Sample records for kev argon ions

  1. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  2. Effects of 200 keV argon ions irradiation on microstructural properties of titanium nitride films

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Šiljegović, M.; Bibić, N.

    2012-05-01

    This paper reports on a study of microstructrual changes in TiN/Si bilayers due to 200 keV Ar+ ions irradiation at room temperature. The 240 nm TiN/Si bilayers were prepared by d.c. reactive sputtering on crystalline Si (1 0 0) substrates. The TiN films were deposited at the substrate temperature of 150 °C. After deposition the TiN/Si bilayers were irradiated to the fluences of 5 × 1015 and 2 × 1016 ions/cm2. The structural changes induced by ion irradiation in the TiN/Si bilayers were analyzed by Rutherford Backscattering Spectroscopy (RBS), X-ray diffraction analyses (XRD) and Transmission Electron Microscopy (TEM). The irradiations caused the microstructrual changes in TiN layers, but no amorphization even at the highest argon fluence of 2 × 1016 ions/cm2. It is also observed that the mean crystallite size decreases with the increasing ion fluence.

  3. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  4. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  5. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  6. ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.

    1989-01-01

    Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.

  7. Effects of 200 keV Ar-ions irradiation on the structural and optical properties of reactively sputtered CrN films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Modification in structural and optical properties of chromium-nitride (CrN) films induced by argon ion irradiation and thermal annealings were investigated using various experimental techniques. CrN films deposited by d. c. reactive sputtering on Si substrate were implanted with 200 keV argon ions, at fluences of 5-20 × 1015 ions/cm2. As-implanted samples were then annealed in vacuum, for 2 h at 700 °C. Rutherford backscattering spectrometry, X-ray diffraction, cross-sectional (high-resolution) transmission electron microscopy and spectroscopic ellipsometry (SE) measurements were carried out in order to study structural and optical properties of the layers. After irradiation with 200 keV Ar ions a damaged surface layer of nanocrystalline structure was generated, which extended beyond the implantation profile, but left an undamaged bottom zone. Partial loss of columnar structure observed in implanted samples was recovered after annealing at 700 °C and CrN started to decompose to Cr2N. This layer geometry determined from transmission electron microscopy was inferred in the analysis of SE data using the combined Drude and Tauc-Lorentz model, and the variation of the optical bandgap was deduced. The results are discussed on the basis of the changes induced in the microstructure. It was found that the optical properties of the layers are strongly dependent on the defects' concentration of CrN.

  8. Dipeptide Formation from Amino Acid Monomer Induced by keV Ion Irradiation: An Implication for Physicochemical Repair by Radiation Itself

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yuan, Hang; Wang, Xiangqin; Yu, Zengliang

    2008-02-01

    An identification of Phe dipeptide from L-phenylalanine monomers after keV nitrogen and argon ion implantation, by using the HPLC (high performance liquid chromatography) and LC-MS(liquid chromatography mass spectrometer) methods is reported. The results showed a similar yield behavior for both ion species, namely: 1) the yield of dipeptides under alkalescent conditions was distinctly higher than that under acidic or neutral conditions; 2) for different ion species, the dose-yield curves tracked a similar trend which was called a counter-saddle curve. The dipeptide formation may implicate a recombination repair mechanism of damaged biomolecules that energetic ions have left in their wake. Accordingly a physicochemical self-repair mechanism by radiation itself for the ion-beam radiobiological effects is proposed.

  9. Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation

    NASA Astrophysics Data System (ADS)

    Milosavljević, M.; Milinović, V.; Peruško, D.; Grce, A.; Stojanović, M.; Pjević, D.; Mitrić, M.; Kovač, J.; Homewood, K. P.

    2011-10-01

    The effects of argon ion irradiation on structural changes in Ta/Ti multilayers deposited on Si wafers were investigated. The starting structures consisted of sputter deposited 10 alternate Ta (˜23 nm) and Ti (˜17 nm) layers of a total thickness ˜200 nm. They were irradiated at room temperature with 200 keV Ar +, to the fluences from 5 × 10 15 to 2 × 10 16 ions/cm 2. The projected ion range was around mid-depth of the multilayered structure, and maximum displacements per atom ˜130. It was found that, despite of the relatively heavy ion irradiation, individual nanocrystalline Ta and Ti layers remain unmixed, keeping the same level of interface planarity. The changes observed in the mostly affected region are increase in lateral dimensions of crystal grains in individual layers, and incorporation of bubbles and defects that cause some stretching of the crystal lattice. Absence of interlayer mixing is assigned to Ta-Ti immiscibility (reaction enthalpy Δ H f = +2 kJ/mol). It is estimated that up to ˜5 at.% interface mixing induced directly by collision cascades could be compensated by dynamic demixing due to chemical driving forces in the temperature relaxation regime. The results can be interesting towards developing radiation tolerant materials based on multilayered structures.

  10. Charge exchange of highly charged argon ions as a function of projectile energy

    NASA Astrophysics Data System (ADS)

    Allen, F. I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2007-03-01

    X-ray emission of highly charged argon ions following charge exchange collisions with argon atoms has been measured as a function of projectile energy. The ions are extracted from the Electron Beam Ion Trap (EBIT) in Berlin and selected according to their massto-charge ratios. Experiments focussed on hydrogen-like and bare argon ions which were decelerated from 125q eV/amu to below 0.25q eV/amu prior to interaction with an argon gas target. The x-ray spectra recorded probe the cascading transitions resulting from electron capture into Rydberg states and are found to vary significantly with collision velocity. This indicates a shift in the orbital angular momentum of the capture state. Hardness ratios are observed to increase with decreasing projectile energy though at a rate which differs from the results of simulations. For comparison, measurements of the x-ray emission following charge exchange within the trap were carried out and are in agreement with the findings of the EBIT group at LLNL. Both of these in situ measurements, however, are in discrepancy with the results of the experiments using extracted ions.

  11. Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.

    1981-01-01

    The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.

  12. Optimization of single keV ion implantation for the construction of single P-donor devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.

    2005-02-01

    We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.

  13. Modification of graphene by ion beam

    NASA Astrophysics Data System (ADS)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  14. Experimental investigations of argon and xenon ion sources

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1975-01-01

    The multipole thruster was used to investigate the use of argon and xenon propellants as possible alternatives to the electric thruster propellants of mercury and cesium. The multipole approach was used because of its general high performance level. The design employed, using flat and cylindrical rolled sections of sheet metal, was selected for ease of fabrication, design, assembly, and modification. All testing was conducted in a vacuum facility and the pumping was accomplished by a 0.8 m diffusion pump together with liquid nitrogen cooled liner. Minimum discharge losses were in the 200-250 ev. ion range for both argon and xenon. Flatness parameters were typically in the 0.70-0.75 range.

  15. Dual beam organic depth profiling using large argon cluster ion beams

    PubMed Central

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  16. Production of bare argon, manganese, iron and nickel nuclei in the Dresden EBIT

    NASA Astrophysics Data System (ADS)

    Kentsch, U.; Zschornack, G.; Großmann, F.; Ovsyannikov, V. P.; Ullmann, F.; Fritzsche, S.; Surzhykov, A.

    2002-02-01

    The production of highly charged argon, manganese, iron and nickel ions in a room-temperature electron beam ion trap (EBIT), the Dresden EBIT, has been investigated by means of energy dispersive X-ray spectroscopy of the direct excitation (DE) and radiative recombination (RR) processes. To derive the charge state distributions of the ions in the trap, direct excitation and radiative recombination cross-sections were calculated at electron energies of 8 and 14.4 keV. Based on these theoretical cross-sections and the measured X-ray spectra, the ion densities and the absolute number of ions, which are trapped in the electron beam, are determined for argon, manganese, iron and nickel. Emphasis has been paid to the highly charged ions, including the helium-like and hydrogen-like ions and bare nuclei. In the case of iron we also determined the contributions from lower ionization stages from DE transition lines. It is shown, that in the Dresden EBIT elements at least up to nickel can be fully ionized. Beside energy dispersive spectroscopy it is shown for iron by wavelength dispersive X-ray spectroscopy that with a comparably high gas pressure in the order of 10 -8 mbar carbon-, boron-, beryllium-, lithium- and helium-like iron ions can be produced.

  17. Change Spectrum Characteristics Modification of Films Deposited by Magnetron Sputtering with the Assistance of Argon Ions Beam

    NASA Astrophysics Data System (ADS)

    Umnov, S.; Asainov, O.

    2015-04-01

    Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.

  18. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  19. Parametric scaling of neutral and ion excited state densities in an argon helicon source

    NASA Astrophysics Data System (ADS)

    McCarren, D.; Scime, E.

    2016-04-01

    We report measurements of the absolute density and temperature of ion and neutral excited states in an argon helicon source. The excited ion state density, which depends on ion density, electron density, and electron temperature, increases sharply with increasing magnetic field in the source. The neutral argon metastable density measurements are consistent with an increasing ionization fraction with increasing magnetic field strength. The ion temperature shows no evidence of increased heating with increasing magnetic field strength (which has only been observed in helicon sources operating at driving frequencies close to the lower hybrid frequency). The measurements were obtained through cavity ring down spectroscopy, a measurement technique that does not require the target excited state to be metastable or part of a fluorescence scheme; and is therefore applicable to any laser accessible atomic or ionic transition in a plasma.

  20. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus.

    PubMed

    Mohammadnejad, M; Pestehe, S J; Mohammadi, M A

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  1. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg

    2016-05-15

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar–Xe plasmas, where the two ion species were observed to reach the sheathmore » edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.« less

  2. Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.

  3. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as wellmore » as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.« less

  4. Method to estimate the electron temperature and neutral density in a plasma from spectroscopic measurements using argon atom and ion collisional-radiative models.

    PubMed

    Sciamma, Ella M; Bengtson, Roger D; Rowan, W L; Keesee, Amy; Lee, Charles A; Berisford, Dan; Lee, Kevin; Gentle, K W

    2008-10-01

    We present a method to infer the electron temperature in argon plasmas using a collisional-radiative model for argon ions and measurements of electron density to interpret absolutely calibrated spectroscopic measurements of argon ion (Ar II) line intensities. The neutral density, and hence the degree of ionization of this plasma, can then be estimated using argon atom (Ar I) line intensities and a collisional-radiative model for argon atoms. This method has been tested for plasmas generated on two different devices at the University of Texas at Austin: the helicon experiment and the helimak experiment. We present results that show good correlation with other measurements in the plasma.

  5. First measurement of surface nuclear recoil background for argon dark matter searches

    DOE PAGES

    Xu, Jingke; Stanford, Chris; Westerdale, Shawn; ...

    2017-09-19

    Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less

  6. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    NASA Astrophysics Data System (ADS)

    Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-06-01

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  7. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  8. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma.

    PubMed

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.

  9. Continuous wave cavity ring down spectroscopy measurements of velocity distribution functions of argon ions in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.

    2012-02-01

    We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.

  10. Triply differential measurements of single ionization of argon by 1-keV positron and electron impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; de Lucio, O. G.; DuBois, R. D.

    2017-06-01

    By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.

  11. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    NASA Astrophysics Data System (ADS)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  12. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  13. Development and characterization of semiconductor ion detectors for plasma diagnostics in the range over 0.3 keV

    NASA Astrophysics Data System (ADS)

    Cho, T.; Sakamoto, Y.; Hirata, M.; Kohagura, J.; Makino, K.; Kanke, S.; Takahashi, K.; Okamura, T.; Nakashima, Y.; Yatsu, K.; Tamano, T.; Miyoshi, S.

    1997-01-01

    For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure.

  14. Fluoropolymer Films Deposited by Argon Ion-Beam Sputtering of Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Banks, Bruce A.; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.

  15. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  16. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    EPA Science Inventory

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  17. Evolution of ion emission yield of alloys with the nature of the solute. 2: Interpretation

    NASA Technical Reports Server (NTRS)

    Blaise, G.; Slodzian, G.

    1977-01-01

    Solid solutions of transition elements in copper, nickel, cobalt, iron, and aluminum matrices were analyzed by observing secondary ion emissions under bombardment with 6.2-keV argon ions. Enchancement of the production of solute-element ions was observed. An ion emission model is proposed according to which the ion yield is governed by the probability of an atom leaving the metal in a preionized state. The energy distribution of the valence electrons of the solute atoms is the bases of the probability calculation.

  18. Sputtering of cobalt and chromium by argon and xenon ions near the threshold energy region

    NASA Technical Reports Server (NTRS)

    Handoo, A. K.; Ray, P. K.

    1993-01-01

    Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield. Co-57 and Cr-51 were used as tracers. The yield-energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.

  19. Effects of ion- and electron-beam treatment on surface physicochemical properties of polylactic acid

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Savkin, K. P.; Laput, O. A.; Lytkina, D. N.; Botvin, V. V.; Medovnik, A. V.; Kurzina, I. A.

    2017-11-01

    We describe our investigations of the surface physicochemical and mechanical properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ions/cm2 at energies of 20 keV (for C and Ar) and 40 keV (for Ag), and by electron beam treatment with pulse-width of 100-300 μs in 50 μs increments at a beam energy 8 keV. Carbonyl bonds (sbnd Cdbnd O) related IR peak was reduced after ion and electron beam irradiation. Molecular weight of PLA decreases twice and does not depend on the nature of the bombarding particles. The microhardness of treated samples decreases by a factor of 1.3, and the surface conductivity increases by 6 orders of magnitude after ion implantation, and increases only modestly after electron beam treatment. Atomic force microscopy shows that surface roughness increases with irradiation dose. Samples irradiated with Ag to a dose of 1 × 1016 ions/cm2 show the greatest roughness of 190 nm.

  20. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  1. Modification of polyvinyl alcohol surface properties by ion implantation

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Kurzina, I. A.; Savkin, K. P.; Laput, O. A.; Oks, E. M.

    2017-05-01

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ion/cm2 and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (sbnd Cdbnd O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  2. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  3. Mechanical properties of carbon steel depending on the rate of the dose build-up of nitrogen and argon ions

    NASA Astrophysics Data System (ADS)

    Vorob'ev, V. L.; Bykov, P. V.; Bayankin, V. Ya.; Shushkov, A. A.; Vakhrushev, A. V.

    2014-08-01

    The effect of pulsed irradiation with argons and nitrogen ions on the mechanical properties, morphology, and structure of the surface layers of carbon steel St3 (0.2% C, 0.4% Mn, 0.15% Si, and Fe for balance) has been investigated depending on the rate of dose build-up at an average ion current density of 10, 20, and 40 μA/cm2. It has been established that the fatigue life and microhardness of surface layers increase in the entire studied range of dose build-up rates. This seems to be due to the hardening of the surface layers, which resulted from the generation of radiation defects and the irradiation-dynamic effect of fast ions. The sample irradiated by argon ions at the lowest of the selected dose build-up rates j av = 10 μA/cm2 withstands the largest number of cycles to failure.

  4. Surface damage studies of ETFE polymer bombarded with low energy Si ions (⩽100 keV)

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Almeida, Adelaide De; Budak, Satilmis; Abidzina, Volha; Ila, Daryush

    2007-08-01

    Surface studies of ethylenetetrafluoroethylene (ETFE), bombarded with Si in a high-energy tandem Pelletron accelerator, have recently been reported. Si ion bombardment with a few MeV to a few hundred keV energies was shown to be sufficient to produce damage on ETFE film. We report here the use of a low energy implanter with Si ion energies lower than 100 keV, to induce changes on ETFE films. In order to determine the radiation damage, ETFE bombarded films were simulated with SRIM software and analyzed with optical absorption photometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to show quantitatively the physical and chemical property changes. Carbonization occurs following higher dose implantation, and hydroperoxides were formed following dehydroflorination of the polymer.

  5. Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ian J.; Mitchell, Donald G.; Kistler, Lynn M.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Ohtani, Shinichi; Hamilton, Douglas C.; Turner, Drew L.; Blake, J. Bernard; Fennell, Joseph F.; Jaynes, Allison N.; Leonard, Trevor W.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Allen, Robert C.; Burch, James L.

    2017-09-01

    Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies ≳150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly's Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at L≲6 but decreasing proton intensities at L≳6. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.

  6. Ion bombardment and adsorption studies on ilmenite (FeTiO3) by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.

    1983-01-01

    The effects of 5 KeV argon and oxygen ion bombardment on FeTiO3 (ilmenite) at low temperatures have been studied using X-ray photoelectron spectroscopy (XPS). Also, using this same technique, the adsorption of O2, NO, N2O, and CO at 300 K and the adsorption of O2 and D2O at 150K have been studied. Argon and oxygen ion bombardment of ilmenite have confirmed earlier studies on metal oxides that argon ions generally reduce the anion species while oxygen ions generally oxidize the anion species. The two iron states involved were Fe sup +2 and Fe sup O. The reduction of Ti sup +4 was not verified although a significant shift in the Ti(2p1,3) binding energies toward the metallic state was observed after oxygen ion bombardment at low temperatures. At temperatures above 150K, O2 adsorbs dissociatively on ilmenite while D2O adsorbs molecularly below 170K. Above 300 K No, N2O, and CO do not appear to adsorb dissociatively. Low temperature adsorption of D2O was found to be inhibited by predosing the ilmenite with O2.

  7. Sputtering of water ice films: A re-assessment with singly and doubly charged oxygen and argon ions, molecular oxygen, and electrons

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Wurz, P.; Tulej, M.

    2017-07-01

    We studied the erosion rates from thin water ice films on a microbalance upon irradiation with ions (O+, O2+, O2+ , Ar+ , and Ar2+) and electrons at energies between 0.1 keV and 80 keV. The results with O+ and Ar+ irradiation confirm previous results of other research groups that relied on the same experiment set-up. In addition, we assessed how the ice film thickness affects the results and we compared the results for singly versus doubly charged ions and for O+ versus O2+ ions. The irradiation with 1 keV and 3 keV electrons offer the first experimental results at these energies. Our results confirm theoretical predictions that the yield per impacting electron does not increase with energy ad infinitum but rather levels off between 0.1 and 1 keV. The results for ion and electron sputtering have important implications for atmosphere-less icy bodies in a plasma environment. We briefly discuss the implications for the icy moons of Jupiter. Finally, the experiments also allow us to assess the viability of two methods to measure the erosion rate in the case that the icy sample cannot be attached on a microbalance. This is an important step for future laboratory studies where regolith ice samples and their reaction to particle irradiation are to be characterized.

  8. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  9. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  10. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  11. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  12. The production and sputtering of S2 by keV ion bombardment

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Chrisey, D. B.; Oshaughnessy, D. J.; Phipps, J. A.; Zhao, N.

