragments was done in this paper and compared with interactions induced by 56Fe and other heavy ions in nuclear emulsion at other energies. The variation of characteristics of the heavy ion interactions with the mass and energy of the projectile is studied.

  7. Accelerated hematopoietic toxicity by high energy (56)Fe radiation.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J

    2012-03-01

    There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.

  8. Damage to the photoreceptor cells of the rabbit retina from 56Fe ions: effect of age at exposure, 1

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency.

  9. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  10. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  11. Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Supanpaiboon, Wisa; Whorton, Elbert

    Different types of galactic cosmic rays (GCR) are present in space and have large mass and energy (HZE particles). Among these, stripped 56 Fe ions are of major concern. Although HZE particles are approximately 1% of GCR, their contribution to health risk could be significant because of (1) their high linear energy transfer (LET) resulting in a larger amount of energy being deposited in the hit cells, and (2) the lack of information on the effectiveness of these particles in cancer induction. To better protect astronauts in space environments, it is essential that we improve our understanding of the 56 Fe-ion-induced damage associated with the increased risk of late occurring diseases (such as cancer). It has been well established that acute myeloid leukemia (AML) is one of the major malignancies associated with exposure to ionizing radiation in both human beings and in mice. It is therefore one of the most important cancers related to space flights. For these reasons, it is important to investigate 56 Fe ion-induced damage in in vivo systems, especially in those cells that are known to be at risk for health problems associated with radiation, such as hematopoietic cells, the known target cell for radiation-induced leukemia. Since in vivo studies of humans are not possible, animal studies are critically important. It has been widely suggested that elevation of delayed chromosomal damage (normally known as genomic instability) is associated with cancer risk. We therefore determined dose-response relationships for the frequencies of micronuclei (MN) in mouse blood erythrocytes as a measure of both initial radiation damage and the induction of genomic instability. The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and immature polychromatic-erythrocytes (MN-PCEs). These measurements were made as a function of radiation dose, radiation quality, time after irradiation and the genetic background of exposed mice. Blood samples were

  12. Proton radiation-induced miRNA signatures in mouse blood: Characterization and comparison with 56Fe-ion and gamma radiation

    PubMed Central

    Templin, Thomas; Young, Erik F.; Smilenov, Lubomir B.

    2013-01-01

    Purpose Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] 56Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. Materials and methods We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. Results A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and 56Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and 56Fe-irradiated cells. Conclusions Mouse blood miRNA signatures induced by proton, γ, or 56Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response. PMID:22551419

  13. Involvement of DNA-PK(sub cs) in DSB Repair Following Fe-56 Ion Irradiation

    NASA Technical Reports Server (NTRS)

    O'Neill, Peter; Harper, Jane; Anderson, Jennifer a.; Cucinnota, Francis A.

    2007-01-01

    When cells are exposed to radiation, cellular lesions are induced in the DNA including double strand breaks (DSBs), single strand breaks and clustered DNA damage, which if not repaired with high fidelity may lead to detrimental biological consequences. Complex DSBs are induced by ionizing radiation and characterized by the presence of base lesions close to the break termini. They are believed to be one of the major causes of the biological effects of IR. The complexity of DSBs increases with the ionization density of the radiation and these complex DSBs are distinct from the damage induced by sparsely ionizing gamma-radiation. It has been hypothesized that complex DSBs produced by heavy ions in space pose problems to the DNA repair machinery. We have used imm uno-cyto-chemical staining of phosphorylated histone H2AX (gamma-H2AX) foci, as a marker of DSBs. We have investigated the formation and loss of gamma-H2AX foci and RAD51 foci (a protein involved in the homologous recombination pathway) in mammalian cells induced by low fluences of low-LET gamma-radiation and high-LET Fe-56 ions (1GeV/n, 151 keV/micron LET). M059J and M059K cells, which are deficient and proficient in DNA-PK(sub cs) activity respectively, were used to examine the role of DNA-PK(sub cs), a key protein in the non-homologous end joining (NHEJ) pathway of DSB repair, along with HF19 human fibroblasts. Followi ng irradiation with Fe-56 ions the rate of repair was slower in M059J cells compared with that in M059K, indicating a role for DNA-PK(sub cs) in the repair of DSB induced by Fe-56 ions. However a small percentage of DSBs induced are rejoined within 5 h although many DSBs still persist up to 24 h. When RAD51 was examined in M059J/K cells, RAD51 foci are visible 24 hours after irradiation in approximately 40% of M059J cells compared with <5% of M059K cells indicating that persistent DSBs or those formed at stalled replication forks recruit RAD51 in DNA-PK(sub cs) deficient cells. Following 1 Gy

  14. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  15. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  16. The evaluation of experimental data in fast range for n + 56Fe(n,inl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Jing; Herman, M.; Ge, Zhigang

    Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less

  17. The evaluation of experimental data in fast range for n + 56Fe(n,inl)

    DOE PAGES

    Qian, Jing; Herman, M.; Ge, Zhigang; ...

    2017-09-13

    Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less

  18. Fibroma induction in rat skin following single or multiple doses of 1.0 GeV/nucleon 56Fe ions from the Brookhaven Alternating Gradient Synchrotron (AGS)

    NASA Technical Reports Server (NTRS)

    Burns, F. J.; Zhao, P.; Xu, G.; Roy, N.; Loomis, C.

    2001-01-01

    Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.

  19. Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn Noy; Supanpaiboon, Wisa; Honikel, Louise; Whorton, Elbert B.

    2009-10-01

    The purpose of this study was to evaluate dose-response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but

  20. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a ;priming; dose of protons on the cardiac cellular and molecular response to a ;challenge; dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  1. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation.

    PubMed

    Ramadan, Samy S; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan

    2016-02-01

    Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of (56)Fe in a mouse model. Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of (56)Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of (56)Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Exposure to (56)Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before (56)Fe prevented all of the responses to (56)Fe. This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    PubMed Central

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2015-01-01

    Purpose Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a “priming” dose of protons on the cardiac cellular and molecular response to a “challenge” dose of 56Fe in a mouse model. Methods Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. PMID:26948008

  3. 56Fe capture cross section experiments at the RPI LINAC Center

    NASA Astrophysics Data System (ADS)

    McDermott, Brian; Blain, Ezekiel; Thompson, Nicholas; Weltz, Adam; Youmans, Amanda; Danon, Yaron; Barry, Devin; Block, Robert; Daskalakis, Adam; Epping, Brian; Leinweber, Gregory; Rapp, Michael

    2017-09-01

    A new array of C6D6 detectors installed at the RPI LINAC Center has enabled the capability to measure neutron capture cross sections above the 847 keV inelastic scattering threshold of 56Fe through the use of digital post-processing filters and pulse-integral discriminators, without sacrificing the statistical quality of data at lower incident neutron energies where such filtering is unnecessary. The C6D6 detectors were used to perform time-of-flight capture cross section measurements on a sample 99.87% enriched iron-56. The total-energy method, combined with the pulse height weighting technique, were then applied to the raw data to determine the energy-dependent capture yield. Above the inelastic threshold, the data were analyzed with a pulse-integral filter to reveal the capture signal, extending the the full data set to 2 MeV.

  4. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  5. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A

    2016-01-01

    The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined

  6. Radiation leukemogenesis in mice: loss of PU.1 on chromosome 2 in CBA and C57BL/6 mice after irradiation with 1 GeV/nucleon 56Fe ions, X rays or gamma rays. Part I. Experimental observations.

    PubMed

    Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M

    2009-04-01

    Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.

  7. High δ56Fe values in Samoan basalts

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Pietruszka, A. J.; Hanan, B. B.; Finlayson, V.

    2014-12-01

    Fe isotope fractionation spans ~0-0.4 permil in igneous systems, which cannot all be attributed to variable source compositions since peridotites barely overlap these compositions. Other processes may fractionate Fe isotopes such as variations in the degree of partial melting, magmatic differentiation, fluid addition related to the final stages of melt evolution, and kinetic fractionation related to diffusion. An important observation in igneous systems is the trend of increasing Fe isotope values against an index of magmatic fractionation (e.g. SiO2; [1]). The data strongly curve from δ56Fe >0.3 permil for SiO2 >70 wt% down to values around 0.09 permil from ~65 wt% down to 40 wt% SiO2 of basalts. However, ocean island basalts (OIBs) have a slightly larger δ56Fe variability than mid ocean ridge basalts (MORBs; [e.g. 2]). We present Fe isotope data on samples from the Samoan Islands (OIB) that have unusually high δ56Fe values for their SiO2 content. We rule out alteration by using fresh samples, and further test for the effects of magmatic processes on the δ56Fe values. In order to model the largest possible fractionation, unusually small degrees of melting with extreme fractionation factors are modeled with fractional crystallization of olivine alone, but such processing fails to fractionate the Fe isotopes to the observed values. Moreover, Samoan lavas likely also fractionated clinopyroxene, and its lower fractionation factor would limit the final δ56Fe value of the melt. We therefore suggest the mantle source of Samoan lavas must have had unusually high δ56Fe. However, there is no clear correlation with the highly radiogenic isotope signatures that reflect the unique source compositions of Samoa. Instead, increasing melt extraction correlates with lower δ56Fe values in peridotites assumed to be driven by the preference for the melt phase by heavy Fe3+, while high values may be related to metasomatism [3]. The latter would be in line with metasomatized

  8. Degradation of the Giant Magnetoresistance in Fe/Cr Multilayers Due to Ar-Ion Beam Mixing

    NASA Astrophysics Data System (ADS)

    Kopcewicz, M.; Stobiecki, F.; Jagielski, J.; Szymański, B.; Schmidt, M.; Kalinowska, J.

    2002-12-01

    The influence of 200 keV Ar-ion irradiation on the interlayer coupling in the Fe/Cr multilayer system exhibiting the giant magnetoresistance effect (GMR) is studied by conversion electron Mössbauer spectroscopy (CEMS), VSM hysteresis loops, magnetoresistivity and electric resistivity measurements and supplemented by the small-angle X-ray diffraction (SAXRD). The increase of Ar ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step-sites detected by CEMS as a result of which the GMR gradually decreases and vanishes at doses exceeding 1×1014 Ar/cm2. A degradation of GMR with increasing Ar-ion dose is related to the formation of pinholes between Fe layers and the decrease of the antiferromagnetically coupled fraction.

  9. Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.

    2015-03-01

    Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.

  10. Comparative analysis of Fe ion-induced mutations in murine tissue and cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Kwoh, E.; Dan, C.; Connolly, L.; Turker, M.

    Space flight exposes astronauts to densely ionizing heavy ions including Fe ions This study is designed to assess the impact of the tissue microenvironment on the cytotoxic and mutagenic effects of 1 GeV amu Fe ions in kidney epithelial cells from one mouse strain irradiated either in vitro or in vivo Three to five month old Aprt heterozygous mice are used from a C57BL6 DBA2 cross B6D2F1 or kidney cells are used that were established from these mice Cells and animals were exposed in the plateau portion of the Bragg peak 159 keV mu m at the NASA Space Radiation Laboratories NSRL at Brookhaven National Laboratory Approximately equal numbers of male and female animals were used for the in vivo studies In vitro experiments demonstrated exponential cell killing with a D 0 of 92 cGy Three Aprt mutation experiments have been performed in kidney cells exposed to graded doses of Fe ions in vitro 0-2 Gy Studies to date indicate that Fe ions are mutagenic to kidney epithelial cells irradiated in vitro with a linear induction of mutants as a function of dose In vivo experiments have been completed on two thirds of the animals planned for the study Kidney cells were retrieved from the animals at two time points 2-3 months post-irradiation or 8-9 months post-irradiation Fe ion exposure in vivo led to exponential killing of kidney epithelial cells that was still evident 8-9 months post-exposure In vivo irradiation also results

  11. Optimization of single keV ion implantation for the construction of single P-donor devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.

    2005-02-01

    We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.

  12. The effect of fluence on the magnetic properties of superparamagnetic iron-nickel nanoparticles in SiO2 made by dual Ni and Fe low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Williams, G. V. M.; Prakash, T.; Kennedy, J.

    2017-10-01

    Superparamagnetic Ni1-yFey nanoparticles were made in a SiO2 film by 10 keV ion beam implantation of Ni followed by Fe with a Ni fluence of 4 × 1016 at.cm-2 and a Fe fluence fraction of 0.47. Nearly all of the moments magnetically ordered, which was not reported for an implanted film made with a Fe fluence fraction of 0.56 and half the Ni fluence. The temperature dependence of the saturation moment is remarkably similar for low and high Ni fluences where there is also the presence of very thin spin-disordered shells. The higher Ni fluence leads to a significant enhancement of the susceptibility by a factor of 9 when compared with the lower fluence sample. This enhancement is likely to be due to a larger magnetically ordered volume fraction.

  13. Combined exposure to protons and 56Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung

    NASA Astrophysics Data System (ADS)

    Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antiño R.; Latendresse, John; Olsen, Reid H. J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2015-11-01

    Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.

  14. Combined exposure to protons and 56Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung

    PubMed Central

    Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R.; Pathak, Rupak; Allen, Antino R.; Latendresse, John; Olsen, Reid H.J.; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2015-01-01

    Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions (56Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and 56Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation). Exposure to 56Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and 56Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. PMID:26553631

  15. 56Fe accelerates development of atherosclerosis in apoE -/-mice

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Yu, Tao; Parks, Brian; Yu, Shaohua; Srivastava, Roshni; Gupta, Kiran; Wu, Xing; Khaled, Saman; Chang, Polly; Kabarowski, Janusz

    Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. For example, for women with early breast cancer, the benefit of radiotherapy can be nearly offset by the increased risk of mortality from cardiovascular disease. Head and neck cancer patients who undergo radiation treatment are at significantly elevated risk of stroke, even in a relatively young patient population that would not normally be at risk for atheroscle-rosis. Similarly, atomic bomb survivors had an increased incidence of mortality from coronary artery disease and stroke. Even radiation technologists working before 1950 (when occupational exposure was higher) had increased mortality due to circulatory diseases. Although much is known about the cardiovascular consequences these exposures to X-raus and gamma radiation, the response to the type of radiation likely to be encountered in prolonged space flight has not been determined. A key component of this cosmic radiation is 56Fe, which is particularly damaging to tissues. Using collimated beams, we selectively irradiated aortic arches and carotids (only) of the well-established apoE -/-atherosclerosis mouse model to test directly whether 56Fe exposure is a cardiovascular risk factor. Mice were sacrificed at 13 weeks post-irradiation and dissected, and aortas were divided into areas that had been targeted by the ion beam and those that were not. The area that was covered by plaques was then quantified. Plaque area at 13 weeks post-irradiation was significantly greater in targeted areas of mice that had received 5 Gy of 56Fe as compared to age-and sex-matched un-irradiated controls. In the carotid arteries and aortic roots, significantly greater atherosclerosis was apparent for a 2Gy exposure as well (the lowest dose tested). This demonstrates that even a single exposure to heavy ion radiation is capable of triggering events that culminate in cardiovascular disease, even long after the exposure has

  16. Protective effect of mitochondrial-targeted antioxidant MitoQ against iron ion 56Fe radiation induced brain injury in mice.

    PubMed

    Gan, Lu; Wang, Zhenhua; Si, Jing; Zhou, Rong; Sun, Chao; Liu, Yang; Ye, Yancheng; Zhang, Yanshan; Liu, Zhiyuan; Zhang, Hong

    2018-02-15

    Exposure to iron ion 56 Fe radiation (IR) during space missions poses a significant risk to the central nervous system and radiation exposure is intimately linked to the production of reactive oxygen species (ROS). MitoQ is a mitochondria-targeted antioxidant that has been shown to decrease oxidative damage and lower mitochondrial ROS in a number of animal models. Therefore, the present study aimed to investigate role of the mitochondrial targeted antioxidant MitoQ against 56 Fe particle irradiation-induced oxidative damage and mitochondria dysfunction in the mouse brains. Increased ROS levels were observed in mouse brains after IR compared with the control group. Enhanced ROS production leads to disruption of cellular antioxidant defense systems, mitochondrial respiration dysfunction, altered mitochondria dynamics and increased release of cytochrome c (cyto c) from mitochondria into cytosol resulting in apoptotic cell death. MitoQ reduced IR-induced oxidative stress (decreased ROS production and increased SOD, CAT activities) with decreased lipid peroxidation as well as reduced protein and DNA oxidation. MitoQ also protected mitochondrial respiration after IR. In addition, MitoQ increased the expression of mitofusin2 (Mfn2) and optic atrophy gene1 (OPA1), and decreased the expression of dynamic-like protein (Drp1). MitoQ also suppressed mitochondrial DNA damage, cyto c release, and caspase-3 activity in IR-treated mice compared to the control group. These results demonstrate that MitoQ may protect against IR-induced brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung.

    PubMed

    Nzabarushimana, Etienne; Prior, Sara; Miousse, Isabelle R; Pathak, Rupak; Allen, Antiño R; Latendresse, John; Olsen, Reid H J; Raber, Jacob; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor

    2015-11-01

    Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  18. Quantitative and Qualitative Differences in Neurocognitive Impairment Induced by 1 GeV 56Fe Ions and X-Rays

    NASA Astrophysics Data System (ADS)

    Britten, R.; Mitchell, S.; Parris, B.; Johnson, A.; Singletary-Britten, S.; Lonart, G.; Drake, R.

    2008-10-01

    During the planned mission to Mars, Astronauts will be exposed to heavy charged particles (Hze). Our group has been determining the relative biological effectiveness (RBE) of Hze (1 GeV 56Fe, LET = 150 kev/um) with respect to neurocognitive impairment, specifically spatial memory, short-term working memory and attentional set shifting. Our current data suggest that Hze have RBE values of about 7 for hippocampal-dependent spatial memory tasks (Barnes Maze) and possibly even higher for certain attentional processes. We have also used MALDI-TOF serum profiling analysis to identify several proteins that are biomarkers of both the level and LET of the radiation exposure, and biomarkers of cognitive performance. Our data suggest that Hze particles have a distinctly different impact upon neurocognitive function in rats than do X-rays. From a mission perspective, attentional set shifting is the neurocognitive function most likely to be impacted by the predicted Hze exposure; unfortunately Set shifting underlies our ability to execute complex plans. The proteins identified could be used to monitor the Astronauts for radiation exposure and any associated loss of neurocognitive function, and some may actually give an insight into the complex processes that lead to radiation-induced cognitive impairment.

  19. Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Kanjilal, A.; Sarangi, S. N.; Majumder, S.; Sathyamoorthy, R.; Som, T.

    2010-06-01

    We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room temperature for a wide range of fluences from 0.1×1016 to 3.6×1016 ions cm-2 (corresponding to 0.38-12.03 at.% of Fe). Glancing angle X-ray diffraction analysis revealed that the implanted Fe atoms tend to supersaturate by occupying the substitutional cationic sites rather than forming metallic clusters or secondary phase precipitates. In addition, Fe doping does not lead to any structural phase transformation although it induces structural disorder and lattice contraction. Optical absorption studies show a reduction in the optical band gap from 2.39 to 2.17 eV with increasing Fe concentration. This is attributed to disorder-induced band tailing in semiconductors and ion-beam-induced grain growth. The strain associated with a lattice contraction is deduced from micro-Raman scattering measurements and is found that size and shape fluctuations of grains, at higher fluences, give rise to inhomogeneity in strain.

  20. Ion-beam mixing at Fe:metallic-glass (Fe67Co18B14Si1) interface: A conversion-electron Mössbauer spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bhandarkar, Y. V.; Ghaisas, S. V.; Ogale, S. B.

    1988-07-01

    Ion-beam mixing at an Fe:metallic glass (Fe67Co18B14Si1) interface is studied by employing the technique of conversion electron Mössbauer spectroscopy (CEMS). A 230-Å-thick overlayer of iron (enriched to 33% in the concentration of 57Fe Mössbauer isotope) was deposited on the shiny surface of metallic glass and such composites were bombarded with 100-keV Kr+ ions at dose values in the range between 1×1015 and 2×1016 ions/cm2. The transformations in the local atomic arrangements across the interface were investigated by monitoring the changes in the hyperfine-interaction parameters. It is shown that mixing leads to significant changes in the composition, in the vicinity of the interface as a function of the ion dose. At low dose (1×1015 ions/cm2) the local atomic coordination is found to be rich in the transition-metal concentration, while at a higher dose (2×1016 ions/cm2) it is observed to be rich in the boron concentration. Interestingly, at an intermediate dose 1×1016 ions/cm2 the composite near the interface region partially crystallizes and this structural state is found to revert back to the amorphous state upon thermal annealing at 300 °C. The observations made on the basis of CEMS are well supported by x-ray diffraction measurements.

  1. Ion bombardment and adsorption studies on ilmenite (FeTiO3) by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.

    1983-01-01

    The effects of 5 KeV argon and oxygen ion bombardment on FeTiO3 (ilmenite) at low temperatures have been studied using X-ray photoelectron spectroscopy (XPS). Also, using this same technique, the adsorption of O2, NO, N2O, and CO at 300 K and the adsorption of O2 and D2O at 150K have been studied. Argon and oxygen ion bombardment of ilmenite have confirmed earlier studies on metal oxides that argon ions generally reduce the anion species while oxygen ions generally oxidize the anion species. The two iron states involved were Fe sup +2 and Fe sup O. The reduction of Ti sup +4 was not verified although a significant shift in the Ti(2p1,3) binding energies toward the metallic state was observed after oxygen ion bombardment at low temperatures. At temperatures above 150K, O2 adsorbs dissociatively on ilmenite while D2O adsorbs molecularly below 170K. Above 300 K No, N2O, and CO do not appear to adsorb dissociatively. Low temperature adsorption of D2O was found to be inhibited by predosing the ilmenite with O2.

  2. Tuneable magnetic patterning of paramagnetic Fe{sub 60}Al{sub 40} (at. %) by consecutive ion irradiation through pre-lithographed shadow masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varea, A.; Surinach, S.; Baro, M. D.

    2011-05-01

    Arrays of ferromagnetic circular dots (with diameters ranging from 225 to 420 nm) have been prepared at the surface of atomically ordered paramagnetic Fe{sub 60}Al{sub 40} (at. %) sheets by means of ion irradiation through prelithographed poly(methyl methacrylate) (PMMA) masks. The cumulative effects of consecutive ion irradiation (using Ar{sup +} ions at 1.2 x 10{sup 14} ions/cm{sup 2} with 10, 13, 16, 19 and 22 keV incident energies) on the properties of the patterned dots have been investigated. A progressive increase in the overall magneto-optical Kerr signal is observed for increasingly larger irradiation energies, an effect which is ascribed tomore » accumulation of atomic disorder. Conversely, the coercivity, H{sub C}, shows a maximum after irradiating at 16-19 keV and it decreases for larger irradiation energies. Such a decrease in H{sub C} is ascribed to the formation of vortex states during magnetization reversal, in agreement with results obtained from micromagnetic simulations. At the same time, the PMMA layer, with an initial thickness of 90 nm, becomes progressively thinned during the successive irradiation processes. After irradiation at 22 keV, the remaining PMMA layer is too thin to stop the incoming ions and, consequently, ferromagnetism starts to be generated underneath the nominally masked areas. These experimental results are in agreement with calculations using the Monte-Carlo simulation Stopping Range of Ions in Matter software, which show that for exceedingly thin PMMA layers Ar{sup +} ions can reach the Fe{sub 60}Al{sub 40} layer despite the presence of the mask.« less

  3. Measurement and simulation of the cross sections for nuclide production in {sup 56}Fe and {sup nat}Cr targets irradiated with 0.04- to 2.6-GeV protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Yu. E., E-mail: Yury.Titarenko@itep.ru; Batyaev, V. F.; Titarenko, A. Yu.

    The cross sections for nuclide production in thin {sup 56}Fe and {sup nat}Cr targets irradiated by 0.04-2.6-GeV protons are measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV for the {sup 60}Co 1332-keV {gamma} line. As a result, 649 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data are compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  4. Local factors modify the dose dependence of 56Fe-induced atherosclerosis.

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz; Yu, Shaohua

    2012-07-01

    Radiation exposure from a number of terrestrial sources is associated with an increased risk of cardiovascular disease, but evidence establishing whether high-LET radiation has similar effects has been lacking. We recently demonstrated that 600 MeV/n 56Fe induces atherosclerosis as well. Ten-week old male apolipoprotein-E deficient mice, a well-characterized atherosclerosis animal model, were exposed to 0 (control) 2, or 5Gy 56Fe targeted to the chest and neck. In these mice, 56Fe-induced atherosclerosis was similar in character to that induced by X-rays in the same mouse model and to that resulting from therapeutic radiation in cancer patients. Atherosclerosis was exacerbated by 56Fe only in targeted areas, however, suggesting a direct effect of the radiation on the arteries themselves. This is in contrast to some other risk factors, such as high cholesterol or tobacco use, which have systemic effects. The radiation dose required to accelerate development of atherosclerotic plaques, however, differed depending on the vessel that was irradiated and even the location within the vessel. For example, atherosclerosis in the aortic arch was accelerated only by the highest dose (5 Gy), while the carotid arteries and the aortic root showed effects at 2 Gy (a dose four- to eight-fold lower than the dose of X-rays that produces similar effects in this model). Since shear stress is disrupted in the area of the aortic root, it is likely that at least part of the site-specificity is due to additive or synergistic effects of radiation and local hydrodynamics. Other factors, such as local oxidative stress or gene expression may also have been involved. Since the pro-atherogenic effects of 56Fe depend on additional local factors, this suggests that radiation exposure, when unavoidable, might be mitigated by modification of factors unrelated to the radiation itself.

  5. Evidence for the dipole nature of the low-energy γ enhancement in Fe 56

    DOE PAGES

    Larsen, A. C.; Blasi, N.; Bracco, A.; ...

    2013-12-11

    Here, the γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the ( 3He,αγ) 56Fe reaction, is confirmed with the (p,p'γ) 56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

  6. Dietary modulation of the effects of exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.; Carey, A. N.

    On exploratory missions to other planets, astronauts will be exposed to galactic cosmic rays composed of protons and heavy particles, such as 56Fe. Long-term exposure to these particles can cause cancer. However, there are significant uncertainties in the risk estimates for the probability of developing heavy particle-induced cancer, and in the amount of shielding needed to provide an adequate level of radiation protection. The results of this preliminary study, using a ground-based model for exposure to cosmic rays, show reduced tumorigenesis in rats maintained on diets containing blueberry or strawberry extract prior to exposure to 56Fe particles. Because the study was not initially designed to evaluate tumorigenesis following exposure to 56Fe particles, additional research is needed to evaluate the effectiveness of strawberry and blueberry supplementation. However, the preliminary results presented in this study suggest that diets containing antioxidant phytochemicals can provide additional radiation protection on interplanetary voyages.

  7. Influence of the Ar-ion irradiation on the giant magnetoresistance in Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Kopcewicz, M.; Stobiecki, F.; Jagielski, J.; Szymański, B.; Schmidt, M.; Dubowik, J.; Kalinowska, J.

    2003-05-01

    The influence of 200 keV Ar-ion irradiation on the interlayer coupling in Fe/Cr multilayers exhibiting the giant magnetoresistance (GMR) effect is studied by the conversion electron Mössbauer spectroscopy (CEMS), vibrating sample magnetometer hysteresis loops, magnetoresistivity, and electric resistivity measurements and supplemented by the small-angle x-ray diffraction. The increase of Ar-ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step sites detected by CEMS. The modification of microstructure induces changes in magnetization reversal indicating a gradual loss of antiferromagnetic (AF) coupling correlated with the degradation of the GMR effect. Distinctly weaker degradation of AF coupling and the GMR effect observed for irradiated samples with a thicker Cr layer thickness suggest that observed effects are caused by pinholes creation. The measurements of temperature dependence of remanence magnetization confirm increase of pinhole density and sizes during implantation. Other effects which can influence spin dependent contribution to the resistance, such as interface roughness as well as shortening of mean-free path of conduction electrons, are also discussed.

  8. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Lv, Rui; Chen, Zhihengyu; Fu, Xin; Yang, Boyi; Li, Hui; Su, Jian; Gu, Wen; Liu, Xin

    2018-03-01

    A new luminescent Cd(II)-based metal-organic framework, [Cd(PAM)(4-bpdb)1.5]·DMF (Cd-MOF, PAM = 4,4‧-methylenebis(3-hydroxy-2-naphthalene-carboxylic acid) and 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) was successfully synthesized by solvothermal synthesis method. The Cd-MOF reveals excellent luminescence property which can selectively detect Al3+ and Fe3+ ions among other interfering metal ions. The detection limit is 0.56 μM for Al3+ ion in aqueous solutions, and it is obvious lower than the maximum standard of Al3+ ion in drinking water of 7.41 μM which is defined by the WHO. More importantly, the Cd-MOF shows an obvious luminescent color change from yellow to blue under the UV lamp irradiation at 365 nm with the dropping of Al3+ ion, which can make it apply to the visual detection. And, the detection based on the test paper was explored for the first time. In addition, the Cd-MOF can also be used for quantitative detecting Fe3+ ion, and the LOD for Fe3+ ion can be as low as 0.3 μM which is lower than most reported MOFs. It is worth noting that Fe3+ and Al3+ ions can not interfere with each other. These properties make it become an excellent luminescence sensor for the detection of Al3+ and Fe3+ ions.

  9. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  10. Fe doped Magnetic Nanodiamonds made by Ion Implantation.

    PubMed

    Chen, ChienHsu; Cho, I C; Jian, Hui-Shan; Niu, H

    2017-02-09

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  11. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  12. Source Population and Acceleration Location of Suprathermal Heavy Ions in Corotating Interaction Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filwett, R. J.; Desai, M. I.; Dayeh, M. A.

    2017-03-20

    We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, whilemore » no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.« less

  13. Development and characterization of semiconductor ion detectors for plasma diagnostics in the range over 0.3 keV

    NASA Astrophysics Data System (ADS)

    Cho, T.; Sakamoto, Y.; Hirata, M.; Kohagura, J.; Makino, K.; Kanke, S.; Takahashi, K.; Okamura, T.; Nakashima, Y.; Yatsu, K.; Tamano, T.; Miyoshi, S.

    1997-01-01

    For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure.

  14. Whole mouse blood microRNA as biomarkers for exposure to γ-rays and 56Fe ions

    PubMed Central

    Templin, Thomas; Amundson, Sally A.; Brenner, David J.; Smilenov, Lubomir B.

    2013-01-01

    Purpose Biomarkers of ionising radiation exposure are useful in a variety of scenarios, such as medical diagnostic imaging, occupational exposures, and spaceflight. This study investigates to what extent microRNA (miRNA) expression signatures in mouse peripheral blood can be used as biomarkers for exposures to radiation with low and high linear energy transfers. Materials and methods Mice were irradiated with doses of 0.5, 1.5, or 5.0 Gy γ-rays (dose rate of 0.0136 Gy/s) or with doses of 0.1 or 0.5 Gy 56Fe ions (dose rate of 0.00208 Gy/s). Total RNA was isolated from whole blood at 6 h or 24 h after irradiation. Three animals per irradiation condition were used. Differentially expressed miRNA were determined by means of quantitative real-time polymerase chain reaction. Results miRNA expression signatures were radiation type-specific and dose- and time-dependent. The differentially expressed miRNA were expressed in either one condition (71%) or multiple conditions (29%). Classifiers based on the differentially expressed miRNA predicted radiation type or dose with accuracies between 75% and 100%. Gene-ontology analyses show that miRNA induced by irradiation are involved in the control of several biological processes, such as mRNA transcription regulation, nucleic-acid metabolism, and development. Conclusion miRNA signatures induced by ionising radiation in mouse blood are radiation type- and radiation dose-specific. These findings underline the complexity of the radiation response and the importance of miRNA in it. PMID:21271940

  15. Annealing Behavior of 57Fe Implanted in ZrO2(Y)

    NASA Astrophysics Data System (ADS)

    Zhang, G. L.; Yu, F. H.; Weng, H. M.; Zhang, H. H.

    1998-12-01

    Using conversion electron Mossbauer spectroscopy(CEMS) and slow positron beam, the chemical states of the implanted 57Fe (100KeV,3 × 10 16 ions/cm 2) in ZrO2 containing 3 mol% Y 2O 3( ZY 3) and its thermodynamic behavior during annealing process with the temperature from 200 to 500°C were studied. After annealing at 400°C the complex of Fe3+-V has been mostly dissolved, and the prior phase to α-Fe and α-Fe nano-crystalline cluster were present in the sample. Meanwhile the mixed conducting of oxygen-ions and electrons in the ZY3 containing Fe sample appeared.

  16. Surface damage studies of ETFE polymer bombarded with low energy Si ions (⩽100 keV)

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Almeida, Adelaide De; Budak, Satilmis; Abidzina, Volha; Ila, Daryush

    2007-08-01

    Surface studies of ethylenetetrafluoroethylene (ETFE), bombarded with Si in a high-energy tandem Pelletron accelerator, have recently been reported. Si ion bombardment with a few MeV to a few hundred keV energies was shown to be sufficient to produce damage on ETFE film. We report here the use of a low energy implanter with Si ion energies lower than 100 keV, to induce changes on ETFE films. In order to determine the radiation damage, ETFE bombarded films were simulated with SRIM software and analyzed with optical absorption photometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to show quantitatively the physical and chemical property changes. Carbonization occurs following higher dose implantation, and hydroperoxides were formed following dehydroflorination of the polymer.

  17. Weak ferromagnetism along the third-order axis of the FeBO3 crystals caused by Fe2+ impurity ions

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Rudenko, V. V.; Vorotynov, A. M.

    2018-05-01

    Using the single-ion approximation, the weak ferromagnetic moment σZ(Fe2+) along the third-order axis of FeBO3 crystals, which is caused by the contribution of Fe2+ ions, has been investigated in the framework of the model Fe2+ impurity ion -BO3 vacancy. The extreme low-temperature behavior of the total magnetic moment due to the strong dependence of the Fe2+ion contribution is predicted.

  18. Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ian J.; Mitchell, Donald G.; Kistler, Lynn M.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Ohtani, Shinichi; Hamilton, Douglas C.; Turner, Drew L.; Blake, J. Bernard; Fennell, Joseph F.; Jaynes, Allison N.; Leonard, Trevor W.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Allen, Robert C.; Burch, James L.

    2017-09-01

    Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies ≳150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly's Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at L≲6 but decreasing proton intensities at L≳6. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.

  19. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  20. Local modifications of magnetism and structure in FePt (001) epitaxial thin films by focused ion beam: Two-dimensional perpendicular patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertini, F.; Nasi, L.; Casoli, F.

    Focused ion beam was utilized to locally modify magnetism and structure of L1{sub 0} FePt perpendicular thin films. As a first step, we have performed a magnetic, morphological, and structural study of completely irradiated FePt films with different Ga{sup +} doses (1x10{sup 13} -4x10{sup 16} ions/cm{sup 2}) and ion beam energy of 30 keV. For doses of 1x10{sup 14} ions/cm{sup 2} and above a complete transition from the ordered L1{sub 0} to the disordered A1 phase was found to occur, resulting in a drop of magnetic anisotropy and in the consequent moment reorientation from out-of-plane to in-plane. The lowest effectivemore » dose in disordering the structure (1x10{sup 14} ions/cm{sup 2}) was found not to affect the film morphology. Taking advantage of these results, continuous two-dimensional (2D) patterns of perpendicular magnetic structures (250 nm dots, 1 {mu}m dots, 1 {mu}m-large stripes) were produced by focused ion beam without affecting the morphology. The 2D patterns were revealed by means of magnetic force microscopy, that evidenced peculiar domain structures in the case of 1 {mu}m dots.« less

  1. Kinetics and Equilibrium of Fe3+ Ions Adsorption on Carbon Nanofibers

    NASA Astrophysics Data System (ADS)

    Alimin; Agusu, La; Ahmad, L. O.; Kadidae, L. O.; Ramadhan, L.; Nurdin, M.; Isdayanti, N.; Asria; Aprilia M, P.; Hasrudin

    2018-05-01

    Generally, the interaction between metal ions and adsorbent is governed by many factors including; concentration of metal ions, interaction time and solution pH. In this work, we applied liquid phase adsorption for studying the interaction between Fe3+ ions and Carbon Nanofibers (CNFs) irradiated by ultrasonic waves. Kinetics and isotherms model of the Fe3+ ion adsorption was investigated by varying contact time and pH. We found that the Fe3+ ions were efficiently adsorbed on CNFs for 0.5 h in acidic pH of around 5. In order to obtain the best-fitted isotherms model, Langmuir and Freundlich’s isotherms were used in this work. The adsorption equilibrium Fe3+ metal ions on CNFs tend to follow Langmuir. Adsorption kinetics of Fe3+ ions on CNFs were investigated by using both pseudo-first and pseudo-second orders. The adsorption kinetics coincided well with the pseudo-second-order.

  2. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  3. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  4. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  5. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  6. Improved Reversibility of Fe3+ /Fe4+ Redox Couple in Sodium Super Ion Conductor Type Na3 Fe2 (PO4 )3 for Sodium-Ion Batteries.

    PubMed

    Rajagopalan, Ranjusha; Chen, Bo; Zhang, Zhicheng; Wu, Xing-Long; Du, Yonghua; Huang, Ying; Li, Bing; Zong, Yun; Wang, Jie; Nam, Gwang-Hyeon; Sindoro, Melinda; Dou, Shi Xue; Liu, Hua Kun; Zhang, Hua

    2017-03-01

    The methodology employed here utilizes the sodium super ion conductor type sodium iron phosphate wrapped with conducting carbon network to generate a stable Fe 3+ /Fe 4+ redox   couple, thereby exhibiting higher operating voltage and energy density of sodium-ion batteries. This new class of sodium iron phosphate wrapped by carbon also displays a cycling stability with >96% capacity retention after 200 cycles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Effect of Ion Irradiation on Nanocrystallization and Surface Relief of a Ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy

    NASA Astrophysics Data System (ADS)

    Romanov, I. Yu.; Gushchina, N. V.; Ovchinnikov, V. V.; Makhinko, F. F.; Stepanov, A. V.; Medvedev, A. I.; Starodubtsev, Yu. N.; Belozerov, V. Ya.; Loginov, B. A.

    2018-02-01

    Using the methods of X-ray diffraction and atomic force microscopy, the process of crystallization of an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 alloy irradiated with accelerated Ar+ ions is investigated. It is found out that an irradiation by the Ar+ ions with the energy 30 keV at the ion current density 300 μA/cm2 (fluence 3.75·1015 cm-2, irradiation time 2 s, ion-beam short-duration heating up to 350°C, which is 150°C lower than the thermal crystallization threshold) results in a complete crystallization of this amorphous alloy (throughout the bulk of a 25 μm ribbon) followed by precipitation of solid solution crystals of α-Fe(Si), close in its composition to Fe80Si20, stable phase of Fe3Si, and metastable hexagonal phases. By the methods of atomic force and scanning tunneling microscopy it is shown that nanocrystallization caused by ion irradiation is accompanied by surface relief changes both on the irradiated and unirradiated sides of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy ribbon at the depth exceeding by a factor of 103 that of the physical ion penetration for this material. The data obtained, taking into account a significant temperature decrease and multiple acceleration of the crystallization process, serve an evidence of the radiation-dynamic influence of accelerated ions on the metastable amorphous medium.

  8. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials

    NASA Astrophysics Data System (ADS)

    Walter, Marc; Zünd, Tanja; Kovalenko, Maksym V.

    2015-05-01

    In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g-1 for 400 cycles at a current rate of 1000 mA g-1. In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides.In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100

  9. FTMS studies of sputtered metal cluster ions (IV): size-selective effects in the chemistry of Fe{/n +} with NH3 and Pd{/n +} with D2 or C2H4

    NASA Astrophysics Data System (ADS)

    Irion, M. P.; Selinger, A.; Schnabel, P.

    1991-03-01

    Fe{/n +} and Pd{/n +} clusters up to n=19 and n=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe{/n +} clusters react by simply adsorbing intact NH3 molecules. Only Fe{4/+} ions show dehydrogenation/adsorption to Fe4(NH){/m +} intermediates ( m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd{n/+} cluster ions ( n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd{6/+} appear totally unreactive. Towards D2, Pd{7/+} ions seem inert, whereas Pd{8/+} adsorb up to two molecules.

  10. Analysis of 238Pu and 56Fe Evaluated Data for Use in MYRRHA

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Cabellos, O.; Martínez, J. S.; Stankovskiy, A.; Van den Eynde, G.; Schillebeeckx, P.; Heyse, J.

    2014-04-01

    A sensitivity analysis on the multiplication factor, keff, to the cross section data has been carried out for the MYRRHA critical configuration in order to show the most relevant reactions. With these results, a further analysis on the 238Pu and 56Fe cross sections has been performed, comparing the evaluations provided in the JEFF-3.1.2 and ENDF/B-VII.1 libraries for these nuclides. Then, the effect in MYRRHA of the differences between evaluations are analysed, presenting the source of the differences. With these results, recommendations for the 56Fe and 238Pu evaluations are suggested. These calculations have been performed with SCALE6.1 and MCNPX-2.7e.

  11. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardanyan, Zaruhi; Trchounian, Armen, E-mail: trchounian@ysu.am

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reductionmore » potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  12. Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Buhler, Lynn L.; Joseph, James A.; Shukitt-Hale, Barbara; Jenkins, Daniel G.

    2002-01-01

    On long-duration trips outside of the magnetosphere, astronauts will be exposed to protons and to heavy particles which can affect their performance of required tasks. It is essential to determine the range of behaviors that might be affected by exposure to these types of radiation in order to understand the nature of behavioral deficits and to develop effective countermeasures. The present experiment examined the ability of rats to make an operant response following exposure to protons (250 MeV, 4 Gy) or 56Fe particles (1 GeV/n, 1 or 2 Gy). Following irradiation, rats were trained to press a lever in order to obtain food reinforcement. They were then placed on an ascending fixed-ratio schedule from FR-1 (each lever press rewarded with a food pellet) through FR-35 (35 lever presses required for 1 food pellet). Rats exposed to 4 Gy of protons or 1 Gy of 56Fe particles responded similarly to controls, increasing their rate of responding as the ratio increased. However, rats exposed to 2 Gy of 56Fe particles failed to increase their rate of responding at ratios greater than FR-20, indicating that rats exposed to 2 Gy of 56Fe particles cannot respond appropriately to increasing work requirements.

  13. The production and sputtering of S2 by keV ion bombardment

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Chrisey, D. B.; Oshaughnessy, D. J.; Phipps, J. A.; Zhao, N.

    1986-01-01

    The ion bombardment of S-containing molecules in comets is simulated experimentally. Mass-analyzed 30-keV beams of Ar(+) and He(+) are directed at solid S, H2S, and CS2 targets at temperatures 15 K, and the neutral molecular species produced are ionized and analyzed using a quadrupole mass spectrometer. The dominant species detected are S1 and S2 for the S target, H2S and S2 for the H2S target, and S, CS, S2, and CS2 for the CS2 target. In the latter case, it is found that after about 10 to the 14th He(+) ions/sq cm have struck the target, further sputtering is prevented by formation of a dark brown deposit which is stable at room temperature; the residue forms more slowly when Ar(+) ions are used. These results, indicating relatively efficient S2 production by ion bombardment, are applied to theoretical models of S2 production and/or ejection by solar-wind, solar-flare, or cosmic-ray ions striking comets. It is found that direct solar-wind production of S2 by sputtering is unlikely at realistic bombardment rates, but that H2S-S2 conversion by energetic ions could be significant, with less stringent ice-temperature and irradiation-flux constraints than in the case of S2 production by photons.

  14. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  15. Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.

    PubMed

    Lin, K W; Wei, M R; Guo, J Y

    2009-03-01

    The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.

  16. Role of the Δ Resonance in the Population of a Four-Nucleon State in the 56Fe → 54Fe Reaction at Relativistic Energies

    NASA Astrophysics Data System (ADS)

    Podolyák, Zs.; Shand, C. M.; Lalović, N.; Gerl, J.; Rudolph, D.; Alexander, T.; Boutachkov, P.; Cortés, M. L.; Górska, M.; Kojouharov, I.; Kurz, N.; Louchart, C.; Merchán, E.; Michelagnoli, C.; Pérez-Vidal, R. M.; Pietri, S.; Ralet, D.; Reese, M.; Schaffner, H.; Stahl, Ch.; Weick, H.; Ameil, F.; de Angelis, G.; Arici, T.; Carroll, R.; Dombrádi, Zs.; Gadea, A.; Golubev, P.; Lettmann, M.; Lizarazo, C.; Mahboub, D.; Pai, H.; Patel, Z.; Pietralla, N.; Regan, P. H.; Sarmiento, L. G.; Wieland, O.; Wilson, E.; Birkenbach, B.; Bruyneel, B.; Burrows, I.; Charles, L.; Clément, E.; Crespi, F. C. L.; Cullen, D. M.; Désesquelles, P.; Eberth, J.; González, V.; Habermann, T.; Harkness-Brennan, L.; Hess, H.; Judson, D. S.; Jungclaus, A.; Korten, W.; Labiche, M.; Maj, A.; Mengoni, D.; Napoli, D. R.; Pullia, A.; Quintana, B.; Rainovski, G.; Reiter, P.; Salsac, M. D.; Sanchis, E.; Valiente Dóbon, J. J.

    2016-11-01

    The 54Fe nucleus was populated from a 56Fe beam impinging on a Be target with an energy of E /A =500 MeV . The internal decay via γ -ray emission of the 10+ metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the 56Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of 54Fe, suggesting that it was populated via the decay of the Δ0 resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10+ metastable state in 54Fe is a consequence of the quark structure of the nucleons.

  17. Preparation of microspheric Fe(III)-ion imprinted polymer for selective solid phase extraction

    NASA Astrophysics Data System (ADS)

    Ara, Behisht; Muhammad, Mian; Salman, Muhammad; Ahmad, Raees; Islam, Noor; Zia, Tanveer ul Haq

    2018-03-01

    In this research work, an Fe(III)-IIP was prepared using methacrylic acid as monomer, divinylbenzene as cross-linker, azobisisobutyronitrile as initiator. The ion imprinted polymer was functionalized with Fe(III)8-hydroxy quinolone complex under thermal conditions by copolymerization with the monomer and the cross-linker. The prepared Fe(III)-ion imprinted polymer (IIP) and non-ion imprinted polymer (Non-IIP) were characterized with fourier transform-infrared spectroscopy, scanning electron microscopic analysis and thermal gravimetric analysis. The polymer showed a good stability to thermal analysis up to a temperature of 500 °C. The size of the polymer obtained was 1 µm, large enough to be filtered easily. At pH 2.5 more affinity was observed with ion imprinted polymer in comparison to non-ion imprinted polymer. For the kinetic study, the most linear and rhythmical relation were seen in pseudo second order. The maximum sorption capacity of Fe(III) ions on Fe(III)-IIP and non-IIP was 170 and 30.0 µmolg-1, respectively. The relative selectivity factor (αr) values of Fe(III)/Fe(II), Fe(III)/Al(III) and Fe(III)/Cr(III) were 151.0, 84.6 and 91.9, respectively. The preconcentration factor was found to be 240. The developed method was successfully applied to the determination of trace Fe in the drinking water.

  18. Modification of Fe-B based metallic glasses using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Rodriguez, M. D.; Trautmann, C.; Toulemonde, M.; Afra, B.; Bierschenk, T.; Giulian, R.; Kirby, N.; Kluth, P.

    2012-10-01

    We report on small-angle x-ray scattering (SAXS) measurements of amorphous Fe80B20, Fe85B15, Fe81B13.5Si3.5C2, and Fe40Ni40B20 metallic alloys irradiated with 11.1 MeV/u 132Xe, 152Sm, 197Au, and 8.2 MeV/u 238U ions. SAXS experiments are nondestructive and give evidence for ion track formation including quantitative information about the size of the track radius. The measurements also indicate a cylindrical track structure with a sharp transition to the undamaged surrounding matrix material. Results are compared with calculations using an inelastic thermal spike model to deduce the critical energy loss for the track formation threshold. The damage recovery of ion tracks produced in Fe80B20 by 11.1 MeV/u 197Au ions was studied by means of isochronal annealing yielding an activation energy of 0.4 ± 0.1 eV

  19. Laser ion source for multi-nucleon transfer reaction products

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2015-06-01

    We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of

  20. Application of an M13 bacteriophage displaying tyrosine on the surface for detection of Fe(3+) and Fe(2+) ions.

    PubMed

    Guo, Xiaohua; Niu, Chuncheng; Wu, Yunhua; Liang, Xiaosheng

    2015-12-01

    Ferric and ferrous ion plays critical roles in bioprocesses, their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix. In this study, an M13 bacteriophage (phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein. The interaction between the specific phenol group of tyrosine and Fe(3+) / Fe(2+) was used as the sensor. Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe(3+) and Fe(2+). The aggregated phages infected the host bacterium inefficiently. This phenomenon could be utilized for detection of ferric and ferrous ions. For ferric ions, a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired. For ferrous ions, a calibration curve ranging from 800 nmol/L to 8 μmol/L with a detection limit of 641.7 nmol/L was acquired. The assay was specific for Fe(3+) and Fe(2+) when tested against Ni(2+), Pb(2+), Zn(2+), Mn(2+), Co(2+), Ca(2+), Cu(2+), Cr(3+), Ba(2+), and K(+). The tyrosine displaying phage to Fe(3+) and Fe(2+) interaction would have plenty of room in application to biomaterials and bionanotechnology.

  1. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  2. Effects of 200 keV argon ions irradiation on microstructural properties of titanium nitride films

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Šiljegović, M.; Bibić, N.

    2012-05-01

    This paper reports on a study of microstructrual changes in TiN/Si bilayers due to 200 keV Ar+ ions irradiation at room temperature. The 240 nm TiN/Si bilayers were prepared by d.c. reactive sputtering on crystalline Si (1 0 0) substrates. The TiN films were deposited at the substrate temperature of 150 °C. After deposition the TiN/Si bilayers were irradiated to the fluences of 5 × 1015 and 2 × 1016 ions/cm2. The structural changes induced by ion irradiation in the TiN/Si bilayers were analyzed by Rutherford Backscattering Spectroscopy (RBS), X-ray diffraction analyses (XRD) and Transmission Electron Microscopy (TEM). The irradiations caused the microstructrual changes in TiN layers, but no amorphization even at the highest argon fluence of 2 × 1016 ions/cm2. It is also observed that the mean crystallite size decreases with the increasing ion fluence.

  3. Characterization of helium-vacancy complexes in He-ions implanted Fe9Cr by using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Te; Jin, Shuoxue; Zhang, Peng; Song, Ligang; Lian, Xiangyu; Fan, Ping; Zhang, Qiaoli; Yuan, Daqing; Wu, Haibiao; Yu, Runsheng; Cao, Xingzhong; Xu, Qiu; Wang, Baoyi

    2018-07-01

    The formation of helium bubble precursors, i.e., helium-vacancy complexes, was investigated for Fe9Cr alloy, which was uniformly irradiated by using 100 keV helium ions with fluences up to 5 × 1016 ions/cm2 at RT, 523, 623, 723, and 873 K. Helium-irradiation-induced microstructures in the alloy were probed by positron annihilation technique. The results show that the ratio of helium atom to vacancy (m/n) in the irradiation induced HemVn clusters is affected by the irradiation temperature. Irradiated at room temperature, there is a coexistence of large amounts of HemV1 and mono-vacancies in the sample. However, the overpressured HemVn (m > n) clusters or helium bubbles are easily formed by the helium-filled vacancy clusters (HemV1 and HemVn (m ≈ n)) absorbing helium atoms when irradiated at 523 K and 823 K. The results also show that void swelling of the alloy is the largest under 723 K irradiation.

  4. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  5. Covariances for the 56Fe radiation damage cross sections

    NASA Astrophysics Data System (ADS)

    Simakov, Stanislav P.; Koning, Arjan; Konobeyev, Alexander Yu.

    2017-09-01

    The energy-energy and reaction-reaction covariance matrices were calculated for the n + 56Fe damage cross-sections by Total Monte Carlo method using the TENDL-2013 random files. They were represented in the ENDF-6 format and added to the unperturbed evaluation file. The uncertainties for the spectrum averaged radiation quantities in the representative fission, fusion and spallation facilities were first time assessed as 5-25%. Additional 5 to 20% have to be added to the atom displacement rate uncertainties to account for accuracy of the primary defects simulation in materials. The reaction-reaction correlation were shown to be 1% or less.

  6. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study

    NASA Astrophysics Data System (ADS)

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J.; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-01

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1 wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500 °C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.

  7. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  8. H+-induced irradiation damage resistance in Fe- and Ni-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Hongran; Mei, Xianxiu; Zhang, Xiaonan; Li, Xiaona; Wang, Yingmin; Sun, Jianrong; Wang, Younian

    2016-05-01

    In this study, use of 40-keV H+ ion for irradiating metallic glass Fe80Si7.43B12.57 and Ni62Ta38 as well as metallic tungsten (W) at fluences of 1 × 1018 and 3 × 1018 ions/cm2, respectively, was investigated. At the fluence of 1 × 1018 ions/cm2, a crystalline layer appeared in metallic glass Fe80Si7.43B12.57, with α-Fe as the major crystalline phase, coupled with a little Fe2B, Fe3B, and metastable β-Mn-type phase. Fe80Si7.43B12.57 exhibited good soft magnetic properties after irradiation. At the fluence of 3 × 1018 ions/cm2, Ni62Ta38 was found to be amorphous-based, with a little μ-NiTa and Ni3Ta phases. No significant irradiation damage phenomenon appeared in metallic glasses Fe80Si7.43B12.57 and Ni62Ta38. Blistering, flaking, and other damage occurred on the surface of metallic W, and the root-mean-square (RMS) roughness increased with the increase of fluence. Metallic glass Ni62Ta38 exhibited better resistance to H+ irradiation than Fe80Si7.43B12.57, both of which were superior to the metallic W.

  9. Beta decay of exotic TZ = -1, -2 nuclei: the interesting case of 56Zn

    NASA Astrophysics Data System (ADS)

    Orrigo, S. E. A.; Rubio, B.; Fujita, Y.; Blank, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; Fujita, H.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grévy, S.; Kamalou, O.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Molina, F.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2014-03-01

    The β decay properties of the Tz = -2, 56Zn isotope and other proton-rich nuclei in the fp-shell have been investigated in an experiment performed at GANIL. The ions were produced in fragmentation reactions and implanted in a double-sided silicon strip detector surrounded by Ge EXOGAM clovers. Preliminary results for 56Zn are presented .The 56Zn decay proceeds mainly by β delayed proton emission, but β delayed gamma rays were also detected. Moreover, the exotic β delayed gamma-proton decay was observed for the first time. The 56Zn half-life and the energy levels populated in the 56Cu daughter have been determined. Knowledge of the gamma de-excitation of the mirror states in 56Co and the comparison with the results of the mirror charge exchange process, the 56Fe(3He,t) reaction (where 56Fe has Tz = +2), were important in the interpretation of the 56Zn decay data. The absolute Fermi and Gamow-Teller strengths have been deduced.

  10. Changes in Gene Expression in the Hippocampus Following Exposure to 56Fe Particles and Protection by Berry Diets

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Lau, Francis; Carey, Amanda; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56 Fe, enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Behaviors affected by radiation include deficits in motor performance, spatial learning and memory behavior, amphetamine-induced conditioned taste aversion learning, conditioned place preference, and operant conditioning. Berry fruit diets are high in antioxidant and antiinflammatory activity, and prevent the occurrence of the neurochemical and behavioral changes that occur in aging and by exposure to 56 Fe particles. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 56 Fe particles 36 hours post-irradiation. We also evaluated whether the blueberry (BB) and strawberry (SB) diets could ameliorate irradiation-induced deficits in gene expression by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to radiation. Therefore, to measure gene expression, 4 rats/group were euthanized 36 hours post whole-body irradiation with 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56 Fe particles. Alterations in gene expression profile induced by radiation were analyzed by pathway-focused microarrays on the inflammatory cytokines and genes involved in NF-κB signal transduction pathways. For the diet studies, 3 rats/group were irradiated with 2.5 Gy of 56 Fe following 8 weeks supplementation with either the 2% BB or the 2% SB diet. We found that genes that directly or indirectly interact in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated, possibly to eliminate damaged cells and to stop cell proliferation to prevent

  11. Effects of whole body (56)Fe radiation on contextual freezing and Arc-positive cells in the dentate gyrus.

    PubMed

    Raber, Jacob; Allen, Antiño R; Rosi, Susanna; Sharma, Sourabh; Dayger, Catherine; Davis, Matthew J; Fike, John R

    2013-06-01

    The space radiation environment contains high-energy charged particles such as (56)Fe, which could pose a significant hazard to hippocampal function in astronauts during and after the mission(s). The mechanisms underlying impairments in cognition are not clear but might involve alterations in the percentage of neurons in the dentate gyrus expressing the plasticity-related immediate early gene Arc. Previously, we showed effects of cranial (56)Fe irradiation on hippocampus-dependent contextual freezing and on the percentage of Arc-positive cells in the enclosed, but not free, blade. Because it is unclear whether whole body (56)Fe irradiation causes similar effects on these markers of hippocampal function, in the present study we quantified the effects of whole body (56)Fe irradiation (600MeV, 0.5 or 1Gy) on hippocampus-dependent and hippocampus-independent cognitive performance and determined whether these effects were associated with changes in Arc expression in the enclosed and free blades of the dentate gyrus. Whole body (56)Fe irradiation impacted contextual but not cued fear freezing and the percentage of Arc-positive cells in the enclosed and free blades. In mice tested for contextual freezing, there was a correlation between Arc-positive cells in the enclosed and free blades. In addition, in mice irradiated with 0.5Gy, contextual freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive cells in the enclosed blade. In mice tested for cued freezing, there was no correlation between Arc-positive cells in the enclosed and free blades. In contrast, cued freezing in the presence or absence of aversive stimuli correlated with Arc-positive cells in the free blade. In addition, in mice irradiated with 1Gy cued freezing in the absence of aversive stimuli correlated with the percentage of Arc-positive neurons in the free blade. These data indicate that while whole body (56)Fe radiation affects contextual freezing and Arc-positive cells

  12. Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.

    2011-01-01

    The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.

  13. Elevated plus-maze performance of Fischer-344 rats as a function of age and of exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.

  14. Neutron scattering cross section measurements for Fe 56

    DOE PAGES

    Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; ...

    2017-06-09

    Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less

  15. Neutron scattering cross section measurements for 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; McEllistrem, M. T.; Peters, E. E.; Mukhopadhyay, S.; Harrison, T. D.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.; Rice, B. G.; Thompson, B. K.; Yates, S. W.

    2017-06-01

    Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C6D6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the talys and empire nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimental (n ,n0 ) and (n ,n1 ) cross sections well.

  16. Measurement of Fe2+ ion by coulometry method at incubation of Thiobacillus ferrooxidans.

    PubMed

    Tsuda, I; Kato, K; Nozaki, K

    1996-12-01

    Thiobacillus ferrooxidans is a chemoautotrophic bacterium that is capable of using Fe2+ oxidation by O2 as the sole source of energy for growth and CO2 fixation. The idea of the solar bacterial biomass farm by using of this bacterium is proposed. The incubation experiment of these bacteria was carried out, and the 9K culture medium as the standard medium for T. ferrooxidans was used. The measurement of Fe2+ in the growth stage was carried out as the first step of the experiments to clarify the possibility of this system. The items of measurement were Fe2+ ion density, pH of the medium, bacterium density and quantity of total organic carbon (TOC). The density of Fe2+ ion in the medium was measured by coulometry method. This method has the following advantage, high accuracy (<1%), easy operation, short measurement time (a few minutes) and small sample quantity (about 0.1 ml). The experimental results show that the Fe 2+ ion density is measured as same as the accuracy of pH measurement. At the final stage of the growth, the pH decreased due to the generation of the iron hydroxide (Fe(OH)3). The bacterium density and TOC slightly increased after that Fe2+ runs short. This result shows that the CO2 fixation speed is slower than Fe2+ oxidation speed. It is shown by the experiment that the growth limit of T. ferrooxidans is caused by the disappearance of the Fe2+ ion. It may be possible that the bacterium density increases by the continuous supply of Fe2+ ion.

  17. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    PubMed

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  18. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation

    PubMed Central

    Sweet, Tara B.; Hurley, Sean D.; Wu, Michael D.; Olschowka, John A.; Williams, Jacqueline P.; O’Banion, M. Kerry

    2017-01-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel. PMID:27905869

  19. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study.

    PubMed

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-05

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH 3 -SCR or DeNOx) of NO using NH 3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO 3 solution and NH 4 F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH 3 -SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH 3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO 3 ) than in Fe-MCM-56 (HF/NH 4 F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N 2 O decomposition, with maximum N 2 O conversion not higher than 80% and activity window starting at 500°C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  1. Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions

    NASA Astrophysics Data System (ADS)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing

    2018-05-01

    Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).

  2. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  3. Ejection of nanoclusters from gold nanoislet layers by 38 keV Au ions in the elastic stopping mode.

    PubMed

    Baranov, I A; Della-Negra, S; Domaratsky, V P; Chemezov, A V; Kirillov, S N; Novikov, A C; Obnorsky, V V; Pautrat, M; Urbassek, H M; Wien, K; Yarmiychuk, S V; Zhurkin, E E

    2009-07-01

    Total absolute yields of the ejected gold were obtained regardless of the type of the particles are--atoms, clusters, nanoclusters,--as well as absolute yields of gold nanoclusters, from nanoislet gold targets under bombardment by monoatomic gold ions at 45 degrees to the target surface with the energy 38 keV, i.e., in the "purely" elastic stopping mode -6 keV/nm up to the fluence of 4 x 10(12) cm2. Three targets had gold nanoislets on the substrate surface: 2-12 nm; -18 nm; -35 nm, the most probable sizes being 7.1; 9.4; 17.5 nm respectively. The part of the surface area covered with gold was known. Total transfer of gold was determined by means of the neutron-activation analysis and decreased from 450 to 20 at/ion. The number of the ejected gold nanoclusters was determined using TEM and decreased from approximately 0.06 to < 0.01 per one 38 keV Au ion with the increase of the most probable sizes of the nanoislets on the target from 7.1 to 17.5 nm. The yields appeared to be surprisingly high, which is of scientific and practical importance. Tentative estimations were made using molecular dynamics simulations.

  4. Activity measurements of 55Fe by two different methods

    NASA Astrophysics Data System (ADS)

    da Cruz, Paulo A. L.; Iwahara, Akira; da Silva, Carlos J.; Poledna, Roberto; Loureiro, Jamir S.; da Silva, Monica A. L.; Ruzzarin, Anelise

    2018-03-01

    A calibrated germanium detector and CIEMAT/NIST liquid scintillation method were used in the standardization of solution of 55Fe coming from a key-comparison BIPM. Commercial cocktails were used in source preparation for activity measurements in CIEMAT/NIST method. Measurements were performed in Liquid Scintillation Counter. In the germanium counting method standard point sources were prepared for obtaining atomic number versus efficiency curve of the detector in order to obtain the efficiency of 5.9 keV KX-ray of 55Fe by interpolation. The activity concentrations obtained were 508.17 ± 3.56 and 509.95 ± 16.20 kBq/g for CIEMAT/NIST and germanium methods, respectively.

  5. Surface damage in cystine, an amino acid dimer, induced by keV ions.

    PubMed

    Salles, R C M; Coutinho, L H; da Veiga, A G; Sant'Anna, M M; de Souza, G G B

    2018-01-28

    We have studied the interaction of an ion beam (17.6 keV F - ) with cystine, a dimer formed by the binding of two cysteine residues. Cystine can be considered as an ideal prototype for the study of the relevance of the disulfide (-S-S-) chemical bond in biomolecules. For the sake of comparison, the amino acid cysteine has also been subjected to the same experimental conditions. Characterization of the samples by XPS and NEXAFS shows that both pristine cystine and pristine cysteine are found as a dipolar ion (zwitterion). Following irradiation, the dimer and the amino acid show a tendency to change from the dipole ion form to the normal uncharged form. The largest spectral modification was observed in the high resolution XPS spectra obtained at around the N 1s core level for the two biomolecules. The 2p sulfur edge spectra of cysteine and cystine were much less sensitive to radiation effects. We suggest that the disulfide bond (-S-S-) remains stable before and after irradiation, contributing to the larger radiation stability of cystine as compared to the amino acid cysteine.

  6. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    PubMed

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  7. Ionoluminescence properties of polystyrene-hosted fluorophore films induced by helium ions of energy 50-350 keV

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Huang, Mengbing

    2017-10-01

    We report on measurements and analysis of ionoluminescence properties of pure polystyrene films and polystyrene films doped with four types of fluorophores in low kinetic energies (50-350 keV) of ion irradiation. We have developed a theoretical model to understand the experimentally observed ionoluminescence behaviors in terms of scintillation yield from individual ion tracks, photophysical energy transfer mechanisms, and irradiation-induced defects. A comparison of the model and experimental results suggests that singlet up-conversion resulting from triplet-triplet annihilation processes may be responsible for enhanced singlet emission of the fluorophores at high ion beam flux densities. Energy transfer from the polystyrene matrix to the fluorophore molecules has been identified as an effective pathway to increasing the fluorescence efficiency in the doped scintillator films.

  8. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  9. Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo

    NASA Technical Reports Server (NTRS)

    Brooks, A.; Bao, S.; Rithidech, K.; Couch, L. A.; Braby, L. A.

    2001-01-01

    One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE

  10. Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: Morphological and compositional correlation

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gago, R.; Palomares, F. J.; Mücklich, A.; Vinnichenko, M.; Vázquez, L.

    2012-08-01

    The formation and dynamics of nanopatterns produced on Si(100) surfaces by 40-keV Ar+ oblique (α = 60°) bombardment with concurrent Fe codeposition have been studied. Morphological and chemical analysis has been performed by ex situ atomic force microscopy, Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and scanning and transmission electron microscopies. During irradiation, Fe atoms incorporated into the target surface react with Si to form silicides, a process enhanced at this medium-ion energy range. The silicides segregate at the nanoscale from the early irradiation stages. As the irradiation proceeds, a ripple pattern is formed without any correlation with silicide segregation. From the comparison with the pattern dynamics reported previously for metal-free conditions, it is demonstrated that the metal incorporation alters both the pattern dynamics and the morphology. Although the pattern formation and dynamics are delayed for decreasing metal content, once ripples emerge, the same qualitative pattern of morphological evolution is observed for different metal content, resulting in an asymptotic saw-tooth-like facetted surface pattern. Despite the medium ion energy employed, the nanopatterning process with concurrent Fe deposition can be explained by those mechanisms proposed for low-ion energy irradiations such as shadowing, height fluctuations, silicide formation and segregation, ensuing composition dependent sputter rate, and ion sculpting effects. In particular, the interplay between the ion irradiation and metal flux geometries, differences in sputtering rates, and the surface pattern morphology produces a dynamic compositional patterning correlated with the evolving morphological one.

  11. Fragmentation studies of relativistic iron ions using plastic nuclear track detectors.

    PubMed

    Scampoli, P; Durante, M; Grossi, G; Manti, L; Pugliese, M; Gialanella, G

    2005-01-01

    We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Ba3Fe1.56Ir1.44O9: A Polar Semiconducting Triple Perovskite with Near Room Temperature Magnetic Ordering.

    PubMed

    Ferreira, Timothy; Carone, Darren; Huon, Amanda; Herklotz, Andreas; Stoian, Sebastian A; Heald, Steve M; Morrison, Gregory; Smith, Mark D; Loye, Hans-Conrad Zur

    2018-05-29

    The crystal chemistry and magnetic properties for two triple perovskites, Ba 3 Fe 1.56 Ir 1.44 O 9 and Ba 3 NiIr 2 O 9 , grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A 3 MM 2 'O 9 hexagonal symmetry characteristic of most triple perovskites, including Ba 3 NiIr 2 O 9, Ba 3 Fe 1.56 Ir 1.44 O 9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O 6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (T N = 270 K) was observed for Ba 3 Fe 1.56 Ir 1.44 O 9 .

  13. 56. Building 105, close view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Building 105, close view of ion return RF balance tube adjustment controls. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. Temperature-Dependent Helium Ion-Beam Mixing in an Amorphous SiOC/Crystalline Fe Composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2016-10-31

    Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873more » K, the Fe marker layer broke down and RBS could no longer be used to quantitatively examine the amount of ion mixing. The results indicate that the Fe/SiOC nanocomposite is thermally stable and tends to demix in the temperature range from 473 to 673 K. For application of this composite structure at temperatures of 873 K or higher, layer stability is a key consideration.« less

  15. Diverse delayed effects in human lymphoblastoid cells surviving exposure to high-LET (56)Fe particles or low-LET (137)Cs gamma radiation

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.

  16. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.