    1986-01-01

    The ion bombardment of S-containing molecules in comets is simulated experimentally. Mass-analyzed 30-keV beams of Ar(+) and He(+) are directed at solid S, H2S, and CS2 targets at temperatures 15 K, and the neutral molecular species produced are ionized and analyzed using a quadrupole mass spectrometer. The dominant species detected are S1 and S2 for the S target, H2S and S2 for the H2S target, and S, CS, S2, and CS2 for the CS2 target. In the latter case, it is found that after about 10 to the 14th He(+) ions/sq cm have struck the target, further sputtering is prevented by formation of a dark brown deposit which is stable at room temperature; the residue forms more slowly when Ar(+) ions are used. These results, indicating relatively efficient S2 production by ion bombardment, are applied to theoretical models of S2 production and/or ejection by solar-wind, solar-flare, or cosmic-ray ions striking comets. It is found that direct solar-wind production of S2 by sputtering is unlikely at realistic bombardment rates, but that H2S-S2 conversion by energetic ions could be significant, with less stringent ice-temperature and irradiation-flux constraints than in the case of S2 production by photons.

  13. Dopant-assisted direct analysis in real time mass spectrometry with argon gas.

    PubMed

    Cody, Robert B; Dane, A John

    2016-05-30

    Dopants used with Atmospheric Pressure Photoionization (APPI) were examined with the Direct Analysis in Real Time (DART ® ) ion source operated with argon gas. Charge-exchange and proton transfer reactions were observed by adding toluene, anisole, chlorobenzene and acetone to the DART gas stream, complementing the information obtained by helium DART. Mass spectra were acquired with a time-of-flight mass spectrometer equipped with a DART ion source operated with argon gas. A syringe pump was used to introduce dopants directly into the DART gas stream through deactivated fused-silica capillary tubing. Samples including polycyclic aromatic hydrocarbons (PAHs), diesel fuel, trinitrotoluene and cannabinoids were deposited onto the sealed end of melting tube, allowed to dry, and the tube was then suspended in the dopant-enhanced DART gas stream. PAHs could be detected as molecular ions at concentrations in the low parts-per-billion range by using a solution of 0.5% anisole in toluene as a dopant. Argon DART analysis of a diesel fuel sample with the same dopant mixture showed a simpler mass spectrum than obtained by using helium DART. The argon DART mass spectrum was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum showed both molecular ions and protonated molecules. In contrast O 2 - attachment DART showed saturated hydrocarbons and oxygen-containing species. Mass spectra for trinitrotoluene with argon DART in negative-ion mode showed a prominent [M - H] - peak, whereas conventional helium DART showed both M - and [M - H] - . Lastly, in analogy to a report in the literature using APPI, positive ions produced by argon DART ionization for delta-9-tetrahydrocannabinol (THC) and cannabidiol showed distinctive product-ion mass spectra. Dopant-assisted argon DART operates by a mechanism that is analogous to those proposed for dopant-assisted atmospheric-pressure photoionization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright

  14. Monte Carlo modeling of ion chamber performance using MCNP.

    PubMed

    Wallace, J D

    2012-12-01

    Ion Chambers have a generally flat energy response with some deviations at very low (<100 keV) and very high (>2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.

  15. Differential Cross Sections for Ionization of Argon by 1 keV Positron and Electron Impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; DuBois, R. D.; de Lucio, O. G.

    2014-04-01

    Differential information was generated by establishing coincidences and imposing conditions on data recorded for target ions, scattered projectiles, and ejected electrons, as a function of projectile energy loss and scattering angles; in order to describe the interaction between a positron (electron) 1 keV beam and a simple Ar jet. Single ionization triply differential cross section (TDCS) results exhibit two distinct regions (lobes) for which binary (events arising from 2-body interaction) and recoil (events which can only be produced by many-body interactions) interactions are associated. Results indicate that binary events are significantly larger for positron impact, in accordance with theoretical predictions. A similar feature is found for different energy losses and scattering angles. Intensity of the recoil lobe for both projectiles, positron and electron, is observed to depend on the energy loss and scattering angle. Also, it can be noticed that for positron impact the recoil interactions intensity is larger than that observed for electron impact.

  16. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  17. Luminosity limits for liquid argon calorimetry

    NASA Astrophysics Data System (ADS)

    J, Rutherfoord; B, Walker R.

    2012-12-01

    We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.

  18. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  19. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.

  20. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    DOE PAGES

    Foxe, M.; Hagmann, C.; Jovanovic, I.; ...

    2015-03-27

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less

  1. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  2. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  3. Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2018-06-01

    Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.

  4. An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

    NASA Astrophysics Data System (ADS)

    Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.

    2017-08-01

    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

  5. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  6. Post-flight Analysis of the Argon Filled Ion Chamber

    NASA Technical Reports Server (NTRS)

    Tai, H.; Goldhagen, P.; Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Shinn, J. L.

    2003-01-01

    Atmospheric ionizing radiation is a complex mixture of primary galactic and solar cosmic rays and a multitude of secondary particles produced in collision with air nuclei. The first series of Atmospheric Ionizing Radiation (AIR) measurement flights on the NASA research aircraft ER-2 took place in June 1997. The ER-2 flight package consisted of fifteen instruments from six countries and were chosen to provide varying sensitivity to specific components. These AIR ER-2 flight measurements are to characterize the AIR environment during solar minimum to allow the continued development of environmental models of this complex mixture of ionizing radiation. This will enable scientists to study the ionizing radiation health hazard associated with the high-altitude operation of a commercial supersonic transport and to allow estimates of single event upsets for advanced avionics systems design. The argon filled ion chamber representing about 40 percent of the contributions to radiation risks are analyzed herein and model discrepancies for solar minimum environment are on the order of 5 percent and less. Other biologically significant components remain to be analyzed.

  7. Radiation Stability of Triple Coatings Based on Transition-Metal Nitrides Under Irradiation By Alpha Particles and Argon Ions

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Kislitsyn, S. B.; Uglov, V. V.; Klopotov, A. A.; Gorlachev, I. D.; Klopotov, V. D.; Grinkevich, L. S.

    2016-05-01

    The data on the influence of irradiation of (Ti, Cr)N1-x coatings by helium and argon ions on their surface structure are presented. The (Ti, Cr)N1-x coatings 50-300 nm in thickness were formed on carbon steel substrates by vacuum-arc deposition. Irradiation of the coated specimens was performed in a DC-60 heavy-ion accelerator by low-energy 4He+1, 4He+2 and 40Ar5+ ions and high-energy 40Ar5+ ions up to the fluence 1.0·1017 ion/cm2 at the irradiation temperature not higher than 150°C. It is shown that irradiation of the (Ti, Cr)N1-x coating surface by 4He+1, 4He+2 and 40Ar5+ ions with the energy 20 keV/charge does not give rise to any noticeable structural changes nor any surface blistering, while its irradiation by 40Ar5+ ions with the energy 1.50 MeV/amu causes blistering.

  8. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  9. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  10. Ejection of nanoclusters from gold nanoislet layers by 38 keV Au ions in the elastic stopping mode.

    PubMed

    Baranov, I A; Della-Negra, S; Domaratsky, V P; Chemezov, A V; Kirillov, S N; Novikov, A C; Obnorsky, V V; Pautrat, M; Urbassek, H M; Wien, K; Yarmiychuk, S V; Zhurkin, E E

    2009-07-01

    Total absolute yields of the ejected gold were obtained regardless of the type of the particles are--atoms, clusters, nanoclusters,--as well as absolute yields of gold nanoclusters, from nanoislet gold targets under bombardment by monoatomic gold ions at 45 degrees to the target surface with the energy 38 keV, i.e., in the "purely" elastic stopping mode -6 keV/nm up to the fluence of 4 x 10(12) cm2. Three targets had gold nanoislets on the substrate surface: 2-12 nm; -18 nm; -35 nm, the most probable sizes being 7.1; 9.4; 17.5 nm respectively. The part of the surface area covered with gold was known. Total transfer of gold was determined by means of the neutron-activation analysis and decreased from 450 to 20 at/ion. The number of the ejected gold nanoclusters was determined using TEM and decreased from approximately 0.06 to < 0.01 per one 38 keV Au ion with the increase of the most probable sizes of the nanoislets on the target from 7.1 to 17.5 nm. The yields appeared to be surprisingly high, which is of scientific and practical importance. Tentative estimations were made using molecular dynamics simulations.

  11. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a

  12. Surface damage in cystine, an amino acid dimer, induced by keV ions.

    PubMed

    Salles, R C M; Coutinho, L H; da Veiga, A G; Sant'Anna, M M; de Souza, G G B

    2018-01-28

    We have studied the interaction of an ion beam (17.6 keV F - ) with cystine, a dimer formed by the binding of two cysteine residues. Cystine can be considered as an ideal prototype for the study of the relevance of the disulfide (-S-S-) chemical bond in biomolecules. For the sake of comparison, the amino acid cysteine has also been subjected to the same experimental conditions. Characterization of the samples by XPS and NEXAFS shows that both pristine cystine and pristine cysteine are found as a dipolar ion (zwitterion). Following irradiation, the dimer and the amino acid show a tendency to change from the dipole ion form to the normal uncharged form. The largest spectral modification was observed in the high resolution XPS spectra obtained at around the N 1s core level for the two biomolecules. The 2p sulfur edge spectra of cysteine and cystine were much less sensitive to radiation effects. We suggest that the disulfide bond (-S-S-) remains stable before and after irradiation, contributing to the larger radiation stability of cystine as compared to the amino acid cysteine.

  13. Ion Acceleration by Double Layers with Multi-Component Ion Species

    NASA Astrophysics Data System (ADS)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  14. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    PubMed

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  15. Ionoluminescence properties of polystyrene-hosted fluorophore films induced by helium ions of energy 50-350 keV

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Huang, Mengbing

    2017-10-01

    We report on measurements and analysis of ionoluminescence properties of pure polystyrene films and polystyrene films doped with four types of fluorophores in low kinetic energies (50-350 keV) of ion irradiation. We have developed a theoretical model to understand the experimentally observed ionoluminescence behaviors in terms of scintillation yield from individual ion tracks, photophysical energy transfer mechanisms, and irradiation-induced defects. A comparison of the model and experimental results suggests that singlet up-conversion resulting from triplet-triplet annihilation processes may be responsible for enhanced singlet emission of the fluorophores at high ion beam flux densities. Energy transfer from the polystyrene matrix to the fluorophore molecules has been identified as an effective pathway to increasing the fluorescence efficiency in the doped scintillator films.

  16. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  17. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-06-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  18. Ion bombardment experiments suggesting an origin for organic particles in pre-cometary and cometary ices

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Robinson, Edward L.; Flickinger, Gregory C.; Boyd, David A.

    1989-01-01

    During the Giotto and Vega encounters with Comet Halley both organic particles called CHON and energetic ions were detected. The acceleration of ions to hundreds of keV in the vicinity of the bow shock and near the nucleus may be a demonstration of a situation occurring in the early solar system (perhaps during the T Tauri stage) that led to the formation of organic particles only now released. Utilizing a Van de Graaff accelerator and a target chamber having cryogenic and mass spectrometer capabilities, frozen gases were bombarded at 10 K with 175 keV protons with the result that fluffy solid material remains after sublimation of the ice. Initial experiments were carried out with a gas mixture in parts of 170 carbon monoxide, 170 argon, 25 water, 20 nitrogen, and 15 methane formulated to reflect an interstellar composition in experiments involving the freezing out of the products of a plasma. The plasma experiments resulted in a varnish-like film residue that exhibited luminescence when excited with ultraviolet radiation, while the ion bombardment created particulate material that was not luminescent.

  19. Argon hollow cathode. M.S. Thesis; [propellants for ion bombardment thrusters

    NASA Technical Reports Server (NTRS)

    Rehn, L. A.

    1976-01-01

    An interest in alternate propellants for ion-bombardment thrusters, together with ground applications of this technology, has prompted consideration of argon. Several variations of conventional hollow cathode designs were tried, but the bulk of the testing used a hollow tube with an internal tungsten emitter and an orifice at one end. The optimum cathode tube diameter was found to be in the range of 1.0-2.5 cm, somewhat larger than those used for cesium and mercury. Optimum orifice diameter depended on operating conditions, and varied from 0.5 to 5 mm. Biasing the internal emitter negative relative to the cathode chamber reduced the external coupling voltage and should therefore improve orifice lifetime. The expected effect of this bias on emitter lifetime was less clear. Lifetime tests were not conducted as part of this investigation, but several designs show promise of long lifetime in specific applications.

  20. Argon Ion Laser Polymerized Acrylic Resin: A Comparative Analysis of Mechanical Properties of Laser Cured, Light Cured and Heat Cured Denture Base Resins

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: Dentistry in general and prosthodontics in particular is evolving at greater pace, but the denture base resins poly methyl methacrylate. There has been vast development in modifying chemically and the polymerization techniques for better manipulation and enhancement of mechanical properties. One such invention was introduction of visible light cure (VLC) denture base resin. Argon ion lasers have been used extensively in dentistry, studies has shown that it can polymerize restorative composite resins. Since composite resin and VLC resin share the same photo initiator, Argon laser is tested as activator for polymerizing VLC resin. In the Phase 1 study, the VLC resin was evaluated for exposure time for optimum polymerization using argon ion laser and in Phase 2; flexural strength, impact strength, surface hardness and surface characteristics of laser cured resin was compared with light cure and conventional heat cure resin. Materials and Methods: Phase 1; In compliance with American Dental Association (ADA) specification no. 12, 80 samples were prepared with 10 each for different curing time using argon laser and evaluated for flexural strength on three point bend test. Results were compared to established performance requirement specified. Phase 2, 10 specimen for each of the mechanical properties (30 specimen) were polymerized using laser, visible light and heat and compared. Surface and fractured surface of laser, light and heat cured resins were examined under scanning electron microscope (SEM). Results: In Phase 1, the specimen cured for 7, 8, 9 and 10 min fulfilled ADA requirement. 8 min was taken as suitable curing time for laser curing. Phase 2 the values of mechanical properties were computed and subjected to statistical analysis using one-way ANOVA and Tukey post-hoc test. The means of three independent groups showed significant differences between any two groups (P < 0.001). Conclusion: Triad VLC resin can be polymerized by argon ion laser with

  1. Influence of residual ion polarization on the coplanar symmetric (e, 2e) cross sections for calcium and argon

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Qing; Chen, Zhan-Bin; Wang, Yang; Wang, Kai

    2017-03-01

    Detailed calculations using a modified distorted wave Born approximation (DWBA) are carried out for the triple differential cross section (TDCS) in the coplanar symmetric single ionization of calcium and argon atoms. The effects of residual ion polarization on the TDCS are investigated systematically. Our results show that the residual ion polarization, arising from the interaction between the target ion and the two outgoing electrons in the final state, may lead to a considerable change in the TDCS with a more pronounced effect in the large scattering angle region at intermediate energies. The present attempt significantly improves the agreement between theoretical and experimental results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  2. Acceleration of 500 keV Negative Ion Beams By Tuning Vacuum Insulation Distance On JT-60 Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2011-09-26

    Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less

  3. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Hanada, M.; Kojima, A.

    2010-02-15

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cmx1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D{sup -} ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulsemore » duration to hold 500 kV reached 40 s of the power supply limitation.« less

  4. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    An electron bombardment argon ion source was used to ion etch polyimide (Kapton) and fluorinated ethylene, FEP (Teflon). Samples of polyimide and FEP were exposed to (0.5-1.0) keV Ar ions at ion current densities of (1.0-1/8) mA/sq cm for various exposure times. Changes in the optical and electrical properties of the samples were used to characterize the exposure. Spectral reflectance and transmittance measurements were made between 0.33 and 2.16 micron m using an integrating sphere after each exposure. From these measurements, values of solar absorptance were obtained. Total emittance measurements were also recorded for some samples. Surface resistivity was used to determine changes in the electrical conductivity of the etched samples. A scanning electron microscope recorded surface structure after exposure. Spectral optical data, resistivity measurements, calculated absorptance and emittance measurements are presented along with photomicrographs of the surface structure for the various exposures to Ar ions.

  5. Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cline, D.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghag, C.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Shields, E.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Maricic, J.; Martoff, C. J.; Meng, Y.; Meroni, E.; Meyers, P. D.; Mohayai, T.; Montanari, D.; Montuschi, M.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, N.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Teymourian, A.; Thompson, J.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-09-01

    As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.

  6. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE PAGES

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.; ...

    2016-09-17

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less

  7. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less

  8. Soft Argon-Propane Dielectric Barrier Discharge Ionization.

    PubMed

    Schütz, Alexander; Lara-Ortega, Felipe J; Klute, Felix David; Brandt, Sebastian; Schilling, Michael; Michels, Antje; Veza, Damir; Horvatic, Vlasta; García-Reyes, Juan F; Franzke, Joachim

    2018-03-06

    Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N 2 , present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C 3 H 8 ) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.

  9. Ion induced millimetre-scale structures growth on metal surfaces

    NASA Astrophysics Data System (ADS)

    Girka, O.; Bizyukov, O.; Balkova, Y.; Myroshnyk, M.; Bizyukov, I.; Bogatyrenko, S.

    2018-04-01

    Polished polycrystalline Plansee tungsten (W) sample with purity 99.99 wt% and 0.75 mm thickness has been exposed to intense argon (Ar) ion beam with average energy of 2 keV and etched through in the centre. As a result, castle-like structures with strong asymmetry and with the height of >200 μm have been formed. Structures can be observed by naked eyes and with scanning-electron microscopy (SEM). It has been revealed, that the structures have been formed not immediately, but at the later stages of irradiation. Primary factors favouring the formation for the structures are relaxation of the surface stresses and activated surface mobility of atoms.

  10. Effect of Ion Sputtering on Interface Chemistry and Electrical Properties of an Gaas (100) Schottky Contacts

    NASA Technical Reports Server (NTRS)

    Wang, Y. X.; Holloway, P. H.

    1984-01-01

    Auger and electron photoelectron spectroscopy were used to measure the extent of As depletion during 1 keV to 5 keV argon sputtering of GaAs surfaces. This depletion was correlated with a general decrease in the barrier height of the rectifying Au contact deposited in situ. However, nondestructive angle resolved XPS measurements showed As was depleted at the outer surface more by 1 keV than 3 keV argon. These effects are explained based on a combined work effective work function model and creation of a donor like surface damage layer. The donor layer was correlated with As depletion by sputtering. Deep level trap formation and annealing of sputtering effects were studied.

  11. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  12. Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza

    2018-05-01

    The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.

  13. A Comparison of Laser Induced Florescence and Continuous Wave Ring Down Spectroscopy Measurements of Argon Ion and Neutral VDFs in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl

    2012-10-01

    In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.

  14. Experimental study of the dynamics of a ruby laser pumped by a CW argon-ion laser

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Lin, W. P.; Lawandy, N. M.

    1989-01-01

    A study of the dynamics of a ruby laser pumped by a CW argon-ion laser is presented. The ruby laser is predominantly stable but has two accessible unstable states. One state exhibits chaotic output, while the other results in regular self-pulsing. The conditions needed for instability are discussed and homodyne spectra and temporal maps of the phase-space attractors are obtained. In addition, a numerical simulation of nonlinear beam propagation in ruby is presented that shows that strong deviations from plane-wave behavior exist, and that transverse effects must be incorporated into theoretical models of the instability.

  15. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).

  16. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    NASA Astrophysics Data System (ADS)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-01

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production to the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.

  17. The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene

    NASA Astrophysics Data System (ADS)

    Schwestka, J.; Wilhelm, R. A.; Gruber, E.; Heller, R.; Kozubek, R.; Schleberger, M.; Facsko, S.; Aumayr, F.

    2018-05-01

    X-ray emission of slow (<1 a.u.) highly charged Argon and Xenon ions is measured for transmission through a freestanding single layer of graphene. To discriminate against X-ray emission originating from the graphene's support grid a coincidence technique is used. X-ray emission of 75 keV Ar17+ and Ar18+ ions with either one or two K-shell vacancies is recorded. Using a windowless Bruker XFlash detector allows us to measure additionally Ar KLL and KLM Auger electrons and determine the branching ratio of radiative vs. non-radiative decay of Ar K-shell holes. Furthermore, X-ray spectra for 100 keV Xe22+-Xe35+ ions are compared, showing a broad M-line peak for all cases, where M-shell vacancies are present. All these peaks are accompanied by emission lines at still higher energies indicating the presence of a hollow atom during X-ray decay. We report a linear shift of the main M-line peak to higher energies for increasing incident charge state, i.e. increasing number of M-shell holes.

  18. Ion Beam Measurements of a Dense Plasma Focus Device Using CR 39 Nuclear Track Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngoi, S. K.; Yap, S. L.; Wong, C. S.

    The project is carried out using a small Mather type plasma focus device powered by a 15 kV, 30 {mu}F capacitor. The filling gas used is argon. The ion beam generated is investigated by both time resolved and time integrated methods. Investigation on the dynamic of the current sheath is also carried out in order to obtain an optimum condition for ion beam production. The angular distribution of the ion emission is measured at positions of 0 deg. (end-on), 45 deg. and 90 deg. (side-on) by using CR-39 nuclear track detectors. The divergence of the ion beam is also determinedmore » using these detectors. A biased ion collector is used for time resolved measurement of the ion beam. Time of flight technique is employed for the determination of the ion beam energy. Average ion beam energy obtained is about 180 keV. The ion beam produced can be used for applications such as material surface modification and ion implantation.« less

  19. Synthesis of Ag metallic nanoparticles by 120 keV Ag- ion implantation in TiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Himanshu; Singhal, Rahul

    2017-12-01

    TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag- ion with different doses (3 × 1014, 1 × 1015, 3 × 1015, 1 × 1016 and 3 × 1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV-visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3 × 1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.

  20. Cu self-sputtering MD simulations for 0.1-5 keV ions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Metspalu, Tarvo; Jansson, Ville; Zadin, Vahur; Avchaciov, Konstantin; Nordlund, Kai; Aabloo, Alvo; Djurabekova, Flyura

    2018-01-01

    Self-sputtering of copper under high electric fields is considered to contribute to plasma buildup during a vacuum breakdown event frequently observed near metal surfaces, even in ultra high vacuum condition in different electric devices. In this study, by means of molecular dynamics simulations, we analyze the effect of surface temperature and morphology on the yield of self-sputtering of copper with ion energies of 0.1-5 keV. We analyze all three low-index surfaces of Cu, {1 0 0}, {1 1 0} and {1 1 1}, held at different temperatures, 300 K, 500 K and 1200 K. The surface roughness relief is studied by either varying the angle of incidence on flat surfaces, or by using arbitrary roughened surfaces, which result in a more natural distribution of surface relief variations. Our simulations provide detailed characterization of copper self-sputtering with respect to different material temperatures, crystallographic orientations, surface roughness, energies, and angles of ion incidence.

  1. Effect of argon ion implantation on the electrical and dielectric properties of CR-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, Mahak, E-mail: mahak.chawla@gmail.com; Shekhawat, Nidhi; Goyal, Meetika

    2016-05-23

    The objective of the present work is to study the effect of 130 keV Ar{sup +} ions on the electrical and dielectric properties of CR-39 samples at various doses 5×10{sup 14}, 1×10{sup 15} and 1×10{sup 16} Ar{sup +} cm{sup −2}. Current-Voltage (I-V characteristics) measurements have been used to study the electrical properties of virgin and Ar{sup +} implanted CR-39 specimens. The current has been found to be increased with increasing voltage as well as with increasing ion dose. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. The dielectric constant has been found tomore » be decreasing whereas dielectric loss factor increases with increasing ion fluence. These kind of behavior observed in the implanted specimens indicate towards the formation of carbonaceous clusters due to the cross linking, chemical bond cleavage, formation of free radicals. The changes observed in the dielectric behavior have been further correlated with the structural changes observed through I-V characteristics.« less

  2. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    PubMed

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  3. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  4. Rutherford Backscattering Spectrometry studies of 100 keV nitrogen ion implanted polypropylene polymer

    NASA Astrophysics Data System (ADS)

    Chawla, Mahak; Aggarwal, Sanjeev; Sharma, Annu

    2017-09-01

    The effect of nitrogen ion implantation on the structure and composition in polypropylene (PP) polymer has been studied. Implantation was carried out using 100 keV N+ ions at different fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 with beam current density of ∼0.65 μA cm-2. Surface morphological changes in the pre- and post-implanted PP specimens have been studied using Rutherford Backscattering Spectrometry (RBS) and UV-Visible Spectroscopy. The spatial distribution of implantation induced modification in the form of carbonization and dehydrogenation in the near surface region of PP matrix, the projected range, retained dose of implanted nitrogen, the various elements present in the implanted layers and their differential cross-sections have been analyzed using RBS spectra. RUMP simulation yielded an increase in the concentration of carbon near the surface from 33 at.% (virgin) to 42 at.% at fluence of 1 × 1017 N+ cm-2. Further, optical absorption has been found to increase with a shift in the absorption edge from UV towards visible region with increasing fluence. UV-Vis absorption spectra also indicate a drastic decrease in optical energy gap from 4.12 eV (virgin) to 0.25 eV (1 × 1017 N+ cm-2) indicating towards the formation of carbonaceous network in the implanted region. All these changes observed using UV-Visible have been further correlated with the outcomes of the RBS characterization.

  5. Argon laser induced changes to the carbonate content of enamel

    NASA Astrophysics Data System (ADS)

    Ziglo, M. J.; Nelson, A. E.; Heo, G.; Major, P. W.

    2009-05-01

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation ( p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  6. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    PubMed Central

    Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance. PMID:28144525

  7. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  8. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    PubMed Central

    Zheng, Yi; Sanche, Léon

    2011-01-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428

  9. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production tomore » the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.« less

  10. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-18

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production tomore » the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.« less

  11. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  12. Preliminary Tests of a Paul ion Trap as an Ion Source

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Zirak, A. R.; Elahi, M.; Adlparvar, S.; Mortazavi, B. N.; Safarien, A.; Farhangi, S.; Sheibani, S.; Alhooie, S.; Khalaj, M. M. A.; Dabirzadeh, A. A.; Ruzbehani, M.; Zahedi, F.

    2010-10-01

    The paper reports on the design and construction of a Paul ion trap as an ion source by using an impact electron ionization technique. Ions are produced in the trap and confined for the specific time which is then extracted and detected by a Faraday cup. Especial electronic configurations are employed between the end caps, ring electrodes, electron gun and a negative voltage for the detector. This configuration allows a constant low level of pure ion source between the pulsed confined ion sources. The present experimental results are based on the production and confinement of Argon ions with good stability and repeatability, but in principle, the technique can be used for various Argon like ions.

  13. Teflon impregnated anatase TiO2 nanoparticles irradiated by 80 keV Xe+ ions

    NASA Astrophysics Data System (ADS)

    Khanam, Rizwin; Paul, Nibedita; Kumar, P.; Kanjilal, D.; Ahmed, Gazi A.; Mohanta, Dambarudhar

    2014-10-01

    We report the effect of 80 keV Xe+ ion irradiation on the morphological and optical responses of TiO2 nanoparticles spread over commercially available polytetrafluoroethylene (PTFE, Teflon). These nanoparticles were synthesized via a convenient, sol-gel approach with titanium isopropoxide as the main precursor. From X-ray diffraction (XRD) studies we found that, the nanoparticles crystallize in anatase phase and with a preferential orientation of crystallites along (1 0 1) plane. Upon irradiation at a fluence of 1.25 × 1017 ions/cm2, the nanoparticle dimension was found to increase from a value of ∼9 nm to ∼20-30 nm. Essentially, particle growth is predicted as a consequence of swelling behavior accompanied by the formation of Xe van der Waal crystals in isolated regions of nano-titania. Evidence of nanoripples was also witnessed on the surface of the irradiated nano-titania. The morphological evolution was assessed both by atomic force and transmission electron microscopies (AFM and TEM) independently. From the UV-Vis optical absorption studies, the estimated optical band gap was found to drop with increasing fluence, while refractive index exhibited a remarkable improvement. Photoluminescence (PL) studies have revealed that, the band edge emission and those due to the self trapped excitons (STE) and other oxygen vacancy related ones were manifested considerably as a result of Xe ion irradiation.

  14. Secondary ion formation during electronic and nuclear sputtering of germanium

    NASA Astrophysics Data System (ADS)

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  15. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing, E-mail: qibing@szu.edu.cn; Pan, Lizhu; Zhou, Qiujiao

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{supmore » 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.« less

  16. Ion Beam Materials Analysis and Modifications at keV to MeV Energies at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.

    2014-02-01

    The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.

  17. Initial measurements of O-ion and He-ion decay rates observed from the Van Allen probes RBSPICE instrument

    PubMed Central

    Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro

    2014-01-01

    H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3–4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5–6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. Key Points We report initial observations of ring current ions We show that He-ion decay rates are consistent with theory We show that O-ions with energies greater than 500 keV decay very rapidly PMID:26167435

  18. Physicochemical variation of mica surface by low energy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    We report the transformation of smooth and hydrophilic mica surface to a patterned and hydrophobic surface by 12 keV Ar+ and N+ ion bombardment at oblique ion incidence. Periodic ripple pattern has been found on the mica surface when nitrogen like lighter or argon like heavier ions are bombarded at an angle 60° with respect to the surface normal. During ion bombardment the different components of multi-elemental mica are eroded at different rate; as a result surface chemistry is changed, as well as a surface ripple pattern is developed on the surface due to the generation of surface instabilities. The change of surface chemistry and presence of pattern change the hydrophilic nature of the mica surface. X-ray photoelectron spectroscopy (XPS) study of irradiated mica surface shows that the upper K atoms are sputtered most. The vertical and lateral dimensions of the surface patterns are controlled by varying the ion fluence. Contact angle measurement of un-irradiated and irradiated mica surface shows a certain change from hydrophilicity to hydrophobicity. The physicochemical changes of mica surface due to Ar+ and N+ ion bombardment have been discussed.

  19. Triple Photoionization of Neon and Argon Near Threshold

    NASA Astrophysics Data System (ADS)

    Bluett, Jaques B.; Lukić, Dragan; Sellin, Ivan A.; Whitfield, Scott B.; Wehlitz, Ralf

    2003-05-01

    The threshold behavior of the triple ionization cross-section of neon and argon was investigated using monochromatized synchrotron radiation and ion time-of-flight spectrometry. The Ne^3+ and Ar^3+ cross-sections are found to follow the Wannier power law(G.H. Wannier, Phys. Rev. 90), 817 (1953). consistent with a Wannier exponent of 2.162 predicted by theory. This is also consistent with the findings of Samson and Angel(J.A.R. Samson and G.C. Angel, Phys. Lett. 61), 1584 (1988). for the case of Ne. In the case of argon we find a much shorter range of validity than for neon.

  20. Reaction of Cl- ions in electrolyte solution induced electrical discharge plasma in the presence of argon fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.

  1. STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF PET POLYMER FILMS MODIFIED BY LOW ENERGY Ar+ ION BEAMS

    NASA Astrophysics Data System (ADS)

    Fawzy, Y. H. A.; Abdel-Hamid, H. M.; El-Okr, M. M.; Atta, A.

    Polyethylene terephthalate (PET) films with thickness 40μm are irradiated with 3keV argon ion beams with different fluence ranging from 0.5×1018ions.cm-2 to 2×1018ions.cm-2 using locally designed broad ion source. The changes in the PET structure are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) techniques. The XRD patterns show that the peak intensity decreases with irradiation and the particle size decreases from 65.75 Å for the un-irradiated to 52.80 Å after irradiation. The FTIR indicates partial decrease and reduction in the intensity of the bands due to the degradation of the polymer after ion irradiation. The optical energy band gap decreases from 3.14eV to 3.05eV and the number of carbon cluster increases from 119 to 126 after ion irradiation. The results show a slight increase in the electrical conductivities and the dielectric constant (ɛ). The results indicate the effectiveness of using PET films as capacitors and resistors in industrial applications.

  2. Flash x-ray radiography of argon jets in ambient air

    NASA Astrophysics Data System (ADS)

    Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.

    1998-09-01

    This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.

  3. The response of a fast scintillator screen (YAP:Ce) to low energy ions (0-40 keV) and its use to detect fast-ion-loss in stellarator TJ-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, M., E-mail: marcos.martinez@externos.ciemat.es; Zurro, B.; Baciero, A.

    2016-11-15

    A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO{sub 3}:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa{sub 2}S{sub 4}:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H{sup +} ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 timesmore » higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.« less

  4. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikia, P., E-mail: partha.008@gmail.com; Goswami, K. S.; Saikia, B. K.

    2014-03-15

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases asmore » concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.« less

  5. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  6. Measurement of plasma decay processes in mixture of sodium and argon by coherent microwave scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Zhili; Shneider, Mikhail N.

    2010-03-15

    This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodiummore » ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.« less

  7. Tracking of Polycarbonate Films using Low-energy Ions Final Report CRADA No. TC-774-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musket, R. G.

    2018-01-24

    Ion tracking is performed almost exclusively using ions with energies near or above the maximum in electronic stopping. For the present study, we have examined the results of etching ion tracks created by ions bombarding polycarbonate films with energies corresponding to stopping well below the maximum and just above the anticipated threshold for creating etchable latent tracks. Low-energy neon and argon ions with 18-60 keV /amu and fluences of about 10 8/cm 2 were used to examine the limits for producing etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., -20 nm < SEM holemore » diameter < -100 nm), we can directly relate the energy deposition calculated for the incident ion to the creation of etchable tracks. The experimental results will be discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness the films. These results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications.« less

  8. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  9. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  10. Nickel nanowires mesh fabricated by ion beam irradiation-induced nanoscale welding for transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Honey, S.; Ahmad, I.; Madhuku, M.; Naseem, S.; Maaza, M.; Kennedy, J. V.

    2017-07-01

    In this report, random nickel nanowires (Ni-NWs) meshes are fabricated by ions beam irradiation-induced nanoscale welding of NWs on intersecting positions. Ni-NWs are exposed to beam of 50 KeV Argon (Ar+) ions at various fluencies in the range ~1015 ions cm-2 to 1016 ions cm-2 at room temperature. Ni-NWs are welded due to accumulation of Ar+ ions beam irradiation-induced sputtered atoms on crossing positions. Ar+ ions irradiated Ni-NWs meshes are optically transparent and optical transparency is enhanced with increase in beam fluence of Ar+ ions. Ar+ ions beam irradiation-induced welded and optically transparent mesh is then exposed to 2.75 MeV hydrogen (H+) ions at fluencies 1  ×  1015 ions cm-2, 3  ×  1015 ions cm-2 and 1  ×  1016 ions cm-2 at room temperature. MeV H+ ions irradiation-induced local heat cause melting and fusion of NWs on intersecting points and eventually lead to reduce contact resistance between Ni-NWs. Electrical conductivity is enhanced with increase in beam fluence of H+ ions. These welded highly transparent and electrically conductive Ni-NWs meshes can be employed as transparent conducting electrodes in optoelectronic devices.

  11. Energy and charge transfer in ionized argon coated water clusters.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  12. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  13. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  14. Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes

    NASA Astrophysics Data System (ADS)

    Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick

    2017-06-01

    The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.

  15. Simulation of argon response and light detection in the DarkSide-50 dual phase TPC

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Vincenzi, M.; Derbin, A. V.; De Rosa, G.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.

    2017-10-01

    A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.

  16. Inert gas ion source program

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1978-01-01

    THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.

  17. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  18. Sputtering of uranium

    NASA Technical Reports Server (NTRS)

    Gregg, R.; Tombrello, T. A.

    1978-01-01

    Results are presented for an experimental study of the sputtering of U-235 atoms from foil targets by hydrogen, helium, and argon ions, which was performed by observing tracks produced in mica by fission fragments following thermal-neutron-induced fission. The technique used allowed measurements of uranium sputtering yields of less than 0.0001 atom/ion as well as yields involving the removal of less than 0.01 monolayer of the uranium target surface. The results reported include measurements of the sputtering yields for 40-120-keV protons, 40-120-keV He-4(+) ions, and 40- and 80-keV Ar-40(+) ions, the mass distribution of chunks emitted during sputtering by the protons and 80-keV Ar-40(+) ions, the total chunk yield during He-4(+) sputtering, and some limited data on molecular sputtering by H2(+) and H3(+). The angular distribution of the sputtered uranium is discussed, and the yields obtained are compared with the predictions of collision cascade theory.

  19. The Influence of Heat Treatment on the Electrical Characteristics of Semi-Insulating SiC Layers Obtained by Irradiating n-SiC with High-Energy Argon Ions

    NASA Astrophysics Data System (ADS)

    Ivanov, P. A.; Potapov, A. S.; Kudoyarov, M. F.; Kozlovskii, M. A.; Samsonova, T. P.

    2018-03-01

    Irradiation of crystalline n-type silicon carbide ( n-SiC) with high-energy (53-MeV) argon ions was used to create near-surface semi-insulating ( i-SiC) layers. The influence of subsequent heat treatment on the electrical characteristics of i-SiC layers has been studied. The most high-ohmic ion-irradiated i-SiC layers with room-temperature resistivity of no less than 1.6 × 1013 Ω cm were obtained upon the heat treatment at 600°C, whereas the resistivity of such layers heat-treated at 230°C was about 5 × 107 Ω cm.

  20. Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.

    Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p

  1. Influences of the residual argon gas and thermal annealing on Ta2O5 and SiO2 thin film filters

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jen; Chen, Chih-Min; Lai, Yin-Chieh

    2005-04-01

    Ion beam assisted deposition (IBAD) technique had widely used for improving stacking density and atomic mobility of thin films in many applications, especially adopted in optical film industries. Tantalum pentaoxide (Ta2O5) and silicon oxides (SiO2) optical thin films were deposited on the quartz glass substrate by using argon ion beam assisted deposition, and the influences of the residual argon gas and thermal annealing processes on the optical property, stress, compositional and microstructure evolution of the thin films were investigated in this study. Ta2O5 thin films were analyzed by XPS indicated that the ratio value of oxygen to tantalum was insufficient, at the same time, the residual argon gas in the thin films might result in film and device instabilities. Adopting oxygen-thermal annealing treatment at the temperature of 425°C, the thin films not only decreased the residual argon gas and the surface roughness, but also provided the sufficient stoichiometric ratio. Simultaneously, microstructure examination indicated few nano-crystallized structures and voids existed in Ta2O5 thin films, and possessed reasonable refractive index and lower extinction coefficient. By the way, we also suggested the IBAD system using the film compositional gas ion beam to replace the argon ion beam for assisting deposited optical films. The designed (HL)6H6LH(LH)6 multi-layers indicated higher insertion loss than the designed (HL)68H(LH)6 multi-layers. Therefore, using the high refractive index as spacer material represented lower insertion loss.