    PubMed

    Behera, Rabindra K; Theil, Elizabeth C

    2014-06-03

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron-protein cofactors and oxidant protection (Fe(2+) and O2 sequestration). Fe(2+) passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe(2+) substrate movement to ferritin enzyme (Fox) sites. Fe(2+) and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe(3+)-O-Fe(3+)] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe(2+) concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe(2+) access), Mn(2+) < Co(2+) < Cu(2+) < Zn(2+), reflecting metal ion-protein binding stabilities. Fe(2+)-Cys126 binding in ferritin ion channels, observed as Cu(2+)-S-Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu(2+) inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe(2+) movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe(2+) into ferritin enzymatic sites. The results clarify Fe(2+) transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations.

  17. Acceleration of 500 keV Negative Ion Beams By Tuning Vacuum Insulation Distance On JT-60 Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2011-09-26

    Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less

  18. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Hanada, M.; Kojima, A.

    2010-02-15

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cmx1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D{sup -} ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulsemore » duration to hold 500 kV reached 40 s of the power supply limitation.« less

  19. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Guo, Wei; Lu, Chenyang

    Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less

  20. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys

    DOE PAGES

    Jin, Ke; Guo, Wei; Lu, Chenyang; ...

    2016-12-01

    Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less

  1. Dipeptide Formation from Amino Acid Monomer Induced by keV Ion Irradiation: An Implication for Physicochemical Repair by Radiation Itself

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yuan, Hang; Wang, Xiangqin; Yu, Zengliang

    2008-02-01

    An identification of Phe dipeptide from L-phenylalanine monomers after keV nitrogen and argon ion implantation, by using the HPLC (high performance liquid chromatography) and LC-MS(liquid chromatography mass spectrometer) methods is reported. The results showed a similar yield behavior for both ion species, namely: 1) the yield of dipeptides under alkalescent conditions was distinctly higher than that under acidic or neutral conditions; 2) for different ion species, the dose-yield curves tracked a similar trend which was called a counter-saddle curve. The dipeptide formation may implicate a recombination repair mechanism of damaged biomolecules that energetic ions have left in their wake. Accordingly a physicochemical self-repair mechanism by radiation itself for the ion-beam radiobiological effects is proposed.

  2. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates

    PubMed Central

    Behera, Rabindra K.; Theil, Elizabeth C.

    2014-01-01

    Ferritin biominerals are protein-caged metabolic iron concentrates used for iron–protein cofactors and oxidant protection (Fe2+ and O2 sequestration). Fe2+ passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe2+ substrate movement to ferritin enzyme (Fox) sites. Fe2+ and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe3+–O–Fe3+] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe2+ concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe2+ access), Mn2+ << Co2+ < Cu2+ < Zn2+, reflecting metal ion–protein binding stabilities. Fe2+–Cys126 binding in ferritin ion channels, observed as Cu2+–S–Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu2+ inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe2+ movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe2+ into ferritin enzymatic sites. The results clarify Fe2+ transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations. PMID:24843174

  3. Effects of 200 keV Ar-ions irradiation on the structural and optical properties of reactively sputtered CrN films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Modification in structural and optical properties of chromium-nitride (CrN) films induced by argon ion irradiation and thermal annealings were investigated using various experimental techniques. CrN films deposited by d. c. reactive sputtering on Si substrate were implanted with 200 keV argon ions, at fluences of 5-20 × 1015 ions/cm2. As-implanted samples were then annealed in vacuum, for 2 h at 700 °C. Rutherford backscattering spectrometry, X-ray diffraction, cross-sectional (high-resolution) transmission electron microscopy and spectroscopic ellipsometry (SE) measurements were carried out in order to study structural and optical properties of the layers. After irradiation with 200 keV Ar ions a damaged surface layer of nanocrystalline structure was generated, which extended beyond the implantation profile, but left an undamaged bottom zone. Partial loss of columnar structure observed in implanted samples was recovered after annealing at 700 °C and CrN started to decompose to Cr2N. This layer geometry determined from transmission electron microscopy was inferred in the analysis of SE data using the combined Drude and Tauc-Lorentz model, and the variation of the optical bandgap was deduced. The results are discussed on the basis of the changes induced in the microstructure. It was found that the optical properties of the layers are strongly dependent on the defects' concentration of CrN.

  4. Surface chemical reactions induced on pyrite by ion bombardment

    NASA Astrophysics Data System (ADS)

    Ruano, Gustavo; Pomiro, Fernando; Ferrón, Julio

    2018-01-01

    Through X-ray photoemission spectroscopy (XPS), we studied the chemical changes induced in a natural crystal of pyrite (FeS2) upon exposure to 4.5 keV He+ beam. We found an important reducing effect induced by ion bombardment leading to the production of iron embedded in the pyrite matrix. Through a combination of the usual Doniach-Sunjic treatment and Factor Analysis of XPS yields, we were able of analyzing the full Fe 2p XPS signal. We could in this way distinguish Fe compounds with the same binding energy for the Fe 2p3/2 yield. Our results show that He+ bombardment disrupts the ionic environment producing S2-2 and S0, Fe2+ and Fe3+ ions, and the reduction to metallic iron. The remaining pyrite matrix does not passivate the embedded iron structures, which are readily oxidized under air exposure. The oxide formed resembled that of magnetite from the XPS point of view. Further He+ bombardment proved to be efficient to reduce the iron oxide back to iron again.

  5. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  6. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19

    DOE PAGES

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-05-15

    We report the synthesis, structure, and electrochemistry of the first Na +-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g -1; ca. 1.7 Na + ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na +/Na.

  7. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance.

    PubMed

    Hou, Bao-Hua; Wang, Ying-Ying; Guo, Jin-Zhi; Zhang, Yu; Ning, Qiu-Li; Yang, Yang; Li, Wen-Hao; Zhang, Jing-Ping; Wang, Xin-Long; Wu, Xing-Long

    2018-01-31

    A novel core-shell Fe 3 O 4 @FeS composed of Fe 3 O 4 core and FeS shell with the morphology of regular octahedra has been prepared via a facile and scalable strategy via employing commercial Fe 3 O 4 as the precursor. When used as anode material for sodium-ion batteries (SIBs), the prepared Fe 3 O 4 @FeS combines the merits of FeS and Fe 3 O 4 with high Na-storage capacity and superior cycling stability, respectively. The optimized Fe 3 O 4 @FeS electrode shows ultralong cycle life and outstanding rate capability. For instance, it remains a capacity retention of 90.8% with a reversible capacity of 169 mAh g -1 after 750 cycles at 0.2 A g -1 and 151 mAh g -1 at a high current density of 2 A g -1 , which is about 7.5 times in comparison to the Na-storage capacity of commercial Fe 3 O 4 . More importantly, the prepared Fe 3 O 4 @FeS also exhibits excellent full-cell performance. The assembled Fe 3 O 4 @FeS//Na 3 V 2 (PO 4 ) 2 O 2 F sodium-ion full battery gives a reversible capacity of 157 mAh g -1 after 50 cycles at 0.5 A g -1 with a capacity retention of 92.3% and the Coulombic efficiency of around 100%, demonstrating its applicability for sodium-ion full batteries as a promising anode. Furthermore, it is also disclosed that such superior electrochemical properties can be attributed to the pseudocapacitive behavior of FeS shell as demonstrated by the kinetics studies as well as the core-shell structure. In view of the large-scale availability of commercial precursor and ease of preparation, this study provide a scalable strategy to develop advanced anode materials for SIBs.

  8. The Heidelberg compact electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.

    2018-06-01

    Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.

  9. Porous Fe2O3 Microspheres as Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Noerochim, L.; Indra, M. A. T.; Purwaningsih, H.; Subhan, A.

    2018-05-01

    In this work, Fe2O3 was successfully synthesized by the hydrothermal process at low temperature. FeCl3.6H2O as precursor and variation of lysine as hydrolyzing agent were used to preparing Fe2O3. SEM images show that the morphology of Fe2O3 is porous microsphere with sizes in the range of (1 to 5) µm in diameter. The as-prepared Fe2O3 with the 2 M of lysine exhibits excellent cycling performance when used as the anode for lithium ion batteries, obtaining reversible discharge capacity of 172.33 mA·h·g‑1 at 0.5 C after 50 cycles. It is attributed to the unique structure of porous microspheres providing a large surface area which maintains good electronic contact between particles during charge-discharge process. This result demonstrates that Fe2O3 porous microsphere has a high potential as anode material for application of lithium-ion battery.

  10. High surface stability of magnetite on bi-layer Fe3O4/Fe/MgO(0 0 1) films under 1 MeV Kr+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Krupska, M.; Balogh, A. G.; Malinsky, P.; Mackova, A.

    2017-12-01

    We investigate the stability of the bi-layer Fe3O4/Fe(0 0 1) films grown epitaxially on MgO(0 0 1) substrates with the layer thickness in the range of 25-100 nm upon 1 MeV Kr+ ion irradiation. The layer structure and layer composition of the films before and after ion irradiation were studied by XRR, RBS and RBS-C techniques. The interdiffusion and intermixing was analyzed. No visible change in the RBS spectra was observed upon irradiation with ion fluence below 1015 Kr cm-2. The bi-layer structure and the stoichiometric Fe3O4 layer on the surface were well preserved after Kr+ ion irradiation at low damage levels, although the strong intermixing implied a large interfacial (Fe x O y ) and (Fe, Mg)O y layer respective at Fe3O4-Fe and Fe-MgO interface. The high ion fluence of 3.8  ×  1016 Kr cm-2 has induced a complete oxidization of the buffer Fe layer. Under such Kr fluence, the stoichiometry of the Fe3O4 surface layer was still preserved indicating its high stability. The entire film contains Fe x O y -type composition at ion fluence large than 5.0  ×  1016 Kr cm-2.

  11. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  12. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  13. The average 0.5-200 keV spectrum of local active galactic nuclei and a new determination of the 2-10 keV luminosity function at z ≈ 0

    NASA Astrophysics Data System (ADS)

    Ballantyne, D. R.

    2014-01-01

    The broad-band X-ray spectra of active galactic nuclei (AGNs) contains information about the nuclear environment from Schwarzschild radii scales (where the primary power law is generated in a corona) to distances of ˜1 pc (where the distant reflector may be located). In addition, the average shape of the X-ray spectrum is an important input into X-ray background synthesis models. Here, local (z ≈ 0) AGN luminosity functions (LFs) in five energy bands are used as a low-resolution, luminosity-dependent X-ray spectrometer in order to constrain the average AGN X-ray spectrum between 0.5 and 200 keV. The 15-55 keV LF measured by Swift-BAT is assumed to be the best determination of the local LF, and then a spectral model is varied to determine the best fit to the 0.5-2 keV, 2-10 keV, 3-20 keV and 14-195 keV LFs. The spectral model consists of a Gaussian distribution of power laws with a mean photon-index <Γ> and cutoff energy Ecut, as well as contributions from distant and disc reflection. The reflection strength is parametrized by varying the Fe abundance relative to solar, AFe, and requiring a specific Fe Kα equivalent width (EW). In this way, the presence of the X-ray Baldwin effect can be tested. The spectral model that best fits the four LFs has <Γ> = 1.85 ± 0.15, E_{cut}=270^{+170}_{-80} keV, A_{Fe}=0.3^{+0.3}_{-0.15}. The sub-solar AFe is unlikely to be a true measure of the gas-phase metallicity, but indicates the presence of strong reflection given the assumed Fe Kα EW. Indeed, parametrizing the reflection strength with the R parameter gives R=1.7^{+1.7}_{-0.85}. There is moderate evidence for no X-ray Baldwin effect. Accretion disc reflection is included in the best-fitting model, but it is relatively weak (broad iron Kα EW < 100 eV) and does not significantly affect any of the conclusions. A critical result of our procedure is that the shape of the local 2-10 keV LF measured by HEAO-1 and MAXI is incompatible with the LFs measured in the hard X

  14. Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza

    2018-05-01

    The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.

  15. Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.

    Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less

  16. Level density and mechanism of deuteron-induced reactions on Fe 54 , 56 , 58

    DOE PAGES

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; ...

    2015-07-06

    Here, deuteron elastic cross sections, as well as neutron, proton, and α-particle emission spectra, from d+ 54,56,58Fe reactions have been measured with deuteron beam energies of 5, 7, and 9 MeV. Optical model parameters have been tested against our experimental data. The fraction of total reaction cross section responsible for the formation of compound nuclei has been deduced from the angular distributions. The degree of discrepancy between calculated and experimental compound cross sections was found to increase with increasing neutron number. The nuclear level densities of the residual nuclei 55Co, 57Co, 55Fe, 57Fe, 52Mn, and 54Mn have been deduced frommore » the compound double differential cross sections. The Gilbert-Cameron model with Iljinov parameter systematics [A. S. Iljinov and M. V. Mebel, Nucl. Phys. A 543, 517 (1992)] was found to have a good agreement with our results.« less

  17. Acridine-based fluorescence chemosensors for selective sensing of Fe3+ and Ni2+ ions

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyu; Fu, Jiaxin; Yao, Kun; Xue, Kun; Xu, Kuoxi; Pang, Xiaobin

    2018-06-01

    Two novel acridine-based fluorescence chemosensors (L1 and L2) were prepared and their metal ions sensing properties were investigated. L1 (L2) exhibited an excellent selective fluorescence response toward Fe3+ (Ni2+) and the stoichiometry ratio of L1-Fe3+ and L2-Ni2+ were 1:1. The detection limits of L1 and L2 were calculated by the fluorescence titration to be 4.13 μM and 1.52 μM, respectively, which were below the maximum permissive level of Fe3+ and Ni2+ ions in drinking water set by the EPA. The possible mechanism of the fluorescence detection of Fe3+ and Ni2+ had been proposed according to the analysis of Job's plot, IR spectra and ESI-MS. The determination of Fe3+ and Ni2+ ions in living cells had been applied successfully.

  18. Effects of exposure to 56Fe particles on the acquisition of a conditioned place preference in rats

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Shukitt-Hale, B.; Joseph, J. A.; Denissova, N.

    2001-01-01

    Exposure to low doses of 56Fe particles produces changes in neural function and behavior. The present experiments were designed to examine the effects of irradiation on the acquisition of a dopamine-mediated conditioned place preference (CPP). In the CPP procedure, rats are given an injection of the dopamine agonist amphetamine in one distinctive compartment and a saline injection in a different compartment of a three-compartment apparatus. Control rats develop a preference for the amphetamine-paired compartment. In contrast, rats exposed to 1 Gy of 56Fe particles fail to develop a similar preference. The results of the experiment indicate that exposure to low doses of heavy particles can disrupt the neural mechanisms that mediate the reinforcement of behavior.

  19. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Impact of Template Types on Polyeugenol to the Adsorption Selectivity of Ionic Imprinted Polymer (IIP) Fe Metal Ion

    NASA Astrophysics Data System (ADS)

    Djunaidi, M. C.; Haris, A.; Pardoyo; Rosdiana, K.

    2018-04-01

    The synthesis of IIP was carried out by variation of Fe(III) ion templates from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 compounds which then tested IIP selectivity to the Fe metal ions through adsorption process. Ionic Imprinted Polymer (IIP) is a method of printing metal ions bound in a polymer, subsequently released from the polymer matrix to produce a suitable imprint for the target ion. The purposes of this study were to produce IIP from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates, to know the effect of templates on adsorption selectivity of IIP involving imprint cavity, and to know the impact of metal competitor on the selectivity adsorption of IIP to the Fe metals. The results obtained showed that IIP synthesized by variations of Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates were successfully synthesized. The adsorption selectivity of Fe (III) metal ion in the Fe(NO3)3 template was greater than that of in the K3[Fe(CN)6] and NH4Fe(SO4)2 templates. The adsorption selectivity of Fe was greater on Fe-Cr compared to on Fe-Cd and Fe-Pb.

  1. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  2. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.

    PubMed

    Tosha, Takehiko; Behera, Rabindra K; Theil, Elizabeth C

    2012-11-05

    Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.

  3. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  4. New ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  5. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).

  6. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    Electrocoagulation (EC) using Fe(0) electrodes is an inexpensive and efficient technology capable of removing a variety of contaminants from water supplies. Because of its ease of use and modest electricity and Fe(0) requirements, EC has potential as an arsenic-removal technology for rural South Asia, where millions drink groundwater contaminated by arsenic. In EC, a small external voltage applied to a sacrificial Fe(0) anode in contact with an electrolyte (e.g. pumped groundwater containing arsenic) promotes the oxidative dissolution of Fe ions, which polymerize and create reactive hydrous ferric oxides (HFO) in-situ with a high affinity for binding contaminants. The chemical composition of the electrolyte influences EC performance. For example, major inorganic ions present in groundwater (e.g. Ca, Mg, P, As(V), Si) alter the pathway by which FeO6 oligomers polymerize to form crystalline Fe (oxyhydr)oxide minerals. Because the precipitate structure largely determines properties that govern the efficiency of EC systems (e.g. precipitate reactivity and colloidal stability), it is essential to understand the individual and interdependent structural effects of common groundwater ions. In this work, we integrate Fe K-edge EXAFS spectroscopy with the Pair Distribution Function (PDF) technique to create a detailed description of EC precipitate structure as a function of electrolyte chemistry. EC precipitate samples were generated in a range of individual and combined concentrations of Ca, Mg, P, As(V), and Si, encompassing most of the typical levels found in natural groundwater. Combining complementary EXAFS and PDF techniques with batch uptake experiments and general chemical reasoning, we obtain structural representations of EC precipitates that are inaccessible with any single characterization technique. Our results indicate that the presence of As(V), P, and Si oxyanions promote the formation of nanoscale material bearing similar, but not identical, intermediate

  7. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    PubMed

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  8. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.

    PubMed

    Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae

    2013-12-01

    The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  10. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    NASA Astrophysics Data System (ADS)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-01

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production to the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.

  11. Galactic heavy-ion shielding using electrostatic fields

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1984-01-01

    The shielding of spacecraft against galactic heavy ions, particularly high-energy Fe(56) nuclei, by electrostatic fields is analyzed for an arrangement of spherical concentric shells. Vacuum breakdown considerations are found to limit the minimum radii of the spheres to over 100 m. This limitation makes it impractical to use the fields for shielding small spacecraft. The voltages necessary to repel these Fe(56) nuclei exceed present electrostatic generating capabilities by over 2 orders of magnitude and render the concept useless as an alternative to traditional bulk-material shielding methods.

  12. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, K.; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to 28Si- ions with energies ranging from 90 to 600 MeV/u, or to 56Fe-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET of the Si ions ranged from 48 to 158 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to -rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600-Mev/u beam, and the highest RBE(sub max) value for Si ions was obtained with the 170 MeV/u beam. For both ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/ m for Si, and decreasing with further increase in LET. Additional studies for low doses 28Si-ions down to 0.02 Gy will be discussed.

  13. Synthesis of Ag metallic nanoparticles by 120 keV Ag- ion implantation in TiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Himanshu; Singhal, Rahul

    2017-12-01

    TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag- ion with different doses (3 × 1014, 1 × 1015, 3 × 1015, 1 × 1016 and 3 × 1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV-visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3 × 1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.

  14. Cu self-sputtering MD simulations for 0.1-5 keV ions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Metspalu, Tarvo; Jansson, Ville; Zadin, Vahur; Avchaciov, Konstantin; Nordlund, Kai; Aabloo, Alvo; Djurabekova, Flyura

    2018-01-01

    Self-sputtering of copper under high electric fields is considered to contribute to plasma buildup during a vacuum breakdown event frequently observed near metal surfaces, even in ultra high vacuum condition in different electric devices. In this study, by means of molecular dynamics simulations, we analyze the effect of surface temperature and morphology on the yield of self-sputtering of copper with ion energies of 0.1-5 keV. We analyze all three low-index surfaces of Cu, {1 0 0}, {1 1 0} and {1 1 1}, held at different temperatures, 300 K, 500 K and 1200 K. The surface roughness relief is studied by either varying the angle of incidence on flat surfaces, or by using arbitrary roughened surfaces, which result in a more natural distribution of surface relief variations. Our simulations provide detailed characterization of copper self-sputtering with respect to different material temperatures, crystallographic orientations, surface roughness, energies, and angles of ion incidence.

  15. Investigation of sodium insertion–extraction in olivine Na x FePO 4 (0 ≤ x ≤ 1) using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracibar, A.; Carrasco, J.; Saurel, D.

    Olivine NaFePO4 has recently attracted the attention of the scientific community as a promising cathode material for Na-ion batteries. In this work we combine density functional theory (DFT) calculations and high resolution synchrotron X-ray diffraction (HRXRD) experiments to study the phase stability of NaxFePO4 along the whole range of sodium compositions (0 ≤ x ≤ 1). DFT calculations reveal the existence of two intermediate structures governing the phase stability at x = 2/3 and x = 5/6. This is in contrast to isostructural LiFePO4, which is a broadly used cathode in Li-ion batteries. Na2/3FePO4 and Na5/6FePO4 ground states both alignmore » vacancies diagonally within the ab plane, coupled to a Fe2+/Fe3+ alignment. HRXRD data for NaxFePO4 (2/3 < x < 1) materials show common superstructure reflections up to x = 5/6 within the studied compositions. The computed intercalation voltage profile shows a voltage difference of 0.16 V between NaFePO4 and Na2/3FePO4 in agreement with the voltage discontinuity observed experimentally during electrochemical insertion.« less

  16. Low-energy enhancement and fluctuations of γ -ray strength functions in 56,57 Fe: test of the Brink–Axel hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A. C.; Guttormsen, M.; Blasi, N.

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less

  17. Low-energy enhancement and fluctuations of γ-ray strength functions in 56,57Fe: test of the Brink-Axel hypothesis

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.

    2017-06-01

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.

  18. Low-energy enhancement and fluctuations of γ -ray strength functions in 56,57 Fe: test of the Brink–Axel hypothesis

    DOE PAGES

    Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...

    2017-04-24

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less

  19. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  20. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  1. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  2. Rutherford Backscattering Spectrometry studies of 100 keV nitrogen ion implanted polypropylene polymer

    NASA Astrophysics Data System (ADS)

    Chawla, Mahak; Aggarwal, Sanjeev; Sharma, Annu

    2017-09-01

    The effect of nitrogen ion implantation on the structure and composition in polypropylene (PP) polymer has been studied. Implantation was carried out using 100 keV N+ ions at different fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 with beam current density of ∼0.65 μA cm-2. Surface morphological changes in the pre- and post-implanted PP specimens have been studied using Rutherford Backscattering Spectrometry (RBS) and UV-Visible Spectroscopy. The spatial distribution of implantation induced modification in the form of carbonization and dehydrogenation in the near surface region of PP matrix, the projected range, retained dose of implanted nitrogen, the various elements present in the implanted layers and their differential cross-sections have been analyzed using RBS spectra. RUMP simulation yielded an increase in the concentration of carbon near the surface from 33 at.% (virgin) to 42 at.% at fluence of 1 × 1017 N+ cm-2. Further, optical absorption has been found to increase with a shift in the absorption edge from UV towards visible region with increasing fluence. UV-Vis absorption spectra also indicate a drastic decrease in optical energy gap from 4.12 eV (virgin) to 0.25 eV (1 × 1017 N+ cm-2) indicating towards the formation of carbonaceous network in the implanted region. All these changes observed using UV-Visible have been further correlated with the outcomes of the RBS characterization.

  3. The calculation and evaluation for n+54,56,57,58Fe reactions

    NASA Astrophysics Data System (ADS)

    Han, Yinlu; Xu, Yongli; Guo, Hairui; Zhang, Zhengjun; Liang, Haiying; Cai, Chonghai; Shen, Qingbiao

    2017-09-01

    All cross sections of neutron-induced reactions, angular distributions, double differential cross sections, angle-integrated spectra, γ-ray production cross sections and energy spectra for 54,56,57,58Fe are calculated by using theoretical models at incident neutron energies from 0.1 to 200 MeV. The present consistent theoretical calculated results are in good agreement with recent experimental data. The present evaluated data are compared with the existing experimental data and evaluated results from ENDF/B-VII, JENDL-4, JEFF-3, and the results are given in ENDF/B format.

  4. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    PubMed

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  5. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  6. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Fe Isotope Fractionation During Fe(III) Reduction to Fe(II)

    NASA Astrophysics Data System (ADS)

    Baker, E. A.; Greene, S.; Hardin, E. E.; Hodierne, C. E.; Rosenberg, A.; John, S.

    2014-12-01

    The redox chemistry of Fe(III) and Fe(II) is tied to a variety of earth processes, including biological, chemical, or photochemical reduction of Fe(III) to Fe(II). Each process may fractionate Fe isotopes, but the magnitudes of the kinetic isotope effects have not been greatly explored in laboratory conditions. Here, we present the isotopic fractionation of Fe during reduction experiments under a variety of experimental conditions including photochemical reduction of Fe(III) bound to EDTA or glucaric acid, and chemical reduction of Fe-EDTA by sodium dithionite, hydroxylamine hydrochloride, Mn(II), and ascorbic acid. A variety of temperatures and pHs were tested. In all experiments, Fe(III) bound to an organic ligand was reduced in the presence of ferrozine. Ferrozine binds with Fe(II), forming a purple complex which allows us to measure the extent of reaction. The absorbance of the experimental solutions was measured over time to determine the Fe(II)-ferrozine concentration and thus the reduction rate. After about 5% of the Fe(III) was reduced, Fe(III)-EDTA and Fe(II)-ferrozine were separated using a C-18 column to which Fe(II)-ferrozine binds. The Fe(II) was eluted and purified through anion exchange chromatography for analysis of δ56Fe by MC-ICPMS. Preliminary results show that temperature and pH both affect reduction rate. All chemical reductants tested reduce Fe(III) at a greater rate as temperature increases. The photochemical reductant EDTA reduces Fe(III) at a greater rate under more acidic conditions. Comparison of the two photochemical reductants shows that glucaric acid reduces Fe(III) significantly faster than EDTA. For chemical reduction, the magnitude of isotopic fractionation depends on the reductant used. Temperature and pH also affect the isotopic fractionation of Fe. Experiments using chemical reductants show that an increase in temperature at low temperatures produces lighter 56Fe ratios, while at high temperatures some reductants produce heavier

  8. Lattice sites of ion-implanted Mn, Fe and Ni in 6H-SiC

    NASA Astrophysics Data System (ADS)

    Costa, A. R. G.; Wahl, U.; Correia, J. G.; David-Bosne, E.; Amorim, L. M.; Augustyns, V.; Silva, D. J.; da Silva, M. R.; Pereira, L. M. C.

    2018-01-01

    Using radioactive isotopes produced at the CERN-ISOLDE facility, the lattice location of the implanted transition metal (TM) ions 56Mn, 59Fe and 65Ni in n-type single-crystalline hexagonal 6H-SiC was studied by means of the emission channeling technique. TM probes on carbon coordinated tetrahedral interstitial sites (T C) and on substitutional silicon sites (S Si,h+k ) were identified. We tested for but found no indication that the TM distribution on S Si sites deviates from the statistical mixture of 1/3 hexagonal and 2/3 cubic sites present in the 6H crystal. The TM atoms partially disappear from T C positions during annealing at temperatures between 500 °C and 700 °C which is accompanied by an increase on S Si and random sites. From the temperature associated with these site changes, interstitial migration energies of 1.7-2.7 eV for Mn and Ni, and 2.3-3.2 eV for Fe were estimated. TM lattice locations are compared to previous results obtained in 3C-SiC using the same technique.

  9. LiFePO4 mesocrystals for lithium-ion batteries.

    PubMed

    Popovic, Jelena; Demir-Cakan, Rezan; Tornow, Julian; Morcrette, Mathieu; Su, Dang Sheng; Schlögl, Robert; Antonietti, Markus; Titirici, Maria-Magdalena

    2011-04-18

    Olivine LiFePO(4) is considered one of the most promising cathode materials for Li-ion batteries. A simple one-step, template-free, low-temperature solvothermal method is developed for the synthesis of urchinlike hierarchical mesocrystals of pristine LiFePO(4) as well as carbon-coated LiFePO(4) composites. Each urchinlike mesocrystal consists of LiFePO(4) sheets self-assembled via a dipolar field in spheres during a solvothermal process under the influence of Cl(-) anions. The obtained primary sheets of LiFePO(4) are single crystalline in nature and can be coated in situ with an amorphous nitrogen-doped carbonaceous layer several nanometers in thickness. To increase the conductivity of the carbon coating, the materials are subjected to further temperature treatment (700 °C) under an inert atmosphere. The lithium storage performance of the pure LiFePO(4) is compared with that of its carbon-coated counterparts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  11. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    PubMed Central

    Zheng, Yi; Sanche, Léon

    2011-01-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428

  12. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  13. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production tomore » the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.« less

  14. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-18

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production tomore » the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.« less

  15. Early effects of whole-body (56)Fe irradiation on hippocampal function in C57BL/6J mice.

    PubMed

    Haley, Gwendolen E; Yeiser, Lauren; Olsen, Reid H J; Davis, Matthew J; Johnson, Lance A; Raber, Jacob

    2013-05-01

    Relatively little is known about early irradiation effects on hippocampal function in wild-type mice. In this study, the effects of (56)Fe irradiation on hippocampal function were assessed starting 2 weeks after whole-body irradiation. Compared to sham irradiation, radiation impaired novel object recognition in female and male C57BL/6J wild-type mice. There were no effects of irradiation on contextual fear conditioning or spatial memory retention in the water maze. It is possible that oxidative damage might contribute to radiation-induced cognitive changes. Therefore, hippocampal and cortical levels of 3-nitrotyrosine (3NT) and lipid peroxidation, measures of oxidative damage were assessed. There were no effects of irradiation on these measures of oxidative damage. As (56)Fe irradiation can increase reactive oxygen species (ROS) levels, which may contribute to the impairments in novel object recognition, the effects of the antioxidant alpha-lipoic acid (ALA) on cognition following sham irradiation and irradiation were also assessed. ALA did not prevent radiation-induced impairments in novel object recognition and impaired spatial memory retention of sham-irradiated and irradiated mice in the probe trial after the first day of hidden platform training in the water maze. Thus, the novel object recognition test is particularly sensitive to detect early cognitive effects of (56)Fe irradiation through a mechanism unlikely involving ROS or oxidative damage.

  16. Divalent metal ions modulated strong frustrated M(II)-Fe(III)3O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex.

    PubMed

    Wu, Qi-Long; Han, Song-De; Wang, Qing-Lun; Zhao, Jiong-Peng; Ma, Feng; Jiang, Xue; Liu, Fu-Chen; Bu, Xian-He

    2015-10-25

    Linking magnetically frustrated triangular FeO units by divalent metal ions (M(II) = Fe(II) for 1, Mn(II) for 2) gives isostructural 1D spin chains. Strong antiferromagnetic interactions were found in these complexes with significant frustrations but very interesting ferrimagnetic like transition and metamagnetism were found in mixed valence 1. By comparing the magnetic behaviours with isostructural complex 3 (with M(II) = Mg(II)), it is proposed that the spins of Fe(II) ions and Mn(II) ions have ferromagnetic and antiferromagnetic contributions respectively.

  17. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  18. Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of {sup 56}Fe Irradiation on the Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Gwendolen E.; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR; Villasana, Laura

    2012-11-01

    Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles ({epsilon}2, {epsilon}3, and {epsilon}4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of {sup 56}Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after {sup 56}Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, wemore » assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of {sup 56}Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.« less

  19. Teflon impregnated anatase TiO2 nanoparticles irradiated by 80 keV Xe+ ions

    NASA Astrophysics Data System (ADS)

    Khanam, Rizwin; Paul, Nibedita; Kumar, P.; Kanjilal, D.; Ahmed, Gazi A.; Mohanta, Dambarudhar

    2014-10-01

    We report the effect of 80 keV Xe+ ion irradiation on the morphological and optical responses of TiO2 nanoparticles spread over commercially available polytetrafluoroethylene (PTFE, Teflon). These nanoparticles were synthesized via a convenient, sol-gel approach with titanium isopropoxide as the main precursor. From X-ray diffraction (XRD) studies we found that, the nanoparticles crystallize in anatase phase and with a preferential orientation of crystallites along (1 0 1) plane. Upon irradiation at a fluence of 1.25 × 1017 ions/cm2, the nanoparticle dimension was found to increase from a value of ∼9 nm to ∼20-30 nm. Essentially, particle growth is predicted as a consequence of swelling behavior accompanied by the formation of Xe van der Waal crystals in isolated regions of nano-titania. Evidence of nanoripples was also witnessed on the surface of the irradiated nano-titania. The morphological evolution was assessed both by atomic force and transmission electron microscopies (AFM and TEM) independently. From the UV-Vis optical absorption studies, the estimated optical band gap was found to drop with increasing fluence, while refractive index exhibited a remarkable improvement. Photoluminescence (PL) studies have revealed that, the band edge emission and those due to the self trapped excitons (STE) and other oxygen vacancy related ones were manifested considerably as a result of Xe ion irradiation.

  20. One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo

    2016-06-01

    One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g-1 after 100 cycles at 200mA g-1, promising application in high-performance lithium ion batteries.

  1. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGES

    Yu, K. Y.; Fan, Z.; Chen, Y.; ...

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe 96Zr 4 nanocomposite alloy. Irradiation resulted in amorphization of Fe 2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphousmore » nanocomposites.« less

  2. Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries.

    PubMed

    Li, Daohao; Sun, Yuanyuan; Chen, Shuai; Yao, Jiuyong; Zhang, Yuhui; Xia, Yanzhi; Yang, Dongjiang

    2018-05-08

    The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly embedded in the unique 1D porous carbon fibrous matrix, significantly enhancing the sodium-ion storage performance. The obtained FeS/CFs with optimized sodium storage performance benefits from the appropriate carbon content (20.9 wt %). The composite exhibits high capacity and excellent cycling stability (283 mAh g -1 at current density of 1 A g -1 after 400 cycles) and rate performance (247 mAh g -1 at 5 A g -1 ). This work provides a simple strategy to construct 1D porous FeS/CFs micro/nanostructures as high-performance anode materials for SIBs via a unique sustainable and environmentally friendly way.

  3. Construction and performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe³⁺ ion.

    PubMed

    Bandi, Koteswara Rao; Singh, Ashok K; Upadhyay, Anjali

    2014-03-01

    Novel Fe(3+) ion-selective polymeric membrane electrodes (PMEs) were prepared using three different ionophores N-(4-(dimethylamino)benzylidene)thiazol-2-amine [L1], 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol [L2] and N-((3-methylthiophene-2yl)methylene)thiazol-2-amine [L3] and their potentiometric characteristics were discussed. Effect of various plasticizers and anion excluders was also studied in detail and improved performance was observed. The best performance was obtained for the membrane electrode having a composition of L2:PVC:o-NPOE:NaTPB as 3:38.5:56:2.5 (w/w; mg). A coated graphite electrode (CGE) was also prepared with the same composition and compared. CGE is found to perform better as it shows a wider working concentration range of 8.3×10(-8)-1.0×10(-1)molL(-1), a lower detection limit of 2.3×10(-8)molL(-1), and a near Nernstian slope of 19.5 ± 0.4 mVdecade(-1) of activity with a response time of 10s. The CGE shows a shelf life of 6 weeks and in view of high selectivity, it can be used to quantify Fe(3+) ion in water, soil, vegetable and medicinal plants. It can also be used as an indicator electrode in potentiometric titration of EDTA with Fe(3+) ion. Copyright © 2013. Published by Elsevier B.V.