  2. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  3. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  4. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  5. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  6. A Fast-Ion Source for LAPD

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W. W.; McWilliams, R.; Leneman, D.

    2002-11-01

    To measure the fast-ion transport as a function of gyroradius, a 3-cm diameter, 17 MHz, ˜ 80 W, ˜ 3 mA, argon source is under development for use in the LArge Plasma Device (LAPD). In tests on the Irvine Mirror, the source performs reliably when oriented either parallel to the magnetic field or at an oblique angle and in either a CW or pulsed mode of operation. A radial energy analyzer measures the profile of the 200-500 eV beam. Laser-induced fluorescence (LIF) of cold 3d^2G_9/2 argon metastables excited by the source is readily measured but the hot argon ions in the beam itself are more difficult to detect. In preliminary tests on LAPD, the source operated successfully. Planned physics experiments include measurements of collisional fast-ion diffusion and fluctuation-induced transport.

  7. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, Robert; Polcik, Peter; Anders, André

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  8. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE PAGES

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  9. Venus nightside ionosphere - A model with KeV electron impact ionization

    NASA Technical Reports Server (NTRS)

    Kumar, S.

    1982-01-01

    The impact of keV electrons is proposed as the strongest source of ionization in a full-up Venus nightside ionosphere model for the equatorial midnight region. The electron impacts lead to a peak ion density of 100,000/cu cm, which was observed by the PV-OIMS experiment on several occasions. In addition, the observed altitude profiles of CO2(+), O(+), O2(+), H(+), and H2(+) can be reproduced by the model on condition that the available keV electron flux is approximated by a reasonable extrapolation from fluxes observed at lower energies.

  10. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Iwano, Keisuke; Yamanoi, Kohei; Iwasa, Yuki; Mori, Kazuyuki; Minami, Yuki; Arita, Ren; Yamanaka, Takuma; Fukuda, Kazuhito; Empizo, Melvin John F.; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio

    2016-10-01

    We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ˜ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  11. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts.

    PubMed

    Verkhoturov, Stanislav V; Gołuński, Mikołaj; Verkhoturov, Dmitriy S; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A

    2018-04-14

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C 60 2+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H) - , emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H) - from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ∼30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves

  12. "Trampoline" ejection of organic molecules from graphene and graphite via keV cluster ions impacts

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Gołuński, Mikołaj; Verkhoturov, Dmitriy S.; Geng, Sheng; Postawa, Zbigniew; Schweikert, Emile A.

    2018-04-01

    We present the data on ejection of molecules and emission of molecular ions caused by single impacts of 50 keV C602+ on a molecular layer of deuterated phenylalanine (D8Phe) deposited on free standing, 2-layer graphene. The projectile impacts on the graphene side stimulate the abundant ejection of intact molecules and the emission of molecular ions in the transmission direction. To gain insight into the mechanism of ejection, Molecular Dynamic simulations were performed. It was found that the projectile penetrates the thin layer of graphene, partially depositing the projectile's kinetic energy, and molecules are ejected from the hot area around the hole that is made by the projectile. The yield, Y, of negative ions of deprotonated phenylalanine, (D8Phe-H)-, emitted in the transmission direction is 0.1 ions per projectile impact. To characterize the ejection and ionization of molecules, we have performed the experiments on emission of (D8Phe-H)- from the surface of bulk D8Phe (Y = 0.13) and from the single molecular layer of D8Phe deposited on bulk pyrolytic graphite (Y = 0.15). We show that, despite the similar yields of molecular ions, the scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. The projectile impact on the graphene-D8Phe sample stimulates the collective radial movement of analyte atoms, which compresses the D8Phe layer radially from the hole. At the same time, this compression bends and stretches the graphene membrane around the hole thus accumulating potential energy. The accumulated potential energy is transformed into the kinetic energy of correlated movement upward for membrane atoms, thus the membrane acts as a trampoline for the molecules. The ejected molecules are effectively ionized; the ionization probability is ˜30× higher compared to that obtained for the bulk D8Phe target. The proposed mechanism of ionization involves tunneling of

  13. Numerical study on characteristics of radio-frequency discharge at atmospheric pressure in argon with small admixtures of oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Liu, Yue

    2017-07-01

    In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to-argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.

  14. Investigation of the Contribution of Lower Charger State Ar Ions to the Unknown Faint X-Ray Feature Found in the Stacked Spectrum of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gall, Amy

    Driven by the recent detection of an unidentified emission line previously reported at 3.55-3.57 keV in a stacked spectrum of galaxy clusters, in this work we investigated the resonant dielectronic recombination (DR) process in Li-like Ar as a possible source of, or contributor to, the emission line. The Li-like transition 1s22l-1s2l3l' was suggested to produce a 3.62 keV photon [1] near the unidentified line at 3.57 keV and was the primary focus of our study. The Electron Beam Ion Trap at NIST was used to produce and trap the highly-charged ions of argon. The energy of the quasi-monoenergetic electron beam was incremented in steps of 15 eV to scan over all of the Li-like Ar DR resonances. A Johann-type crystal spectrometer and a solid-state germanium detector were used to take x-ray measurements perpendicular to the electron beam. Our broadband results allowed us to identify the processes that produced specific spectral features, while our high-resolution spectra allowed the experimental separation of features that are less than 2 eV apart. We have used the collisional radiative model NOMAD [2] aided by atomic data calculations by FAC [3] to interpret our observations and account for corrections. Experimental results were compared to the atomic database AtomDB, used to fit the galaxy cluster spectra. We found a number of measured features due to DR in lower charge state Ar ions not included in the database, close in energy to the identified line at 3.57 keV, and suggest their inclusion for improved interpretation and diagnosis of other astrophysical spectra.

  15. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  16. Confined ion energy >200 keV and increased fusion yield in a DPF with monolithic tungsten electrodes and pre-ionization

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Hassan, Syed M.; Karamitsos, Ivana; Von Roessel, Fred

    2017-10-01

    To reduce impurities in the dense plasma focus FF-1 device, we used monolithic tungsten electrodes with pre-ionization. With this new set-up, we demonstrated a three-fold reduction of impurities by mass and a ten-fold reduction by ion number. FF-1 produced a 50% increase in fusion yield over our previous copper electrodes, both for a single shot and for a mean of ten consecutive shots with the same conditions. These results represent a doubling of fusion yield as compared with any other plasma focus device with the same 60 kJ energy input. In addition, FF-1 produced a new single-shot record of 240 ± 20 keV for mean ion energy, a record for any confined fusion plasma, using any device, and a 50% improvement in ten-shot mean ion energy. With a deuterium-nitrogen mix and corona-discharge pre-ionization, we were also able to reduce the standard deviation in the fusion yield to about 15%, a four-fold reduction over the copper-electrode results. We intend to further reduce impurities with new experiments using microwave treatment of tungsten electrodes, followed by the use of beryllium electrodes.

  17. Ion-stimulated mass transport in nanoscale morphology evolution

    NASA Astrophysics Data System (ADS)

    George, Henry Bola

    We observe temporal evolution of two distinct lateral length scales in surface topography following low energy, E, argon ion (Ar+) irradiation of Si(001). From real-space AFM topographs, we observe that the short-wavelength, lambda (high-wavenumber, q) evolve as nearly isotropic dots while the longer-lambda (low- q) features appear as isotropic "rings" at normal incidence and as anisotropic ripples at off-normal incidence with their wavevector orthogonal to the ion beam. We explain our results in terms of an interplay between smoothening by ion-enhanced viscous flow and roughening driven by ion sputtering (for high-q features) or elastic strain energy relief (for low- q features). Our proposed mechanisms also explain the weak temperature and flux dependence of both wavelengths. We also observe stable flat surfaces following irradiation at incidence angles greater than 20° from normal, E > 500 eV and temperature > 300°C. To explain non-diverging wavelengths as the smoothening boundary is approached, we present evidence that non-local terms are needed in the height evolution equation. We report the influence of pre-patterned boundaries in guiding ripples appearing during uniform irradiation at high temperatures. Compared to untemplated samples, we observe that the long-range order of the guided ripples is significantly enhanced. We develop a scalar figure of merit to characterize the degree of order of the patterns. We observe that templating is most efficient when the boundaries are separated by an integer multiple of the spontaneously arising wavelength. We report new observations following ion sculpting of nanopores. Among these are: (1) The formation of nanopores is not limited to insulators: we successfully close pores in other materials including silicon dioxide, amorphous silicon (semiconductor) and palladium silicide (metallic glass). (2) Pores retain "memory" of their initial radius: at the same instantaneous radius, pores that started off smaller require

  18. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  19. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  20. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Balsiger, Hans; Altwegg, Kathrin; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Eberhardt, Peter; Fiethe, Björn; Fuselier, Stephen A; Gasc, Sébastien; Gombosi, Tamas I; Hansen, Kenneth C; Hässig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Waite, J Hunter; Wurz, Peter

    2015-09-01

    Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope (36)Ar and by the (36)Ar/(38)Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.

  1. Investigation of a Mercury-Argon Hot Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  2. The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Su, X.; Liu, C. G.; Yang, D. Y.; Wen, J.; Fu, E. G.; Zhang, J.; Chen, L. J.; Xu, D. P.; Wang, Y. Q.; Li, Y. H.

    2015-11-01

    The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3.

  3. Developing a scalable inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    James, E.; Ramsey, W.; Steiner, G.

    1982-01-01

    Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.

  4. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  5. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greig, A., E-mail: amelia.greig@anu.edu.au; Charles, C.; Boswell, R. W.

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are highermore » than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.« less

  6. Recent operation of the FNAL magnetron H- ion source

    NASA Astrophysics Data System (ADS)

    Karns, P. R.; Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ˜18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  7. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  8. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; hide

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  9. Temperature Evolution of a 1 MA Triple-Nozzle Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    de Grouchy, Philip; Banasek, Jacob; Engelbrecht, Joey; Qi, Niansheng; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Moore, Hannah; Potter, William; Ransohoff, Lauren; Hammer, David; Kusse, Bruce; Laboratory of Plasma Studies Team

    2015-11-01

    Mitigation of the Rayleigh-Taylor instability (RTI) plays a critical role in optimizing x-ray output at high-energy ~ 13 keV using the triple-nozzle Krypton gas-puff at Sandia National Laboratory. RTI mitigation by gas-puff density profiling using a triple-nozzle gas-puff valve has recently been recently demonstrated on the COBRA 1MA z-pinch at Cornell University. In support of this work we investigate the role of shell cooling in the growth of RTI during gas-puff implosions. Temperature measurements within the imploding plasma shell are recorded using a 527 nm, 10 GW Thomson scattering diagnostic for Neon, Argon and Krypton puffs. The mass-density profile is held constant at 22 microgram per centimeter for all three puffs and the temperature evolution of the imploding material is recorded. In the case of Argon puffs we find that the shell ion and electron effective temperatures remain in equilibrium at around 1keV for the majority of the implosion phase. In contrast scattered spectra from Krypton are dominated by of order 10 keV effective ion temperatures. Supported by the NNSA Stewardship Sciences Academic Programs.

  10. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  11. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  12. Improved Multiple-Species Cyclotron Ion Source

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1990-01-01

    Use of pure isotope 86Kr instead of natural krypton in multiple-species ion source enables source to produce krypton ions separated from argon ions by tuning cylcotron with which source used. Addition of capability to produce and separate krypton ions at kinetic energies of 150 to 400 MeV necessary for simulation of worst-case ions occurring in outer space.

  13. Effect of embedded silver nanoparticles on refractive index of soda lime glass

    NASA Astrophysics Data System (ADS)

    Sonal, Sharma, Annu; Aggarwal, Sanjeev

    2018-05-01

    Silver glass nanocomposites were prepared by exposing silver doped soda lime glass slides obtained via ion-exchange reaction to a beam of 200 keV Argon ions (Ar+) at an off normal angle of 400 with doses of 5x1015 ions cm-2 and 1x1016 ions cm-2. These nanocomposites were further characterized using UV-visible spectrophotometer so as to study their transmission and reflection behavior and compute their refractive index and real and imaginary parts of dielectric function.

  14. SPECTRAL PROPERTIES OF {approx}0.5-6 keV ENERGETIC NEUTRAL ATOMS MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) ALONG THE LINES OF SIGHT OF VOYAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; Allegrini, F. A.; Dayeh, M. A.

    2012-04-20

    Energetic neutral atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Here we survey the fluxes, energy spectra, and energy dependence of the spectral indices of {approx}0.5-6 keV ENAs measured by IBEX-Hi along the lines of sight of Voyager 1 and 2. We compare the ENA spectra observed at IBEX with predictions of Zank et al. who modeled the microphysics of the heliospheric termination shock to predict the shape and relative contributions of three distinct heliosheath ion populations. We show thatmore » (1) the ENA spectral indices exhibit similar energy dependence along V1 and V2 directions-the spectrum hardens to {gamma} {approx} 1 between {approx}1 and 2 keV and softens to {gamma} {approx} 2 below {approx}1 keV and above {approx}2 keV, (2) the observed ENA fluxes agree to within {approx}50% of the Zank et al. predictions and are unlikely to be produced by core solar wind (SW) ions, and (3) the ENA spectra do not exhibit sharp cutoffs at {approx}twice the SW speed as is typically observed for shell-like pickup ion (PUI) distributions in the heliosphere. We conclude that ENAs at IBEX are generated by at least two types of ion populations whose relative contributions depend on the ENA energy: transmitted PUIs in the {approx}0.5-5 keV energy range and reflected PUIs above {approx}5 keV energy. The {approx}0.5-5 keV PUI distribution is probably a superposition of Maxwellian or kappa distributions and partially filled shell distributions in velocity space.« less

  15. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  16. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko

    PubMed Central

    Balsiger, Hans; Altwegg, Kathrin; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Eberhardt, Peter; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hansen, Kenneth C.; Hässig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Waite, J. Hunter; Wurz, Peter

    2015-01-01

    Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth’s major volatiles. PMID:26601264

  17. Development of advanced inert-gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1983-01-01

    Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).

  18. Argon ion beam induced surface pattern formation on Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofsäss, H.; Bobes, O.; Zhang, K.

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°.more » We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.« less

  19. Preparation of a primary argon beam for the CERN fixed target physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R.

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear acceleratormore » (Linac3) at CERN.« less

  20. Study of the storm time fluxes of heavy ions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The characteristics of the storm time ring current ions in the energy range of 0.5 to 16 keV were investigated. Data were processed and analyzed from the energetic ion mass spectrometer aboard the S3-3 satellite. Results are used for planning and operating the ion mass spectrometer experiment on the ISEE spacecraft, for selecting and processing the ISEE ion data, and for planning and conducting coordinated satellite experiments in support of the International Magnetospheric Study (IMS). It is established from the S3-3 ion data that relatively large fluxes of energetic (keV) 0(+) and H(+) ions are frequently flowing upward from the ionosphere along magnetic field lines in the polar auroral regions. Also, from investigations with the same instrument during the main phase of three moderate (D sub ST approximately 100) magnetic storms, it is found that the number density of 0(+) ions in the ring current was comparable to H(+) ion density the range 0.5 to 15 keV.

  1. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu

    We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less

  2. Argon endolaser suture lysis

    NASA Astrophysics Data System (ADS)

    Cameron, Bruce D.; Joos, Karen M.; Shen, Jin-Hui

    1996-05-01

    Purpose: To develop a simple suture lysis technique for post-trabeculectomy examinations under anesthesia since slit lamp laser suture lysis in the clinic cannot be performed on infants and young children. Methods: An argon endolaser probe lysed 10-0 nylon suture through conjunctiva harvested from human cadaver eyes. Since suture lysis failed with the thick Hoskins lens, clear plastic from the suture package compressed the conjunctiva. The conjunctiva was examined histologically. Results: Argon laser suture lysis (250 mW, 0.1 sec, 488 - 514 nm) was achieved without conjunctival damage. Conclusion: The argon endolaser probe is effective for suture lysis when the slit lamp cannot be used.

  3. Argon purification studies and a novel liquid argon re-circulation system

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Calland, R. G.; Coleman, J.; Lightfoot, P. K.; McCauley, N.; McCormick, K. J.; Touramanis, C.

    2011-08-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficiency of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O2, H2O, N2 and CO2 in the range of between 0.01 ppm to 1000 ppm - H2O was found to have the most profound effect on gaseous argon scintillation light, and N2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N2 gas and H2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P2O5 at removing O2 and H2O impurities from 1 bar N6 argon gas at both room temperature and -130 °C was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity.

  4. Transition-matrix theory for two-photon ionization of rare-gas atoms and isoelectronic ions with application to argon

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.; Jiang, Tsin-Fu

    1987-08-01

    A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions needed to calculate the two-photon transition amplitude. The implications of these equations are discussed in detail. In particular, the role of correlations involving virtually excited electron pairs, which are known to be essential to the description of single-photon processes, is examined for multiphoton ionization processes. Additionally, electron scattering interactions between two electron-hole pairs are introduced into our transition amplitude in the boson approximation since these have been found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37 (1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon below the one-photon ionization threshold. Our results are compared to previous calculations of McGuire [Phys. Rev. A 24, 835 (1981)], of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)], and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly and linearly polarized photons. Among our findings are, firstly, that the electron scattering interactions, which have not been included in previous calculations for argon, produce a substantial reduction in the two-photon single-ionization cross section below the one-photon ionization threshold, which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-excitation of virtually excited electron pairs by absorption of a photon is important for describing the interaction of the atom with the photon field, as in the case of single-photon ionization processes, but that further excitation of virtually excited electron pairs by the photon field has completely negligible effects, indicating a major simplification of the theory for higher-order absorption processes.

  5. Argon Isotopes Provide Robust Signature of Atmospheric Loss

    NASA Image and Video Library

    2013-04-08

    This image, made by the quadrupole mass spectrometer in the SAM suite of instruments in NASA Curiosity Mars rover. shows the ratio of the argon isotope argon-36 to the heavier argon isotope argon-38, in various measurements.

  6. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    NASA Astrophysics Data System (ADS)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  7. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-01-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  8. Application of ion thruster technology to a 30-cm multipole sputtering ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1976-01-01

    A 30-cm electron-bombardment ion source has been designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500-eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of + or -5 percent over the center 20 cm of the beam at a distance up to 30 cm from the ion source.

  9. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less

  10. Inert gas ion thruster development

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.