  4. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  5. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    PubMed

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb 5+ , Ti 4+ , Zr 4+ , Ga 3+ , Y 3+ , In 3+ , Ce 4+ , Fe 3+ , were immobilized on the polydopamine (PDA)-coated Fe 3 O 4 (denoted as Fe 3 O 4 @PDA-M n+ ), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe 3 O 4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe 3 O 4 @PDA. After characterization, the resultant Fe 3 O 4 @PDA-M n+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe 3 O 4 @PDA-Nb 5+ and Fe 3 O 4 @PDA-Ti 4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ion Beam Materials Analysis and Modifications at keV to MeV Energies at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.

    2014-02-01

    The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.

  7. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  8. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Astrophysics Data System (ADS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-10-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co γ radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to γ-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  9. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Junbin; Fu, Jinping; Fu, Xucheng; Gan, Wei; Hao, Hequn

    2018-02-01

    In this study, nitrogen and sulfur co-doped carbon dots (NSCDs) were fabricated by microwave-assisted one-pot synthesis using vitamin C and thiourea as precursors. The as-prepared NSCDs demonstrated excellent properties, including aqueous dispensability, strong fluorescence emission, excellent environmental stability, high selectivity, and sensitivity toward Fe3+ ions. The NSCD-based material can be used as a "turn off" fluorescent probe for detecting Fe3+ ions at a low detection limit (4.2 nM). In addition, the "turn off" and "turn on" of NSCD fluorescent probe could be modulated by adding Fe3+ and EDTA, indicating weak interaction between the Fe3+ ions and NSCDs.

  10. Benchmark Testing of a New 56Fe Evaluation for Criticality Safety Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, Luiz C; Ivanov, E.

    2015-01-01

    The SAMMY code was used to evaluate resonance parameters of the 56Fe cross section in the resolved resonance energy range of 0–2 MeV using transmission data, capture, elastic, inelastic, and double differential elastic cross sections. The resonance analysis was performed with the code SAMMY that fits R-matrix resonance parameters using the generalized least-squares technique (Bayes’ theory). The evaluation yielded a set of resonance parameters that reproduced the experimental data very well, along with a resonance parameter covariance matrix for data uncertainty calculations. Benchmark tests were conducted to assess the evaluation performance in benchmark calculations.

  11. Initial measurements of O-ion and He-ion decay rates observed from the Van Allen probes RBSPICE instrument

    PubMed Central

    Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro

    2014-01-01

    H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3–4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5–6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. Key Points We report initial observations of ring current ions We show that He-ion decay rates are consistent with theory We show that O-ions with energies greater than 500 keV decay very rapidly PMID:26167435

  12. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  13. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  14. Utilization of fish bone as adsorbent of Fe3+ ion by controllable removal of its carbonaceous component

    NASA Astrophysics Data System (ADS)

    Nurhadi, M.; Kusumawardani, R.; Widiyowati, I. I.; Wirhanuddin; Nur, H.

    2018-05-01

    The performance of fish bone to adsorb Fe3+ ion in solution was studied. Powdered fish bone and carbonized fish bone were used as adsorbent. All absorbents were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM) and TG analysis. Powdered fish bone and carbonized fish bone were effective as adsorbent for removing Fe3+ ion in solution. The metal adsorptions of Fe3+ ion were 94 and 98% for powdered fish bone and fish bone which carbonized at 400 and 500 °C.

  15. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Brötzmann, M.; Hofsäss, H.

    2012-09-01

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.

  16. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  17. Magnetic properties of Fe implanted SrTiO{sub 3} perovskite crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şale, A.G.; Kazan, S.; Gatiiatova, Ju.I.

    2013-08-01

    Graphical abstract: - Highlights: • The results of investigations of magnetic properties of Fe implanted SrTiO{sub 3} are presented. • The measurements of the temperature dependence of the magnetization were performed. • Ferromagnetic hysteresis loops in Fe implanted SrTiO{sub 3} were observed at low temperatures. • Superparamagnetic behavior of the samples at high temperatures was revealed. • It was shown that the magnetization of the samples depends on the fluency of implantation. - Abstract: The results of investigations of magnetic properties of SrTiO{sub 3} perovskite crystal implanted with 40 keV Fe ions at the fluencies between 0.5 × 10{sup 17}more » and 1.5 × 10{sup 17} ion/cm{sup 2} are presented. It has been revealed that high-fluency implantation with Fe ions results in the formation of a granular metal particulate composite in the irradiated near-surface layer of SrTiO{sub 3} substrate, which exhibits remarkable ferromagnetic behavior. The measurements of the temperature dependence of the magnetic moment showed that the samples exhibit blocking temperature at about 350 K, above which a superparamagnetic behavior has been observed. Ferromagnetic ordering and magnetic hysteresis loops were observed in Fe implanted SrTiO{sub 3} at the temperatures lower than 350 K. It has been shown that the magnetization of the ferromagnetic state depends on the fluency of implantation.« less

  18. Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.

    PubMed

    Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong

    2017-07-26

    In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.

  19. Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.

    PubMed

    Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A

    2012-10-01

    Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated

  20. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    PubMed Central

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55 V. PMID:24595232

  1. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  2. The response of a fast scintillator screen (YAP:Ce) to low energy ions (0-40 keV) and its use to detect fast-ion-loss in stellarator TJ-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, M., E-mail: marcos.martinez@externos.ciemat.es; Zurro, B.; Baciero, A.

    2016-11-15

    A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO{sub 3}:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa{sub 2}S{sub 4}:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H{sup +} ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 timesmore » higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.« less

  3. Cognitive differences between male and female rats following exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Luskin, Katharine; Long, Lauren; Joseph, James

    On exploratory class missions astronauts will be exposed to types and doses of radiation (HZE particles) that are not experienced in low earth orbit. While it is likely that the crew will consist of both male and female astronauts, there has been little research on the effects of exposure to HZE particles on cognitive performance in female subjects. While previous research has shown that exposure to HZE particles disrupts cognitive performance in male rats it remains to be established whether or not similar effects will occur with female subjects because estrogen may act as a neuroprotectant. Ovariectomized (OVX) female rats were obtained from Taconic Farms. Thirty mm segments of silastic tubing containing either 180 pg l7-estradiol/mL in sesame oil or vehicle alone were implanted subcutaneously in the neck. Three days following surgery the rats were exposed to 56Fe particles (1000 MeV/n, 0-200 cGy) at the NSRL. Following irradiation the rats were shipped to UMBC for behavioral testing. The results indicated that the pattern of decrements in cognitive performance differed between male and female rats. In addition, for female rats, there were differences in performance as a function of the presence or absence of estradiol. In the vehicle implanted subjects exposure to 56Fe particles did not affect operant responding on an ascending fixed-ratio schedule; whereas irradiation did disrupt responding in OVX animals given estradiol. These results suggest that estrogen may not be protective following exposure to HZE particles. This research was supported by Grant NNX08AM66G from NASA.

  4. Heavy ion irradiations on synthetic hollandite-type materials: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ming, E-mail: mtang@lanl.gov; Tumurugoti, Priyatham; Clark, Braeden

    2016-07-15

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phasemore » hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. - Graphical abstract: 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. This is also the first time that the critical amorphization fluence of single phase hollandite compounds were determined at a fluence of around 3.25×10{sup 14} Kr/cm{sup 2} by in situ 1 MeV Kr ion irradiation. Display Omitted.« less

  5. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  6. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  7. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  8. Cation Distribution and Local Configuration of Fe 2+ Ions in Structurally Nonequivalent Lattice Sites of Heterometallic Fe(II)/ M(II) ( M = Mn, Co, Ni, Cu, Zn) Diaquadiformato Complexes

    NASA Astrophysics Data System (ADS)

    Devillers, M.; Ladrière, J.

    1993-03-01

    57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.

  9. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash

    PubMed Central

    Zhao, Jiaying; Jiang, Zhao; Shan, Dexin; Lu, Yan

    2014-01-01

    Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial concentration on the removal of Fe(II) and Mn(II) ions. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by RHA. The correlation coefficient (R 2) of Langmuir and Freundlich isotherm models equals 0.995 and 0.901 for Fe(II), 0.9862 and 0.8924 for Mn(II), respectively, so the Langmuir model fitted the equilibrium data better than the Freundlich isotherm model. The mean free energy values evaluated from the D-R model indicated that the biosorption of Fe(II) and Mn(II) onto RHA was physical in nature. Experimental data also showed that the biosorption processes of both metal ions complied with the pseudo-second-order kinetics. PMID:24982918

  10. Specular spin-valve films with an FeCo nano-oxide layer by ion-assisted oxidation

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Koi, Katsuhiko; Tomita, Hiroshi; Fuke, Hiromi Niu; Iwasaki, Hitoshi; Sahashi, Masashi

    2002-05-01

    We compared the specular spin-valve films with an Fe50Co50 nano-oxide layer (NOL) and a Co90Fe10 NOL in a pinned layer, prepared by natural oxidation (NO) and ion-assisted oxidation (IAO). For the IAO, an Ar-ion beam was used for the energy-assist effect during the oxidation, resulting in thermally stable NOL formation. With small oxygen exposures during the oxidation for the Fe50Co50 NOL by IAO, good ferromagnetic coupling through the NOL and high specularity at the NOL interface were concurrently obtained. Moreover, twisted coupling through the NOL was observed for the Fe50Co50 NOL by IAO for higher oxygen exposures. On the other hand, the NO did not cause large magnetoresistance (MR) enhancement for either the Co90Fe10 or Fe50Co50 NOLs, and the Co90Fe10 NOL by IAO caused weak magnetic coupling through the NOL, resulting in a small MR ratio. The Fe50Co50 NOL for small oxygen exposures is a good candidate for a final specular spin-valve film head for 100-Giga-bit per square inch recording.

  11. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    PubMed

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  12. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    NASA Astrophysics Data System (ADS)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  13. Amorphous surface layers in Ti-implanted Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less

  14. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  15. FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS

    NASA Astrophysics Data System (ADS)

    Gao, Qiongzhi; Liu, Xin; Liu, Wei; Liu, Fang; Fang, Yueping; Zhang, Shiying; Zhou, Wuyi

    2016-12-01

    In this work, the titanium dioxide (TiO2) nanofilms co-doped with Fe3+ and Bi3+ ions were successfully fabricated by the sol-gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of Fe3+ and Bi3+ ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure TiO2 nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with Fe3+ and Bi3+ ions were fabricated at the molar ratio of 3:1 (Fe3+:Bi3+), they exhibited the best photocatalytic activity after the heat treatment at 500∘C for 2h. The wettability property test indicated that the TiO2 nanofilms co-doped with Fe3+ and Bi3+ ions in the molar ratio 3:1 owned an excellent hydrophilic property.

  16. The Biological Effectiveness of Silicon Ions is Significantly Higher than Iron Ions for the Induction of Chromosome Damage in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, or Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET Si ions ranged from 48 to 158 keV/micron. Doses delivered were in the 10 to 200 cGy range. Dose response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600 Mev/u beam and 170 MeV/u beam produced the highest RBE(sub max) value for Si ions. For both ions the RBE(sub max) values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreased with further increase in LET.

  17. The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada

    NASA Astrophysics Data System (ADS)

    Raye, Urmidola; Pufahl, Peir K.; Kyser, T. Kurtis; Ricard, Estelle; Hiatt, Eric E.

    2015-09-01

    The Sokoman Formation is a ca. 100-m-thick succession of interbedded iron formation and fine-grained siliciclastics deposited at 1.88 Ga. Accumulation occurred on a dynamic paleoshelf where oxygen stratification, coastal upwelling of hydrothermally derived Fe and Si, microbial processes, tide and storm currents, diagenesis, and low-grade prehnite-pumpellyite metamorphism controlled lithofacies character and produced complex associations of multigenerational chert, hematite, magnetite, greenalite, stilpnomelane and Fe carbonate. Hematite-rich facies were deposited along suboxic segments of the coastline where photosynthetic oxygen oases impinged on the seafloor. Hematitic, cross-stratified grainstones were formed by winnowing and reworking of freshly precipitated Fe-(oxyhydr)oxide and opal-A by waves and currents into subaqueous dunes. Magnetite-rich facies contain varying proportions of greenalite and stilpnomelane and record deposition in anoxic middle shelf environments beneath an oxygen chemocline. Minor negative Ce anomalies in hematitic facies, but prominent positive Ce and Eu anomalies and high LREE/HREE ratios in magnetite-rich facies imply the existence of a weakly oxygenated surface ocean above anoxic bottom waters. The Fe isotopic composition of 31 whole rock (-0.46 ⩽ δ56Fe ⩽ 0.47‰) and 21 magnetite samples (-0.29 ⩽ δ56Fe ⩽ 0.22‰) from suboxic and anoxic lithofacies was controlled primarily by the physical oceanography of the paleoshelf. Despite low-grade metamorphism recorded by the δ18O values of paragenetically related quartz and magnetite, the Sokoman Formation preserves a robust primary Fe isotopic signal. Coastal upwelling is interpreted to have affected the isotopic equilibria between Fe2+aq and Fe-(oxyhydr)oxide in open marine versus coastal environments, which controlled the Fe isotopic composition of lithofacies. Unlike previous work that focuses on microbial and abiotic fractionation processes with little regard for

  18. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  19. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-09-26

    Monodisperse Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are prepared via a surfactant-free solvothermal combined with precursor thermal transformation method. The as-prepared Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres have a relatively high specific surface area of 122.3 and 138.6 m(2)/g, respectively. The Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are explored as the anode materials for lithium-ion batteries, and they have a high initial discharge capacity of 1307 and 1453 mA h/g, respectively, and a good reversible performance (450 mA h/g for Fe(3)O(4) and 697 mA h/g for γ-Fe(2)O(3) after 110 cycles) at the current density of 0.2C.

  20. Beneficial effects of fruit extracts on neuronal function and behavior following 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Joseph, J. A.; Shukitt-Hale, B.; Carey, A. N.; Jenkins, D.; Rabin, B. M.

    Exposing young rats to particles of high energy and charge HZE particles enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals Previous research has shown that diets supplemented with 2 blueberry or strawberry extracts have the ability to retard and even reverse age-related deficits in behavior and signal transduction in rats perhaps due to their antioxidant and anti-inflammatory properties This study evaluated the efficacy of these diets on irradiation-induced deficits in these parameters by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to whole-body irradiation with 1 5 Gy of 1 GeV n high-energy 56 Fe particles Irradiation impaired performance in the Morris water maze and measures of dopamine release one month following radiation these deficits were protected by the antioxidant diets The strawberry diet offered better protection against spatial deficits in the maze because strawberry-fed animals were better able to retain place information a hippocampally-mediated behavior compared to controls The blueberry diet on the other hand seemed to improve reversal learning a behavior more dependent on intact striatal function These data suggest that 56 Fe particle irradiation causes deficits in behavior and signaling in rats which were ameliorated by an antioxidant diet and that the polyphenols in these fruits might be acting in different brain regions

  1. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation.

    PubMed

    Wang, Hui; Yao, Hong; Sun, Peizhe; Pei, Jin; Li, Desheng; Huang, Ching-Hua

    2015-01-01

    The presence of Fe(III) ions was found to induce degradation of three tetracycline antibiotics (TCs), tetracycline (TTC), oxytetracycline (OTC) and chlorotetracycline (CTC), in aqueous solutions without light. The presence of Fe(III) promoted the degradation of TCs in most experimental pH (5.0, 7.0 and 9.0) except at pH 9.0 for CTC. Degradation rate constants of TTC, OTC and CTC reached maximum ((6.2±0.5)×10(-3) h(-1), (10.6±0.1)×10(-3) h(-1) and (15.9±0.5)×10(-3) h(-1) at pH 7.0, 20 °C) when Fe(III):TC molar ratio was 1:1, 1:1 and 2:1, respectively. Such metal-to-ligand ratios agreed well with the most favorable complexation between Fe(III) and each TC. Compared to without metals, Fe(III) enhanced the degradation rate of TTC, OTC and CTC by up to 20.67, 7.07 and 2.30 times, respectively, in clean water matrix, and also promoted degradation of TCs in real surface water and wastewater matrices. The promoted degradation likely occurred via complexation of TCs and subsequent oxidation by Fe(III). Degradation results of CTC versus 4-epi-CTC suggested Fe(III) likely binds to TCs' C4 dimethylamino group. Toxicity of the complexes evaluated using Photobacterium phosphoreum T3 was increased after several hours of reaction, suggesting the transformation products may exert a stronger toxicity than parent TCs. This study identifies new oxidative transformation of TCs induced by Fe(III) ions without light irradiation, further supporting the important role of iron species in the environmental fate of TCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  3. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V.

    2017-01-01

    Local surface structure of single crystal strontium titanate SrTiO3 (001) samples implanted with Fe in the range of concentrations between 2 × 1014 to 2 × 1016 Fe/cm2 at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti1-xFex)O3-δ materials in gas sensing applications.

  4. Early and Late Chromosome Damages in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  5. Storage and Effective Migration of Li-Ion for Defected β-LiFePO 4 Phase Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstratemore » that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g–1 at a rate of 0.1 C (1C = 170 mA g–1) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.« less

  6. Scanning transmission electron microscopy (STEM) study on surface modified CVD diamond/Si(111) film post implanted Fe-B and NiFe-B related to GMR properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, Setyo, E-mail: setyo-p@batan.go.id, E-mail: purwantosetyo@yahoo.com; Dimyati, A., E-mail: arbi-dimyati@hotmail.com; Iskandar, R.

    Nanostructure investigation on the post implantation by Fe-B and NiFe-B on CVD diamond/Si(111) film have been studied by means of STEM related to their GMR phenomena. Two samples were investigated carefully, firstly sample is post NiFe-B at E=70keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as A-E3D1). Secondly, is post FeB at E=20 keV and dose= 10{sup 15} ions/cm{sup 2} (denoted as B-E1D1). Based on FPP measurement at room temperature (RT) and H{sub applied} = 8 kOe, A-E3D1 sample has MR ratio almost 80% and MR ratio in B-E1D1 sample is 45%. Based on STEM-EDX investigation, there are two aspectsmore » of how MR ratio of A-E3D1 more higher than those of B-E1D1. Firstly, surface nanostructure on the top of A-E3D1 film is more grazing than on the top of B-E1D1. Analysis with Scanning Transmission Electron Microscope (STEM) equipped with Electron Energy Loss Spectroscopy (EELS) the growth of amorphous carbon layer on top of the implanted diamond film with thickness around 100 nm and only 20 nm on the no implanted sample have observed. Boron atoms were found inside the carbon amorphous layer distributed homogenously. Secondly, oxygen content at the interface between diamond film and silicon substrate in sample A-E3D1 was lower than those in B-E1D1 sample. This condition gives the resistance value in A-E3D1 lower than value in B-E1D1. This result is close to the Raman Spectroscopy data measurement which obviously suggests changes on the Raman spectrum due to implantation related to Oxygen excitation from B-E1D1 sample.« less

  7. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, K.; Broetzmann, M.; Hofsaess, H.

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less

  8. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.

    PubMed

    Fei, Huilong; Peng, Zhiwei; Yang, Yang; Li, Lei; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-07-11

    LiFePO4 encapsulated in graphene nanoshells (LiFePO4@GNS) nanoparticles were synthesized by solid state reaction between graphene-coated Fe nanoparticles and LiH2PO4. The resulting nanocomposite was demonstrated to be a superior lithium-ion battery cathode with improved cycle and rate performances.

  9. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  10. High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Xu, X.; Shuai, P.; Chen, R. J.; Yan, X. L.; Zhang, Y. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, X. C.; Chen, H.; Fu, C. Y.; He, J. J.; Kubono, S.; Lam, Y. H.; Liu, D. W.; Mao, R. S.; Ma, X. W.; Sun, M. Z.; Tu, X. L.; Xing, Y. M.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X.; Zhou, X. H.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Sun, B. H.; Sun, Y.; Xu, F. R.

    2017-04-01

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are - 29471 (11) keV, - 34477 (6) keV and - 39278 (4) keV, respectively. The superallowed 0+ →0+β-decay Q values were derived to be QEC (46Cr) = 7604 (11) keV, QEC (50Fe) = 8150 (6) keV and QEC (54Ni) = 8731 (4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected Ft values to be Ft (50Fe) = 3103 (70) s and Ft (54Ni) = 3076 (50) s. The main contribution to the Ft uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.

  11. Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sunil, E-mail: sunilchauhanjiit@gmail.com; Kumar, Manoj; Katyal, S. C.

    2016-05-23

    A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO{sub 3} nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO{sub 3} and Bi{sub 0.85}A{sub 0.15}FeO{sub 3} (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO{sub 3} nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO{sub 3} to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO{sub 3} nanoparticles respectively. The magnetic measurements indicate enhancementmore » in magnetization for heterovalent A{sup 2+} substituted BiFeO{sub 3} samples and the magnetization increases with increase of ionic radius of the substituted ions.« less

  12. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  13. Interfacial characteristics and multiferroic properties of ion-doped BiFeO3/NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Guo, Meiyou; Tan, Guoqiang; Zheng, Yujuan; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2017-05-01

    Multi-ion doped BiFeO3/NiFe2O4 bilayered thin films were successfully prepared on fluorine-doped SnO2/glass (SnO2:F) substrates by sol-gel method. The crystalline structure, leakage current, interfacial characteristics, and multiferroic properties were investigated in detail. The results of Rietveld refinement showed that the structure of BSrSFMC layer is transformed from rhombohedral to tetragonal structure by the means of ion-doping. The difference of leakage current density of the BSrSFMC/NiFe2O4 (NFO) bilayered films of the -40 V to 40 V and 40 V to -40 V are 0.32 × 10-5 and 1.13 × 10-5 A/cm2, respectively. It was observed that there are obvious interface effects between BSrSFMC and NFO layers, which will cause the accumulation of space charges and the establishment of built-in internal electric field (EI) at the interface. Therefore, different EI directions will affect the dipoles reversal and migration of carriers in the BSrSFMC layer, which will result in different values of transient current with the same applied voltage in the opposite directions. The larger coercive field (Ec ˜ 750 kV/cm) of BSrSFMC/NFO film indicated that there is a tensile stress at the interface between BSrSFMC and NFO layers, making the polarization difficult. These results showed that the above interesting phenomena of the J-V are closely related to the interface effects between the layer of BiFeO3 and NiFe2O4.

  14. Changes in gene expression in the rat hippocampus following exposure to 56 fe particles and protection by berry diets

    USDA-ARS?s Scientific Manuscript database

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56Fe, enhances indices of oxidative stress and inflammation and disrupts behavior, including spatial learning and memory. In the present study, we examined whether gene expression in the hippocampus, an area of the b...

  15. Additive patterning of ion-beam-sputtered non-conformal Ni80Fe20 and Co70Fe30 magnetic films

    NASA Astrophysics Data System (ADS)

    Redondo, C.; Moralejo, S.; Castaño, F.; Lee, W.; Nielsch, K.; Ross, C. A.; Castaño, F. J.

    2006-04-01

    Additive patterning processes of magnetic films grown using an ion-beam sputter (IBS) system designed to produce non-conformal films are described. The effects of the ion-gun beam current and Ar pressure on the sputtering rates and roughness of Ni80Fe20 and Co70Fe30 magnetic thin films are investigated using atomic-force microscopy (AFM) and the films' magnetic properties are measured using spatially resolved magneto-optical magnetometry. By tailoring the plasma solid angle, non-conformal film growth allows for simple additive patterning down to lateral dimensions ranging from a few microns to the deep-submicron regime, using templates defined by photolithography or electron-beam lithography, and shadow masks created using templated self-assembly. The magnetization reversal exhibited by patterned sub-200 nm nanodisc arrays with different lateral edge-roughness will be discussed.

  16. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  17. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    PubMed

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  18. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  19. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting.

    PubMed

    Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-08-13

    This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.

  20. Magneto-optical study of Ba(Fe{sub 1-x}M{sub x}{sub 2}As{sub2} (M = Co and Ni) single crystals irradiated with heavy ions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozorov, R.; Tanatar, M. A.; Roy, B.

    Optimally doped single crystals of Ba(Fe{sub 1-x}M{sub x}){sub 2}As{sub 2} (M=Co, Ni) were irradiated with 1.4 GeV {sup 208}Pb{sup 56+} ions at fluences corresponding to matching fields of B{phi} = 0.1, 0.5, 1, and 2 T. Magneto-optical imaging has been used to map the distribution of the magnetic induction in the irradiated samples. The imaging is complemented by the magnetization measurements. The results show a substantial enhancement of the apparent critical current densities as revealed by the much larger Bean penetration fields and an increase in the hysteretic magnetization. However, the effect depends on the compound, temperature, and applied magneticmore » field. In Ba(Fe{sub 0.926}Co{sub 0.074}){sub 2}As{sub 2} crystals, at 15 K and low fields, the enhancement appears to scale with the irradiation dose at a rate of about 0.27 MA {center_dot} cm{sup -2} T{sup -1}, whereas in Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} crystals, higher irradiation doses are less effective. Our results suggest that moderate irradiation with heavy ions is an effective way to homogeneously enhance the current-currying capabilities of pnictide superconductors.« less

  1. Structural and optical properties of α-Fe2O3 nanoparticles, influence by holmium ions

    NASA Astrophysics Data System (ADS)

    Mathevula, L. E.; Noto, L. L.; Mothudi, B. M.; Dhlamini, M. S.

    2018-04-01

    α-Fe2O3 and α-Fe2O3 doped with different concentration of holmium ions were synthesized by a simple sol-gel method. The XRD data confirmed the hexagonal structure of α-Fe2O3 for un-doped and holmium doped samples. The crystallite size was found to be decreasing with increasing holmium concentration. The amount of holmium was quantified using an EDS, which shows an increase in holmium quantity as concentration increases. The UV-Vis measurement shows an absorption edge around 570 nm. The band gap was estimated using the Kubelka-Munk relation and it was found to be fluctuating between 1.94 eV and 2.04 eV. The PL spectra confirmed the effect of holmium ions on luminescence properties of α-Fe2O3 which showed a maximum intensity at 0.1 mol% Holmium, and quenching as the concentration is increased from 0.3 mol% to 0.9 mol%.

  2. Well-ordered mesoporous Fe2O3/C composites as high performance anode materials for sodium-ion batteries.

    PubMed

    Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng

    2017-04-11

    Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.

  3. Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions.

    PubMed

    Tucker, James D; Marples, Brian; Ramsey, Marilyn J; Lutze-Mann, Louise H

    2004-06-01

    Space exploration has the potential to yield exciting and significant discoveries, but it also brings with it many risks for flight crews. Among the less well studied of these are health effects from space radiation, which includes the highly charged, energetic particles of elements with high atomic numbers that constitute the galactic cosmic rays. In this study, we demonstrated that 1 Gy iron ions acutely administered to mice in vivo resulted in highly complex chromosome damage. We found that all types of aberrations, including dicentrics as well as translocations, insertions and acentric fragments, disappear rapidly with time after exposure, probably as a result of the death of heavily damaged cells, i.e. cells with multiple and/or complex aberrations. In addition, numerous cells have apparently simple exchanges as their only aberrations, and these cells appear to survive longer than heavily damaged cells. Eight weeks after exposure, the frequency of cells showing cytogenetic damage was reduced to less than 20% of the levels evident at 1 week, with little further decline apparent over an additional 8 weeks. These results indicate that exposure to 1 Gy iron ions produces heavily damaged cells, a small fraction of which appear to be capable of surviving for relatively long periods. The health effects of exposure to high-LET radiation in humans on prolonged space flights should remain a matter of concern.

  4. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  5. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.

    PubMed

    Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-28

    Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.

  6. ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.

  7. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  8. Swift heavy ion irradiation studies of GdFeO3 orthoferrite thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Pawanpreet; Pandit, Rabia; Sharma, K. K.; Kumar, Ravi

    2018-04-01

    Thin films of GdFeO3, orthoferrite have been grown on MgO (001) substrate by pulsed laser deposition technique (PLD) to investigate the effect of swift heavy ion irradiation on their structural and magnetic properties. Thin films were irradiated with 200 MeV Ag15+ ions with fluence of 1×1011ions/cm2. The results of X-ray diffraction, atomic force microscopy and vibrating sample magnetometer characterization techniques are found to be different for the irradiated film from that of the pristine sample. The modifications in the irradiated samples are explained in terms of the ion-induced disorder.

  9. A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe3+ Ion.

    PubMed

    Hou, Bing-Lei; Tian, Dan; Liu, Jiang; Dong, Long-Zhang; Li, Shun-Li; Li, Dong-Sheng; Lan, Ya-Qian

    2016-10-17

    A new metal-organic framework [Zn 5 (hfipbb) 4 (trz) 2 (H 2 O) 2 ] (NNU-1) [H 2 hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), Htrz = 1H-1,2,3-triazole] was assembled by hydrothermal synthesis. Single-crystal X-ray diffraction analysis reveals that NNU-1 displays a twofold interpenetrating three-dimensional (3D) framework with a {4 24 ·6 4 }-bcu topology. Interestingly, the 3D framework contains a two-dimensional (2D) layered structure that consists of alternating left- and right-handed double helical chains. On the basis of the hydrophobic -CF 3 groups from H 2 hfipbb ligand, NNU-1 possesses excellent stability in water. It is worth noting that NNU-1 not only shows a highly selective fluorescence quenching effect to Fe 3+ ion in aqueous solution but also resists the interference of other metals including Fe 2+ ion. Accordingly, NNU-1 probably functions as a potential promising fluorescence sensor for detecting Fe 3+ ion with high sensitivity and selectivity.

  10. Electrochemical performance of Fe3O4 micro flower as anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Noerochim, Lukman; Anggara, Dika; Susanti, Diah; Subhan, Achmad; Sudaryanto

    2018-04-01

    Graphite is generally employed in commercial lithium ion batteries which has a specific capacity of 372 mAh/g. In this study, graphite is replaced with carbon-coated magnetite (Fe3O4/C) which has large theoretical specific capacity of 926 mAh/g, environmental friendly, and low cost production. The synthesis of Fe3O4/C is carried out by hydrothermal method with reacting FeCl3 and hexamethylenetetramine (HMT) at temperature variation of 160, 170 and 180°C. The following process is heated by calcination at temperature variations 450, 500 and 550°C. XRD and SEM results show that the as-prepared Fe3O4/C powder has a single phase of Fe3O4 and morphology micro-flowers like with size between 700 nm - 3 µm. CV test results show redox reaction occurs in the voltage range between 0.21-0.85 V and 1.68-1.81 V. The highest specific discharge capacity is obtained 644 mAh/g for specimen with temperature hydrothermal of 170°C and temperature calcination of 550°C. This result shows that Fe3O4/C has a high potential as anode material for lithium ion battery.

  11. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  12. Quiet-time properties of low-energy (less than 10 MeV per nucleon) interplanetary ions during solar maximum and solar minimum

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Reames, D. V.; Wenzel, K.-P.; Rodriguez-Pacheco, J.

    1990-01-01

    The abundances and spectra of 1-10 MeV per nucleon protons, He-3, He-4, C, O, and Fe have been exmained during solar quiet periods from 1978 to 1987 in an effort to investigate the recent suggestion by Wenzel et al. (1990) that the ions may be of solar origin. It is found that the intensities of the ions, other than O, fall by an order of magnitude between solar maximum and solar minimum, and that the greater than 1 MeV per nucleon ions exhibit weak streaming away from the sun. More significantly, the quiet-time ions during solar maximum have He-3-rich and Fe-rich abundances which are established characteristics of small impulsive solar flares. Thus, it is suggested that small unresolved impulsive flares make a substantial contribution to the 'quiet-time' fluxes. He-4 from these flares may also contribute strongly to the ion spectra that were reported for the 35-1600 keV energy range by Wenzel et al.

  13. Influence of nonmagnetic Al ions on magnetoresistance of double-perovskite Sr2Fe1-xAlxMoO6 (0<=x<=0.30)

    NASA Astrophysics Data System (ADS)

    Sui, Yu; Wang, Xianjie; Cheng, Jinguang; Liu, Zhiguo; Miao, Jipeng; Huang, Xiqiang; Lu, Zhe; Qian, Zhengnan; Su, Wenhui; Tang, Jinke; Ong, C. K.

    2005-09-01

    The structural, magnetic, and magnetoresistance properties of the double-perovskite series Sr2Fe1-xAlxMoO6 (0<=x<=0.30) were systematically investigated in order to clarify the influence of nonmagnetic Al ions on the magnetoresistance. The structural refinements of these samples show that the degree of cationic order increases gradually from 88.5% for x=0 to 92% for x=0.30 without any change in the crystal structure. The magnetization measurements reveal that the substitution of nonmagnetic Al ion for Fe ion enhances the magnetic moment per Fe ion significantly. In addition, the magnetic-field dependence of magnetization and magnetoresistance of these Sr2Fe1-xAlxMoO6 samples were all fitted excellently by taking into account the contributions from ferromagnetic-coupled Fe-O-Mo region and nonferromagnetic-coupled regions. The fitting results indicate that the low-field magnetoresistance can be greatly enhanced due to the separation of the cationic-ordered Fe-O-Mo regions by the paramagnetic Mo-O-Al-O-Mo chains introduced through Al doping. Furthermore, doping nonmagnetic Al ions also suppress the formation of antiferromagnetic Fe-O-Fe antiphase boundaries, and then lead to the improvement of cation ordering and the reduction of magnetoresistance under high field.

  14. Ion irradiation damage in ilmenite at 100 K

    USGS Publications Warehouse

    Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A.; Nord, G.L.

    1997-01-01

    A natural single crystal of ilmenite (FeTiO3) was irradiated at 100 K with 200 keV Ar2+. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He+ ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 ?? 1015 Ar2+/cm2, considerable near-surface He+ ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 nm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO3) and spinel (MgAl2O4) to explore factors that may influence radiation damage response in oxides.

  15. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  16. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  17. LiFePO4/C nanocomposites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ali

    2017-03-01

    LiFePO4, as the most famous member of the family of olivine-type lithium transition metal phosphates, is one of the promising candidates for the cathodes of lithium-ion batteries. However, its battery performance is limited by its low electrical conductivity and slow Li solid-state diffusion. Various methods have been attempted to improve the battery performance of lithium iron phosphate. Among them, compositing the LiFePO4 with carbon nanomaterials seems to be the most promising, as it is facile and efficient. Carbon nanomaterials usually serve as a conductive agent to improve the electrical conductivity while increasing the material porosity in which the solid-state diffusion distances are significantly shortened. Owing to the popularity of various carbonaceous nanomaterials, there is no straightforward line of research for comparing the LiFePO4/C nanocomposites. This review aims to provide a general perspective based on the research achievements reported in the literature. While surveying the research findings reported in the literature, controversial issues are also discussed. The possible contribution of pseudocapacitance as a result of functionalized carbon or LiFePO4 lattice defects is described, since from a practical perspective, a LiFePO4/C electrode can be considered as a supercapacitor at high C rates (with a specific capacitance as large as 200 F g-1). The Li diffusion in LiFePO4 has not been well understood yet; while the Li diffusion within the LiFePO4 lattice seems to be quite fast, the peculiar interfacial electrochemistry of LiFePO4 slows down the diffusion within the entire electrode by a few orders of magnitude.

  18. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  19. The optical properties of β-FeSi 2 fabricated by ion beam assisted sputtering

    NASA Astrophysics Data System (ADS)

    McKinty, C. N.; Kewell, A. K.; Sharpe, J. S.; Lourenço, M. A.; Butler, T. M.; Valizadeh, R.; Colligon, J. S.; Reeson Kirkby, K. J.; Homewood, K. P.

    2000-03-01

    β-FeSi 2 has been shown to have a minimum direct band gap of 0.87 eV [T.D. Hunt, K.J. Reeson, K.P. Homewood, S.W. Teon, R.M. Gwilliam, B.J. Sealy, Nucl. Instr. and Meth. B 84 (1994) 168-171] which leads to the opportunity for Si based opto-electronics, optical communications and optical interconnects. Electroluminescence has been reported from structures containing β-FeSi 2, which were produced by high dose ion implantation and annealing [D. Leong, M.A. Harry, K.J. Reeson, K.P. Homewood, Nature 387 (12 June 1987) 686]. In this paper we report the formation of β-FeSi 2 by ion beam assisted co-sputtering of Fe and Si in varying percentages. The layers were deposited with a varying Fe/Si ratio, with a Si capping layer applied to prevent oxidation. Separate regions of the sample were investigated at room temperature using optical absorption, to measure the band gap values. Absorption under the fundamental edge was also analysed at room temperature. Further investigations looked at the temperature dependence of the band gap and the absorption under the fundamental edge. The results showed that a variety of Fe/Si ratios produced β-FeSi 2, the formation of which was ascertained by the presence of a suitable band gap value [0.83-0.88 eV]. Absorption under the fundamental edge was shown to follow an exponential Urbach tail [C.H. Grein, S. John, Phys. Rev. B 39 (1989) 1140]. The temperature measurements are in good agreement with the Einstein model.

  20. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  1. A Suzaku Observation of the Neutral Fe-line Emission from RCW 86

    NASA Technical Reports Server (NTRS)

    Ueno, Masaru; Sato, Rie; Kataoka, Jun; Bamba, Aya; Harrus, Ilana; Hiraga, Junko; Hughes, John P.; Kilbourne, Caroline A.; Koyama, Katsuji; Kokubun, Motohide; hide

    2007-01-01

    The newly operational X-ray satellite Suzaku observed the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirms the existence of the line, localizing it for the first time inside a low temperature emission region and not at the locus of the continuum hard X-ray emission. We also report the first detection of a 7.1 keV line that we interpret as the K(beta) emission from neutral or low-ionized iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n(sub e) less than or approx. equal to 10(exp 9)/cu cm s and kT(sub e) > 1 keV. We found a sign that Fe K(alpha) line is intrinsically broadened 47 (35-57) eV (99% error region). Cr-K line is also marginally detected, which is supporting the ejecta origin for the Fe-K line. By showing that the hard continuum above 3 keV has different spatial distribution from the Fe-K line, we confirmed it to be synchrotron X-ray emission.

  2. Fe K Line Profile in Low-Redshift Quasars: Average Shape and Eddington Ratio Dependence

    NASA Astrophysics Data System (ADS)

    Inoue, Hirohiko; Terashima, Yuichi; Ho, Luis C.

    2007-06-01

    We analyze X-ray spectra of 43 Palomar-Green quasars observed with XMM-Newton in order to investigate their mean Fe K line profile and its dependence on physical properties. The continuum spectra of 39 objects are well reproduced by a model consisting of a power law and a blackbody modified by Galactic absorption. The spectra of the remaining four objects require an additional power-law component absorbed with a column density of ~1023 cm-2. A feature resembling an emission line at 6.4 keV, identified with an Fe K line, is detected in 33 objects. Approximately half of the sample show an absorption feature around 0.65-0.95 keV, which is due to absorption lines and edges of O VII and O VIII. We fit the entire sample simultaneously to derive average Fe line parameters by assuming a common Fe line shape. The Fe line is relatively narrow (σ=0.36 keV), with a center energy of 6.48 keV and a mean equivalent width (EW) of 248 eV. By combining black hole masses estimated from the virial method and bolometric luminosities derived from full spectral energy distributions, we examine the dependence of the Fe K line profile on the Eddington ratio. As the Eddington ratio increases, the line becomes systematically stronger (EW=130-280 eV) and broader (σ=0.1-0.7 keV), and peaks at higher energies (6.4-6.8 keV). This result suggests that the accretion rate onto the black hole directly influences the geometrical structure and ionization state of the accretion disk.

  3. β decay of the exotic Tz=-2 nuclei 48Fe,52Ni , and 56Zn

    NASA Astrophysics Data System (ADS)

    Orrigo, S. E. A.; Rubio, B.; Fujita, Y.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Blank, B.; Cáceres, L.; Cakirli, R. B.; Ganioǧlu, E.; Gerbaux, M.; Giovinazzo, J.; Grévy, S.; Kamalou, O.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Molina, F.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2016-04-01

    The results of a study of the β decays of three proton-rich nuclei with Tz=-2 , namely 48Fe,52Ni , and 56Zn, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total β -delayed proton emission branching ratios. We have measured the individual β -delayed protons and β -delayed γ rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between β -delayed protons and γ rays is observed in the de-excitation of the T =2 isobaric analog states in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case 56Zn, where the exotic β -delayed γ -proton decay has been observed.

  4. High-precision Q EC values of superallowed 0 + → 0 + β-emitters 46Cr, 50Fe and 54Ni

    DOE PAGES

    Zhang, P.; Xu, X.; Shuai, P.; ...

    2017-01-23

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are -29471(11) keV, -34477(6) keV and -39278(4) keV, respectively. The superallowed 0 +→0+β-decay Q values were derived to be Q EC( 46Cr) =7604(11) keV, Q EC( 50Fe) =8150(6) keV and Q EC( 54Ni) =8731(4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected ℱt values to be ℱt(more » 50Fe) =3103(70) s and ℱt( 54Ni) =3076(50) s. The main contribution to the ℱt uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.« less

  5. High-precision Q EC values of superallowed 0 + → 0 + β-emitters 46Cr, 50Fe and 54Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.; Xu, X.; Shuai, P.

    Short-lived 46Cr, 50Fe and 54Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses (ME) of 46Cr, 50Fe and 54Ni are -29471(11) keV, -34477(6) keV and -39278(4) keV, respectively. The superallowed 0 +→0+β-decay Q values were derived to be Q EC( 46Cr) =7604(11) keV, Q EC( 50Fe) =8150(6) keV and Q EC( 54Ni) =8731(4) keV. The values for 50Fe and 54Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected ℱt values to be ℱt(more » 50Fe) =3103(70) s and ℱt( 54Ni) =3076(50) s. The main contribution to the ℱt uncertainties is now due to β-decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.« less

  6. Venus nightside ionosphere - A model with KeV electron impact ionization

    NASA Technical Reports Server (NTRS)

    Kumar, S.

    1982-01-01

    The impact of keV electrons is proposed as the strongest source of ionization in a full-up Venus nightside ionosphere model for the equatorial midnight region. The electron impacts lead to a peak ion density of 100,000/cu cm, which was observed by the PV-OIMS experiment on several occasions. In addition, the observed altitude profiles of CO2(+), O(+), O2(+), H(+), and H2(+) can be reproduced by the model on condition that the available keV electron flux is approximated by a reasonable extrapolation from fluxes observed at lower energies.

  7. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  8. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles

    NASA Astrophysics Data System (ADS)

    Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  9. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles.

    PubMed

    Poulose, Shibu M; Rabin, Bernard M; Bielinski, Donna F; Kelly, Megan E; Miller, Marshall G; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56 Fe, within 24-48h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56 Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56 Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56 Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure. Published by

  10. A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Teng, Xiaoling; Qin, Youzhi; Wang, Xia; Li, Hongsen; Shang, Xiantao; Fan, Shuting; Li, Qiang; Xu, Jie; Cao, Derang; Li, Shandong

    2018-02-01

    Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.

  11. Anneal-Hardening Behavior of Cr-Fe-C Alloy Deposits Prepared in a Cr3+-Based Bath with Fe2+ Ions

    PubMed Central

    Huang, Ching An; Chen, Jhih You; Wang, Hai

    2017-01-01

    Cr-Fe-C alloy deposits were successfully prepared on high-carbon tool steel in a Cr3+-based electroplating bath containing Fe2+ ions and suitable complex agents. A Cr-based alloy deposit was obtained with an electroplating current density higher than 25 Adm−2, and a Fe-based alloy deposit was obtained using a current density of 20 Adm−2. Following electroplating, these alloy deposited specimens were annealed via rapid thermal annealing (RTA) at 500 °C for different periods up to 30 s. The experimental results show that Cr- and Fe-based alloy deposits could be significantly hardened after RTA at 500 °C for a few seconds. The maximum hardness was that of the Cr-Fe-C alloy deposit annealed at 500 °C for 10 s. The maximum hardness of 1205 Hv was detected from the annealed Cr-based alloy deposit prepared with 30 ASD. The hardening mechanism of annealed Cr- and Fe-based alloy deposits is attributed to the precipitation of C-related membranes. The hardness values of the annealed Cr- and Fe-based alloy deposits increase with the increasing degree of crystallization of the C-related membranes. PMID:29206206

  12. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Iwano, Keisuke; Yamanoi, Kohei; Iwasa, Yuki; Mori, Kazuyuki; Minami, Yuki; Arita, Ren; Yamanaka, Takuma; Fukuda, Kazuhito; Empizo, Melvin John F.; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio

    2016-10-01

    We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ˜ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  13. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  14. Quality monitoring methods of initial and terminal manufacture of LiFePO4 based lithium ion batteries by capillary electrophoresis.

    PubMed

    Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei

    2018-03-01

    Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE PAGES

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; ...

    2018-02-22

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  16. Examination of the low-energy enhancement of the γ -ray strength function of 56Fe

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; Bernstein, L. A.; Crawford, H. L.; Campbell, C. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Salathe, M.; Wiens, A.; Ayangeakaa, A. D.; Bleuel, D. L.; Bottoni, S.; Carpenter, M. P.; Davids, H. M.; Elson, J.; Görgen, A.; Guttormsen, M.; Janssens, R. V. F.; Kinnison, J. E.; Kirsch, L.; Larsen, A. C.; Lauritsen, T.; Reviol, W.; Sarantites, D. G.; Siem, S.; Voinov, A. V.; Zhu, S.

    2018-02-01

    A model-independent technique was used to determine the γ -ray strength function (γ SF ) of 56Fe down to γ -ray energies less than 1 MeV for the first time with GRETINA using the (p ,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γ SF built on 2+ and 4+ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement.

  17. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  18. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.

    PubMed

    Semin, Boris K; Seibert, Michael

    2016-06-01

    We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.

  19. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  20. Influence of Fe ions on structural, optical and thermal properties of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Ateeq, E-mail: ateeqamu124@gmail.com; Tripathi, P.; Khan, Wasi

    2016-05-23

    In the present work, Fe doped SnO{sub 2} nanoparticles with the composition Sn{sub 1-x}Fe{sub x}O{sub 2} (x = 0, 0.02, 0.04 and 0.06) have been successfully synthesized using sol-gel auto combustion technique. The samples are characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Ultraviolet (UV-Visible) absorption spectroscopy and thermal gravimetric analysis (TGA). The XRD study shows that all the samples have been found in tetragonal rutile structure without any extra phase and average crystallite size which lies in the range of 6-17 nm. The EDAX spectrum confirmed the doping of Fe ion into tin oxidemore » nanomaterial. The optical band gap of doped SnO{sub 2} is found to decrease with increasing Fe ion concentration, which is due to the formation of donor energy levels in the actual band gap of SnO{sub 2}.« less

  1. Acute and Fractionated Exposure to High-LET 56Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis

    PubMed Central

    Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-01-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  2. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGES

    Shao, Lin; Chen, Di; Wei, Chaochen; ...

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  3. Synthesis and isolation of [Fe@Ge(10)](3-): a pentagonal prismatic Zintl ion cage encapsulating an interstitial iron atom.

    PubMed

    Zhou, Binbin; Denning, Mark S; Kays, Deborah L; Goicoechea, Jose M

    2009-03-04

    Reaction of an ethylenediamine (en) solution of the Zintl phase precursor K(4)Ge(9) with FeAr(2) (Ar = 2,6-Mes(2)C(6)H(3)) in the presence of 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) yielded the endohedral Zintl ion [Fe@Ge(10)](3-) (1) which was crystallographically characterized as a [K(2,2,2-crypt)](+) salt in [K(2,2,2-crypt)](3)[Fe@Ge(10)]*2en. This unprecedented Zintl ion exhibits a pentagonal prismatic 10-atom germanium cage with an interstitial iron atom in the central cavity. Confirmation of the existence of the cluster anion in solution was corroborated by positive and negative ion mode electrospray mass spectrometry.

  4. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    PubMed

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  5. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of

  6. Ion irradiation testing and characterization of FeCrAl candidate alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commerciallymore » available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.« less

  7. New Constraints on the Abundance of 60Fe in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; Telus, Myriam; Savina, Michael R.; Pardo, Olivia; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Huss, Gary R.

    2018-04-01

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). Here we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS. Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/58Ni versus 56Fe/58Ni yields an initial 60Fe/56Fe ratio for this chondrule of (3.8 ± 6.9) × 10‑8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system’s initial amount of 60Fe.

  8. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins.

    PubMed

    Nikolova, Valia; Angelova, Silvia; Markova, Nikoleta; Dudev, Todor

    2016-03-10

    Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.

  9. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is lookedmore » upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.« less

  10. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less

  11. Effect of heavy-ion and electron irradiation on properties of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Konczykowski, Marcin

    2013-03-01

    The introduction of defects by particle irradiation is used to reveal the role of disorder in matter, which is unavoidable in all crystalline solids. In superconductors defects introduce flux pinning, controlling critical current, Jc; as well as pair-breaking scattering, limiting the critical temperature, Tc. To elucidate defect related properties of Fe-based superconductors (FBS) we precede in two types of irradiation: heavy ion (6GeV Pb) to create disorder in the form of amorphous tracks and low temperature electron irradiation (2.5MeV at 20K) to create point like defects. Substantial increase of irreversible magnetization and an upward shift of the irreversibility line are observed after heavy ion irradiation of all FBS investigated to date. In BaK 122 , signatures of a Bose-glass vortex state; angular dependence and variable-range hopping flux creep are revealed. Remarkably, heavy ion irradiation does not depress Tc, however, point-like disorder introduced by electron irradiation does substantially. In isovalently substituted Ba(FeAs1 - xPx) 2 and Ba(Fe1 - x Rux As) 2 crystals, Tc decreases linearly with dose. Suppression to 40 % of initial value of Tc was achieved in Ba(FeAs1 - xPx) 2 . An increase of normal state resistivity is observed and correlated to depression of Tc. Change of superconducting gap structure with disorder was determined from penetration depth measurements, λ (T) dependence, at various stages of irradiation. Linear in T variation of pristine samples, indicative of the presence of nodes in gap, turned at low irradiation dose to exponential T variation, indicative of a fully gaped state. T2 variation of λ is observed at higher doses. This behaviour is incompatible with symmetry-imposed nodes of d-wave pairing but consistent with S + / - , S + / + mechanisms. This is the first observation of the impurity-induced node lifting expected in anisotropic s-wave superconductors

  12. Effect of MgO spacer and annealing on interface and magnetic properties of ion beam sputtered NiFe/Mg/MgO/CoFe layer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet

    2012-09-15

    The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less

  13. Confined ion energy >200 keV and increased fusion yield in a DPF with monolithic tungsten electrodes and pre-ionization

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred

    2017-10-01

    To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.

  14. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    PubMed Central

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth K.

    2017-01-01

    Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA’s Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene

  15. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan

    2015-01-01

    Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.

  16. Enhanced Fe dispersion via "pinning" effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode

    NASA Astrophysics Data System (ADS)

    Shu, Chengyong; Chen, Yuanzhen; Yang, Xiao-Dong; Liu, Yan; Chong, Shaokun; Fang, Yuan; Liu, Yongning; Yang, Wei-Hua

    2018-02-01

    In this study, by using thiocyanate as an iron ion dispersing agent, the pinning effect of thiocyanate ion (SCN-) enables the high dispersion of Fe3+ in a nitrogen-doped carbon polymer and significantly promotes ORR catalysis in both acidic and alkaline media. It shows 47.3 A g-1 kinetic ORR current density in 0.1 M H2SO4 solution at 0.8 V vs. RHE. In addition, SCN- can dope into the base material and modify the surface of catalysts, which generates strong cyanide N functional groups. Additionally, it also has a higher BET surface area and more uniform granularity, which accounts for the enhancement in mass transport.

  17. Long-Term Effects of {sup 56}Fe Irradiation on Spatial Memory of Mice: Role of Sex and Apolipoprotein E Isoform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villasana, Laura E.; Benice, Theodore S.; Raber, Jacob, E-mail: raberj@ohsu.ed

    Purpose: To assess whether the effects of cranial {sup 56}Fe irradiation on the spatial memory of mice in the water maze are sex and apolipoprotein E (apoE) isoform dependent and whether radiation-induced changes in spatial memory are associated with changes in the dendritic marker microtubule-associated protein 2 (MAP-2) and the presynaptic marker synaptophysin. Methods and Materials: Two-month-old male and female mice expressing human apoE3 or apoE4 received either a 3-Gy dose of cranial {sup 56}Fe irradiation (600 MeV/amu) or sham irradiation. Mice were tested in a water maze task 13 months later to assess effects of irradiation on spatial memorymore » retention. After behavioral testing, the brain tissues of these mice were analyzed for synaptophysin and MAP-2 immunoreactivity. Results: After irradiation, spatial memory retention of apoE3 female, but not male, mice was impaired. A general genotype deficit in spatial memory was observed in sham-irradiated apoE4 mice. Strikingly, irradiation prevented this genotype deficit in apoE4 male mice. A similar but nonsignificant trend was observed in apoE4 female mice. Although there was no change in MAP-2 immunoreactivity after irradiation, synaptophysin immunoreactivity was increased in irradiated female mice, independent of genotype. Conclusions: The effects of {sup 56}Fe irradiation on the spatial memory retention of mice are critically influenced by sex, and the direction of these effects is influenced by apoE isoform. Although in female mice synaptophysin immunoreactivity provides a sensitive marker for effects of irradiation, it cannot explain the apoE genotype-dependent effects of irradiation on the spatial memory retention of the mice.« less

  18. Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeS2- xSe x.

    PubMed

    Long, Yaqiong; Yang, Jing; Gao, Xin; Xu, Xuena; Fan, Weiliu; Yang, Jian; Hou, Shifeng; Qian, Yitai

    2018-04-04

    Transition-metal sulfides/selenides are explored as advanced electrode materials for nonaqueous sodium-ion capacitors, using FeS 2- x Se x as an example. A solid solution of S/Se in FeS 2- x Se x allows it to combine the high capacity of FeS 2 and the good diffusion kinetics of FeSe 2 together, thereby exhibiting excellent cycle stability (∼220 mA h g -1 after 6000 cycles at 2 A g -1 ) and superior rate capability (∼210 mA h g -1 at 40 A g -1 ) within 0.8-3.0 V. These results are much better than those of FeS 2 and FeSe 2 , confirming the advantages of S/Se solid solution, as supported by EIS spectra, DFT calculations, and electronic conductivity. As FeS 2- x Se x is paired with the activated carbon (AC) as Na-ion capacitors, this device is also better than sodium-ion batteries of FeS 2- x Se x //Na 3 V 2 (PO 4 ) 3 and sodium-ion capacitors of metal oxides//AC, particularly at high rates. These results open a new door for the applications of sulfides/selenides in another device of electrochemical energy storage.

  19. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  20. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  1. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  2. Changes in cluster magnetism and suppression of local superconductivity in amorphous FeCrB alloy irradiated by Ar+ ions

    NASA Astrophysics Data System (ADS)

    Okunev, V. D.; Samoilenko, Z. A.; Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S. J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J.; Wolny-Marszałek, M.; Jeżabek, M.; Varyukhin, V. N.; Antoshina, I. A.

    2016-02-01

    We show that сluster magnetism in ferromagnetic amorphous Fe67Cr18B15 alloy is related to the presence of large, D=150-250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30-100 Å, α-(Fe, Cr) and Fe3B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10-20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×1018 ions/cm2) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×1018 ions/cm2, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T) T2 is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×1018 ions/cm2, the transition to a dependence ρ(T) T1/2 is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×1018 ions/cm2, a return to the dependence ρ(T) T2 is observed.

  3. Magnetic anisotropy engineering: Single-crystalline Fe films on ion eroded ripple surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedke, M. O.; Koerner, M.; Lenz, K.

    We present a method to preselect the direction of an induced in-plane uniaxial magnetic anisotropy (UMA) in thin single-crystalline Fe films on MgO(001). Ion beam irradiation is used to modulate the MgO(001) surface with periodic ripples on the nanoscale. The ripple direction determines the orientation of the UMA, whereas the intrinsic cubic anisotropy of the Fe film is not affected. Thus, it is possible to superimpose an in-plane UMA with a precision of a few degrees - a level of control not reported so far that can be relevant for example in spintronics.

  4. Polyhydric polymer-functionalized fluorescent probe with enhanced aqueous solubility and specific ion recognition: A test strips-based fluorimetric strategy for the rapid and visual detection of Fe3+ ions.

    PubMed

    Duan, Zhiqiang; Zhang, Chunxian; Qiao, Yuchun; Liu, Fengjuan; Wang, Deyan; Wu, Mengfan; Wang, Ke; Lv, Xiaoxia; Kong, Xiangmu; Wang, Hua

    2017-08-01

    A polyhydric polymer-functionalized probe with enhanced aqueous solubility was designed initially by coupling 1-pyrenecarboxyaldehyde (Pyr) onto poly(vinyl alcohol) (PVA) via the one-step condensation reaction. Polyhydric PVA polymer chains could facilitate the Pyr fluorophore with largely improved aqueous solubility and especially strong cyan fluorescence. Importantly, the fluorescence of the PVA-Pyr probes could thereby be quenched specifically by Fe 3+ ions through the strong PVA-Fe 3+ interaction triggering the polymeric probe aggregation. Furthermore, a test strips-based fluorimetric method was developed with the stable and uniform probe distribution by taking advantage of the unique film-forming ability and the depression capacity of "coffee-stain" effects of PVA matrix. The as-developed test strips could allow for the rapid and visual detections of Fe 3+ ions simply by a dipping way, showing a linear concentration range of 5.00-300μM, with the detection limit of 0.73μM. Moreover, the proposed method was applied to the evaluation of Fe 3+ ions in natural water samples, showing the analysis performances better or comparable to those of current detection techniques. This test strips-based fluorimetric strategy promises the extensive applications for the rapid on-site monitoring of Fe 3+ ions in environmental water and the outdoor finding of the potential iron mines. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.

    PubMed

    Oh, Seung-Min; Myung, Seung-Taek; Yoon, Chong Seung; Lu, Jun; Hassoun, Jusef; Scrosati, Bruno; Amine, Khalil; Sun, Yang-Kook

    2014-03-12

    While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future.

  6. Interaction of Electron Neutrinos with {sup 56}Fe in the LSD for E{sub {nu}{sub e}} {<=} 50 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaponov, Yu.V.; Ryazhskaya, O.G.; Semenov, S.V.

    The neutrino pulses detected by the LSD (Liquid Scintillator Detector) on February 23, 1987, are analyzed on the basis of a two-stage model of supernova explosion. The number of events due to the electron-neutrino interaction with {sup 56}Fe in the LSD is calculated. The obtained number of signals is in agreement with experimental data.

  7. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou

    2018-06-01

    The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

  8. Fe(+) chemical ionization of peptides.

    PubMed

    Speir, J P; Gorman, G S; Amster, I J

    1993-02-01

    Laser-desorbed peptide neutral molecules were allowed to react with Fe(+) in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe(+) ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne(+). Prior to reaction with laser-desorbed peptide molecules, Fe(+) ions undergo 20-100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe(+) ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe(+)] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.

  9. Structure of siderite FeCO[subscript 3] to 56 GPa and hysteresis of its spin-pairing transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavina, Barbara; Dera, Przemyslaw; Downs, Robert T.

    2010-09-17

    The structure of siderite, FeCO{sub 3}, was determined to 56 GPa, beyond the spin-pairing transition of its iron d electrons. Fe{sup 2+} in the siderite structure is in the high-spin state at low pressures and transforms to the low-spin (LS) state over a narrow pressure range, 44 to 45 GPa, that is concomitant with a shrinkage of the octahedral bond distance by 4%, and a volume collapse of 10%. The structural rearrangements associated with the electronic transition are nearly isotropic in contrast with other properties of siderite, which mostly are highly anisotropic. Robust refinements of the crystal structure from single-crystalmore » x-ray diffraction data were performed at small pressure intervals in order to accurately evaluate the variation in the interatomic distances and to define the geometry of the carbonate hosting LS-Fe{sup 2+}. Thermal vibrations are remarkably lowered in the LS-Sd as shown by atomic displacement parameters. The formation of like-spin domains at the transition shows a hysteresis of more than 3 GPa, compatible with a strong cooperative contribution of neighboring clusters to the transition.« less

  10. Tuning the exchange bias in NiFe/Fe-oxide bilayers by way of different Fe-oxide based mixtures made with an ion-beam deposition technique.

    PubMed

    Lin, K W; Kol, P H; Guo, Z Y; Ouyang, H; van Lierop, J

    2007-01-01

    We have investigated the structural and magnetic properties of ion-beam deposited polycrystalline NiFe (25 nm)/Fe-oxide (35 nm) bilayers. A film prepared with an assist beam O2 to Ar gas ratio of 0% during deposition had a bottom layer that consisted of pure b.c.c. Fe (a = 2.87 A) whereas films prepared with 19%O2/Ar and 35%O2/Ar had either Fe3O4 (a = 8.47 angstroms) or alpha-Fe2O3 (a = 5.04 angstroms, c = 13.86 angstroms) bottom layers, respectively. Cross-sectional transmission electron microscopy revealed a smooth interface between the top nano-columnar NiFe and bottom nano-columnar Fe-oxide layer for all films. At room temperature, the observed coercivity (Hc approximately 25 Oe) for a film prepared with 19% O2/Ar indicates the existence of a magnetically hard ferrimagnetic Fe3O4 phase that is enhancing the plain NiFe (Hc approximately 2 Oe) by way of exchange coupling. A significant amount of exchange bias is observed below 50 K, and at 10 K the size of exchange bias hysteresis loops shift increases with increasing oxygen in the films. Furthermore, the strongest exchange coupling (H(ex) approximately 135 Oe at 10 K) is with alpha-Fe2O3 (35% O2/Ar) as the bottom film layer. This indicates that the pure antiferromagnetic phases work better than ferrimagnetic phases when in contact with ferromagnetic NiFe. H(ex) (T) is well described by an effective AF domain wall energy that creates an exchange field with a (1 - T/T(crit)) temperature dependence. Hc (T) exhibits three distinct regimes of constant temperature that may indicate the existence of different AF spin populations that couple to the FM layer at different temperatures.

  11. The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Su, X.; Liu, C. G.; Yang, D. Y.; Wen, J.; Fu, E. G.; Zhang, J.; Chen, L. J.; Xu, D. P.; Wang, Y. Q.; Li, Y. H.

    2015-11-01

    The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3.

  12. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.

    PubMed

    Edison, Eldho; Sreejith, Sivaramapanicker; Madhavi, Srinivasan

    2017-11-15

    Owing to the high theoretical sodiation capacities, intermetallic alloy anodes have attracted considerable interest as electrodes for next-generation sodium-ion batteries (SIBs). Here, we demonstrate the fabrication of intermetallic Fe-Sb alloy anode for SIBs via a high-throughput and industrially viable melt-spinning process. The earth-abundant and low-cost Fe-Sb-based alloy anode exhibits excellent cycling stability with nearly 466 mAh g -1 sodiation capacity at a specific current of 50 mA g -1 with 95% capacity retention after 80 cycles. Moreover, the alloy anode displayed outstanding rate performance with ∼300 mAh g -1 sodiation capacity at 1 A g -1 . The crystalline features of the melt-spun fibers aid in the exceptional electrochemical performance of the alloy anode. Further, the feasibility of the alloy anode for real-life applications was demonstrated in a sodium-ion full-cell configuration which could deliver a sodiation capacity of over 300 mAh g -1 (based on anode) at 50 mA g -1 with more than 99% Coulombic efficiency. The results further exhort the prospects of melt-spun alloy anodes to realize fully functional sodium-ion batteries.

  13. In-situ Density and Thermal Expansion Measurements of Fe and Fe-S Alloying Liquids Under Planetary Core Conditions

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Chantel, J.; Yu, T.; Sakamaki, T.; Wang, Y.

    2015-12-01

    Liquid iron is likely the dominant constituent in the cores of terrestrial planets and icy satellites such as Earth, Mars, Mercury, the Moon, Ganymede, and Io. Suggested by geophysical and geochemical observations, light elements such as S, C, Si, etc., are likely present in planetary cores. These light elements can significantly reduce the density and melting temperature of the Fe cores, and hence their abundances are crucial to our understanding of the structure and thermal history of planetary cores, as well as the generation of intrinsic magnetic fields. Knowledge on the density of Fe-light element alloying liquids at high pressures is critical to place constraints on the composition of planetary cores. However, density data on liquid Fe-light element alloys at core pressures are very limited in pressure and composition and are sometimes controversial. In this study, we extend the density dataset for Fe-rich liquids by measuring the density of Fe, Fe-10wt%S, Fe-20wt%S, Fe-27wt%S, and FeS liquids using the X-ray absorption technique in a DIA-type multianvil apparatus up to 7 GPa and 2173 K. An ion chamber (1D-detector) and a CCD camera (2D-detector) were used to measure intensities of transmitted monochromatic X-rays through molten samples, with the photon energy optimized at 40 keV. The densities were then determined from the Beer-Lambert law using the mass absorption coefficients, calibrated by solid standards using X-ray diffraction. At each pressure, density measurements were conducted at a range of temperatures above the liquidus of the samples, enabling the determination of thermal expansion. Combined with our previous results on the sound velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), these data provide tight constraints on the equation of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-S liquids. We will discuss these results with implications to planetary

  14. Perovskites Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3: Crystal structure and magnetic and charge states of iron ions

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Pokatilov, V. S.; Makarova, A. O.; Pokatilov, V. V.

    2014-06-01

    Perovskites of the Bi0.8La0.2Fe1 - x Cr x O3 system ( x = 0, 0.05) were investigated by Mössbauer spectroscopy in the temperature range of 298-800 K. The samples were fabricated by solid-state synthesis and had a rhombic structure. Iron ions in Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3 are situated in trivalent states. The magnetic transition temperatures (the Néel temperatures T N ) T N = 677.5 ± 2.5 K for Bi0.8La0.2FeO3 and T N = 647.6 ± 2.5 K for Bi0.8La0.2Fe0.95Cr0.05O3 are measured. The substitution of trivalent iron ions from trivalent chromium ions in the amount x = 0.05 in Bi0.8La0.2Fe0.95Cr0.05O3 perovskite decreases the hyperfine magnetic field at nuclei 57Fe in Fe+3-O-Cr+3 chains by 30 kOe.

  15. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE PAGES

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...

    2018-03-31

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  16. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  17. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    PubMed

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New Constraints on the Abundance of 60Fe in the Early Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less

  19. New Constraints on the Abundance of 60Fe in the Early Solar System

    DOE PAGES

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; ...

    2018-04-19

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less

  20. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.

    PubMed

    Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun

    2014-11-01

    Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-12-01

    A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe2O3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe2O3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe2O3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe2O3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  2. Preservation of Fe Isotope Proxies in the Rock Record

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Beard, B.; Valley, J.; Valaas, E.

    2005-12-01

    Iron isotope variations provide powerful constraints on redox conditions and pathways involved during biogeochemical cycling of Fe in surface and near-surface environments. The relative isotopic homogeneity of igneous rocks and most bulk weathering products contrasts with the significant isotopic variations (4 per mil in 56Fe/54Fe) that accompany oxidation of Fe(II)aq, precipitation of sulfides, and reduction by bacteria. These isotopic variations often reflect intrinsic (equilibrium) Fe isotope fractionations between minerals and aqueous species whose interactions may be directly or indirectly catalyzed by bacteria. In addition, Fe isotope exchange may be limited between reactive Fe pools in low-temperature aqueous-sediment environments, fundamentally reflecting disequilibrium effects. In the absence of significant sulfide, dissimilatory Fe(III) reduction by bacteria produces relatively low 56Fe/54Fe ratios for Fe(II)aq and associated biogenic minerals such as magnetite and siderite. In contrast, Fe(II)aq that exchanges with Fe sulfides (FeS and pyrite) is relatively enriched in 56Fe/54Fe ratios. In modern and ancient environments, anoxic diagenesis tends to produce products that have low 56Fe/54Fe ratios, whereas oxidation of Fe(II)aq from hydrothermal sources tends to produce ferric Fe products that have high 56Fe/54Fe ratios. Redox cycling by bacteria tends to produce reactive ferric Fe reservoirs that have low 56Fe/54Fe ratios. Application of Fe isotopes as a proxy for redox conditions in the ancient rock record depends upon the preservation potential during metamorphism, given the fact that most Archean sedimentary sequences have been subjected to regional greenschist- to granulite-facies metamorphism. The 1.9 Ga banded iron formations (BIFs) of the Lake Superior region that are intruded by large ~1 Ga intrusions (e.g., Duluth gabbro) provide a test of the preservation potential for primary, low-temperature Fe isotope variations in sedimentary rocks. 56Fe/54

  3. Investigation of the spectral properties of a squarylium near-infrared dye and its complexation with Fe(III) and Co(II) ions

    NASA Astrophysics Data System (ADS)

    Tarazi, Leila; Narayanan, Nara; Sowell, John; Patonay, Gabor; Strekowski, Lucjan

    2002-01-01

    The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24×10 -8 M for Fe(III) ion and 1.55×10 -8 M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant KS of the metal-dye complex was calculated to be 3.14×10 6 M -1 for the Fe-dye complex and 2.64×10 5 M -1 for the Co-dye complex.