  11. Coarsening of ion-beam-induced surface ripple in Si: Nonlinear effect vs. geometrical shadowing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Debi Prasad; Chini, Tapas Kumar

    The temporal evolution of a periodic ripple pattern on a silicon surface undergoing erosion by 30 keV argon ion bombardment has been studied for two angles of ion incidence of 60 deg. and 70 deg. using ex situ atomic force microscopy (AFM) in ambient condition. The roughness amplitude (w) grows exponentially with sputtering time for both the angle of ion incidence followed by a slow growth process that saturates eventually with almost constant amplitude. Within the exponential growth regime of amplitude, however, ripple wavelength (l) remains constant initially and increases subsequently as a power law fashion l{proportional_to}t{sup n}, where n=0.47{+-}0.02more » for a 60 deg. angle of ion incidence followed by a saturation. Wavelength coarsening was also observed for 70 deg. but ordering in the periodic ripple pattern is destroyed quickly for 70 deg. as compared to 60 deg. . The ripple orientation, average ripple wavelength at the initial stage of ripple evolution, and the exponential growth of ripple amplitude can be described by a linear continuum model. While the wavelength coarsening could possibly be explained in the light of recent hydrodynamic model based continuum theory, the subsequent saturation of wavelength and amplitude was attributed to the effect of geometrical shadowing. This is an experimental result that probably gives a hint about the upper limit of the energy of ion beam rippling for applying the recently developed type of nonlinear continuum model.« less

  12. The Liquid Argon Purity Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamowski, M.; Carls, B.; Dvorak, E.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to themore » cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.« less

  13. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  14. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  15. Verification of high efficient broad beam cold cathode ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less

  16. Trails of Kilovolt Ions Created by Subsurface Channeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of themore » ion's subsurface channel.« less

  17. Surface structuring in polypropylene using Ar+ beam sputtering: Pattern transition from ripples to dot nanostructures

    NASA Astrophysics Data System (ADS)

    Goyal, Meetika; Aggarwal, Sanjeev; Sharma, Annu; Ojha, Sunil

    2018-05-01

    Temporal variations in nano-scale surface morphology generated on Polypropylene (PP) substrates utilizing 40 keV oblique argon ion beam have been presented. Due to controlled variation of crucial beam parameters i.e. ion incidence angle and erosion time, formation of ripple patterns and further its transition into dot nanostructures have been realized. Experimental investigations have been supported by evaluation of Bradley and Harper (B-H) coefficients estimated using SRIM (The Stopping and Range of Ions in Matter) simulations. Roughness of pristine target surfaces has been accredited to be a crucial factor behind the early time evolution of nano-scale patterns over the polymeric surface. Study of Power spectral density (PSD) spectra reveals that smoothing mechanism switch from ballistic drift to ion enhanced surface diffusion (ESD) which can be the most probable cause for such morphological transition under given experimental conditions. Compositional analysis and depth profiling of argon ion irradiated specimens using Rutherford Backscattering Spectroscopy (RBS) has also been correlated with the AFM findings.

  18. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  19. Improved ion containment using a ring-cusp ion thruster

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1982-01-01

    A 30-centimeter diameter ring-cusp ion thruster is described which operates at inert gas ion beam currents up to about 7 ampere, with significant improvements in discharge chamber performance over conventional divergent-field thrusters. The thruster has strong boundary ring-cusp magnetic fields, a diverging field on the cathode region, and a nearly field-free volume upstream of the ion extraction system. Minimum ion beam production costs of 90 to 100 watts per beam ampere (W/A) were obtained for argon, krypton and xenon. Propellant efficiencies in excess of 0.90 were achieved at 100 to 120 W/A for the three inert gases. The ion beam charge-state was documented with a collimating mass spectrometer probe to allow evaluation of overall thruster efficiencies.

  20. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  1. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  2. Comparison of microleakages of photo-cured composites using three different light sources: halogen lamp, LED and argon laser: an in vitro study.

    PubMed

    Tielemans, M; Compere, Ph; Geerts, S O; Lamy, M; Limme, M; De Moor, R J G; Delmé, K I M; Bertrand, M F; Rompen, E; Nammour, S

    2009-01-01

    In this study, we compared the microleakage of composite fillings cured with halogen bulb, LED and argon ion laser (488 nm). Twenty-four extracted human molars were divided randomly in three groups. Six cavities were prepared on the coronal part of each tooth. Standard cavities (1.7 x 2 mm) were prepared. Cavities were acid etched, sealed with Scotch Bond 1 and filled by a hybrid composite. Cavities were exposed to one light source, thermocycled and immersed in a 2% methylene blue dye solution. Dye penetration in the leakage of cavities was recorded using a digital optical microscope. Mean values of percentage of dye penetrations in microleakages of cavities were 49.303 +/- 5.178% for cavities cured with LED, 44.486 +/- 6.075% with halogen bulb and 36.647 +/- 5.936% for those cured by argon laser. Statistically significant difference exists between cavities cured by halogen vs LED (P < 0.01), halogen vs laser (P < 0.001) and LED vs laser (P < 0.001). The lowest microleakage was observed in the cavities and composites cured with argon ion laser.

  3. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  4. Stopping characteristics of boron and indium ions in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. S., E-mail: DSVeselov@mephi.ru; Voronov, Yu. A.

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  5. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.

    PubMed

    Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  6. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    NASA Astrophysics Data System (ADS)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  7. Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear array detector IonCCD.

    PubMed

    Davila, Stephen J; Hadjar, Omar; Eiceman, Gary A

    2013-07-16

    A linear pixel-based detector array, the IonCCD, is characterized for use under ambient conditions with thermal (<1 eV) positive ions derived from purified air and a 10 mCi (63)Ni foil. The IonCCD combined with a drift tube-ion mobility spectrometer permitted the direct detection of gas phase ions at atmospheric pressure and confirmed a limit of detection of 3000 ions/pixel/frame established previously in both the keV (1-2 keV) and the hyper-thermal (10-40 eV) regimes. Results demonstrate the "broad-band" application of the IonCCD over 10(5) orders in ion energy and over 10(10) in operating pressure. The Faraday detector of a drift tube for an ion mobility spectrometer was replaced with the IonCCD providing images of ion profiles over the cross-section of the drift tube. Patterns in the ion profiles were developed in the drift tube cross-section by control of electric fields between wires of Bradbury Nielson and Tyndall Powell shutter designs at distances of 1-8 cm from the detector. Results showed that ion beams formed in wire sets, retained their shape with limited mixing by diffusion and Coulombic repulsion. Beam broadening determined as 95 μm/cm for hydrated protons in air with moisture of ~10 ppmv. These findings suggest a value of the IonCCD in further studies of ion motion and diffusion of thermalized ions, enhancing computational results from simulation programs, and in the design or operation of ion mobility spectrometers.

  8. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  9. Plasma & reactive ion etching to prepare ohmic contacts

    DOEpatents

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  10. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, D.; Lebreton, L.; Richer, J.P.

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is usedmore » as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  11. Mutagenic effects of heavy ion radiation in plants

    NASA Technical Reports Server (NTRS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  12. Mutagenic effects of heavy ion radiation in plants

    NASA Astrophysics Data System (ADS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-10-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  13. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.

  14. Ion-beam-induced bending of semiconductor nanowires.

    PubMed

    Hanif, Imran; Camara, Osmane; Tunes, Matheus A; Harrison, Robert W; Greaves, Graeme; Donnelly, Stephen E; Hinks, Jonathan A

    2018-08-17

    The miniaturisation of technology increasingly requires the development of both new structures as well as novel techniques for their manufacture and modification. Semiconductor nanowires (NWs) are a prime example of this and as such have been the subject of intense scientific research for applications ranging from microelectronics to nano-electromechanical devices. Ion irradiation has long been a key processing step for semiconductors and the natural extension of this technique to the modification of semiconductor NWs has led to the discovery of ion beam-induced deformation effects. In this work, transmission electron microscopy with in situ ion bombardment has been used to directly observe the evolution of individual silicon and germanium NWs under irradiation. Silicon NWs were irradiated with either 6 keV neon ions or xenon ions at 5, 7 or 9.5 keV with a flux of 3 × 10 13 ions cm -2 s -1 . Germanium NWs were irradiated with 30 or 70 keV xenon ions with a flux of 10 13 ions cm -2 s -1 . These new results are combined with those reported in the literature in a systematic analysis using a custom implementation of the transport of ions in matter Monte Carlo computer code to facilitate a direct comparison with experimental results taking into account the wide range of experimental conditions. Across the various studies this has revealed underlying trends and forms the basis of a critical review of the various mechanisms which have been proposed to explain the deformation of semiconductor NWs under ion irradiation.

  15. Calculation of Energetic Ion Tail from Ion Cyclotron Resonance Frequency Heating

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Li, Youyi; Li, Jiangang

    1994-04-01

    The second harmonic frequency of hydrogen ion cyclotron resonance heating experiment on HT-6M tokamak was studied by adding the quasi-linear wave-ion interaction term in the two-dimensional (velocity space), time-dependent, nonlinear and multispecies Fokker-Planck equation. The temporal evolution of ion distribution function and relevant parameters were calculated and compared with experiment data. The calculation shows that the ion temperature increases, high-energy ion tail (above 5 keV) and anisotropy appear when the wave is injected to plasma. The simulations are in reasonable agreement with experiment data.

  16. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  17. Low-temperature volume radiation annealing of cold-worked bands of Al-Li-Cu-Mg alloy by 20-40 keV Ar+ ion

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Mozharovsky, S. M.; Kaigorodova, L. I.

    2017-01-01

    The processes of radiation-dynamic nature (in contrast to the thermally-activated processes) in the course of short-term irradiation of 1 mm thick bands of cold-worked aluminum alloy 1441 (of system Al-Li-Cu-Mg) with Ar+ 20-40 keV were studied. An effect of in-the-bulk (throughout the whole of metal bands thickness) low-temperature radiation annealing of the named alloy, multiply accelerated as compared with common thermal annealing processes was registered (with projected ranges of ions of considered energies definitely not exceeding 0.1 μm). The processes of recrystallization and intermetallic structure changes (occurring within a few seconds of Ar+ irradiation) have the common features as well as the differences in comparison with the results of two hour standard thermal annealing.

  18. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  19. Modeling of life limiting phenomena in the discharge chamber of an electron bombardment ion thruster

    NASA Technical Reports Server (NTRS)

    Handoo, Arvind K.; Ray, Pradosh K.

    1991-01-01

    An experimental facility to study the low energy sputtering of metal surfaces with ions produced by an ion gun is described. The energy of the ions ranged from 10 to 500 eV. Cesium ions with energies from 100 to 500 eV were used initially to characterize the operation of the ion gun. Next, argon and xenon ions were used to measure the sputtering yields of cobalt (Co), Cadmium (Cd), and Chromium (Cr) at an operating temperature of 2x10(exp -5) Torr. The ion current ranged from 0.0135 micro-A at 500 eV. The targets were electroplated on a copper substrate. The surface density of the electroplated material was approx. 50 micro-g/sq cm. The sputtered atoms were collected on an aluminum foil surrounding the target. Radioactive tracers were used to measure the sputtering yields. The sputtering yields of Cr were found to be much higher than those of Co and Cd. The yields of Co and Cd were comparable, with Co providing the higher yields. Co and Cd targets were observed to sputter at energies as low as 10 eV for both argon and xenon ions. The Cr yields could not be measured below 20 eV for argon ions and 15 eV for xenon ions. On a linear scale the yield energy curves near the threshold energies exhibit a concave nature.

  20. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    NASA Astrophysics Data System (ADS)

    Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.

    2014-06-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.

  1. First experimental studies of ion flow in 3 ion species plasmas at the presheath-sheath transition

    NASA Astrophysics Data System (ADS)

    Severn, Greg

    2016-09-01

    The Bohm sheath criterion is studied with laser-induced fluorescence (LIF) in three ion species plasmas using two tunable diode lasers. KrI or HeI is added to a low pressure unmagnetized dc hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar-Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas instability enhanced collisional friction (IEF) was demonstrated to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. Results are consistent with the presence of instabilities. Author gratefully acknowledges collaborators Dr. Noah Hershkowtiz, Dr. Chi-Shung Yip, Dept. of Engineering Physics, Univ. Wisconsin-Madison, and Dr. Scott Baalrud, Dept. Physics, Univ. Iowa. Thanks to US DOE, grant DE-SC00014226.

  2. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  3. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  4. ISIS/EPI-Lo: A New Instrument for Measuring keV to MeV Ions and Electrons with Simultaneous Half-Sky Coverage on NASA's Solar Probe Plus Mission

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Mitchell, D. G.; McNutt, R. L., Jr.; Cooper, S.; Crew, A. B.; Dupont, A.; Hayes, J.; Hoffer, E.; Nelson, K.; Parker, C.; Schlemm, C., II; Seifert, H.; Stokes, M.; Angold, N. G.; McComas, D. J.; Weidner, S.; Wiedenbeck, M. E.

    2016-12-01

    The Solar Probe Plus (SPP) Mission's Integrated Science Investigation of the Sun (ISIS) is a suite of two energetic particle instruments, EPI-Lo and EPI-Hi, covering lower ( 10 keV-100 MeV) and higher ( 1-100 MeV/nuc) energies, respectively. The ISIS team will investigate the origins, acceleration, and transport of energetic particles in the corona and inner heliosphere during the planned 7-year, 24-orbit mission, with a perihelion initially of 0.16 AU (36 Solar radii; RS), the three final orbits reaching 0.044 AU (9.9 RS). EPI-Lo has a novel approach to obtaining large angular coverage, well-suited to 3-axis stabilized spacecraft such as SPP, by densely sampling its 2π steradian field of view with 80 apertures organized in eight matching, 10-aperture wedges. Each wedge relies primarily on time-of-flight (TOF) mass spectrometer techniques, employing thin secondary-electron-emitting foils, microchannel plates, and solid state detectors (SSDs), to measure ions from 50 keV - 15 MeV and electrons from 50-500 keV. Signal attenuation, absorbers, TOF-only measurements, and SSD-only techniques are used to extend this energy range higher and lower. In 2015 and 2016 we made measurements with engineering units and flight-spare EPI-Lo wedges at accelerators and with radioactive sources; in addition to presenting the instrument design, we will report the results from these tests to characterize the instrument's measurement performance.

  5. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments

    PubMed Central

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu

    2016-01-01

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas. PMID:26853107

  6. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  7. Ion implantation of solar cell junctions without mass analysis

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D.; Tonn, D. G.

    1981-01-01

    This paper is a summary of an investigation to determine the feasibility of producing solar cells by means of ion implantation without the use of mass analysis. Ion implants were performed using molecular and atomic phosphorus produced by the vaporization of solid red phosphorus and ionized in an electron bombardment source. Solar cell junctions were ion implanted by mass analysis of individual molecular species and by direct unanalyzed implants from the ion source. The implant dose ranged from 10 to the 14th to 10 to the 16th atoms/sq cm and the energy per implanted atom ranged from 5 KeV to 40 KeV in this study.

  8. Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Ngoi, S. K.; Yap, S. L.

    The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less

  9. Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds.

    PubMed

    Yang, Hongmei; Wan, Debin; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-05

    Helium direct analysis in real time (He-DART) mass spectrometry (MS) analysis of labile compounds usually tends to be challenging because of the occurrence of prominent fragmentation, which obscures the assigning of an ion to an independent species or merely a fragment in a mixture. In the present work, argon DART (Ar-DART) MS in conjunction with makeup solvents has been demonstrated to analyze a variety of labile compounds including nucleosides, alkaloids, glucose, and other small molecules. The results presented here confirm that Ar-DART can generate significantly less energetic ions than conventional He-DART and is able to produce the intact molecular ions with little or no fragmentation in both positive and negative ion modes. Adding a makeup solvent (absolute ethyl alcohol, methanol, fluorobenzene, or acetone) to the argon gas stream at the exit of the DART ion source can result in 1-2 orders of magnitude increase in detection signals. The sensitivity attainable by Ar-DART was found to be comparable to that by He-DART. The investigation of influence of solvents improves our understanding of the fundamental desorption and ionization processes in DART. The practical application of this rapid and high throughput method is demonstrated by the successful analysis of a natural product (Crude Kusnezoff Monkshood) extract, demonstrating the great potential in mixture research.

  10. The Molecular Pathway of Argon-Mediated Neuroprotection

    PubMed Central

    Ulbrich, Felix; Goebel, Ulrich

    2016-01-01

    The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response. PMID:27809248

  11. Radiative properties of molecular nitrogen ions produced by helium Penning ionization and argon effects

    NASA Technical Reports Server (NTRS)

    Miller, George, III; Song, Kyo-Dong

    1994-01-01

    The development of hypersonic aerospace vehicles requires a better understanding on the thermal and chemical nonequilibrium kinetics of participating species in shock layers. The computational fluid dynamic (CFD) codes developed for such flowfields overestimate the radiation in the spectral region of 300 - 600 nm. A speculation for this overestimation is that inclusion of Ar, CO2, and H2O at the upper atmosphere flight region makes a significant impact on radiative kinetics of molecular nitrogen ions. To define the effects of minority species on the radiative kinetics of N2(+), an experimental setup was made by using the helium Penning ionization. The vibrational and rotational temperature were measured by mapping the vibrational and rotational distributions of N2(+) emission with high spectroscopic resolution and absolute intensity measurements. Measured vibrational temperatures were in the range from 18,000 to 36,000 K, and rotational temperatures were in the range from 300 to 370 K. The irradiance of 391.44 nm line and rotational and vibrational temperatures were analyzed to define argon and CO2 effects on the N2(+) emission. When Ar or CO2 is injected with N2, the rotational temperature did not change. The irradiances were reduced by 34 percent and 78 percent for the 50 percent of mixture of Ar and CO2, respectively. The vibrational temperatures were increased by 24.1 percent and 82.9 percent for the 50 percent of mixture of Ar and CO2, respectively. It appears that there are no significant effects from small concentrations of Ar and CO2 at the upper atmosphere flight region.

  12. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  13. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  14. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  15. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...

  16. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping...

  17. Virial Coefficients for the Liquid Argon

    NASA Astrophysics Data System (ADS)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  18. Production of Ar{sup q+} ions with a tandem linear Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, H., E-mail: hhigaki@hiroshima-u.ac.jp; Nagayasu, K.; Iwai, T.

    A tandem linear Paul trap was used to create highly charged Argon ions by electron impact ionizations. By improving the operation scheme, the production of Ar{sup 4+} ions was confirmed. Possible improvements for the future experiments with laser cooled Ca{sup +} ions are suggested.

  19. Characteristic Behavior and Scaling Studies of Self Organized InP Nano-dots formed via keV and MeV irradiations

    NASA Astrophysics Data System (ADS)

    Paramanik, Dipak; Varma, Shikha

    2008-04-01

    The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.

  20. LABORATORY MEASUREMENTS COMPELLINGLY SUPPORT A CHARGE-EXCHANGE MECHANISM FOR THE “DARK MATTER” ∼3.5 keV X-Ray LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chintan; Dobrodey, Stepan; Bernitt, Sven

    2016-12-10

    The reported observations of an unidentified X-ray line feature at ∼3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the K-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produced S{sup 16+} and S{sup 15+} ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchange-induced X-ray feature at the Lyman seriesmore » limit (3.47 ± 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu et al.« less

  1. Measurement of ion species in high current ECR H⁺/D⁺ ion source for IFMIF (International Fusion Materials Irradiation Facility).

    PubMed

    Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M

    2016-02-01

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  2. The R&D progress of 4 MW EAST-NBI high current ion source.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin

    2014-02-01

    A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.