  4. Investigation of the spectral properties of a squarylium near-infrared dye and its complexation with Fe(III) and Co(II) ions.

    PubMed

    Tarazi, Leila; Narayanan, Nara; Sowell, John; Patonay, Gabor; Strekowski, Lucjan

    2002-01-15

    The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24 x 10(-8) M for Fe(III) ion and 1.55 x 10(-8) M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant Ks of the metal-dye complex was calculated to be 3.14 x 10(6) M(-1) for the Fe-dye complex and 2.64 x 10(5) M(-1) for the Co-dye complex.

  5. Fe{sub 2}O{sub 3} nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelucci, Marco; Frau, Eleonora; Betti, Maria Grazia

    Iron Oxides nanostructures are very promising systems for new generation of anode material for Lithium-Ion batteries because of their high capacity associated to their surface area. A core-level photoemission study of Fe{sub 2}O{sub 3} nanowires deposited on highly-oriented pyrolitic graphite (HOPG) under Li exposure is presented. The Fe-2p, Fe-3p, and Li-1s core-level lineshape evolution upon Li exposure in ultra-high-vacuum conditions clearly brings to light the Fe ion reduction from fully trivalent to prevalently divalent at saturation. Furthermore, the graphite substrate allows allocation of a large amount of Li ions surrounding the iron-oxide nanowires, opening a new scenario towards the usemore » of graphene for improving the ionic charge exchange.« less

  6. Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine.

    PubMed

    Singh, S; Dryhurst, G

    1990-11-01

    The neurodegenerative properties of the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) are widely believed to result from its autoxidation in the central nervous system. The autoxidation chemistry of 5,6-DHT has been studied in aqueous solution at pH 7.2. The reaction is initiated by direct oxidation of the indolamine by molecular oxygen with resultant formation of the corresponding o-quinone 1 and H2O2. A rapid nucleophilic attack by 5,6-DHT on 1 leads to 2,7'-bis(5,6-dihydroxytryptamine) (6) which is more rapidly autoxidized than 5,6-DHT to give the corresponding diquinone 7 along with 2 mol of H2O2. The accumulation of 6 in the reaction solution during the autoxidation of 5,6-DHT despite its more rapid autoxidation indicates that diquinone 7 chemically oxidizes 5,6-DHT (2 mol) to quinone 1 so that an autocatalytic cycle is established. The H2O2 formed as a byproduct of these autoxidation reactions can undergo Fenton chemistry catalyzed by trace transition metal ion contaminants with resultant formation of the hydroxyl radical, HO., which directly oxidizes 5,6-DHT to a radical intermediate (9a/9b). This radical is directly attacked by O2 to yield quinone 1 and superoxide radical anion, O2.-, which further facilitates Fenton chemistry by reducing, inter alia, Fe3+ to Fe2+. A minor side reaction of 1 with water leads to formation of at least two trihydroxytryptamines. Diquinone 7 ultimately reacts with 6, 5,6-DHT, and perhaps trihydroxytryptamines, leading via a sequence of coupling and oxidation reactions to a black indolic melanin polymer. Enzymes such as tyrosinase, ceruloplasmin, and peroxidase and rat brain mitochondria catalyze the oxidation of 5,6-DHT to form dimer 7 and, ultimately, indolic melanin. The role of the autoxidation and the enzyme-mediated and mitochondria-promoted oxidations of 5,6-DHT in expressing the neurodegenerative properties of the indolamine are discussed.

  7. Modification of graphene by ion beam

    NASA Astrophysics Data System (ADS)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  8. Spatial anisotropy of neutrons emitted from the 56Fe(γ ,n )55Fe reaction with a linearly polarized γ -ray beam

    NASA Astrophysics Data System (ADS)

    Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Amano, S.; Takemoto, A.; Yamaguchi, M.; Horikawa, K.; Akimune, H.; Chiba, S.; Ogata, K.; Fujiwara, M.

    2016-04-01

    We have measured the azimuthal anisotropy of neutrons emitted from the 56Fe(γ ,n )55Fe reaction with a linearly polarized γ -ray beam generated by laser Compton scattering at NewSUBARU. Neutron yields at the polar angle of 90∘ have been measured as a function of the azimuthal angle ϕ between the detector and the linear polarization plane of the γ -ray beam. The azimuthal anisotropy of neutrons measured at ϕ =0∘ , 10∘, 25∘, 45∘, 60∘, 70∘, and 90∘ has been well reproduced using a theoretically predicted function of a +b cos(2 ϕ ) .

  9. Recent operation of the FNAL magnetron H- ion source

    NASA Astrophysics Data System (ADS)

    Karns, P. R.; Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ˜18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  10. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.

    PubMed

    Ma, Zhipeng; Fan, Yuqian; Shao, Guangjie; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2015-02-04

    The low electronic conductivity and one-dimensional diffusion channel along the b axis for Li ions are two major obstacles to achieving high power density of LiFePO4 material. Coating carbon with excellent conductivity on the tailored LiFePO4 nanoparticles therefore plays an important role for efficient charge and mass transport within this material. We report here the in situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates with highly oriented (010) facets by introducing ferrocene as a catalyst during thermal treatment. The as-obtained material exhibits superior performances for Li-ion batteries at high rate (100 C) and low temperature (-20 °C), mainly because of fast electron transport through the graphitic carbon layer and efficient Li(+)-ion diffusion through the thin nanoplates.

  11. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  12. Synthesis and Electrochemical Properties of LiFePO4/C for Lithium Ion Batteries.

    PubMed

    Gao, Hong; Wang, Jiazhao; Yin, Shengyu; Zheng, Hao; Wang, Shengfu; Feng, Chuanqi; Wang, Shiquan

    2015-03-01

    LiFePO4/C was prepared through a facile rheological phase reaction method by using Fe3(PO4)2, Li3PO4 · 8H2O, and glucose as reactants. The LiFePO4/C samples were characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The electrochemical properties of the samples were investigated. The results show that the LiFePO4/C samples have single-phase olivine-type structure, and their particles feature a spherical shape. The carbon coating on the particles of LiFePO4 is about 1.8% of the LiFePO4/C by weight. The particle size was distributed from 0.2 to 1 µm. The initial discharge capacity of LiFePO4/C reached 154 mA h/g at 0.1 C. The retained discharge capacity of LiFePO4/C was 152.9 mA h g(-1) after 50 cycles. The LiFePO4/C also showed better cycling performance than that of the bare LiPeO4 at a higher charge/discharge rate (1 C). The LIFePO4/C prepared in this way could be a promising cathode material for lithium ion battery application.

  13. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; hide

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  14. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  15. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  16. Spectroscopic studies of Fe(III) ion-exchanged ETS-10 and ETAS-10 molecular sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerfeld, D.A.; Ellis, W.R. Jr.; Eyring, E.M.

    1992-11-26

    Two new titanium silicate molecular sieves, designated ETS-10 and ETAS-10, have been ion-exchanged with Fe(III). Both products exhibit prominent EPR signals, at g = 6.0 and 4.3, that are assigned to populations of ferric iron on the surface and in the interior cavities, respectively, of the molecular sieve microcrystals. Corollary XPS measurements on these samples indicate that a substantial fraction of the surface iron is present as Fe(II). Chemical modification procedures have been explored in an effort to produce ion-exchanged materials containing no exterior iron. Acid treatment (pH 1.0) proved to be an effective means of achieving this goal inmore » the case of ETS-10-based materials. ETAS-10-based samples do not retain their crystallinity under these conditions. 35 refs., 4 figs., 2 tabs.« less

  17. Modification of local order in FePd films by low energy He{sup +} irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, D. G.; Tancziko, F.; Sajti, Sz.

    2008-07-01

    Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L1{sub 0} FePd phase fraction. Therefore, the formation and transformation of the L1{sub 0} phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L1{sub 0} phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He{sup +} irradiationmore » was investigated at fluences up to 14.9x10{sup 15} ions/cm{sup 2}. X-ray diffraction and conversion electron Moessbauer spectroscopy revealed that with increasing fluence, the L1{sub 0} FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He{sup +} irradiation, the lattice parameter c of the FePd L1{sub 0} structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe{sub 47}Pd{sub 53} to Fe{sub 54}Pd{sub 46}, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L1{sub 0} phase were found at different fluences by conversion electron Moessbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4x10{sup 15} ions/cm{sup 2} is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L1{sub 0} phase.« less

  18. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    PubMed

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  19. Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C- LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries

    DOE PAGES

    Kumar, Arun; Thomas, R.; Karan, N. K.; ...

    2009-01-01

    Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less

  20. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  1. Tracing anthropogenic aerosol Fe sources in the North Atlantic Ocean using dissolved Fe isotope ratios

    NASA Astrophysics Data System (ADS)

    Conway, T. M.; Shelley, R.; Aguilar-Islas, A. M.; Landing, W. M.; Mahowald, N. M.; John, S.

    2016-02-01

    Supply of iron (Fe) to the surface ocean from atmospheric deposition plays a vital role in marine biogeochemical cycles, especially in Fe-limited areas or regions close to dust sources. However, large uncertainties remain over the fluxes, solubility and bioavailability of Fe supplied by aerosol dust. Additionally, aerosol Fe is likely to consist of a mixture of natural and anthropogenic (urban, biomass burning and combustion) components, which may have very different solubilities in seawater [e.g. 1]. To constrain soluble Fe supply to the oceans, it is thus vitally important to understand the relative contributions of different types of aerosol Fe, their solubilities and spatial distributions. Stable Fe isotopes (δ56Fe) may offer a way to discriminate between different dust sources [2], because of differential fractionation during a range of chemical processes. In this study, we measured δ56Fe in North Atlantic marine aerosols collected during two US GEOTRACES GA03 cruises (Lisbon to Woods Hole via Cape Verde, 2010-11) and we present δ56Fe measurements (relative to IRMM-014) from both the bulk aerosol (HF-HNO3 digested) and the water-soluble (10s ultrapure water leach) fractions. Aerosols collected from different air-masses (Saharan, European and N. American) allowed us to investigate the variability in δ56Fe due to different regional dust sources. The bulk phase was characterized by near-crustal δ56Fe values of +0.1±0.2‰, indicating the dominance of mineral dust. In contrast, the water-soluble fraction showed great variability; aerosols from European and North American air-masses were very isotopically light (-1.2±0.2‰ and -1.1±0.7‰) while those from Saharan air-masses were crustal (+0.1‰). Comparison of this data with isotope-informed model predictions of soluble Fe from mineral and anthropogenic sources (combustion, biofuels and biomass burning) [1], suggests that the data is consistent with mixing of either 1) Fe from mineral dust (+0.1‰) and

  2. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  3. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation

    USGS Publications Warehouse

    Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.

    2006-01-01

    Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments

  4. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    NASA Astrophysics Data System (ADS)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  5. Fe3O4@Polypyrrole Microspheres with High Magnetization and Superparamagnetism for Efficient and Fast Removal of Pb(II) Ions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui

    2017-12-01

    Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.

  6. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application.

    PubMed

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-11

    In the present work, we report on the use of organized TiO 2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe 2 O 3 nano-needles in the interspace. These α-Fe 2 O 3 decorated TiO 2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe 2 O 3 . We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm -2 compared to bare spaced NTs with a capacitance of 54 μAh cm -2 , the hierarchical decoration with secondary metal oxide, α-Fe 2 O 3 , remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe 2 O 3 decoration have an areal capacitance of 477 μAh cm -2 , i.e. they have nearly ∼8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe 2 O 3 decoration saturates at 208 μAh cm -2 , i.e. is limited to ∼3 times increase.

  7. A Green's function method for heavy ion beam transport

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.

    1995-01-01

    The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.

  8. Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Han, Jinzhi; Qin, Jian; Guo, Lichao; Qin, Kaiqiang; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; He, Chunnian

    2018-01-01

    Poor intrinsic conductivity and huge volume expansion during charge/discharge process greatly limit the development of Ge-based ternary oxide as anode material for both lithium-ion batteries and sodium-ion batteries. To alleviate these issues, an ideal strategy is developed to achieve active particle nanocrystallization and composite with conductive carbon materials, simultaneously. Therefore, ultrasmall Fe2GeO4 nanodots (∼4.6 nm) uniformly and tightly anchored on 3D interconnected N-doped ultrathin carbon nanosheets (3D Fe2GeO4/N-CNSs) were constructed via one-step high temperature calcination process. This unique hybrid nanostructure can not only effectively enhance electron conductivity but also restrict the aggregation and volume fluctuation of Fe2GeO4 during the charge/discharge process. As a result, the 3D Fe2GeO4/N-CNSs electrode exhibited excellent electrochemical performances for both lithium-ion and sodium-ion battery anodes. When utilized for lithium-ion battery anode, the electrode delivered a highly reversible specific capacity (1280 mA h g-1 at 0.4 A g-1 after 180 cycles). It is the first time that Fe2GeO4 was applied for sodium-ion battery anode, which showed a remarkable rate capability (350 mA h g-1 at 0.1 A g-1 and 180 mA h g-1 at 22.8 A g-1), and ultralong cycling stability (∼86% reversible capacity retention after 6000 cycles).

  9. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show thatmore » (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.« less

  10. Ion-beam-induced magnetic transformation of CO-stabilized fcc Fe films on Cu(100)

    NASA Astrophysics Data System (ADS)

    Shah Zaman, Sameena; Oßmer, Hinnerk; Jonner, Jakub; Novotný, Zbyněk; Buchsbaum, Andreas; Schmid, Michael; Varga, Peter

    2010-12-01

    We have grown 22-ML-thick Fe films on a Cu(100) single crystal. The films were stabilized in the face-centered-cubic (fcc) γ phase by adsorption of carbon monoxide during growth, preventing the transformation to the body-centered-cubic (bcc) α phase. A structural transformation of these films from fcc to bcc can be induced by Ar+ ion irradiation. Scanning-tunneling microscopy images show the nucleation of bcc crystallites, which grow with increasing Ar+ ion dose and eventually result in complete transformation of the film to bcc. Surface magneto-optic Kerr effect measurements confirm the transformation of the Fe film from paramagnetic (fcc) to ferromagnetic (bcc) with an in-plane easy axis. The transformation can also be observed by low-energy electron diffraction. We find only very few nucleation sites of the bcc phase and argue that nucleation of the bcc phase happens under special circumstances during resolidification of the molten iron in the thermal spike after ion impact. Intermixing with the Cu substrate impedes the transformation. We also demonstrate the transformation of films coated with Au to protect them from oxidation at ambient conditions.

  11. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue

    NASA Astrophysics Data System (ADS)

    Maiti, Sayantani; Llorca, Jordi; Dominguez, Montserrat; Colussi, Sara; Trovarelli, Alessandro; Priolkar, Kaustubh R.; Aquilanti, Giuliana; Gayen, Arup

    2016-02-01

    A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h-1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.

  12. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  13. Crystal structure of K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, an open-framework iron phosphite with mixed-valent Fe(II)/Fe(III) ions.

    PubMed

    Larrea, Edurne S; Mesa, José Luis; Legarra, Estibaliz; Aguayo, Andrés Tomás; Arriortua, Maria Isabel

    2016-01-01

    Single crystals of the title compound, potassium hexa-phosphito-penta-ferrate(II,III) hemihydrate, K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, were grown under mild hydro-thermal conditions. The crystal structure is isotypic with Li1.43[Fe(II) 4.43Fe(III) 0.57(HPO3)6]·1.5H2O and (NH4)2[Fe(II) 5(HPO3)6] and exhibits a [Fe(II) 3.75Fe(III) 1.25(HPO3)6](0.75-) open framework with disordered K(+) (occupancy 3/4) as counter-cations. The anionic framework is based on (001) sheets of two [FeO6] octa-hedra (one with point group symmetry 3.. and one with point group symmetry .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å where the K(+) cations and likewise disordered water mol-ecules (occupancy 1/4) are located. O⋯O contacts between the water mol-ecule and framework O atoms of 2.864 (5) Å indicate hydrogen-bonding inter-actions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of Fe(II) and Fe(III) ions.

  14. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  15. Outstanding Li-storage performance of LiFePO4@MWCNTs cathode material with 3D network structure for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodong; Zhang, Le

    2018-05-01

    In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.

  16. Do heavy ions cause microlesions in cell membranes?

    NASA Technical Reports Server (NTRS)

    Koniarek, Jan P.; Worgul, Basil V.

    1992-01-01

    The microlesion question is investigated by monitoring the electrical potential difference across the endothelium of rat corneas in vitro before, during, and after irradiation. When the corneas were exposed to 1 Gy of Fe-56 ions (450 and 600 MeV/a.m.u.), no effect was detected on this parameter. These results suggest that direct physical damage to cell membranes, as predicted by the microlesion theory, does not take place.

  17. Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage

    NASA Astrophysics Data System (ADS)

    Wang, Jie; He, Huan; Wu, Zexing; Liang, Jianing; Han, Lili; Xin, Huolin L.; Guo, Xuyun; Zhu, Ye; Wang, Deli

    2018-07-01

    Transitions metal sulfides/oxides have been considered as promising anode candidates for next generation lithium-ion batteries (LIBs) due to high theoretical capacities. However, the large volume change during lithiation/delithiation process and poor electronic conductivity often result in a poor charging/discharging performance. Herein, we design a flower-like FeS/Fe2O3 composite via a simple "solvothermal-oxidation" method, in which the Fe2O3 is most distributed on the surface of the flower. The unique porous structure and synergistic effect between FeS and Fe2O3 not only accommodate the large volume expansion, but also facilitate Li ion and electron transport. The Fe2O3 shell effectively reduce the dissolution of Li2Sx during discharge/charge process. When serving as the anode material in lithium ion battery, FeS/Fe2O3 exhibits superior specific capacity, rate capacity and cycling stability compared with pure FeS and Fe2O3.

  18. High-Energy-Density Aqueous Magnesium-Ion Battery Based on a Carbon-Coated FeVO4 Anode and a Mg-OMS-1 Cathode.

    PubMed

    Zhang, Hongyu; Ye, Ke; Zhu, Kai; Cang, Ruibai; Yan, Jun; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-12-01

    Porous FeVO 4 is prepared by hydrothermal method and further modified by coating with carbon to obtain FeVO 4 /C with a hierarchical pore structure. FeVO 4 /C is used as an anodic electrode in aqueous rechargeable magnesium-ion batteries. The FeVO 4 /C material not only has improved electrical conductivity as a result of the carbon coating layer, but also has an increased specific surface area as a result of the hierarchical pore structure, which is beneficial for magnesium-ion insertion/deinsertion. Therefore, an aqueous rechargeable magnesium-ion full battery is successfully constructed with FeVO 4 /C as the anode, Mg-OMS-1 (OMS=octahedral molecular sieves) as the cathode, and 1.0 mol L -1 MgSO 4 as the electrolyte. The discharge capacity of the Mg-OMS-1//FeVO 4 /C aqueous battery is 58.9 mAh g -1 at a current density of 100 mA g -1 ; this value is obtained by calculating the total mass of two electrodes and the capacity retention rate of this device is 97.7 % after 100 cycles, with almost 100 % coulombic efficiency, which indicates that the system has a good electrochemical reversibility. Additionally, this system can achieve a high energy density of 70.4 Wh kg -1 , which provides powerful evidence that an aqueous magnesium-ion battery is possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of alpha-lipoic acid on associative and spatial memory of sham-irradiated and 56Fe-irradiated C57BL/6J male mice.

    PubMed

    Villasana, Laura E; Rosenthal, Rosalind A; Doctrow, Susan R; Pfankuch, Timothy; Zuloaga, Damian G; Garfinkel, Alexandra Maccoll; Raber, Jacob

    2013-01-01

    Cranial irradiation with (56)Fe, a form of space radiation, causes hippocampus-dependent cognitive changes. (56)Fe irradiation also increases reactive oxygen species (ROS) levels, which may contribute to these changes. Therefore, we investigated the effects of the antioxidant alpha lipoic acid (ALA) on cognition following sham-irradiation and irradiation. Male mice were irradiated (brain only) with (56)Fe (3 Gy) or sham-irradiated at 6-9 months of age. Half of the mice remained fed a regular chow and the other half of the mice were fed a caloric-matched diet containing ALA starting two-weeks prior to irradiation and throughout cognitive testing. Following cognitive testing, levels of 3-nitrotyrosine (3NT), a marker of oxidative protein stress, and levels of microtubule-associated protein (MAP-2), a dendritic protein important for cognition, were assessed using immunohistochemistry and confocal microscopy. ALA prevented radiation-induced impairments in spatial memory retention in the hippocampal and cortical dependent water maze probe trials following reversal learning. However, in sham-irradiated mice, ALA treatment impaired cortical-dependent novel object recognition and amygdala-dependent cued fear conditioning. There was a trend towards lower 3NT levels in irradiated mice receiving a diet containing ALA than irradiated mice receiving a regular diet. In the hippocampal dentate gyrus of mice on regular diet, irradiated mice had higher levels of MAP-2 immunoreactivity than sham-irradiated mice. Thus, ALA might have differential effects on the brain under normal physiological conditions and those involving environmental challenges such as cranial irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Study of the storm time fluxes of heavy ions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The characteristics of the storm time ring current ions in the energy range of 0.5 to 16 keV were investigated. Data were processed and analyzed from the energetic ion mass spectrometer aboard the S3-3 satellite. Results are used for planning and operating the ion mass spectrometer experiment on the ISEE spacecraft, for selecting and processing the ISEE ion data, and for planning and conducting coordinated satellite experiments in support of the International Magnetospheric Study (IMS). It is established from the S3-3 ion data that relatively large fluxes of energetic (keV) 0(+) and H(+) ions are frequently flowing upward from the ionosphere along magnetic field lines in the polar auroral regions. Also, from investigations with the same instrument during the main phase of three moderate (D sub ST approximately 100) magnetic storms, it is found that the number density of 0(+) ions in the ring current was comparable to H(+) ion density the range 0.5 to 15 keV.

  1. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu

    We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less

  2. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  3. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode.

    PubMed

    Zhang, Shijia; Li, Chen; Zhang, Xiong; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2017-05-24

    Lithium-ion capacitors (LICs) are considered as promising energy storage devices to realize excellent electrochemical performance, with high energy-power output. In this work, we employed a simple method to synthesize a composite electrode material consisting of Fe 3 O 4 nanocrystallites mechanically anchored among the layers of three-dimensional arrays of graphene (Fe 3 O 4 -G), which exhibits several advantages compared with other traditional electrode materials, such as high Li storage capacity (820 mAh g -1 at 0.1 A g -1 ), high electrical conductivity, and improved electrochemical stability. Furthermore, on the basis of the appropriated charge balance between cathode and anode, we successfully fabricated Fe 3 O 4 -G//activated carbon (AC) soft-packaging LICs with a high energy density of 120.0 Wh kg -1 , an outstanding power density of 45.4 kW kg -1 (achieved at 60.5 Wh kg -1 ), and an excellent capacity retention of up to 94.1% after 1000 cycles and 81.4% after 10 000 cycles. The energy density of the Fe 3 O 4 -G//AC hybrid device is comparable with Ni-metal hydride batteries, and its capacitive power capability and cycle life is on par with supercapacitors (SCs). Therefore, this lithium-ion hybrid capacitor is expected to bridge the gap between Li-ion battery and SCs and gain bright prospects in next-generation energy storage fields.

  4. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions

    NASA Technical Reports Server (NTRS)

    Grosovsky, A.; Bethel, H.; Parks, K.; Ritter, L.; Giver, C.; Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed 21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  5. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions.

    PubMed

    Grosovsky, A; Bethel, H; Parks, K; Ritter, L; Giver, C; Gauny, S; Wiese, C; Kronenberg, A

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed ~21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  6. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang

    2015-02-01

    A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode

  7. Effect of 0.25 and 2.0 MeV He-Ion Irradiation on Short-Range Ordering in Model (EFDA) Fe-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Dubiel, Stanisław M.; Żukrowski, Jan; Serruys, Yves

    2018-05-01

    The effects of He+ irradiation on a distribution of Cr atoms in Fe100-x Cr x (x = 5.8, 10.75, 15.15) alloys were studied by 57Fe Conversion Electron Mössbauer Spectroscopy (CEMS). The alloys were irradiated with doses up to 12 × 1016 ions/cm2 with 0.25 and 2.0 MeV He+ ions. The distribution of Cr atoms within the first two coordination shells around Fe atoms was expressed with short-range order parameters α 1 (first-neighbor shell, 1NN), α 2 (second-neighbor shell, 2NN), and α 12 (1NN + 2NN). In non-irradiated alloys, α 1 >0 and α 2 <0 was revealed for all three samples. The value of α 12 ≈0, i.e., the distribution of Cr atoms averaged over 1NN and 2NN, was random. The effect of the irradiation of the Fe94.2Cr5.8 alloy was similar for the two energies of He+, viz., increase of number of Cr atoms in 1NN and decrease in 2NN. Consequently, the degree of ordering increased. For the other two samples, the effect of the irradiation depends on the composition, and is stronger for the less energetic ions where, for Fe89.25Cr10.75 alloy, the disordering disappeared and some traces of Cr clustering appeared. In Fe84.85Cr15.15 alloy, the clustering was clear. In the samples irradiated with 2. 0 MeV He+ ions, the ordering also survived in the samples with x = 10.75 and 15.15, yet its degree became smaller than in the Fe94.2Cr5.8 alloy.

  8. Tuning Li-Ion Diffusion in α-LiMn 1–xFe xPO 4 Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiangtao; Xiao, Yinguo; Tang, Hanting

    Olivine-structured LiMn 1–xFe xPO 4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO 4, which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn 1–xFe xPO 4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. In this paper, olivine-structured α-LiMn 0.5Fe 0.5PO 4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn 1–xFemore » xPO 4 nanocrystals by inducing high concentrations of Fe 2+–Li + antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g –1 at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn 1–xFe xPO 4, which is first reported in this work) embedded in α-LiMn 0.5Fe 0.5PO 4. Because of the coherent orientation relationship between β- and α-phases, the β-phase embedded would impede the Li + diffusion along the [100] and/or [001] directions that was activated by the high density of Fe 2+–Li + antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe 2+–Li + antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn 1–xFe xPO 4 nanocrystals can be tuned by generating new Li + tunneling. Finally, these findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.« less

  9. Tuning Li-Ion Diffusion in α-LiMn 1–xFe xPO 4 Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries

    DOE PAGES

    Hu, Jiangtao; Xiao, Yinguo; Tang, Hanting; ...

    2017-07-13

    Olivine-structured LiMn 1–xFe xPO 4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO 4, which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn 1–xFe xPO 4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. In this paper, olivine-structured α-LiMn 0.5Fe 0.5PO 4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn 1–xFemore » xPO 4 nanocrystals by inducing high concentrations of Fe 2+–Li + antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g –1 at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn 1–xFe xPO 4, which is first reported in this work) embedded in α-LiMn 0.5Fe 0.5PO 4. Because of the coherent orientation relationship between β- and α-phases, the β-phase embedded would impede the Li + diffusion along the [100] and/or [001] directions that was activated by the high density of Fe 2+–Li + antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe 2+–Li + antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn 1–xFe xPO 4 nanocrystals can be tuned by generating new Li + tunneling. Finally, these findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.« less

  10. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  11. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE PAGES

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...

    2017-07-06

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  12. Synthesis and Performance of LiFe1-xMnxPO4 in Lithium-ion Battery

    NASA Astrophysics Data System (ADS)

    Bazzi, Khadije; Nazri, Maryam; Vaishnava, Prem; Naik, Vaman; Nazri, Gholam-Abbas; Naik, Ratna

    2013-03-01

    Olivine-type lithium transition metal phosphates (i.e. LiFePO4) have been intensively investigated as promising electrode materials for rechargeable lithium-ion batteries. There have been attempts to improve energy density and voltage quality of phosphate based electrode. In this study, we have partially substituted FeII/FeIII redox center with MnII/MnIII in LiFePO4 that provides over 600 mV higher voltage. We prepared various compositions of LiFe1-xMnxPO4 (x =0, 0.2, 0.4, 0.6, 0.8 and 1) between the two end members (LiFePO4 - LiMnPO4) . Due to intrinsic low electronic conductivity of lithium transition metal phosphates, we coat these materials with a uniform conductive carbon through a unique sol-gel process developed in our laboratory. In addition, we made a composite of the carbon coated phosphate with carbon nano-tubes to develop a highly conductive matrix electrode. We report the materials structure, morphology, electrical conductivity and electrochemical performances of LiFe1-xMnxPO4 using XRD, Raman spectroscopy, SEM, TEM, XPS, electrical conductivity and galvanostatic charge/discharge measurements.

  13. In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Xue, Hairong; Wang, Tao; He, Jianping

    2016-06-01

    The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (∼100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 μm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g-1 and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of ∼60 mAh g-1, exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 1.3 g cm-3. What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance.

  14. Effective atomic number, energy loss and radiation damage studies in some materials commonly used in nuclear applications for heavy charged particles such as H, C, Mg, Fe, Te, Pb and U

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2016-05-01

    Commonly used nuclear physics materials such as water, concrete, Pb-glass, paraffin, freon and P 10 gases, some alloys such as brass, bronze, stainless-steel and some scintillators such as anthracene, stilbene and toluene have been investigated with respect to the heavy charged particle interaction as means of projected range and effective atomic number (Zeff) in the energy region 10 keV to 10 MeV. Calculations were performed for heavy ions such as H, C, Mg, Fe, Te, Pb and U. Also, the energy loss and radiation damage were studied using SRIM Monte Carlo code for anthracene for different heavy ions of 100 keV kinetic energy. It has been observed that the variation in Zeff becomes less when the atomic number of the ions increase. Glass-Pb, bronze, brass, stainless-steel and Freon gas were found to vary less than 10% in the energy region 10 keV to 10 MeV. For total proton interaction, discrepancies up to 10% and 18% between two databases namely PSTAR and SRIM were noted in mass stopping power and Zeff of water, respectively. The range calculations resulted with a conclusion that the metal alloys and glass-Pb have lowest values of ranges confirming best shielding against energetic heavy ions whereas freon and P 10 gases have the highest values of ranges in the entire energy region. The simulation results showed that the energy loss (%) to target electrons decreases as the Z of the incident ion increases. Also, it was observed that the radiation damage first increases with Z of the ion and then keeps almost constant for ions with Z≥52.

  15. Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ding, Zhengping; Liu, Jiatu; Ji, Ran; Zeng, Xiaohui; Yang, Shuanglei; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-10-01

    Li2MSiO4 (M = Mn, Fe, Co, Ni, et al.) has received great attention because of the theoretical possibility to reversibly deintercalate two Li+ ions from the structure. However, the silicates still suffer from low electronic conductivity, sluggish lithium ion diffusion and structural instability upon deep cycling. In order to solve these problems, a "hard-soft" templating method has been developed to synthesize three-dimensionally ordered macroporous (3DOM) Li2FeSiO4/C composites. The 3DOM Li2FeSiO4/C composites show a high reversible capacity (239 mAh g-1) with ∼1.50 lithium ion insertion/extraction, a capacity retention of nearly 100% after 420 cycles and excellent rate capability. The enhanced electrochemical performance is ascribed to the interconnected carbon framework that improves the electronic conductivity and the 3DOM structure that offers short Li ion diffusion pathways and restrains volumetric changes.

  16. Tracing mantle processes with Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, S.; Ionov, D.

    2006-12-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched rocks) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. Pimitive peridotites (Mg# = 0.894) yield delta56Fe = 0.02 and are significantly lighter than the basalts (average delta56Fe = 0.11). Furthermore, the peridotites display a negative correlation of iron isotopes with Mg#. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt [1, 2]. A particularly good correlation of the Fe isotope composition and Mg# shown by poorly metasomatised spinel lherzolites of three localities (Horoman, Kamchatka and Lherz) was used to model Fe isotope fractionation during partial melting, resulting in alphamantle-melt = 1.0003. This value implies higher Fe isotope fractionation between residual mantle and mantle-derived melts (i.e. Delta56Femantle-melt = 0.2-0.3) than the observed difference between the peridotites and the basalts in this study. Our data on plagioclase lherzolites from Horoman and spinel lherzolites from other localities indicate that the difference in Fe isotope composition between mantle and basalts may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events. At two localities (Tok, Siberia and Tariat, Mongolia) Fe isotopes correlates with the Fe concentration of the peridotites, which was increased up to 14.5% FeO by melt percolation. Such processes can be accompanied by chromatographic effects and produce a range of Fe isotope compositions in the percolation columns, from extremely light to heavy (delta56Fe = -0.42 to +0.17). We propose that Fe isotopes can be

  17. In situ gas and ion measurements at comet Halley

    NASA Astrophysics Data System (ADS)

    Krankowsky, D.; Lammerzahl, P.; Herrwerth, I.; Woweries, J.; Eberhardt, P.; Dolder, U.; Herrmann, U.; Schulte, W.; Berthelier, J. J.; Illiano, J. M.; Hodges, R. R.; Hoffman, J. H.

    1986-05-01

    The neutral mass spectrometer experiment carried by the Giotto spacecraft was designed to determine the abundances and the chemical, elemental and isotopic composition of the gases and low-energy ions in the coma of comet Halley. Its first results show the predominance of water vapour with an H2O density of 4.7x107molecules cm-3 at 1,000 km. Limits on the abundances of CO2, NH3 and CH4 relative to H2O are given. The water-group ions H3O+, H2O+ and OH+ have been unambiguously identified, along with the ions 12C+, 12CH+, 16O+, Na+, 12C2+, 32S+, 34S+ and 56Fe+.

  18. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.

    PubMed

    Wan, Lianghui; Sheng, Jiayi; Chen, Haihang; Xu, Yiming

    2013-11-15

    Photocatalytic degradation of organic pollutants on TiO2 and WO3 have been widely studied, but the effects of Cu(2+) and Fe(3+) ions still remain unclear. In this work, we have found that the recycle behavior of Cu(2+) and Fe(3+) are greatly dependent on the photocatalytic activity of metal oxide used. With TiO2 (P25, anatase, and rutile), all the time profiles of phenol degradation in water under UV light well fitted to the apparent first-order rate equation. On the addition of Cu(2+), phenol degradation on anatase, rutile and WO3 also followed the first-order kinetics. On the addition of Fe(3+), the initial rate of phenol degradation on each oxide was increased, but only the reactions on three TiO2 became to follow the first order kinetics after half an hour. The relevant rate constants for phenol degradation in the presence of Cu(2+) or Fe(3+) were larger than those in the absence of metal ions. Under visible light, phenol degradation on WO3 was also accelerated on the addition of Fe(3+) or Cu(2+). Moreover, several influencing factors were examined, including the metal ion photolysis in solution. It becomes clear that as electron scavengers of TiO2 and WO3, Fe(3+) is better than Cu(2+), while they are better than O2. We propose that Fe(3+) recycle occurs through H2O2, photogenerated from TiO2, not from WO3, while Cu(2+) regeneration on a moderate photocatalyst is through the dissolved O2 in water. Copyright © 2013. Published by Elsevier B.V.

  19. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    NASA Technical Reports Server (NTRS)

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth

    2017-01-01

    Exposure to space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized exposure to ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-week old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 mega electron volts per nucleon) or high-LET (sup 56) Fe ions (600 mega electron volts per nucleon) using either low (5 or 10 centigrays) or high (50 or 200 centigrays) doses at NASAs Space Radiation Lab at Brookhaven National Lab (NSRL/BNL). Tissues were harvested 5 weeks or 1 year after irradiation and bones were analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed for select groups by RT-PCR (Reverse Transcription-Polymerase Chain Reaction) during the proliferative phase or the mineralizing phase, and differentiation was analyzed by imaging mineralized nodules (percentage surface area). Representative genes were selected for expression analyses, including cell proliferation (PCNA, Cdk2, p21, p53), differentiation (Runx2, Alpl, Bglap), oxidative metabolism (Catalase, GPX, MnSOD, CuZnSOD, iNos, Foxo1), DNA-damage repair (Gadd45), or apoptosis (Caspase 3). As expected, a high dose (200 centigrays), but not low doses, of either (sup 56) Fe or protons caused a loss of cancellous bone volume per total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; (sup 56) Fe (200 centigrays) inhibited median nodule area by more than 90 percent at 5 weeks and 1 year post-irradiation, compared to controls. At 5 weeks post

  20. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  1. Evolution of irradiation-induced strain in an equiatomic NiFe alloy

    DOE PAGES

    Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...

    2017-07-10

    Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less

  2. Time-resolved determination of Fe(II) ions using cysteine-bridged Mn-doped ZnS quantum dots as a phosphorimetric probe.

    PubMed

    Jing, Wenjie; Lu, Yuexiang; Wang, Feiyang; He, Liuying; Sun, Jingwei; Liu, Yueying

    2018-05-12

    A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50-1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 μs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum. Graphical abstract Schematic of a novel phosphorescent method for the detection of Fe 2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.

  3. NRVS and EPR Spectroscopy of 57Fe-enriched [FeFe] Hydrogenase Indicate Stepwise Assembly of the H-cluster†

    PubMed Central

    Kuchenreuther, Jon M.; Guo, Yisong; Wang, Hongxin; Myers, William K.; George, Simon J.; Boyke, Christine A.; Yoda, Yoshitaka; Alp, E. Ercan; Zhao, Jiyong; Britt, R. David; Swartz, James R.; Cramer, Stephen P.

    2013-01-01

    The [FeFe] hydrogenase from Clostridium pasteurianum (CpI) harbors four Fe–S clusters that facilitate electron transfer to the H-cluster, a ligand-coordinated six-iron prosthetic group that catalyzes the redox interconversion of protons and H2. Here, we have used 57Fe nuclear resonance vibrational spectroscopy (NRVS) to study the iron centers in CpI, and we compare our data to that for a [4Fe–4S] ferredoxin as well as a model complex resembling the [2Fe]H catalytic domain of the H-cluster. In order to enrich the hydrogenase with 57Fe nuclei, we used cell-free methods to post-translationally mature the enzyme. Specifically, inactive CpI apoprotein with 56Fe-labeled Fe–S clusters was activated in vitro using 57Fe-enriched maturation proteins. This approach enabled us to selectively label the [2Fe]H subcluster with 57Fe, which NRVS confirms by detecting 57Fe–CO and 57Fe–CN normal modes from the H-cluster nonprotein ligands. The NRVS and iron quantification results also suggest that the hydrogenase contains a second 57Fe–S cluster. EPR spectroscopy indicates that this 57Fe-enriched metal center is not the [4Fe– 4S]H subcluster of the H-cluster. This finding demonstrates that the CpI hydrogenase retained an 56Fe-enriched [4Fe–4S]H cluster during in vitro maturation, providing unambiguous evidence for stepwise assembly of the H-cluster. In addition, this work represents the first NRVS characterization of [FeFe] hydrogenases. PMID:23249091

  4. Irradiation of DNA loaded with platinum containing molecules by fast atomic ions C(6+) and Fe(26+).

    PubMed

    Usami, N; Kobayashi, K; Furusawa, Y; Frohlich, H; Lacombe, S; Sech, C Le

    2007-09-01

    In order to study the role of the Linear Energy Transfer (LET) of fast atomic ions in platinum-DNA complexes inducing breaks, DNA Plasmids were irradiated by C(6+) and Fe(26+) ions. DNA Plasmids (pBR322) loaded with different amounts of platinum contained in a terpyridine-platinum molecule (PtTC) were irradiated by C(6+) ions and Fe(26+) ions. The LET values ranged between 13.4 keV/microm and 550 keV/microm. In some experiments, dimethyl sulfoxide (DMSO) was added. In all experiments, a significant increase in DNA strand breaks was observed when platinum was present. The yield of breaks induced per Gray decreased when the LET increased. The yield of single and double strand breaks per plasmid per track increased with the LET, indicating that the number of DNA breaks per Gray was related to the number of tracks through the medium. These findings show that more DNA breaks are induced by atomic ions when platinum is present. This effect increases for low LET heavy atoms. As DSB induction may induce cell death, these results could open new perspectives with the association of hadrontherapy and chemotherapy. Thus the therapeutic index might be improved by loading the tumour with platinum salts.

  5. Investigation of the influence of irradiation with Fe+7 ions on structural properties of AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, A.; Dukenbayev, K.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Kenzhina, I.; Tosi, D.; Loginov, V.; Zdorovets, M.

    2018-06-01

    The paper presents the results of investigation of defect formation in AlN ceramics under Fe+7 ion irradiation with a fluence from 1 × 1011 to 1 × 1014 ion cm‑2. The change in the main crystallographic characteristics, the decrease in the magnitude of Griffiths criterion, and the increase in the average voltage as a result of irradiation are caused by the appearance of additional defects in the structure and their further evolution leading to a change in the degree of crystallinity. For samples irradiated with Fe+7 ions to a dose of 1 × 1011 ion cm‑2, the formation of pyramidal hillocks is observed on the surface, whose average height is 17–20 nm. An increase in the irradiation dose leads to an increase in chillocks size and their density. At the same time, at large irradiation doses, the formation of conglomerates of chyllocks and grooves on the samples surface is observed. The change in surface morphology, the formation of chyllocks on the ceramic surface, and the dependence of the change in crystallographic characteristics during irradiation make it possible to unambiguously associate the formation of radiation defects in the structure of the ceramic with energy losses in elastic and inelastic interactions of iron ions with lattice atoms.

  6. Mass-resolved ion energy measurements at both electrodes of a 13.56 MHz plasma in CF4

    NASA Astrophysics Data System (ADS)

    Snijkers, R. J. M. M.; van Sambeek, M. J. M.; Hoppenbrouwers, M. B.; Kroesen, G. M. W.; de Hoog, F. J.

    1996-06-01

    The ion energy distributions (IEDs) at the electrodes in a capacitively coupled 13.56 MHz plasma in CF4 have been measured mass resolved with a Balzers quadrupole in combination with a home-built energy analyzer. Mass-resolved determination offers the possibility to compare the IED of different ions achieved in the same sheath. The IEDs have been determined at both the largest and the smallest electrode. Apart from the IEDs of the CF4 species, the IEDs of ionic species in plasmas in argon and nitrogen also were determined. Apart from the CF4 ionic species CF+3, CF+2, CF+, and F+, CHF+2 ions also are present in the CF4 plasma due to residual water in the reactor. Because the CHF+2 ions are not produced in the sheath and because we do not detect elastically scattered ions, the IEDs of these ions show the typical bimodal distribution for rf plasmas which corresponds to an IED of ions which have not collided in the sheath. From these IEDs we can obtain the sheath characteristics, such as the averaged sheath potential. From the IEDs of CF+n ions one can conclude that, in the sheath of the CF4 plasma, a large number of chemical reactions takes place between the CF+n ions and the neutrals.

  7. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less

  8. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

    PubMed

    Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap

    2015-03-01

    LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.

  9. Contribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.

    2017-09-01

    Magnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.

  10. The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon

    NASA Technical Reports Server (NTRS)

    Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.; Beahm, L. P.; Dietrich, W. F.; Kleis, T.

    1995-01-01

    We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.

  11. On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tolea, F.; Grecu, M. N.; Kuncser, V.; Constantinescu, S. Gr.; Ghica, D.

    2015-04-01

    The role of iron doping on magnetic properties of hydrothermal anatase TiO2:57Fe (0-1 at. %) nanoparticles is investigated by combining superconducting quantum interference device magnetometry with Mössbauer and electron paramagnetic resonance techniques. The results on both as-prepared and thermally treated samples in reduced air atmosphere reveal complexity of magnetic interactions, in connection to certain iron ion electron configurations and defects (oxygen vacancies, F-center, and Ti3+ ions). The distribution of iron ions is predominantly at nanoparticle surface layers. Formation of weak ferromagnetic domains up to 380 K is mainly related to defects, supporting the bound magnetic polaron model.

  12. Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study.

    PubMed

    Chung, Sai Cheong; Barpanda, Prabeer; Nishimura, Shin-Ichi; Yamada, Yuki; Yamada, Atsuo

    2012-06-28

    We have investigated polymorphs of LiFeSO4F, tavorite and triplite, which have been reported as cathode materials for lithium ion batteries. The predicted voltages are 3.64 and 3.90 V for tavorite and triplite, respectively, which agreed excellently with experimental data. It is found that the lithiated states (LiFeSO4F) of the polymorphs are almost degenerate in energy. The difference in voltage is mainly due to the difference in the stabilities of the delithiated states (FeSO4F). This is rationalized by the Fe(3+)-Fe(3+) repulsion in the edge sharing geometry of the triplite structure.

  13. LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger

    2017-09-01

    A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.

  14. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Timore » (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.« less

  15. Thin films as a platform for understanding the conversion mechanism of FeF2 cathodes in lithium-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Santos-Ortiz, Reinaldo

    Conversion material electrodes such as FeF2 possess the potential to deliver transformative improvements in lithium ion battery performance because they permit a reversible change of more than one Li-ion per 3d metal cation. They outperform current state of the art intercalation cathodes such as LiCoO2, which have volumetric and gravimetric energy densities that are intrinsically limited by single electron transfer. Current studies focus on composite electrodes that are formed by mixing with carbon (FeF 2-C), wherein the carbon is expected to act as a binder to support the matrix and facilitate electronic conduction. These binders complicate the understanding of the electrode-electrolyte interface (SEI) passivation layer growth, of Li agglomeration, of ion and electron transport, and of the basic phase transformation processes under electrochemical cycling. This research uses thin-films as a model platform for obtaining basic understanding to the structural and chemical foundations of the phase conversion processes. Thin film cathodes are free of the binders used in nanocomposite structures and may potentially provide direct basic insight to the evolution of the SEI passivation layer, electron and ion transport, and the electrochemical behavior of true complex phases. The present work consisted of three main tasks (1) Development of optimized processes to deposit FeF2 and LiPON thin-films with the required phase purity and microstructure; (2) Understanding their electron and ion transport properties and; (3) Obtaining insight to the correlation between structure and capacity in thin-film microbatteries with FeF2 thin-film cathode and LiPON thin-film solid electrolyte. Optimized pulsed laser deposition (PLD) growth produced polycrystalline FeF2 films with excellent phase purity and P42/mnm crystallographic symmetry. A schematic band diagram was deduced using a combination of UPS, XPS and UV-Vis spectroscopies. Room temperature Hall measurements reveal that as

  16. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  17. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; hide

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  18. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.

    PubMed

    Pozzi, Cecilia; Di Pisa, Flavio; Lalli, Daniela; Rosa, Camilla; Theil, Elizabeth; Turano, Paola; Mangani, Stefano

    2015-04-01

    Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.

  19. Removal of Cd2+ and Cu2+ ions from aqueous solution by using Fe-Fe3O4/graphene oxide as a novel and efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Le, Giang H.; Ha, Anh Q.; Nguyen, Quang K.; Nguyen, Kien T.; Dang, Phuong T.; Tran, Hoa T. K.; Vu, Loi D.; Nguyen, Tuyen V.; Lee, Gun D.; Vu, Tuan A.

    2016-10-01

    The nano Fe-Fe3O4/graphene oxide (GO) was successfully synthesized by the precipitation method and followed by chemical reduction using FeCl3 as iron sources and NaBH4 as reducing agent. The products were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), BET, x-ray photoelectron spectroscopy (XPS) and VMS. From the obtained XRD and XPS results, it revealed the formation of both Fe and Fe3O4 nano particles on GO surface. TEM images showed that both Fe3O4/GO and Fe-Fe3O4/GO had small particle size of 10-20 nm and uniform size distribution. Fe3O4/GO and Fe-Fe3O4/GO were used as adsorbents for removal of Cd2+ and Cu2+ ions from aqueous solution. Maximum adsorption capacity (Q max) of Fe-Fe3O4/GO for Cu2+ and Cd2+ are 90.0 mg g-1 and 108.6 mg g-1, respectively. These values are much higher as compared to those of Fe3O4/GO as well as those reported in the literature. Additionally, this novel adsorbent can be reused by washing with diluted Hcl solution and easily recovered by applying the magnetic field. The Cd2+ adsorption isotherm fits better for the Langmuir model that of the Freundlich model and it obeys the pseudo-second order kinetic equation.

  20. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    PubMed Central

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2. PMID:27145983

  1. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.

    PubMed

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F; Wang, Jian-Ping

    2016-05-05

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2).

  2. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  3. Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.

    PubMed

    Guo, Binbin; Ruan, Hongcheng; Zheng, Cheng; Fei, Hailong; Wei, Mingdeng

    2013-09-27

    Hierarchically structured LiFePO4 was successfully synthesized by ionic liquid solvothermal method. These hierarchically structured LiFePO4 samples were constructed from nanostructured platelets with their (010) facets mainly exposed. To the best of our knowledge, facet control of a hierarchical LiFePO4 crystal has not been reported yet. Based on a series of experimental results, a tentative mechanism for the formation of these hierarchical structures was proposed. After these hierarchically structured LiFePO4 samples were coated with a thin carbon layer and used as cathode materials for lithium-ion batteries, they exhibited excellent high-rate discharge capability and cycling stability. For instance, a capacity of 95% can be maintained for the LiFePO4 sample at a rate as high as 20 C, even after 1000 cycles.

  4. Trails of Kilovolt Ions Created by Subsurface Channeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of themore » ion's subsurface channel.« less

  5. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    PubMed

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  6. Chemical leaching methods and measurements of marine labile particulate Fe

    NASA Astrophysics Data System (ADS)

    Revels, B. N.; John, S.

    2012-12-01

    Iron (Fe) is an essential nutrient for life. Yet its low solubility and concentration in the ocean limits marine phytoplankton productivity in many regions of the world. Dissolved phase Fe (<0.4μm) has traditionally been considered the most biologically accessible form, however, the particulate phase (>0.4μm) may contain an important, labile reservoir of Fe that may also be available to phytoplankton. However, concentration data alone cannot elucidate the sources of particulate Fe to the ocean and to what extent particulate iron may support phytoplankton growth. Isotopic analysis of natural particles may help to elucidate the biogeochemical cycling of Fe, though it is important to find a leaching method which accesses bioavailable Fe. Thirty-three different chemical leaches were performed on a marine sediment reference material, MESS-3. The combinations included four different acids (25% acetic acid, 0.01M HCl, 0.5M HCl, 0.1M H2SO4 at pH2), various redox conditions (0.02M hydroxylamine hydrochloride or 0.02M H2O2), three temperatures (25°C, 60°C, 90°C), and three time points (10 minutes, 2 hours, 24 hours). Leached Fe concentrations varied from 1mg/g to 35mg/g, with longer treatment times, stronger acids, and hotter temperatures generally associated with an increase in leached Fe. δ56Fe in these leaches varied from -1.0‰ to +0.2‰. Interestingly, regardless of leaching method used, there was a very similar relationship between the amount of Fe leached from the particles and the δ56Fe of this iron. Isotopically lighter δ56Fe values were associated with smaller amounts of leached Fe whereas isotopically heavier δ56Fe values were associated with larger amounts of leached Fe. Two alternate hypotheses could explain these data. Either, the particles may contain pools of isotopically light Fe that are easily accessed early in dissolution, or isotopically light Fe may be preferentially leached from the particle due to a kinetic isotope effect during dissolution

  7. Partial melting and melt percolation in the mantle: The message from Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Ionov, Dmitri A.

    2007-07-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with

  8. Ion irradiation-induced easy-cone anisotropy in double-MgO free layers for perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Teixeira, B. M. S.; Timopheev, A. A.; Caçoilo, N. F. F.; Auffret, S.; Sousa, R. C.; Dieny, B.; Alves, E.; Sobolev, N. A.

    2018-05-01

    We have used the ferromagnetic resonance in the X-band (9.37 GHz) to investigate the effect of 400 keV Ar+ irradiation on the perpendicular magnetic anisotropy (PMA) and Gilbert damping parameter, α, of double-MgO free layers designed for application in perpendicular magnetic tunnel junctions. The samples comprised a MgO/Fe72Co8B20/X(0.2 nm)/Fe72Co8B20/MgO layer stack, where X stands for an ultrathin Ta or W spacer. Samples with two different total FeCoB layer thicknesses, tFCB = 3.0 nm and tFCB = 2.6 nm, were irradiated with ion fluences ranging from 1012 cm-2 to 1016 cm-2. The effective first-order PMA field, BK1, decreased nearly linearly with the logarithm of the fluence for both FeCoB thicknesses and spacer elements. The decrease in BK1, which is likely caused by an ion-induced intermixing at the FeCoB/MgO interfaces, resulted in a reorientation of the magnetization of the free layers with tFCB = 2.6 nm, initially exhibiting a perpendicular easy-axis anisotropy. For intermediate fluences, 1013 cm-2 and 1014 cm-2, easy-cone states with different cone angles could be induced in the free layer with a W spacer. Importantly, no corresponding increase in the Gilbert damping was observed. This study shows that ion irradiation can be used to tune the easy-cone anisotropy in perpendicular magnetic tunnel junctions, which is interesting for spintronic applications such as spin-torque magnetic memory devices, oscillators, and sensors.

  9. On the Unusually High Temperature of the Cluster of Galaxies 1E 0657-56

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir

    1999-01-01

    A recent X-ray observation of the cluster 1E 0657-56 (z = 0.296) with ASC,4 implied an unusually high temperature of approx. 17 keV. Such a high temperature would make it the hottest known cluster and severely constrain cosmological models since, in a Universe with critical density (Omega = 1) the probability of observing such a cluster is only approx. 4 x 10(exp -5). Here we test the robustness of this observational result since it has such important implications. We analysed the data using a variety of different data analysis methods and spectral analysis assumptions and find a temperature of approx. 11 - 12 keV in all cases, except for one class of spectral fits. These are fits in which the absorbing column density is fixed at the Galactic value. Using simulated data for a 12 keV cluster, we show that a high temperature of approx. 17 keV is artificially obtained if the true spectrum has a stronger low-energy cut-off than that for Galactic absorption only. The apparent extra absorption may be astrophysical in origin, (either intrinsic or line-of-sight), or it may be a problem with the low-energy CCD efficiency. Although significantly lower than previous measurements, this temperature of kT approx. 11 - 12 keV is still relatively high since only a few clusters have been found to have temperatures higher than 10 keV and the data therefore still present some difficulty for an Omega = 1 Universe. Our results will also be useful to anyone who wants to estimate the systematic errors involved in different methods of background subtraction of ASCA data for sources with similar signal-to-noise to that of the IE 0657-56 data reported here.

  10. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    PubMed

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  11. Synthesis, characterization and lithium-ion migration dynamics simulation of LiFe1- x T x PO4 (T = Mn, Co, La and Ce) doping cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Yi; Zhang, Fu Chun; Han, Jeong In

    2016-11-01

    LiFePO4 was doped by metallic cation in Fe sites via ball milling by a solid-state reaction method synthesis, and with very low-level doping of these samples, such as Li0.95T0.05FePO4 (where T = Mn2+, Co2+, La3+, Ce4+). The effects of doping were studied by X-ray diffraction pattern, Raman shift, scanning electronic microscopy and energy-dispersive X-ray spectroscopy as sample characterizations. The results indicate that these dopants have no significant effect on the structure of the material, but considerably improve its electrochemical behavior. First-principles calculations were used to obtain the migration pathway of Li ions along the one-dimensional (010) direction in LiFePO4, and molecular dynamics simulation was used to investigate the lithium-ion diffusion coefficients ( D Li) inside LiFePO4, which were derived from the slope of the mean square displacement versus time plots. The evolution of the structure during the simulation was analyzed by the radial distribution function to obtain the data, and radial distribution functions and mean square displacements were used to confirm the formation of crystalline units and the evolution of structure.

  12. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  13. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of aberrations in human chromosome 5 by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/μ m, doses 1 or 4 Gy) 56Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture, and slides were painted by mBAND (MetaSystems). We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 Gy and 4 Gy Fe-ions, respectively. The distribution per unit length were similar in the p- and q-arm of chromosome 5, and >50% of the observed fragments measured <30% of the whole chromosome length. Only small fragments (<40% of the chromosome size) were involved in intra-chromosomal exchanges (interstitial deletions or inversions), whereas fragments up to 75% of the whole chromosome 5 were found in inter-chromosomal exchanges. We measured more inter-changes than intra-changes, and more intra-arm than inter-arm exchanges at both doses. No significant differences in the ratios of these aberrations were detected with respect to X-rays. On the other hand, Fe-ions induced a significantly higher fraction of complex-type exchanges when compared to sparsely ionizing radiation. Work supported by DLR, BMBF, INTAS and NIRS-HIMAC.

  15. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zehra, Saman; Gul, Iftikhar Hussain; Hussain, Zakir

    2018-06-01

    A simple, sensitive, selective and real time detection protocol was developed for Pb2+ ions in water using liquid crystals (LCs). In this method, NiFe2O4 nanoparticles were synthesized using chemical co-precipitation method. Crystallite size, morphological, functional groups and magnetization studies were confirmed using X-ray diffraction, Scanning Electron Microscopy, and Fourier transform infrared spectroscopy techniques, respectively. The nanoparticles were mono dispersed with average particle size of 20 ± 2 nm. The surfactant stabilized magnetic nanoparticles were incubated in liquid crystal based sensor system for the detection of Pb+2 ions. The bright to dark transition of LC was observed through optical microscope. When this system was further immersed with a solution containing Pb2+ ions, it caused homeotropic to planar orientation of LC. This interaction is attributed to the presence of abundant hydroxyl groups in such as M-OH, Fe-OH on the surface of spinel ferrites nanoparticles. These groups interact with metal ions at aqueous interface, causing disruption in LCs orientation giving bright texture. This sensor showed higher selectivity towards Pb2+ ions. The detection limit was estimated to be 100 ppb. The cheap and effective protocol reported here should make promising development of LC based sensor for lead ion detection.

  16. Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries

    PubMed Central

    2015-01-01

    Three-dimensional self-organized nanoporous thin films integrated into a heterogeneous Fe2O3/Fe3C-graphene structure were fabricated using chemical vapor deposition. Few-layer graphene coated on the nanoporous thin film was used as a conductive passivation layer, and Fe3C was introduced to improve capacity retention and stability of the nanoporous layer. A possible interfacial lithium storage effect was anticipated to provide additional charge storage in the electrode. These nanoporous layers, when used as an anode in lithium-ion batteries, deliver greatly enhanced cyclability and rate capacity compared with pristine Fe2O3: a specific capacity of 356 μAh cm–2 μm–1 (3560 mAh cm–3 or ∼1118 mAh g–1) obtained at a discharge current density of 50 μA cm–2 (∼0.17 C) with 88% retention after 100 cycles and 165 μAh cm–2 μm–1 (1650 mAh cm–3 or ∼518 mAh g–1) obtained at a discharge current density of 1000 μA cm–2 (∼6.6 C) for 1000 cycles were achieved. Meanwhile an energy density of 294 μWh cm–2 μm–1 (2.94 Wh cm–3 or ∼924 Wh kg–1) and power density of 584 μW cm–2 μm–1 (5.84 W cm–3 or ∼1834 W kg–1) were also obtained, which may make these thin film anodes promising as a power supply for micro- or even nanosized portable electronic devices. PMID:24669862

  17. ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance.

    PubMed

    Varzi, Alberto; Bresser, Dominic; von Zamory, Jan; Müller, Franziska; Passerini, Stefano

    2014-07-15

    An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon-coated ZnFe 2 O 4 nanoparticle-based anode and a LiFePO 4 -multiwalled carbon nanotube-based cathode, both aqueous processed with Na-carboxymethyl cellulose, are combined, for the first time, in a Li-ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre-lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg -1 and 3.72 W kg -1 , respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C-rates (≈10C with respect to the LiFePO 4 cathode), while retaining up to 85% of its initial capacity.

  18. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines

    NASA Astrophysics Data System (ADS)

    Marmorato, P.; Simonelli, F.; Abbas, K.; Kozempel, J.; Holzwarth, U.; Franchini, F.; Ponti, J.; Gibson, N.; Rossi, F.

    2011-12-01

    Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.

  20. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic

  1. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials

    NASA Astrophysics Data System (ADS)

    Yamashita, Toru; Hayes, Peter

    2008-02-01

    Samples of the iron oxides Fe 0.94O, Fe 3O 4, Fe 2O 3, and Fe 2SiO 4 were prepared by high temperature equilibration in controlled gas atmospheres. The samples were fractured in vacuum and high resolution XPS spectra of the fractured surfaces were measured. The peak positions and peak shape parameters of Fe 3p for Fe 2+ and Fe 3+ were derived from the Fe 3p XPS spectra of the standard samples of 2FeO·SiO 2 and Fe 2O 3, respectively. Using these parameters, the Fe 3p peaks of Fe 3O 4 and Fe 1- yO are analysed. The results indicate that high resolution XPS techniques can be used to determine the Fe 2+/Fe 3+ ratios in metal oxides. The technique has the potential for application to other transition metal oxide systems.

  2. Some Behavioral Effects of Exposure to Low Doses of Fe-56 Particles

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Joseph, James A.; Shukitt-Hale, Barbara

    1999-01-01

    Future missions in space (such as a mission to Mars) will involve long-term travel beyond the magnetic field of the Earth. As a result, astronauts will be exposed to radiation qualities and doses that differ from those experienced in low earth orbit, including exposure to heavy particles, such as Fe-56, which are a component of cosmic rays. Although the hazards of exposure to heavy particles are often minimized, they can affect neural functioning, and as a consequence, behavior. Unless the effects of exposure to cosmic rays can somehow be reduced, their effects on the brain throughout long duration flights could be disastrous. In the extreme case, it is possible that the effects of cosmic rays on space travelers could result in symptomatology resembling that of Alzheimer's or Parkinson's diseases or of advancing age, including significant cognitive and/or motor impairments. Because successful operations in space depend in part on the performance capabilities of astronauts, such impairments could jeopardize their ability to satisfy mission requirements, as well as have long-term consequences on the health of astronauts. As such, understanding the nature and extent of this risk may be vital to the effective performance and possibly the survival of astronauts during future missions in space.

  3. Multiple nucleon knockout by Coulomb dissociation in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Norbury, John W.; Townsend, Lawrence W.

    1988-01-01

    The Coulomb dissociation contributions to fragmentation cross sections in relativistic heavy ion collisions, where more than one nucleon is removed, are estimated using the Weizsacker-Williams method of virtual quanta. Photonuclear cross sections taken from experimental results were used to fold into target photon number spectra calculated with the Weizsacker-Williams method. Calculations for several projectile target combinations over a wide range of charge numbers, and a wide range of incident projectile energies, are reported. These results suggest that multiple nucleon knockout by the Coulomb field may be of negligible importance in galactic heavy ion studies for projectiles lighter than Fe-56.

  4. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  5. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  6. Stopping characteristics of boron and indium ions in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. S., E-mail: DSVeselov@mephi.ru; Voronov, Yu. A.

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  7. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.

    PubMed

    Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  8. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    NASA Astrophysics Data System (ADS)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  9. Ion irradiation induced effects and magnetization reversal mechanism in (Ni80Fe20)1-xCox nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Iqbal, Javed; Chen, J. Y.; Hussain, Asim; Shi, D. W.; Han, X. F.

    2015-03-01

    The effect of Co on the ferromagnetic characteristics of the Ni80Fe20 nanocylinders having zero magnetostriction and soft magnetic nature is an interesting field of research. The (Ni80Fe20)1-xCox nanocylinders have been prepared by electrodeposition into commercially available anodized aluminum oxide (AAO) nanoporous templates. The analysis of magnetization reversal from the angular dependence of coercivity has been studied in detail. This angular dependence of coercivity has shown a transition from curling to nucleation mode as a function of field angle for all (Ni80Fe20)1-xCox nanocylinders depending upon the critical angle. The shape anisotropy, dipole-dipole interactions, surface effects and magnetocrystalline anisotropy have been found to play an effective role for the spontaneous magnetization in nanowires and nanotubes. It has been interestingly observed that the magnetostatic interactions or dipole-dipole interactions are dominant in nanocylinders regardless of its geometry. Furthermore, the prepared samples have been irradiated with He2+ ions (energy E=2 MeV, fluence=1014 ions/cm2 and ion current=16 nA) at room temperature using a 5-UDH-2pelletron tandem accelerator. The irradiations have created defects and these defects have induced changes in magnetization as a result an increase in coercivity as function of the ion fluences is observed. Such kind of behavior in coercivity enhancement and magnetization reduction can also be attributed to the stress relaxation and percolation in nonuniform states of ferromagnetic alloys, respectively.

  10. Electrospun LiFePO₄/C Composite Fiber Membrane as a Binder-Free, Self-Standing Cathode for Power Lithium-Ion Battery.

    PubMed

    Chen, Li-Li; Shen, Xiang-Qian; Jing, Mao-Xiang; Zhu, Sheng-Wen; Pi, Zhi-Chao; Li, Jing-Quan; Zhai, Hong-Ai; Xiao, Ke-Song

    2018-07-01

    A LiFePO4/C composite fiber membrane was fabricated by the electrospinning method and subsequent thermal treatment. The thermal decomposition process was analyzed by TG/DSC, the morphology, microstructure and composition were studied using SEM, TEM, XRD, Raman, respectively. The results indicated that the prepared LiFePO4/C composite fibers were composed of nanosized LiFePO4 crystals and amorphous carbon coatings, which formed a three dimensional (3D) long-range networks, greatly enhanced the electronic conductivity of LiFePO4 electrode up to 3.59× 10-2 S · cm-2. The 3D LiFePO4/C fiber membrane could be directly used as a binder-free, self-standing cathode for lithium-ion battery, and exhibited an improved capacity and rate performance. The LiFePO4/C composite electrode delivered a discharge capacity of 116 mAh·g-1, 109 mAh·g-1, 103 mAh·g-1, 91 mAh·g-1, 80 mAh·g-1 at 0.1 C, 0.5 C, 1 C, 3 C, 5 C, respectively. And a stable cycling performance was also achieved that the specific capacity could retain 75 mA·g-1 after 500 cycles at 5 C. Therefore, this LiFePO4/C composite fiber membrane was promising to be used as a cathode for power lithium ion battery.

  11. Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear array detector IonCCD.

    PubMed

    Davila, Stephen J; Hadjar, Omar; Eiceman, Gary A

    2013-07-16

    A linear pixel-based detector array, the IonCCD, is characterized for use under ambient conditions with thermal (<1 eV) positive ions derived from purified air and a 10 mCi (63)Ni foil. The IonCCD combined with a drift tube-ion mobility spectrometer permitted the direct detection of gas phase ions at atmospheric pressure and confirmed a limit of detection of 3000 ions/pixel/frame established previously in both the keV (1-2 keV) and the hyper-thermal (10-40 eV) regimes. Results demonstrate the "broad-band" application of the IonCCD over 10(5) orders in ion energy and over 10(10) in operating pressure. The Faraday detector of a drift tube for an ion mobility spectrometer was replaced with the IonCCD providing images of ion profiles over the cross-section of the drift tube. Patterns in the ion profiles were developed in the drift tube cross-section by control of electric fields between wires of Bradbury Nielson and Tyndall Powell shutter designs at distances of 1-8 cm from the detector. Results showed that ion beams formed in wire sets, retained their shape with limited mixing by diffusion and Coulombic repulsion. Beam broadening determined as 95 μm/cm for hydrated protons in air with moisture of ~10 ppmv. These findings suggest a value of the IonCCD in further studies of ion motion and diffusion of thermalized ions, enhancing computational results from simulation programs, and in the design or operation of ion mobility spectrometers.

  12. Beyond Yolk–Shell Nanoparticles: Fe 3 O 4 @Fe 3 C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage

    DOE PAGES

    Zhang, Jianan; Wang, Kaixi; Xu, Qun; ...

    2015-02-25

    In order to well address the problems of large volume change and dissolution of Fe 3O 4 nanomaterials during Li + intercalation/extraction, herein we demonstrate a one-step in situ nanospace-confined pyrolysis strategy for robust yolk–shell nanospindles with very sufficient internal void space (VSIVS) for high-rate and long-term lithium ion batteries (LIBs), in which an Fe 3O 4@Fe 3C core@shell nanoparticle is well confined in the compartment of a hollow carbon nanospindle. This structure can not only introduce VSIVS to accommodate volume change of Fe 3O 4 but also afford a dual shell of Fe 3C and carbon to restrict Femore » 3O 4 dissolution, thus providing dual roles for greatly improving the capacity retention. Consequently, Fe 3O 4@Fe 3C–C yolk–shell nanospindles deliver a high reversible capacity of 1128.3 mAh g –1 at even 500 mA g –1, excellent high rate capacity (604.8 mAh g –1 at 2000 mA g –1), and prolonged cycling life (maintaining 1120.2 mAh g –1 at 500 mA g –1 for 100 cycles) for LIBs, which are much better than those of Fe 3O 4@C core@shell nanospindles and Fe 3O 4 nanoparticles. The present Fe 3O 4@Fe 3C–C yolk–shell nanospindles are the most efficient Fe 3O 4-based anode materials ever reported for LIBs.« less

  13. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  14. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  15. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE PAGES

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; ...