  3. Argon Diffusion Measured in Rhyolite Melt at 100 MPa

    NASA Astrophysics Data System (ADS)

    Weldon, N.; Edwards, P. M.; Watkins, J. M.; Lesher, C. E.

    2016-12-01

    Argon diffusivity (D_{Ar} ) controls the rate and length scale of argon exchange between melt and gas phases and is used as a parameter to model noble gas fractionation during magma degassing. D_{Ar} may also be useful in geochronology to estimate the distribution of excess (non-radiogenic) atmospheric argon in lavas. Our measurements of D_{Ar} in molten anhydrous rhyolite near 1000 °C and 100 MPa add to the existing dataset. Using a rapid-quench cold seal pressure apparatus we exposed cylindrical charges drilled from a Miocene rhyolite flow near Buck Mtn., CA to a pure argon atmosphere resulting in a gradually lengthening argon concentration gradient between the saturated surface and the argon poor interior. Argon concentration was measured by electron microprobe along radial transects from the center to the surface of bisected samples. D_{Ar} was calculated for each transect by fitting relative argon concentration (as a function of distance from the surface) to Green's function (given each experiment's specific temperature, pressure and runtime). Variability (σ = 1.202{μm }^{2} /s) was smaller than in previous studies, but still greater than what is likely due to analytical or experimental uncertainty. We observed a symmetric geometric bias in the distribution of argon in our samples, possibly related to advective redistribution of argon accompanying the deformation of cylindrical charges into spheroids driven by surface tension. Average diffusivity, D_{Ar} = 4.791{μm }^{2} /s, is close to the predicted value, D_{Ar} = {μm }^{2} /s ( σ_{ \\bar{x} } = 1.576 {μm }^{2} /s), suggesting that Behrens and Zhang's (2001) empirical model is valid for anhydrous rhyolite melts to relatively higher temperatures and lower pressures. Behrens, H. and Y. Zhang (2001). "Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation." Earth and Planetary Science Letters 192: 363-376.

  4. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  5. Argon Collection And Purification For Proliferation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event wasmore » a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.« less

  6. Argon gas: a potential neuroprotectant and promising medical therapy

    PubMed Central

    2014-01-01

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741

  7. Ion beams in multi-species plasmas

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Good, T. N.

    2018-04-01

    Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas.

  8. Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; et al.

    We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statisticsmore » $$^{39}$$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $$\\pm$$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $$\\pm$$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.« less

  9. Surface analysis by means of high resolution energy loss spectroscopy of 180° elastic scattered protons in the 100 keV regime

    NASA Astrophysics Data System (ADS)

    Jun-ichi, Kanasaki; Noriaki, Matsunami; Noriaki, Itoh; Tomoki, Oku; Kensin, Kitoh; Masahiko, Aoki; Koji, Matsuda

    1988-06-01

    The design and computer simulation of the performance of a new ion-beam surface analyzer has been presented. The analyzer has the capability of analyzing the energy of ions incident at 100 keV and scattered by 180° at surfaces with a resolution of 5 eV. The analyzer consists of an ion source, an accelerating-decelerating tube and a multichannel analyzer. Computer simulation of the energy spectra of ions scattered from GaAs is reported.

  10. Effects of argon gas flow rate on laser-welding.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  11. Argon Laser Treatment of Strawberry Hemangioma in Infancy

    PubMed Central

    Achauer, Bruce M.; Vander Kam, Victoria M.

    1985-01-01

    Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:4082569

  12. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  13. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  14. Ion production cost of a gridded helicon ion thruster

    NASA Astrophysics Data System (ADS)

    Williams, Logan T.; Walker, Mitchell L. R.

    2013-10-01

    Helicon plasma sources are capable of efficiently ionizing propellants and have been considered for application in electric propulsion. However, studies that estimate the ion production cost of the helicon plasma source are limited and rely on estimates of the extracted ion current. The ion production cost of a helicon plasma source is determined using a gridded ion thruster configuration that allows accurate measurement of the ion beam current. These measurements are used in conjunction with previous characterization of the helicon plasma to create a model of the discharge plasma within the gridded thruster. The device is tested across a range of operating conditions: 343-600 W radio frequency power at 13.56 MHz, 50-250 G and 1.5 mg s-1 of argon at a pressure of 1.6 × 10-5 Torr-Ar. The ion production cost is 132-212 ± 28-46 eV/ion, driven primarily by ion loss to the walls and anode, as well as energy loss in the anode and grid sheaths.

  15. Remote Sensing of Icy Galilean Moon Surface and Atmospheric Composition Using Low Energy (1 eV-4 keV) Neutral Atom Imaging

    NASA Technical Reports Server (NTRS)

    Collier, M. R.; Sittler, E.; Chornay, D.; Cooper, J. F.; Coplan, M.; Johnson, R. E.

    2004-01-01

    We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV < E < 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and

  16. A FUSE Search for Argon on Titan

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Link, R.; Stern, S. A.; Festou, M.; Waite, J. H.

    2002-09-01

    The origin of Titan's thick nitrogen and methane atmosphere is a compelling enigma. One key and still missing observable concerns the abundances of noble gases in general, and argon in particular. Detection of sufficient argon could indicate that the N2 and CO now found in the atmosphere came in with ice during Titan's accretion. Alternatively, if there is very little argon, then we have to turn to models starting with frozen ammonia, methane and water ice, indicating a more important role for the Saturn sub-nebula, and requiring subsequent modification by photochemistry. Current estimates on the fraction of argon in Titan's atmosphere are crude, and based only on indirect evidence, and range up to 25%. On Sept. 21, 2000, using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, we performed an observation of Titan to search for argon and to make a survey of Titan's dayglow in the 90--115 nm FUSE bandpass. No emissions were found in the 18 ks exposure, although only 7.4 ks were obtained when FUSE was in Earth's shadow where terrestrial airglow contamination is minimal. While no Ar, N, or N2 emissions were detected, 2-σ upper limits of 4 R (for Ar 104.8 nm) and 20 R (for N 113.4 nm) are found using the best of the FUSE data. There is a bump on the terrestrial geocorona H Lyβ emission at 102.5 nm which may be due to Titan and a Titan Torus. The signal in the bump is about 400 R. Model estimates suggest that the Lyβ brightness of Titan should be about 20 R and the Titan Torus in the 30--700 R range. For an assumed argon abundance of 5% the 104.8 nm emission is predicted to be 7 R, so the argon estimate is constraining already. The nitrogen estimate is very close to the model expectation of 15 R. An accurate determination of the abundance of argon on Titan would be useful in preparing for the arrival of the Cassini orbiter and Huygens probe at the Saturn system, so further FUSE observations of Titan are planned. We gratefully acknowledge support from NASA

  17. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.

    PubMed

    Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin

    2016-07-27

    We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.

  18. Desorption Induced by KEV Molecular and Cluster Projectiles.

    NASA Astrophysics Data System (ADS)

    Blain, Matthew Glenn

    1990-01-01

    A new experimental method has been developed for studying negative secondary ion (SI) emission from solid surfaces bombarded by polyatomic primary ions of 5 to 30 keV. The method is based on the time-of-flight (TOF) analysis of primary ions which are produced by either ^ {252}Cf fission fragment induced desorption or by extraction from a liquid metal ion source, and then accelerated into a field free region. The primary ions included organic monomer, dimer, and fragment ions of coronene and phenylalanine, (CsI)_ nCs ^{+} cluster ions, and Au _sp{n}{+} cluster ions. Secondary electrons, emitted from a target surface upon primary ion impact, are used to identify which primary ion has hit the surface. An event-by-event coincidence counting technique allows several secondary ion TOF spectra, correlated to several different primary ions, to be acquired simultaneously. Negative SI yields from organic (phenylalanine and dinitrostilbene), CsI, and Au surfaces have been measured for a number of different mono- and polyatomic primary ions. The results show, for example, yields ranging from 1 to 10% for phenylalanine (M-H) ^{ -}, 1 to 10% for I^{-} , and 1 to 5% for Au^{-} , with Cs_2I^ {+} and Cs_3I _sp{2}{+} clusters as projectiles. Yields for the same surfaces using Cs ^{+} primary ions are much less than 1%, indicating that SI yields are enhanced with clusters. A yield enhancement occurs when the SI yield per atom of a polyatomic projectile is greater than the SI yield of its monoatomic equivalent, at the same velocity. Thus, a (M-H) ^{-} yield increase of a factor of 50, when phenylalanine is bombarded with Cs_3I_sp{2} {+} instead of Cs^{+ }, represents a yield enhancement factor of 10. For the projectiles and samples studied, it was observed that the heavier the mass of the constituents of a projectile, the larger the enhancement effects, and that the largest yield enhancements (with CsI and Au _ n projectiles) occur for the organic target, phenylalanine. One possible

  19. A study of the vacancy loop formation probability in Ni-Cu and Ag-Pd alloys. [50-keV Kr sup + ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalinskas, K.; Chen, Gengsheng; Haworth, J.

    1992-04-01

    The molten-zone model of vacancy loop formation from a displacement cascade predicts that the loop formation probability should scale with the melting temperature. To investigate this possibility the vacancy loop formation probability has been determined in a series of Cu-Ni and Ag-Pd alloys. The irradiations were performed at room temperature with 50 keV Kr+ ions and the resulting damage structure was examined by using transmission electron microscopy. In the Cu-Ni alloy series, the change in loop formation probability with increasing Ni concentration was complex, and at low- and high- nickel concentrations, the defect yield did not change in the predictedmore » manner. The defect yield was higher in the Cu-rich alloys than in the Ni-rich alloys. In the Ag-Pd alloy the change in the loop formation probability followed more closely the change in melting temperature, but no simple relationship was determined.« less

  20. The CAPTAIN liquid argon neutrino experiment

    DOE PAGES

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  1. Effect of helium ion beam treatment on wet etching of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Grigoryev, E. A.; Sharov, T. V.; Baraban, A. P.

    2018-03-01

    We investigated the effect of helium ion beam treatment on the etching rate of silicon dioxide in a water based solution of hydrofluoric acid. A 460-nm-thick silicon dioxide film on silicon was irradiated with helium ions having energies of 20 keV and 30 keV with ion fluences ranging from 1014 cm-2 to 1017 cm-2. The dependence of the etching rate on depth was obtained and compared with the depth distribution of ion-induced defects, which was obtained from numerical simulation. Irradiation with helium ions results in an increase of the etching rate of silicon dioxide. The dependence of the etching rate on the calculated concentration of ion-induced defects is described.

  2. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2012-01-01

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d54s4p 6P excited levels. The 3d54s4p 6P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.104. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  3. Dual ion beam deposition of carbon films with diamondlike properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  4. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with thismore » microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.« less

  5. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  6. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An...

  7. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An...

  8. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  9. Nanoparticle formation in a low pressure argon/aniline RF plasma

    NASA Astrophysics Data System (ADS)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  10. Cold Ion Demagnetization near the X-line of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Toledo-Redondo, Serio; Andre, Mats; Khotyaintsev, Yuri V.; Vaivads, Andris; Walsh, Andrew; Li, Wenya; Graham, Daniel B.; Lavraud, Benoit; Masson, Arnaud; Aunai, Nicolas; hide

    2016-01-01

    Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earths magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10 keV), and magnetosheath (1 keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (approx. 15 km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E x B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs.

  11. Cold ion demagnetization near the X-line of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, Sergio; André, Mats; Khotyaintsev, Yuri V.; Vaivads, Andris; Walsh, Andrew; Li, Wenya; Graham, Daniel B.; Lavraud, Benoit; Masson, Arnaud; Aunai, Nicolas; Divin, Andrey; Dargent, Jeremy; Fuselier, Stephen; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Avanov, Levon; Pollock, Craig; Saito, Yoshifumi; Moore, Thomas E.; Coffey, Victoria; Chandler, Michael O.; Lindqvist, Per-Arne; Torbert, Roy; Russell, Christopher T.

    2016-07-01

    Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earth's magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10 keV), and magnetosheath (1 keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (˜15 km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E × B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs.

  12. Direct evidence for two-stage (bimodal) acceleration of ionospheric ions

    NASA Astrophysics Data System (ADS)

    Klumpar, D. M.; Peterson, W. K.; Shelley, E. G.

    1984-12-01

    Energetic ion composition spectrometer data gathered on hybrid conical ion distributions by the Dynamics Explorer 1 in the topside ionosphere are reported. The observed ion distributions were field-aligned and upward flowing, with energies up to 5 keV. Increases in ion energy were accompanied by a departure from field-alignment and a cone patterned upward flow, with the apex in the auroral field lines and the cone angle widening upward as the energy increased. Both transverse and parallel accelerations were imparted to the ions, with the transverse heating occurring in a 5000 km extent region centered at 18,000 km altitude. A bi-Maxwellian distribution, a temperature of 1.2 keV and a 260 eV parallel temperature were found at the top of the region.

  13. Analysis of a Partial Male-Sterile Mutant of Arabidopsis thaliana Isolated from a Low-Energy Argon Ion Beam Mutagenized Pool

    NASA Astrophysics Data System (ADS)

    Xu, Min; Bian, Po; Wu, Yuejin; Yu, Zengliang

    2008-04-01

    A screen for Arabidopsis fertility mutants, mutagenized by low-energy argon ion beam, yielded two partial male-sterile mutants tc243-1 and tc243-2 which have similar phenotypes. tc243-2 was investigated in detail. The segregation ratio of the mutant phenotypes in the M2 pools suggested that mutation behaved as single Mendelian recessive mutations. tc243 showed a series of mutant phenotypes, among which partial male-sterile was its striking mutant characteristic. Phenotype analysis indicates that there are four factors leading to male sterility. a. Floral organs normally develop inside the closed bud, but the anther filaments do not elongate sufficiently to position the locules above the stigma at anthesis. b. The anther locules do not dehisce at the time of flower opening (although limited dehiscence occurs later). c. Pollens of mutant plants develop into several types of pollens at the trinucleated stage, as determined by staining with DAPI (4',6-diamidino-2-phenylindole), which shows a variable size, shape and number of nucleus. d. The viability of pollens is lower than that of the wild type on the germination test in vivo and vitro.

  14. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  15. Investigation of ion beam space charge compensation with a 4-grid analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.

    2016-02-15

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system ofmore » the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.« less

  16. Noble gas cluster ions

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçin; Veenhof, Rob

    2018-02-01

    In this work, a reaction mechanism of formation of noble gas (Ng) cluster ions has been theoretically investigated in detail. The kinetic studies of formation of Xe+Xe cluster in Xe, Ar+Ar cluster ions in Ar, and Ne+Ne cluster ions in Ne have been made as theoretically. The optimized structures in the ground state were calculated using the density functional theory (DFT) by the B3LYP method combined with the Stuttgart/Dresden effective core potential basis set (SDD). In addition, we calculated the rate constants of all cluster formations. The results are 1.15 × 10-31, 3.58 × 10-31, 0.23 × 10-31cm6/s, respectively for Neon, Argon, Xenon cluster ions.

  17. CINEMA (Cubesat for Ion, Neutral, Electron, MAgnetic fields)

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Wang, L.; Sample, J. G.; Horbury, T. S.; Roelof, E. C.; Lee, D.; Seon, J.; Hines, J.; Vo, H.; Tindall, C.; Ho, J.; Lee, J.; Kim, K.

    2009-12-01

    The NSF-funded CINEMA mission will provide cutting-edge magnetospheric science and critical space weather measurements, including high sensitivity mapping and high cadence movies of ring current, >4 keV Energetic Neutral Atom (ENA), as well as in situ measurements of suprathermal electrons (>~2 keV) and ions (>~ 4 keV) in the auroral and ring current precipitation regions, all with ~1 keV FWHM resolution and uniform response up to ~100 keV. A Suprathermal Electron, Ion, Neutral (STEIN) instrument adds an electrostatic deflection system to the STEREO STE (SupraThermal Electron) 4-pixel silicon semiconductor sensor to separate ions from electrons and from ENAs up to ~20 keV. In addition, inboard and outboard (on an extendable 1m boom) magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. A new attitude control system (ACS) uses torque coils, a solar aspect sensor and the magnetometers to de-tumble the 3u CINEMA spacecraft, then spin it up to ~1 rpm with the spin axis perpendicular to the ecliptic, so STEIN can sweep across most of the sky every minute. Ideally, CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. An S-band transmitter will be used to provide > ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station. Two more identical CINEMA spacecraft will be built by Kyung Hee University (KHU) in Korea under their World Class University (WCU) program, to provide stereo ENA imaging and multi-point in situ measurements. Furthermore, CINEMA’s development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft will be important for future nanosatellite space missions.

  18. Projectile-charge dependence of the differential cross section for the ionization of argon atoms at 1 keV

    NASA Astrophysics Data System (ADS)

    Purohit, G.; Kato, D.

    2017-10-01

    The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.

  19. Antiapoptotic activity of argon and xenon

    PubMed Central

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  20. Integration of Ion Implantation with Scanning ProbeAlignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Rangelow, I.W.; Schenkel, T.

    We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beammore » assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of high charge state dopant ions. The Bi{sup 45+} ions (200 keV) were extracted from a low emittance highly charged ions source [5]. The potential energy of B{sup 45+}, i. e., the sum of the binding energies required to remove the electrons, amounts to 36

  1. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  2. Microstructures and Argon age dating

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Fitz Gerald, John; Lister, Gordon

    2010-05-01

    Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser

  3. Dual-ion-beam deposition of carbon films with diamond-like properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  4. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  5. First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, H. O.; Alexander, T.; Alton, A.

    2012-04-01

    We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixturemore » was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.« less

  6. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  7. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  8. Experimental observation of ion beams in the Madison Helicon eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2011-06-15

    Argon ion beams up to E{sub b} = 165 eV at P{sub rf} = 500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M = v{sub i}/c{sub s} up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate,more » rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eV{sub p} {approx} 5kT{sub e} for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies E{sub b} = e[V{sub beam} - V{sub plasma}] > 10kT{sub e}.« less

  9. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  10. High responsivity secondary ion energy analyzer

    NASA Astrophysics Data System (ADS)

    Belov, A. S.; Chermoshentsev, D. A.; Gavrilov, S. A.; Frolov, O. T.; Netchaeva, L. P.; Nikulin, E. S.; Zubets, V. N.

    2018-05-01

    The degree of space charge compensation of a 70 mA, 400 keV pulsed hydrogen ion beam has been measured with the use of an electrostatic energy analyzer of secondary ions. The large azimuthal angle of the analyzer enables a high responsivity, defined as the ratio of the slow secondary ion current emerging from the partially-compensated ion beam to the fast ion beam current. We measured 84% space charge compensation of the ion beam. The current from the slow ions and the rise time from the degree of space charge compensation were measured and compared with expected values.

  11. Ion beam induced defects in solids studied by optical techniques

    NASA Astrophysics Data System (ADS)

    Comins, J. D.; Amolo, G. O.; Derry, T. E.; Connell, S. H.; Erasmus, R. M.; Witcomb, M. J.

    2009-08-01

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 × 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I3- structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I3- and I5- aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 10 15 to 250 × 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show

  12. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the datamore » suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically

  13. Low Temperature Thermodynamic Equilibrium of CO2 Dimer Anion Species in Cryogenic Argon and Krypton Matrices

    NASA Astrophysics Data System (ADS)

    Goodrich, Michael E.; Moore, David T.

    2016-06-01

    The separated CO2 dimer anion, (CO2)(CO2-), is observed by FTIR spectroscopy in matrix isolation experiments at 1652 cm-1 upon deposition of high energy argon ions into an argon matrix doped with 0.5% CO2. It has previously been reported by Andrews that upon annealing the matrix to 25K, the separated species converts to an oxalate-like C2O4- species which appears at 1856 cm-1.a We have observed that subsequently holding the matrix at 10K caused the C2O4- species to fully convert back to (CO2)(CO2-). Upon further investigation, we determined that the two species reversibly interconvert between 19K and 23K, suggesting the species are in thermodynamic equilibrium. The associated van't Hoff plot has a linear trend and indicates an endothermic reaction driven by a large increase in entropy. An analogous experiment in a krypton matrix was performed, and the equilibrium was found to occur between 26K and 31K. Interestingly, analysis revealed the reaction in krypton is more endothermic, but has nearly the same entropy value as was observed in the argon experiment. aZhou, M.; Andrews, L.; J. Chem. Phys. 110, 2414 (1999).

  14. The DarkSide direct dark matter search with liquid argon

    NASA Astrophysics Data System (ADS)

    Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2017-11-01

    The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.

  15. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  16. Low-energy ion-backscattering spectroscopies applied to the determination of surface structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarmoff, J.A.

    1985-01-01

    Low-Energy Ion Scattering (LEIS) was investigated as a means for determining the geometric structure at a single-crystal surface. A three-dimensional Monte-Carlo computer simulation was developed and applied to existing LEIS data. The binary collision approximation was found to yield satisfactory results in simulating Buck's time-of-flight energy spectra for 2.4 keV Ne/sup +/ scattering from Ni(001). A two-atom-layer model was used in calculations of the azimuthal anisotropy of the ion yield measured by Bernheim and Slodzian for 9.5 keV Ne/sup +/ scattering from Cu(001). The calculations were successful in reproducing most of the features that had been observed in the experiments,more » which shows that this model contained most of the physics required to interpret the data. An apparatus for performing LEIS studies was built, and Low-Energy Ion-Backscattering Angular Distributions (LEIBAD) were collected with 3-20 keV /sup 6/Li/sup +/ incident on Cu(001). For incidence along a low-index Miller axis of the crystal, shadowing effects limited the penetration depth of the elastically scattered ions. However, neutralized Li atoms, which were not filtered out of the scattered yield by the high-pass filter, provided a background characteristic of the bulk. A high-resolution electrostatic analyzer was used to collect impact Collision Ion Scattering Spectroscopy (ICISS) data for 5-keV /sup 6/Li/sup +/ ions to study the Cu(110) and Cu(110) (2 x 1)-0 surfaces.« less

  17. Heavy-ion dominance near Cluster perigees

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  18. Molecular Depth Profiling of Sucrose Films: A Comparative Study of C₆₀n⁺ Ions and Traditional Cs⁺ and O₂⁺ Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zihua; Nachimuthu, Ponnusamy; Lea, Alan S.

    2009-10-15

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling of sucrose thin films were investigated using 10 keV C60+, 20 keV C602+, 30 keV C603+, 250 eV, 500 eV and 1000 eV Cs+ and O2+ as sputtering ions. With C60n+ ions, the molecular ion signal initially decreases, and reaches a steady-state that is about 38-51% of its original intensity, depending on the energy of the C60n+ ions. On the contrary, with Cs+ and O2+ sputtering, molecular ion signals decrease quickly to the noise level, even using low energy (250 eV) sputtering ions. In addition, the sucrose/Si interface by C60+ sputtering ismore » much narrower than that of Cs+ and O2+ sputtering. To understand the mechanisms of sputtering-induced damage by these ions, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the bottoms of these sputter craters. XPS data show very little chemical change in the C60+ sputter crater, while considerable amorphous carbon was found in the O2+ and Cs+ sputter craters, indicating extensive decomposition of the sucrose molecules. AFM images show a very flat bottom in the C60+ sputter crater, while the Cs+ and O2+ sputter crater bottoms are significantly rougher than that of the C60+ sputter crater. Based on above data, we developed a simple model to explain different damage mechanisms during sputtering process.« less

  19. Tests of positive ion beams from a microwave ion source for AMS

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; von Reden, K. F.; Hayes, J. M.; Wills, J. S. C.; Kern, W. G. E.; Kim, S.-W.

    2000-10-01

    A test facility has been constructed to evaluate high-current positive ion beams from small gaseous samples for AMS applications. The major components include a compact permanent magnet microwave ion source built at the AECL Chalk River Laboratory and now on loan from the University of Toronto, and a double-focusing spectrometer magnet on loan from Argonne National Laboratory. Samples are introduced by means of a silica capillary injection system. Loop injection into a carrier gas provides a stable feed for the microwave driven plasma. The magnetic analysis system is utilized to isolate carbon ions derived from CO 2 samples from other products of the plasma discharge, including argon ions of the carrier gas. With a smaller discharge chamber, we hope to exceed a conversion efficiency of 14% for carbon ions produced per atom, which we reported at AMS-7. The next step will be to construct an efficient charge-exchange cell, to produce negative ions for injection into the WHOI recombinator injector.

  20. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  1. Semi-insulating 4H-SiC layers formed by the implantation of high-energy (53 MeV) argon ions into n-type epitaxial films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kudoyarov, M. F.; Kozlovski, M. A.

    It is shown that 9-μm-thick semi-insulating surface layers can be formed in moderately doped n-type silicon carbide (donor concentration 2 × 10{sup 16} cm{sup –3}) via the comparatively low-dose (7 × 10{sup 11} cm{sup –2}) implantation of high-energy (53 MeV) argon ions. The free-carrier removal rate is estimated at ~10{sup 4} cm{sup –1}. The resistivity of the semi-insulator is no less than 7 × 10{sup 12} Ω cm. Analysis of the monopolar current of electron injection into the semi-insulator shows that the impurity-conductivity compensation is due to radiation induced defects pinning the equilibrium Fermi level at a depth of 1.16more » eV below the conduction-band bottom. The density of defect states at the Fermi level is 2.7 × 10{sup 16} cm{sup 2} eV{sup –1}.« less

  2. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  3. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  4. 500 keV Ar2+ ion irradiation induced anatase to brookite phase transformation and ferromagnetism at room temperature in TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Mishra, N. C.; Kanjilal, D.; Rath, Chandana

    2018-01-01

    In our earlier report, where we have demonstrated ferromagnetic behavior at room temperature (RT) in TiO2 thin films deposited through electron beam evaporation technique followed by annealing either in Ar or O2 atmosphere [Mohanty et al., Journal of Magnetism and Magnetic Materials 355 (2014) 240-245], here we have studied the evolution of structure and magnetic properties after irradiating the TiO2 thin films with 500 keV Ar2+ ions. The pristine film while exhibits anatase phase, the films become amorphous after irradiating at fluence in the range 1 × 1014 to 1 × 1016 ions/cm2. Increasing the fluence up to 5 × 1016 ions/cm2, amorphous to crystalline phase transformation occurs and the structure becomes brookite. Although anatase to rutile phase transformation is usually reported in literatures, anatase to brookite phase transformation is an unusual feature which we have reported here for the first time. Such anatase to brookite phase transformation is accompanied with grain growth without showing any change in film thickness evidenced from Rutherford's Back Scattering (RBS) measurement. From scanning probe micrographs (SPM), roughness is found to be more in amorphous films than in the crystalline ones. Anatase to brookite phase transformation could be realized by considering the importance of intermediate amorphous phase. Because due to amorphous phase, heat deposited by energetic ions are localized as dissipation of heat is less and as a result, the localized region crystallizes in brookite phase followed by grain growth as observed in highest fluence. Further, we have demonstrated ferromagnetic behavior at RT in irradiated films similar to pristine one, irrespective of their phase and crystallinity. Origin for room temperature ferromagnetism (RTFM) is attributed to the presence of oxygen vacancies which is confirmed by carrying out XPS measurement.

  5. An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF

    NASA Astrophysics Data System (ADS)

    Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.

    2018-05-01

    Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

  6. O+ pickup ions outside of Venus' bow shock: Venus Express observation

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Fraenz, M.; Dubinin, E.; Zhang, T. L.; Wan, W.; Barabash, S.; Woch, J.; Lundin, R.

    2012-09-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified about ten cases with clear signature of O+ pickup ion. With these observations, we will determine

  7. Surface layer modification of ion bombarded HDPE

    NASA Astrophysics Data System (ADS)

    Bielinski, D.; Lipinski, P.; Slusarski, L.; Grams, J.; Paryjczak, T.; Jagielski, J.; Turos, A.; Madi, N. K.

    2004-08-01

    Press-moulded, high density polyethylene (HDPE) samples were subjected to ion bombardment and effects of the modification studied. He + ions of energy 100 keV or Ar + ions of energy 130 keV were applied in the range of dose 1-30 × 10 15/cm 2 or 1-100 × 10 14/cm 2, respectively. This paper has been focused on structural changes of the surface layer. The consequences of the modification were studied with TOF-SIMS and FTIR-IRS techniques. The results point on two mechanisms taking place simultaneously: ionization of polymer macromolecules and chain scission--resulting in creation of macroradicals. Both of them produce oxidation and lead to significant release of hydrogen. The former diminishes for the highest ion doses, however, creation of molecular oxygen cannot be excluded. The latter in the case of Ar + ion bombardment is reflected by prevailing degradation of the surface layer of HDPE. Contrary to the effect of heavy ions, He + ion bombardment was found to produce significant increase of the material hardness, which was explained by crosslinking of polyethylene. A mechanism of polyacetylene formation, proceeding finally to cross-polymerization of the polymer was proposed. Apart from structural changes, the modification revealed additionally a possibility to improve the wettability of the polymer.

  8. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  9. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-sciencemore » studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.« less

  10. Recoil implantation of boron into silicon by high energy silicon ions

    NASA Astrophysics Data System (ADS)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  11. Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.

    2016-11-15

    An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density,more » and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.« less

  12. The Heidelberg compact electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.

    2018-06-01

    Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.

  13. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C.

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particlesmore » of more than a few tens of nanometres in diameter.« less

  14. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  15. Ambipolar ion acceleration in an expanding magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Longmier, Benjamin W.; Bering, Edgar A., III; Carter, Mark D.; Cassady, Leonard D.; Chancery, William J.; Díaz, Franklin R. Chang; Glover, Tim W.; Hershkowitz, Noah; Ilin, Andrew V.; McCaskill, Greg E.; Olsen, Chris S.; Squire, Jared P.

    2011-02-01

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s-1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 1020 m-3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 104 to 105 λDe depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 1015 m-3 and 2 × 10-5 Torr, respectively, in a 150 m3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  16. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    PubMed

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  17. Surface ripple evolution by argon ion irradiation in polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Meetika; Aggarwal, Sanjeev, E-mail: write2sa@gmail.com; Sharma, Annu

    In this report, an attempt has been made to investigate the morphological evolution of nanoscale surface ripples on aliphatic (polypropylene, PP) and aromatic (polyethylene terephthalate, PET) polymeric substrates irradiated with 50 keV Ar{sup +} ions. The specimens were sputtered at off normal incidence of 30° with 5 × 10{sup 16} Ar{sup +} cm{sup −2}. The topographical features and structural behavior of the specimens were studied using Atomic Force Microscopy (AFM) and UV-Visible spectroscopy techniques, respectively. The Stopping and Range of Ions in Matter simulations were performed to calculate sputtering yield of irradiated PP and PET polymers. Sputtering yield of carbon atoms has beenmore » found to be smaller for PP (0.40) as compared to PET (0.73), which is attributed to the different structures of two polymers. AFM analysis demonstrates the evolution of ripple like features with amplitude (2.50 nm) and wavelength (690 nm) on PET while that of lower amplitude (1.50 nm) and higher wavelength (980 nm) on PP specimen. The disorder parameter (Urbach energy) has been found to increase significantly from 0.30 eV to 1.67 eV in case of PP as compared to a lesser increase from 0.35 eV to 0.72 eV in case of PET as revealed by UV-Visible characterization. A mutual correlation between ion beam sputtering induced topographical variations with that of enhancement in the disorder parameter of the specimens has been discussed.« less

  18. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use...

  19. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use...

  20. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations

    PubMed Central

    May, Jody C.; McLean, John A.

    2013-01-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124

  1. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    PubMed

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  2. The Narodny ion accelerator as an injector for a small cyclotron

    NASA Astrophysics Data System (ADS)

    Derenchuk, V.

    1985-01-01

    A 120 keV electrostatic accelerator is currently in use at the University of Manitoba as an ion implanter. It is proposed to use this accelerator (called the Narodny ion accelerator or NIA), upgraded to 200 keV, as an injector for a small light ion cyclotron. This "minicyclotron" will consist of 6 sectors with four dees operating at 60 kV and variable frequency. The ions will be extracted at about 50 cm radius. The types of ions to be accelerated are H -, H +, D -1, 3He 2+, 4He 2+, 6Li 3+, and 7Li 3+ with a maximum energy of about 4 MeV for the Li ions and between 2 and 3 MeV for the He ions. A beam current of close to 0.5 mA is anticipated for H + and D + ions and high energy resolution ( ΔE/ E ~ 10 -3) is expected for all ions. The marriage of these two accelerators will give a very wide range of ion implantation energies (for certain ion species) as well as a source of particles for Rutherford backscatter analysis.

  3. Etching and structure changes in PMMA coating under argon plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey; Bilek, Marcela

    2011-06-01

    A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 10 15 ions/cm 2 was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.

  4. New ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  5. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  6. Formation, stability and dissociation dynamics of {{\\rm{N}}}_{2}{}^{{\\rm{n}}+} cations (n = 1 - 2) in 3.5 keV e - -N2 collisions studied using the energy resolved electron-ion coincidence technique

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.

    2018-04-01

    Coincidences between energy selected electrons and ions produced in the decay of a core hole ionized (excited) state in a free nitrogen molecule have been measured at three specified energies of emitted electrons to reveal the individual pathways produced in 3.5 keV electron-induced fragmentation processes. From these measurements, it has been possible to show, for the first time, that in addition to the normal Auger decay, the resonant Auger excitation channels also share their appreciable contributions in producing singly charged parent ions in an electron-induced collision system. The correlations between ion fragmentation products and electronic structures with a hole configuration in singly-, doubly- and possibly in triply charged molecular electronic states populated in the electronic decay of the initial core hole have been studied and discussed. KER values obtained from our experiments are found to be consistent with the previous results of photo absorption experiments for fragmentation channel {{{{N}}}2}2+ → N+ + N+ however, N2+ fragment ions are found to arise mainly from the fragmentation channel {{{{N}}}2}2+ → N2+ + N and to possess relatively low kinetic energies in the considered region of binding energies.

  7. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    NASA Astrophysics Data System (ADS)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  8. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  9. Universal main magnetic focus ion source for production of highly charged ions

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, V. P.; Nefiodov, A. V.; Levin, A. A.

    2017-10-01

    A novel room-temperature compact ion source has been developed for the efficient production of atomic ions by means of an electron beam with energy Ee and current density je controllable within wide ranges (100 eV ≲Ee ≲ 60 keV, 10 A/cm2 ≲je ≲ 20 kA/cm2). In the first experiments, the X-ray emission of Ir64+ ions has been measured. Based on a combination of two different techniques, the device can operate both as conventional Electron Beam Ion Source/Trap and novel Main Magnetic Focus Ion Source. The tunable electron-optical system allows for realizing laminar and turbulent electron flows in a single experimental setup. The device is intended primarily for fundamental and applied research at standard university laboratories.

  10. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  11. Adherence and Bonding of the Ion Plated Films.

    DTIC Science & Technology

    1983-07-01

    adhesion strength is, therefore, governed by the physical interactions and van der waals forces yield the lower bound estimates(42). c) Compound interfaces...plasma and 30% for gold- argon plasma, when using high current densities of the or- der of several milliamperes per square centimetere. Buckely et.al...resulted only from ions following the field lines, whereas that on the front surface was the re- sult of both ions and neut ils. In the present work we

  12. Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms

    NASA Astrophysics Data System (ADS)

    Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.

    2018-04-01

    The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.

  13. Observations of the 3-D distribution of interplanetary electrons and ions from solar wind plasma to low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Ashford, S.; Carlson, C.; Curtis, D.; Ergun, R.; Larson, D.; McFadden, J.; McCarthy, M.; Parks, G. K.

    1995-01-01

    The 3-D Plasma and Energetic Particle instrument on the GGS Wind spacecraft (launched November 1, 1994) is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. Three pairs of double-ended telescopes, each with two or three closely sandwiched passivated ion implanted silicon detectors measure electrons and ions from approximately 20 keV to greater than or equal to 300 keV. Four top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors, a large and a small geometric factor analyzer for electrons and a similar pair for ions, cover from approximately 3 eV to 30 keV. We present preliminary observations of the electron and ion distributions in the absence of obvious solar impulsive events and upstream particles. The quiet time electron energy spectrum shows a smooth approximately power law fall-off extending from the halo population at a few hundred eV to well above approximately 100 keV The quiet time ion energy spectrum also shows significant fluxes over this energy range. Detailed 3-D distributions and their temporal variations will be presented.

  14. Low energy implantation of boron with decaborane ions

    NASA Astrophysics Data System (ADS)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  15. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  16. Surface normal velocity distribution of sputtered Zr-atoms for light-ion irradiation

    NASA Astrophysics Data System (ADS)

    Bay, H. L.; Berres, W.; Hintz, E.

    1982-03-01

    The velocity distribution of sputtered Zr-atoms has been measured for 8 keV Ar + and He + ions and 2.5 keV D + ion irradiation at normal incidence. The measurements were performed with the aid of laser induced fluorescence spectroscopy (LIFS) using a CW-laser pumped dye-laser. The influence of the measuring geometry was investigated and found to be in good agreement with calculation. For light-ion sputtering the collision-cascade theory is no longer applicable. Here a distinct shift in the velocity distributions towards lower velocities compared with the Ar results was found. The shift can be correlated to anisotropic effects in connection with the change in the maximum recoil energy Tm in the cascade.

  17. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  18. A specialized bioengineering ion beam line

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.

    2007-04-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.

  19. High-dose boron and silver ion implantation into PMMA probed by slow positrons: Effects of carbonization and formation of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T.; Iida, K.; Nagashima, Y.; Kuczumow, A.; Šauša, O.; Nuzhdin, V.; Valeev, V.; Stepanov, A. L.

    2017-01-01

    The Doppler broadening slow positron beam spectroscopy (SPBS) data for the previously observed effect of carbonization in high-dose (>1016 ion/cm2) 40 keV boron-ion-implanted polymethylmethacrylate (B:PMMA) and another one obtained for the effect of formation of metal nanoparticles in high-dose 30 keV silver-ion-implanted polymer (Ag:PMMA) are compared. Following to the Doppler broadening SPBS results, a difference in the high-dose ion-irradiation-induced processes in B:PMMA and Ag:PMMA is detected.