    2018-03-02

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  16. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  17. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  18. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  19. Existence of Fe{sup 4+} ions in Co{sub 2.25}Fe{sub 0.75}O{sub 4} spinel ferrite confirmed from SXRD and XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Manas Ranjan, E-mail: manasranjan056@gmail.com; Bhowmik, R. N.; Sinha, A. K.

    2015-06-24

    The Co{sub 2.25}Fe{sub 0.75}O{sub 4} ferrite composition has been prepared by chemical co-precipitation route. The as-prepared sample after annealing at 900°C in air formed single phase cubic spinel structure. Synchrotron X-ray diffraction and X-ray absorption near edge structure (XANES) measurements were used to study charge states of the cations in octahedral and tetrahedral sites of the cubic spinel structure. Raman spectra indicated normal cubic spinel structure. XANES data suggested the existence of Fe{sup 4+} ions in the spinel structure.

  20. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, D.; Lebreton, L.; Richer, J.P.

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is usedmore » as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  1. Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Lei, Man; Liu, Yongli; Wu, Yalin; Yuan, Yongyong

    2017-12-01

    Pollution resulted from heavy metal ions have absorbed much attention, and it is of great importance to develop sensitive and simultaneous determination method for them with common technologies without highly sensitive instruments. We prepared a new and functional core-shell magnetic nano-material, Fe@Ag@dimercaptobenzene (Fe@Ag@DMB), by a one-step method with sodium borohydride as the reducing agent and transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were used for characterisation. The mercapto functional groups on the newly synthesised magnetic nanoparticles could interact with Cd 2+ , Pb 2+ , and Hg 2+ ions in water samples and then efficient extraction for Cd 2+ , Pb 2+ , and Hg 2+ ions was achieved. DDTC-Na solution was a good elutent for elution of these ions from Fe@Ag@DMB nanoparticles. Based on these, a sensitive method was developed for simultaneous preconcentration and determination of the aforementioned ions using magnetic Fe@Ag@DMB nanoparticles as the magnetic solid phase extraction adsorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, the detection limits of the three metal ions were in the range of 0.011-0.031μgL -1 , and precisions were below 2.37% (n=6). The proposed method was evaluated with real water samples, and excellent spiked recoveries achieved indicated that the developed method would be a promising tool for monitoring these heavy metal ions in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries.

    PubMed

    Wu, Yang; Wei, Yang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2013-02-13

    A uniform Fe(3)O(4) sheath is magnetron sputtered onto aligned carbon nanotube (CNT) scaffolds that are directly drawn from CNT arrays. The Fe(3)O(4)-CNT composite electrode, with the size of Fe(3)O(4) confined to 5-7 nm, exhibits a high reversible capacity over 800 mAh g(-1) based on the total electrode mass, remarkable capacity retention, as well as high rate capability. The excellent performance is attributable to the superior electrical conductivity of CNTs, the uniform loading of Fe(3)O(4) sheath, and the structural retention of the composite anode on cycling. As Fe(3)O(4) is inexpensive and environmentally friendly, and the synthesis of Fe(3)O(4)-CNT is free of chemical wastes, this composite anode material holds considerable promise for high-performance lithium ion batteries.

  3. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses

    PubMed Central

    Baselet, Bjorn; Azimzadeh, Omid; Erbeldinger, Nadine; Bakshi, Mayur V.; Dettmering, Till; Janssen, Ann; Ktitareva, Svetlana; Lowe, Donna J.; Michaux, Arlette; Quintens, Roel; Raj, Kenneth; Durante, Marco; Fournier, Claudia; Benotmane, Mohammed A.; Baatout, Sarah; Sonveaux, Pierre; Tapio, Soile; Aerts, An

    2017-01-01

    Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial

  4. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  5. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    PubMed

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C.

  6. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less

  7. Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Deng, Honggui; Jin, Shuangling; Zhan, Liang; Wang, Yanli; Qiao, Wenming; Ling, Licheng

    2012-12-01

    Cage-like LiFePO4 microspheres are synthesized by a solvothermal reaction-calcination process, using Fe(NO3)3·9H2O as iron source and ethylene glycol/water as co-solvent medium. The microsphere is the assembly of LiFePO4 nanoparticles with an open porous structure, thus the carbon coating can be easily introduced on the surface of the nanoparticles by the chemical vapor deposition of C2H4 during calcination process. When used as the cathode materials for the lithium-ion batteries, the resultant cage-like LiFePO4/C microsphere shows high capacity and good cycle stability (160 mAh g-1 at 0.1 C over 300 cycles), as well as good rate capability (120 mAh g-1 at 10 C). The desirable electrochemical performance can be attributed to high rate of ionic/electronic conduction and the high structural stability arising from the interconnected open pores, carbon-coated nanoparticles and microsized structure.

  8. Ion-beam-induced bending of semiconductor nanowires.

    PubMed

    Hanif, Imran; Camara, Osmane; Tunes, Matheus A; Harrison, Robert W; Greaves, Graeme; Donnelly, Stephen E; Hinks, Jonathan A

    2018-08-17

    The miniaturisation of technology increasingly requires the development of both new structures as well as novel techniques for their manufacture and modification. Semiconductor nanowires (NWs) are a prime example of this and as such have been the subject of intense scientific research for applications ranging from microelectronics to nano-electromechanical devices. Ion irradiation has long been a key processing step for semiconductors and the natural extension of this technique to the modification of semiconductor NWs has led to the discovery of ion beam-induced deformation effects. In this work, transmission electron microscopy with in situ ion bombardment has been used to directly observe the evolution of individual silicon and germanium NWs under irradiation. Silicon NWs were irradiated with either 6 keV neon ions or xenon ions at 5, 7 or 9.5 keV with a flux of 3 × 10 13 ions cm -2 s -1 . Germanium NWs were irradiated with 30 or 70 keV xenon ions with a flux of 10 13 ions cm -2 s -1 . These new results are combined with those reported in the literature in a systematic analysis using a custom implementation of the transport of ions in matter Monte Carlo computer code to facilitate a direct comparison with experimental results taking into account the wide range of experimental conditions. Across the various studies this has revealed underlying trends and forms the basis of a critical review of the various mechanisms which have been proposed to explain the deformation of semiconductor NWs under ion irradiation.

  9. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Novotny, O.; Savin, D. W.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20%more » greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.« less

  10. Calculation of Energetic Ion Tail from Ion Cyclotron Resonance Frequency Heating

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Li, Youyi; Li, Jiangang

    1994-04-01

    The second harmonic frequency of hydrogen ion cyclotron resonance heating experiment on HT-6M tokamak was studied by adding the quasi-linear wave-ion interaction term in the two-dimensional (velocity space), time-dependent, nonlinear and multispecies Fokker-Planck equation. The temporal evolution of ion distribution function and relevant parameters were calculated and compared with experiment data. The calculation shows that the ion temperature increases, high-energy ion tail (above 5 keV) and anisotropy appear when the wave is injected to plasma. The simulations are in reasonable agreement with experiment data.

  11. Low-temperature volume radiation annealing of cold-worked bands of Al-Li-Cu-Mg alloy by 20-40 keV Ar+ ion

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Mozharovsky, S. M.; Kaigorodova, L. I.

    2017-01-01

    The processes of radiation-dynamic nature (in contrast to the thermally-activated processes) in the course of short-term irradiation of 1 mm thick bands of cold-worked aluminum alloy 1441 (of system Al-Li-Cu-Mg) with Ar+ 20-40 keV were studied. An effect of in-the-bulk (throughout the whole of metal bands thickness) low-temperature radiation annealing of the named alloy, multiply accelerated as compared with common thermal annealing processes was registered (with projected ranges of ions of considered energies definitely not exceeding 0.1 μm). The processes of recrystallization and intermetallic structure changes (occurring within a few seconds of Ar+ irradiation) have the common features as well as the differences in comparison with the results of two hour standard thermal annealing.

  12. 57Fe CEMS study on dilute metal ions codoped SnO2 thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Koike, Yuya; Nakanishi, Akio

    2017-11-01

    Dilute Mn-Fe, Co-Fe and V-Fe codoped tin oxide films prepared by spray pyrolysis were characterized by 57Fe conversion electron Mössbauer spectrometry (CEMS) at room temperature (RT) and at 20 K. Two kinds of paramagnetic Fe3+ species were detected at RT; one doublet 1 (D1) with IS = 0.36-0.37 mm/s, QS = 0.69-0.75 mm/s and LW = 0.32-0.40 mm/s, and another doublet 2 (D2) with IS = 0.31-0.35 mm/s QS = 1.16-1.25 mm/s and LW = 0.46-0.52 mm/s. CEMS at 20 K provided more distinguished doublets than at RT. It is found that especially D2 with relatively small IS and large QS values are influenced by other metal ions codoped in SnO2 matrix, whereas D1 with relatively large IS and small QS has the parameters close to the models of Fe-VO1 and Fe-2VO1-Fe models (Nomura et al. Phys. Rev. B 75, 184411 2007; Mudarra Navarro et al. J. Phys. Chem. C 119, 5596-5603 2015).

  13. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  14. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    PubMed

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  15. Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua

    2017-10-01

    The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.

  16. ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance

    PubMed Central

    Varzi, Alberto; Bresser, Dominic; von Zamory, Jan; Müller, Franziska; Passerini, Stefano

    2014-01-01

    An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon-coated ZnFe2O4 nanoparticle-based anode and a LiFePO4-multiwalled carbon nanotube-based cathode, both aqueous processed with Na-carboxymethyl cellulose, are combined, for the first time, in a Li-ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre-lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg−1 and 3.72 W kg−1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C-rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity. PMID:26190956

  17. A New CuO-Fe2 O3 -Mesocarbon Microbeads Conversion Anode in a High-Performance Lithium-Ion Battery with a Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 Spinel Cathode.

    PubMed

    Di Lecce, Daniele; Verrelli, Roberta; Campanella, Daniele; Marangon, Vittorio; Hassoun, Jusef

    2017-04-10

    A ternary CuO-Fe 2 O 3 -mesocarbon microbeads (MCMB) conversion anode was characterized and combined with a high-voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 spinel cathode in a lithium-ion battery of relevant performance in terms of cycling stability and rate capability. The CuO-Fe 2 O 3 -MCMB composite was prepared by using high-energy milling, a low-cost pathway that leads to a crystalline structure and homogeneous submicrometrical morphology as revealed by XRD and electron microscopy. The anode reversibly exchanges lithium ions through the conversion reactions of CuO and Fe 2 O 3 and by insertion into the MCMB carbon. Electrochemical tests, including impedance spectroscopy, revealed a conductive electrode/electrolyte interface that enabled the anode to achieve a reversible capacity value higher than 500 mAh g -1 when cycled at a current of 120 mA g -1 . The remarkable stability of the CuO-Fe 2 O 3 -MCMB electrode and the suitable characteristics in terms of delivered capacity and voltage-profile retention allowed its use in an efficient full lithium-ion cell with a high-voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 cathode. The cell had a working voltage of 3.6 V and delivered a capacity of 110 mAh g cathode -1 with a Coulombic efficiency above 99 % after 100 cycles at 148 mA g cathode -1 . This relevant performances, rarely achieved by lithium-ion systems that use the conversion reaction, are the result of an excellent cell balance in terms of negative-to-positive ratio, favored by the anode composition and electrochemical features. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries.

    PubMed

    Ma, Zhipeng; Shao, Guangjie; Fan, Yuqian; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2014-06-25

    Olivine LiFePO4 with nanoplate, rectangular prism nanorod and hexagonal prism nanorod morphologies with a short b-axis were successfully synthesized by a solvothermal in glycerol and water system. The influences of solvent composition on the morphological transformation and electrochemical performances of olivine LiFePO4 are systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and galvanostatic charge-discharge tests. It is found that with increasing water content in solvent, the LiFePO4 nanoplates gradually transform into hexagonal prism nanorods that are similar to the thermodynamic equilibrium shape of the LiFePO4 crystal. This indicates that water plays an important role in the morphology transformation of the olivine LiFePO4. The electrochemical performances vary significantly with the particle morphology. The LiFePO4 rectangular prism nanorods (formed in a glycerol-to-water ratio of 1:1) exhibit superior electrochemical properties compared with the other morphological particles because of their moderate size and shorter Li(+) ion diffusion length along the [010] direction. The initial discharge capacity of the LiFePO4@C with a rectangular prism nanorod morphology reaches to 163.8 mAh g(-1) at 0.2 C and over 75 mAh g(-1) at the high discharging rate of 20 C, maintaining good stability at each discharging rate.

  19. How do energetic ions damage metallic surfaces?

    DOE PAGES

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films withmore » (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.« less

  20. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    PubMed

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-04-12

    The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.

  1. Metal-ion interactions and the structural organization of Sepia eumelanin.

    PubMed

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  2. ART: Surveying the Local Universe at 2-11 keV

    NASA Technical Reports Server (NTRS)

    O'Dell, S. L.; Ramsey, B. D.; Adams, M. L.; Brandt, W. N.; Bubarev, M. V.; Hassinger, G.; Pravlinski, M.; Predehl, P.; Romaine, S. E.; Swartz, D. A.; hide

    2008-01-01

    The Astronomical Rontgen Telescope (ART) is a medium-energy x-ray telescope system proposed for the Russian-led mission Spectrum Rontgen-Gamma (SRG). Optimized for performance over the 2-11-keV band, ART complements the softer response of the SRG prime instrument-the German eROSITA x-ray telescope system. The anticipated number of ART detections is 50,000-with 1,000 heavily-obscured (N(sub H)> 3x10(exp 23)/sq cm) AGN-in the SRG 4-year all-sky survey, plus a comparable number in deeper wide-field (500 deg(sup 2) total) surveys. ART's surveys will provide a minimally-biased, nearly-complete census of the local Universe in the medium-energy x-ray band (including Fe-K lines), at CCD spectral resolution. During long (approx.100-ks) pointed observations, ART can obtain statistically significant spectral data up to about 15 keY for bright sources and medium-energy x-ray continuum and Fe-K-line spectra of AGN detected with the contemporaneous NuSTAR hard-x-ray mission.

  3. ISIS/EPI-Lo: A New Instrument for Measuring keV to MeV Ions and Electrons with Simultaneous Half-Sky Coverage on NASA's Solar Probe Plus Mission

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Mitchell, D. G.; McNutt, R. L., Jr.; Cooper, S.; Crew, A. B.; Dupont, A.; Hayes, J.; Hoffer, E.; Nelson, K.; Parker, C.; Schlemm, C., II; Seifert, H.; Stokes, M.; Angold, N. G.; McComas, D. J.; Weidner, S.; Wiedenbeck, M. E.

    2016-12-01

    The Solar Probe Plus (SPP) Mission's Integrated Science Investigation of the Sun (ISIS) is a suite of two energetic particle instruments, EPI-Lo and EPI-Hi, covering lower ( 10 keV-100 MeV) and higher ( 1-100 MeV/nuc) energies, respectively. The ISIS team will investigate the origins, acceleration, and transport of energetic particles in the corona and inner heliosphere during the planned 7-year, 24-orbit mission, with a perihelion initially of 0.16 AU (36 Solar radii; RS), the three final orbits reaching 0.044 AU (9.9 RS). EPI-Lo has a novel approach to obtaining large angular coverage, well-suited to 3-axis stabilized spacecraft such as SPP, by densely sampling its 2π steradian field of view with 80 apertures organized in eight matching, 10-aperture wedges. Each wedge relies primarily on time-of-flight (TOF) mass spectrometer techniques, employing thin secondary-electron-emitting foils, microchannel plates, and solid state detectors (SSDs), to measure ions from 50 keV - 15 MeV and electrons from 50-500 keV. Signal attenuation, absorbers, TOF-only measurements, and SSD-only techniques are used to extend this energy range higher and lower. In 2015 and 2016 we made measurements with engineering units and flight-spare EPI-Lo wedges at accelerators and with radioactive sources; in addition to presenting the instrument design, we will report the results from these tests to characterize the instrument's measurement performance.

  4. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  5. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  6. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.

    PubMed

    Wang, Bo; Liu, Anmin; Abdulla, Wael Al; Wang, Dianlong; Zhao, X S

    2015-05-21

    Electron transfer and lithium ion diffusion rates are the key factors limiting the lithium ion storage in anisotropic LiFePO4 electrodes. In this work, we employed a facile solvothermal method to synthesize a "platelet-on-sheet" LiFePO4/graphene composite (LFP@GNs), which is LiFePO4 nanoplatelets in situ grown on graphene sheets with highly oriented (010) facets of LiFePO4 crystals. Such a two-phase contact mode with graphene sheets cross-linked to form a three-dimensional porous network is favourable for both fast lithium ion and electron transports. As a result, the designed LFP@GNs displayed a high rate capability (∼56 mA h g(-1) at 60 C) and long life cycling stability (∼87% capacity retention over 1000 cycles at 10 C). For comparison purposes, samples ex situ modified with graphene (LFP/GNs) as well as pure LiFePO4 platelets (LFP) were also prepared and investigated. More importantly, the obtained LFP@GNs can be used as a basic unit for constructing more complex structures to further improve electrochemical performance, such as coating the exposed LFP surface with a thin layer of carbon to build a C@LFP@GN composite to further enhance its cycling stability (∼98% capacity retention over 1000 cycles at 10 C).

  7. KEY COMPARISON: Final report of the CCQM-K56: Ca, Fe, Zn and Cu in whole fat soybean powder

    NASA Astrophysics Data System (ADS)

    Liandi, Ma; Qian, Wang

    2010-01-01

    The CCQM-K56 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM as a follow-up to completed pilot study CCQM-P64 to test the abilities of national metrology institutes to measure the amount content of nutritious elements in whole fat soybean powder. A pilot study CCQM-P64.1 was conducted in parallel with this key comparison. The National Institute of Metrology (NIM), P. R. China, acted as the coordinating laboratory. Eleven NIMs participated in CCQM-K56. Four elements - Ca, Fe, Zn and Cu - in different concentration levels have been studied. Different measurement methods (IDMS, ICP-MS, ICP-OES, AAS and INAA) and the microwave digestion method were used. The agreement of the results of CCQM-K56 is very good, and obviously better than that of the original P64. It shows that the capability of all of the participants had been promoted from the original pilot study to this key comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  8. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  9. Syntheses, structures, and properties of trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)], constructed with the complexed bridging ligand [M(bpca)(2)] [M, M' = Ni(II), Mn(II); Cu(II), Mn(II); Fe(II), Mn(II); Ni(II), Fe(II); and Fe(II), Fe(II); Hbpca = Bis(2-pyridylcarbonyl)amine, Hhfac = Hexafluoroacetylacetone].

    PubMed

    Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku

    2002-02-11

    Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.

  10. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  11. Kinetic Modelling and Experimental Studies for the Effects of Fe 2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    DOE PAGES

    Wei, Hui; Chen, Xiaowen; Shekiro, Joseph; ...

    2018-01-20

    High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by

  12. Kinetic Modelling and Experimental Studies for the Effects of Fe 2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hui; Chen, Xiaowen; Shekiro, Joseph

    High-temperature (150-170 degrees C) pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe 2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorilymore » modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe 2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 ⁰C/30 min with 0.75 mM Fe 2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 degrees C with 0.75 mM Fe 2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II) increased the glucose production to 56.3% from 46.3% in the control (iron-free acid). The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe 2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by

  13. Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Chen; Wang, Xia; Li, Shandong; Li, Qiang; Xu, Jie; Liu, Xiaomin; Liu, Changkun; Xu, Yuanhong; Liu, Jingquan; Li, Hongliang; Guo, Peizhi; Zhao, Xiu Song

    2017-09-01

    The combination of carbon compositing and the proper choice of binders in one system offer an effective strategy for improving electrode performance for lithium ion batteries (LIBs). Here, we focus on the optimization of reduced graphene oxide content in NiFe2O4/reduced graphene oxide (abbreviated to NiFe2O4/rGO) composites and the proper choice of binders to enhance the cycling stability of the NiFe2O4 electrode. The NiFe2O4/rGO composites were fabricated by a hydrothermal-annealing method, in which the mean size of spinel NiFe2O4 nanoparticles was approximately 20 nm. When tested as anode materials for LIBs, the NiFe2O4/rGO electrodes with carboxymethylcellulose (CMC) binder exhibited excellent lithium-storage performance including high reversible capacity, good cycling durability and high-rate capability. The capacity could be retained as high as 1105 mAh g-1 at a current density of 100 mA g-1 for over 50 cycles, even cycled at higher current density of 1000 mA g-1, a capacity of 800 mAh g-1can be obtained, whereas the electrode with the polyvinylidene fluoride (PVDF) binder suffered from rapid capacity decay under the same test conditions. As a result, the NiFe2O4/rGO composites with CMC binder electrode in this work are promising as anodes for high-performance LIBs, resulting from the synergistic effect of optimal graphene content and proper choice of binder.

  14. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    PubMed

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  15. Multiplicities of secondaries in interactions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion and the cascade evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Crawford, H. J.; Benton, E. V.

    1995-01-01

    A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of Fe-56 nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.

  16. Tuning Li-Ion Diffusion in α-LiMn 1–x Fe x PO 4 Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiangtao; Xiao, Yinguo; Tang, Hanting

    Olivine-structured LiMn1-xFexPO4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO4, which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn1-xFexPO4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. Herein, olivine-structured α-LiMn0.5Fe0.5PO4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn1-xFexPO4 nanocrystals by inducing high concentrations of Fe2+-Li+ antisite defects, which showed impressive capacitymore » improvements of approaching 162, 127, 73, and 55 mAh g-1 at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn1-xFexPO4, which is first reported in this work) embedded in α-LiMn0.5Fe0.5PO4. Because of the coherent orientation relationship between β- and α- phases, the β-phase embedded would impede the Li+ diffusion along the [100] and/or [001] directions that was activated by the high density of Fe2+-Li+ antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe2+-Li+ antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn1-xFexPO4 nanocrystals can be tuned by generating new Li+ tunneling. These findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.« less

  17. Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe(3)O(4) nanoparticles for removal of Ce(III) ions from aqueous solution: ICP-OES detection and central composite design optimization.

    PubMed

    Dashtian, Kheibar; Zare-Dorabei, Rouholah

    2017-05-15

    A selective adsorbent based on the modification of mesoprous SBA-15 with N,N'-bis(salicylidene)-1,3-ethylenediamine Schiff base and decorated with Fe 3 O 4 nanoparticles (SBA-15-BSEA-Fe 3 O 4 -NPs) for Ce(III) ions removal was reported. The SBA-15-BSEA-Fe 3 O 4 -NPs was identified by XRD, FE-SEM, TEM, SEM, FT-IR, VSM, BET and BJH analysis. Central composite design (CCD) was applied to evaluate the main and interactive effects of adsorption variables and optimize the operational parameters. The important variable such as initial pH solution, SBA-15-BSEA-Fe 3 O 4 -NPs mass, shaking time and initial concentration of Ce 3+ ions were studied under batch mode. In desirability concession of 1.0 as optimum value for R% Ce(III) , the level of factors was as follows: shaking time 80min, SBA-15-BSEA-Fe 3 O 4 -NPs mass 0.05g, pH 5 and initial concentration of Ce(III) ions 40mgL -1 . The SBA-15-BSEA-Fe 3 O 4 -NPs exhibited high adsorption efficiency and very good selectivity through cerium removal even in the presence of other ions (La 3+ , Nb 3+ , Er 3+ , Cu 2+ , Cd 2+ , Cr 3+ , and Fe 2+ ions). The SBA-15-BSEA-Fe 3 O 4 -NPs was successfully regenerated and the response was reversible. The R.S.D. of the adsorption process was less than 1.02%. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  19. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  20. Characteristic Behavior and Scaling Studies of Self Organized InP Nano-dots formed via keV and MeV irradiations

    NASA Astrophysics Data System (ADS)

    Paramanik, Dipak; Varma, Shikha

    2008-04-01

    The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.

  1. LABORATORY MEASUREMENTS COMPELLINGLY SUPPORT A CHARGE-EXCHANGE MECHANISM FOR THE “DARK MATTER” ∼3.5 keV X-Ray LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chintan; Dobrodey, Stepan; Bernitt, Sven

    2016-12-10

    The reported observations of an unidentified X-ray line feature at ∼3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the K-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produced S{sup 16+} and S{sup 15+} ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchange-induced X-ray feature at the Lyman seriesmore » limit (3.47 ± 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu et al.« less

  2. Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen

    2016-03-01

    Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.

  3. Measurement of ion species in high current ECR H⁺/D⁺ ion source for IFMIF (International Fusion Materials Irradiation Facility).

    PubMed

    Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M

    2016-02-01

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  4. Mapping the Extended Hard (>3 keV) Continuum and Fluorescent 6.4 keV Iron Emission of the CT AGN NGC7212

    NASA Astrophysics Data System (ADS)

    Fabbiano, Giuseppina

    2017-09-01

    Recent Chandra studies of Compton thick (CT) AGNs have led to the discovery of 1-2 kpc-scale extended hard (>3 keV) continuum and Fe Kα components, showing that these emissions are not confined to the immediate vicinity of the AGN (the CT torus ). This is an important discovery as it changes our perception of CT AGNs and their interaction with their host galaxies. It may provide a unique probe of the host ISM, and/or the interaction of a radio jet or wind, including ultra-fast outflows (UFOs), with a dense ISM. Suitable CT AGNs close enough to resolve this region are rare, but a Chandra archival investigation has identified NGC7212 as an optimal target. We propose 130ks with ACIS-S to provide the deep data needed for this investigation.

  5. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    NASA Astrophysics Data System (ADS)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  6. The R&D progress of 4 MW EAST-NBI high current ion source.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin

    2014-02-01

    A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.

  7. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation.

    PubMed

    Denisova, N A; Shukitt-Hale, B; Rabin, B M; Joseph, J A

    2002-12-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  8. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    NASA Technical Reports Server (NTRS)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  9. Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Huang, Zan; Luo, Peifang; Wang, Daxiang

    2017-03-01

    Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.

  10. Multiplicities of secondaries in nuclear interactions, induced by 20Ne, 40Ar and 56Fe nuclei at 0.1-0.5 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Kosmach, V. F.; Hassan, J.; Benton, E. V.; Crawford, H. J.

    1994-01-01

    Multiplicities of various species of charged secondaries produced in inelastic interactions of 20Ne, 40Ar and 56Fe nuclei with emulsion nuclei at 0.1-0.5 GeV/nucleon have been measured. The data obtained are compared with the results for interactions of higher energy nuclei with emulsion nuclei. The dependences of the nucleus-nucleus interaction parameters on masses and energies of colliding nuclei are examined.

  11. Iron Sulfide Attenuates the Methanogenic Toxicity of Elemental Copper and Zinc Oxide Nanoparticles and their Soluble Metal Ion Analogs

    PubMed Central

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A.

    2016-01-01

    Elemental copper (Cu0) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu0 and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25–75 µm) and coarse (500 to 1200 µm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu0 and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu0 NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excesses of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu0 and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  12. Magnetic properties of Fe-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kurokawa, A.; Sakai, N.; Zhu, L.; Takeuchi, H.; Yano, S.; Yanoh, T.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Ichiyanagi, Y.

    2013-08-01

    Ni1- x Fe x O ( x = 0, 0.05, 0.1) nanoparticles with several nanometers encapsulated with amorphous SiO2 were prepared by our novel preparation method. A NiO single phase structure was confirmed using the X-ray diffraction measurements. It is considered that Ni ions are replaced by Fe ions because it is observed that the lattice constant decreases. The temperature dependence behavior of the magnetization revealed that the blocking temperature, T B , shifted from 17 to 57 K as the amount of Fe ions increased, and that below T B , ferromagnetic behaviors were exhibited. The coercive force, H C , increased from 0.8 to 1.5 kOe as the amount of Fe ions increased.

  13. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  14. Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries.

    PubMed

    Ding, Yan-Hong; Huang, Guo-Long; Li, Huan-Huan; Xie, Hai-Ming; Sun, Hai-Zhu; Zhang, Jing-Ping

    2015-12-01

    Double carbon-coated LiFePO4 (D-LiFePO4/C) composite with sphere-like structure was synthesized through combination of co-precipitation and solid-state methods. Cetyl-trimethyl-ammonium bromide (CTAB) and citric acid served as two kinds of carbon sources in sequence. SEM images demonstrated that double carbon coating had certain influence on the morphology. The thickness of carbon coating on D-LiFePO4/C was about 1.7 nm and the content of carbon was 2.48 wt%, according to HRTEM and TG analysis. The electrochemical impedance spectroscopy analysis indicated that the D-LiFePO4/C composite presented the charge-transfer resistance of 68 Ω and Li ion diffusion coefficient of 2.68 x 10(-13) cm2 S(-1), while the single carbon-coated LiFePO4 (S-LiFePO4/C) exhibited 135.5Ω and 4.03 x 10(-14) cm2 S(-1). Especially, the prepared D-LiFePO4/C electrode showed discharge capacities of 102.9 (10C) and 87.1 (20C) mA h g(-1), respectively, with almost no capacity lost after 400 cycles at 10C, which were much better than those of S-LiFePO4/C composite.

  15. A multifunctional Schiff base as a fluorescence sensor for Fe3 + and Zn2 + ions, and a colorimetric sensor for Cu2 + and applications

    NASA Astrophysics Data System (ADS)

    Tang, Xu; Han, Juan; Wang, Yun; Ni, Liang; Bao, Xu; Wang, Lei; Zhang, Wenli

    2017-02-01

    Chemosensors play important parts in the selective recognition of ions, which is widely applied in various fields of environment, industry and biological sciences. In this work, a chemosensor for multi-metal ions based on rhodamine B derivative was synthesized, which could selectively recognize various metal ions in different solvent system. The addition of Cu2 + caused the color change from colorless to pink in EtOH/H2O (v/v = 1:1) solvent system, which could be quickly identified by the naked eyes with a detection limit of 8.27 × 10- 8 M. In ethanol solution system, the addition of Fe3 + and Zn2 + caused different fluorescence changes with the detection limit of 2.12 × 10- 7 M and 6.64 × 10- 7 M respectively. The binding ratios are 1:1 (1-Cu2 +), 2:1 (1-Fe3 +) and 1:1 (1-Zn2 +), respectively. Meanwhile, the probe 1 was used to detect the trace metal ions in real water samples. Besides, the probe 1 showed sensitive fluorescence signals for Fe3 + in biological cells. The experimental results further verify the application value of the sensor.

  16. Novel flame synthesis of nanostructured α-Fe2O3 electrode as high-performance anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Roller, Justin; Maric, Radenka

    2018-02-01

    Nanostructured electrodes have significant potential for enhancing the kinetics of lithium storage in secondary batteries. A simple and economical manufacturing approach of these electrodes is crucial to the development and application of the next generation lithium ion (Li-ion) batteries. In this study, nanostructured α-Fe2O3 electrode is fabricated by a novel one-step flame combustion synthesis method, namely Reactive Spray Deposition Technology (RSDT). This process possesses the merits of simplicity and low cost. The structure and morphology of the electrode are investigated with X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performance of the nanostructured α-Fe2O3 electrodes as the anodes for Li-ion batteries is evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in coin-type half-cells. The as-prepared electrodes demonstrate superior cyclic performance at high current rate, which delivers a high reversible capacity of 1239.2 mAh g-1 at 1 C after 500 cycles. In addition, a discharge capacity of 513.3 mAh g-1 can be achieved at 10 C.

  17. Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2018-02-01

    The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.

  18. Unusual doping effect of non-magnetic ion on magnetic properties of CuFe1-xGaxO2

    NASA Astrophysics Data System (ADS)

    Shi, Liran; Jin, Zhao; Chen, Borong; Xia, Nianming; Zuo, Huakun; Wang, Yeshuai; Ouyang, Zhongwen; Xia, Zhengcai

    2014-12-01

    The structural and magnetic properties of nonmagnetic Ga3+ ion doped CuFe1-xGaxO2 (x=0, 0.02, 0.03, and 0.05) single crystal samples have been investigated. In pulsed high magnetic fields, the field-induced multi-step transitions were observed in all the samples. Compared with pure CuFeO2, the transition temperatures, critical magnetic fields decrease and the magnetic hysteresis of the doped samples become small, which may result from the partial release of the spin frustration and the changes of the magnetic coupling both inter- and intra-planes due to the Ga3+ dopant. The magnetization measurements show an abnormal dilution behavior, especially in a lower temperature region, the magnetic moment was enhanced due to the nonmagnetic Ga3+ ion doping, the enhancement becomes more obviously in the sample with the Ga3+ doping level of x=0.03. These results may connected with the substitution of nonmagnetic Ga3+ ions destroying the stability of ground state and affecting the stability of the ferroelectricity incommensurate phase. Based on the experimental results, a super-cell model and their magnetic diagram were assumed.

  19. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  20. Monodisperse NixFe3-xO4 nanospheres: Metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Jiang, Kedan; Liu, Yun; Pan, Yefei; Wang, Ru; Hu, Panbing; He, Rujia; Zhang, Lingli; Tong, Guoxiu

    2017-05-01

    An easy metal-ion-steered solvothermal method was developed for the one-step synthesis of monodisperse, uniform NixFe3-xO4 polycrystalline nanospheres with tunable sphere diameter (40-400 nm) and composition (0 ≤ x ≤ 0.245) via changing just Ni2+/Fe3+ molar ratio (γ). With g increased from 0:1 to 2:1, sphere diameter gradually decreased and crystal size exhibited an inversed U-shaped change tendency, followed by increased Ni/Fe atom ratio from 0% to 0.0888%. An in situ-reduction, coordination-precipitation transformation mechanism was proposed to interpret the metal-ion-steered growth. Size- and composition-dependent static magnetic and microwave absorbing properties were systematically investigated. Saturation magnetization declines with g in a Boltzmann model due to the changes of crystal size, sphere diameter, and Ni content. The coercivity reaches a maximum at γ = 0.75:1 because of the critical size of Fe3O4 single domain (25 nm). Studies on microwave absorption reveal that 150-400 nm Fe3O4 nanospheres mainly obey the quarter-wavelength cancellation model with the single-band absorption; 40-135 nm NixFe3-xO4 nanospheres (0 ≤ x ≤ 0.245) obey the one and three quarter-wavelength cancellation model with the multi-band absorption. 150 nm Fe3O4 nanospheres exhibit the optimal EM wave-absorbing property with an absorbing band of 8.94 GHz and the maximum RL of -50.11 dB.