  20. Argon pneumoperitoneum is more dangerous than CO2 pneumoperitoneum during venous gas embolism.

    PubMed

    Mann, C; Boccara, G; Grevy, V; Navarro, F; Fabre, J M; Colson, P

    1997-12-01

    We investigated the possibility of using argon, an inert gas, as a replacement for carbon dioxide (CO2). The tolerance of argon pneumoperitoneum was compared with that of CO2 pneumoperitoneum. Twenty pigs were anesthetized with enflurane 1.5%. Argon (n = 11) or CO2 (n = 9) pneumoperitoneum was created at 15 mm Hg over 20 min, and serial intravenous injections of each gas (ranging from 0.1 to 20 mL/kg) were made. Cardiorespiratory variables were measured. Transesophageal Doppler and capnographic monitoring were assessed in the detection of embolism. During argon pneumoperitoneum, there was no significant change from baseline in arterial pressure and pulmonary excretion of CO2, mean systemic arterial pressure (MAP), mean pulmonary artery pressure (PAP), or systemic and pulmonary vascular resistances, whereas CO2 pneumoperitoneum significantly increased these values (P < 0.05). During the embolic trial and from gas volumes of 2 and 0.2 mL/kg, the decrease in MAP and the increase in PAP were significantly higher with argon than with CO2 (P < 0.05). In contrast to CO2, argon pneumoperitoneum was not associated with significant changes in cardiorespiratory functions. However, argon embolism seems to be more deleterious than CO2 embolism. The possibility of using argon pneumoperitoneum during laparoscopy remains uncertain. Laparoscopic surgery requires insufflation of gas into the peritoneal cavity. We compared the hemodynamic effects of argon, an inert gas, and carbon dioxide in a pig model of laparoscopic surgery. We conclude that argon carries a high risk factor in the case of an accidental gas embolism.

  1. Design study of a 120-keV, He-3 neutral beam injector

    NASA Astrophysics Data System (ADS)

    Blum, A. S.; Barr, W. L.; Dexter, W. L.; Moir, R. W.; Wilcox, T. P.; Fink, J. H.

    1981-01-01

    A design for a 120-keV, 2.3-MW, He-3 neutral beam injector for use on a D-(He-3) fusion reactor is described. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. The vacuum system is also briefly described, and the use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer is also analyzed. Of crucial importance to the technical feasibility of the (He-3)-burning reactor are the injector efficiency and cost; these are 53% and $5.5 million, respectively, when power supplies are included.

  2. Design study of a 120-keV,3He neutral beam injector

    NASA Astrophysics Data System (ADS)

    Blum, A. S.; Barr, W. L.; Dexter, W. L.; Fink, J. H.; Moir, R. W.; Wilcox, T. P.

    1981-01-01

    We describe a design for a 120-keV, 2.3-MW,3He neutral beam injector for use on a D-3He fusion reactor. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. We also briefly describe the vacuum system and analyze use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer. Of crucial importance to the technical feasibility of the3He-burning reactor are the injector efficiency and cost; these are 53% and 5.5 million, respectively, when power supplies are included.

  3. A HiPIMS plasma source with a magnetic nozzle that accelerates ions: application in a thruster

    NASA Astrophysics Data System (ADS)

    Bathgate, Stephen N.; Ganesan, Rajesh; Bilek, Marcela M. M.; McKenzie, David R.

    2017-01-01

    We demonstrate a solid fuel electrodeless ion thruster that uses a magnetic nozzle to collimate and accelerate copper ions produced by a high power impulse magnetron sputtering discharge (HiPIMS). The discharge is initiated using argon gas but in a practical device the consumption of argon could be minimised by exploiting the self-sputtering of copper. The ion fluence produced by the HiPIMS discharge was measured with a retarding field energy analyzer (RFEA) as a function of the magnetic field strength of the nozzle. The ion fraction of the copper was determined from the deposition rate of copper as a function of substrate bias and was found to exceed 87%. The ion fluence and ion energy increased in proportion with the magnetic field of the nozzle and the energy of the ions was found to follow a Maxwell-Boltzmann distribution with a directed velocity. The effectiveness of the magnetic nozzle in converting the randomized thermal motion of the ions into a jet was demonstrated from the energy distribution of the ions. The maximum ion exhaust velocity of at least 15.1 km/s, equivalent to a specific impulse of 1543 s was measured which is comparable to existing Hall thrusters and exceeds that of Teflon pulsed plasma thrusters.

  4. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  5. The formation of nanopores in metal materials after irradiation by beams of Ar+ with energy of 30 keV

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.

    2017-01-01

    In this paper are the results of direction observations of nanopores in the subsurface volume of metals materials Pt and Pd(CuAg) using field-ion microscopy (FIM). Radiation of tip specimens was carried out with ions having an energy ˜ 25-30 keV in the fluency range of 1016 - 1018 ions/cm2, the current density lying within 150- 340 µA/cm2. Nanopores have been observed immediately after removal of the first atomic layers from the irradiated surface. It was established that, the threshold for ion-implanted platinum corresponds to fluence F = 1017 ions/cm2. For Pd(CuAg) it was revealed that nanopores have been down to 80 nm deep with current density 340 µA/cm2. Their dimensions and volume fractions were determined. The obtained results can be used for prediction of radiation stability of materials based on fcc metals.

  6. A Green's function method for high charge and energy ion transport.

    PubMed

    Chun, S Y; Khandelwal, G S; Wilson, J W

    1996-02-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  7. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minotti, F.; Giuliani, L.; Xaubet, M.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium betweenmore » electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.« less

  8. Equatorial distributions of energetic ion moments in Saturn's magnetosphere using Cassini/MIMI measurements

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2016-12-01

    We use kappa distribution fits to combined Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetosphere Measurements System (LEMMS, 0.024 < E < 18 MeV), and Ion Neutral Camera (INCA, 5.2 to >220 keV for H+) proton and singly ionized energetic ion spectra to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. Using a realistic magnetic field model (Khurana et al. 2007) and data from the entire Cassini mission to date (2004-2016), we map the ion measurements to the equatorial plane and via the modeled kappa distribution spectra we produce the equatorial distributions of all ion integral moments, focusing on partial density, integral intensity, partial pressure, integral energy intensity; as well as the characteristic energy (EC=IE/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20). A modified version of the semi-empirical Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere in both local time and L-shell. We find that a) although the H+ and O+ partial pressures and densities are nearly comparable, the >20 keV protons have higher number and energy intensities at all radial distances (L>5) and local times; b) the 12

  9. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  10. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  11. Flush-mounted probe diagnostics for argon glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less

  12. Solution and shock-induced exsolution of argon in vitreous carbon

    NASA Technical Reports Server (NTRS)

    Gazis, Carey; Ahrens, Thomas J.

    1991-01-01

    To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.

  13. Surface Production of Ions

    DTIC Science & Technology

    1992-05-26

    eV to 5 keV. These guns are based on a novel solid source of cesium ions which was developed previously with the support of the State of New Jersey ...Hoboken, Neu, Jersey 07030 (Received 13 July 1989; accepted for publication 25 August 1999) Three cesium ion guns covering the energy range of 5-5000 V...Air * Force Office of Scientific Research, the Department of Ener- gy. and thc New Jersey Commission on Science and Tech- U nology. Q"’The abstract oC

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, H.

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  15. "Trunk-like" heavy ion structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Wolf, R. A.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B. A.; Niehof, J. T.; MacDonald, E. A.; Friedel, R.; Ferradas, C. P.; Luo, H.

    2015-10-01

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report "trunk-like" ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6-2.6, magnetic local time (MLT) = 9.1-10.5, and magnetic latitude (MLAT) = -2.4-0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5-0.7 keV, L = 3.6-2.5, MLT = 9.1-10.7, and MLAT = -2.4-0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

  16. Ring Current He Ion Control by Bounce Resonant ULF Waves

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.

    2017-12-01

    Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.

  17. Precipitation in Ni-Si during electron and ion irradiation

    NASA Astrophysics Data System (ADS)

    Lucas, G. E.; Zama, T.; Ishino, S.

    1986-11-01

    This study was undertaken to further investigate how the nature of the irradiation condition affects precipitation in a dilute Ni-Si system. Transmission electron microscopy (TEM) discs of a solution annealed Ni alloy containing 5 at% Si were irradiated with 400 keV Ar + ions, 200 keV He + ions and 1 MeV electrons at average displacement rates in the range 2 × 10 -5dpa/s to 2 × 10 -3dpa/s at temperatures in the range 25°C to 450°C. Samples irradiated with electrons were observed in situ in an HVEM, while ion irradiated specimens were examined in a TEM after irradiation. Precipitation of Ni 3Si was detected by the appearance of superlattice spots in the electron diffraction patterns. It was found that as the mass of the irradiating species increased, the lower bound temperature at which Ni 3Si precipitation was first observed increased. For electron irradiation, the lower bound temperature at 2 × 10 -3dpa/s was ˜125°C, whereas for 400 keV Ar + irradiation at a similar average displacement rate the lower boundary was approximately 325°C. This suggests that cascade disordering competes with radiation induced solute segregation.

  18. Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN

    NASA Astrophysics Data System (ADS)

    Tsuge, Hirofumi; Ikeda, Kiyoji; Kato, Shigeki; Nishimura, Tomoaki; Nakamura, Tohru; Kuriyama, Kazuo; Mishima, Tomoyoshi

    2017-10-01

    Optical characteristics of Mg-ion implanted GaN layers with various fluence ranges were evaluated. Mg ion implantation was performed twice at energies of 30 and 60 keV on n-GaN layers. The first implantation at 30 keV was performed with three different fluence ranges of 1.0 × 1014, 1.0 × 1015 and 5.0 × 1015 cm-2. The second implantation at an energy of 60 keV was performed with a fluence of 6.5 × 1013 cm-2. After implantation, samples were annealed at 1250 °C for 1 min under N2 atmosphere. Photoluminescence (PL) spectrum of the GaN layer with the Mg ion implantation at the fluence range of 1.0 × 1014 cm-2 at 30 keV was similar to the one of Mg-doped p-GaN layers grown by MOVPE (Metal-Organic Vapor Phase Epitaxy) on free-standing GaN substrates and those at the fluence ranges over 1.0 × 1015 cm-2 were largely degraded.

  19. Tailoring the structural and magnetic properties of masked CoPt thin films using ion implantation

    NASA Astrophysics Data System (ADS)

    Kumar, Durgesh; Gupta, Surbhi; Jin, Tianli; Nongjai, R.; Asokan, K.; Piramanayagam, S. N.

    2018-05-01

    The effects of ion implantations through a mask on the structural and magnetic properties of Co80Pt20 films were investigated. The mask was patterned using the self-assembly of diblock copolymers. For implantation, high (40 keV for 14N+ and 100 keV for 40Ar+) and low (7.5 keV for 14N+ and 4.5 keV for 40Ar+) energy 14N+ and 40Ar+ ions were used to modify the structural and magnetic properties of these films. X-ray diffraction and TRIM simulations were performed for understanding the structural changes due to ion implantations. These results revealed the intermixing of Co atoms in lower layers and lattice expansion in Co80Pt20 magnetic and Ru layers. A lateral straggling of Co caused an increase in the exchange coupling in the masked region. Depletion of Co atoms in Co80Pt20 layer caused a decrease in the anisotropy constant, which were further confirmed by the alternating gradient force magnetometer and magnetic force microscopy results. The magnetic force microscopy images showed an increase in domain width and domain wall width confirming the above-mentioned effects.

  20. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward

  1. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  2. Redundancy Technology With A Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro

    1989-08-01

    Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

  3. Effect of argon ion activity on the properties of Y 2O 3 thin films deposited by low pressure PACVD

    NASA Astrophysics Data System (ADS)

    Barve, S. A.; Jagannath; Deo, M. N.; Kishore, R.; Biswas, A.; Gantayet, L. M.; Patil, D. S.

    2010-10-01

    Yttrium oxide thin films are deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition process using an indegeneously developed Y(thd) 3 {(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium} precursor. Depositions were carried out at two different argon gas flow rates keeping precursor and oxygen gas flow rate constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GIXRD) and infrared spectroscopy. Optical properties of the films are studied by spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. Stability of the film and its adhesion with the substrate is inferred from the nanoscratch test. It is shown here that, the change in the argon gas flow rates changes the ionization of the gas in the microwave ECR plasma and imposes a drastic change in the characteristics like composition, structure as well as mechanical properties of the deposited film.

  4. Calcium ionization balance and argon/calcium abundance in solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.

    1987-12-01

    An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.

  5. Ion Mass Spectroscopy for the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Reisenfeld, D. B.; Elphic, R. C.; McComas, D. J.; Nordholt, J. E.; Steinberg, J. T.; Wiens, R. C.

    2001-01-01

    A proven method for determination of the exospheric and surface composition of moons and comets is ion mass spectroscopy. Ions are produced via sputtering of surface constituents by the ambient plasma (solar wind or planetary magnetospheres), and via photo- and electron impact ionization of neutral exospheric/atmospheric constituents. A promising emergent technology in the field of space-based ion mass spectrometry is the low-cost, miniaturized but high-performance ion mass spectrometer (IMS) as exhibited by the Plasma Experiment for Planetary Exploration (PEPE) on Deep Space 1 (DS-1). A technology demonstration instrument, the PEPE IMS realized a mass resolution (M/delta(M)) of approximately 10. Its energy range extends from 5 eV to 9 keV at this mass resolution, and up to 33.5 keV in a lower mass resolution mode. With minimal development, these capabilities can be greatly extended. Already, we have produced a fully functional engineering model having a M/delta(M) = 20 and an energy range extending to 18 keV in the high-mass resolution mode. Further design modifications anticipate extending the mass resolution to 30-40 while still maintaining a miniaturized design. This makes possible many more isotopic and molecular differentiations than achievable with the original PEPE design. A PEPE-class spectrometer can address a significant number of the OPP key strategic objectives. In particular, in situ cometary nucleus analysis, studies of Triton's atmospheric and surface composition, and Europa surface composition analysis, can all be performed through IMS measurements. Additional information is contained in the original extended abstract.

  6. Le Laser A Argon Ionise : Applications Therapeutiques

    NASA Astrophysics Data System (ADS)

    Brunetaud, J. M.; Mosquet, L.; Mordon, S.; Rotteleur, G.

    1984-03-01

    Le laser a argon ionise est un laser a emission continue, reglee en general en multiraies de 487 a 544 nm. Le rayonnement de ce laser est bien absorbe par les tissus vivants, avec une action preferentielle au niveau des pigments rouges (hemoglobine, myoglobine) et noirs (melanine). Le laser a argon est princi-palement utilise en therapeutique pour ses effets thermiques : en fonction du choix des parametres (puissance optique, surface exposee, temps d'exposition) on peut obtenir une coagulation (temperature optimale au niveau des tissus 60° - 80°) ou une volatisation (temperature superieure a 100°). Si la zone volatilisee est tres etroite (inferieure a 0,5 mm) on obtient un effet de coupe. Par rapport aux deux autres lasers egalement utilises pour leurs effets thermiques (CO2 et Nd. YAG) l'argon a des effets intermediaires : la coagulation sera plus superficielle qu'avec le Nd. YAG et la volatisation plus profonde qu'avec le CO2. Lors de la coupe, la necrose sur les berges sera egalement plus importante qu'avec le CO2.

  7. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  8. Anomalous acceleration of ions in a plasma accelerator with an anodic layer

    NASA Astrophysics Data System (ADS)

    V, M. BARDAKOV; S, D. IVANOV; A, V. KAZANTSEV; N, A. STROKIN; A, N. STUPIN; Binhao, JIANG; Zhenyu, WANG

    2018-03-01

    In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage V d. The E × B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eV d (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eV d. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8 × 10 -2 ≤ B rA ≤ 4 × 10 -2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.

  9. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  10. Study on ion implantation conditions in fabricating compressively strained Si/relaxed Si1-xCx heterostructures using the defect control by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Arisawa, You; Sawano, Kentarou; Usami, Noritaka

    2017-06-01

    The influence of ion implantation energies on compressively strained Si/relaxed Si1-xCx heterostructures formed on Ar ion implanted Si substrates was investigated. It was found that relaxation ratio can be enhanced over 100% at relatively low implantation energies, and compressive strain in the topmost Si layer is maximized at 45 keV due to large lattice mismatch. Cross-sectional transmission electron microscope images revealed that defects are localized around the hetero-interface between the Si1-xCx layer and the Ar+-implanted Si substrate when the implantation energy is 45 keV, which decreases the amount of defects in the topmost Si layer and the upper part of the Si1-xCx buffer layer.

  11. Inner Source and Interstellar Pickup Ions observed by MMS-HPCA

    NASA Astrophysics Data System (ADS)

    Gomez, Roman; Fuselier, Stephen; Burch, James L.; Mukherjee, Joey; Valek, Phillip W.; Allegrini, Frederic; Desai, Mihir I.

    2017-04-01

    Pickup Ions in the solar system are either of interstellar origin, or come from an inner source whose existence is confirmed, but which has not been directly observed. The Hot Plasma Composition Analyzer of the Magnetospheric Multiscale mission (MMS-HPCA) measures the energy and directional flux of ions with M/Q from 1 eV/e to 40 keV/e and is used measure the composition and dynamics of reconnection plasmas near the earth. During the first phase of the mission, from 1 September 2015 to 8 March 2016, the spacecraft at 12 Earth Radii apogee swept through the dayside from 1800 to 0600 local time. Although the apogee was designed to maximize encounters with the magnetopause, there were many instances when the spacecraft crossed the bow shock and sampled the solar wind. In November and December, while the spacecraft were downstream of the interstellar neutral focusing cone, HPCA detected pick up ions, such as He+, O+, and Ne+. He+ was distributed in an energy range of 14 eV - 20.6 keV, peaking at 757 eV; presumably of interstellar origin. O+ was observed in the energy range of 390 eV - 10.6 keV, and also seems to come from the interstellar medium. Ne+ was observed to be tightly distributed around a center energy of 5.5 keV, which implies an inner source origin. The mass - energy - angle analysis of these pick up ion distributions is presented, and their interpretation in terms of interstellar and inner source ions is discussed.

  12. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    DOE PAGES

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less

  13. The Effect of Low Energy Nitrogen Ion Implantation on Graphene Nanosheets

    NASA Astrophysics Data System (ADS)

    Mishra, Mukesh; Alwarappan, Subbiah; Kanjilal, Dinakar; Mohanty, Tanuja

    2018-03-01

    Herein, we report the effect 50 keV nitrogen ion implantation at varying fluence on the optical properties of graphene nanosheets (number of layers < 5). Initially, graphene nanosheets synthesized by the direct liquid exfoliation of graphite layers were deposited on a cleaned Si-substrate by drop cast method. These graphene nanosheets are implanted with 50 keV nitrogen-ion beam at six different fluences. Raman spectroscopic results show that the D, D' and G peak get broadened up to the nitrogen ion fluence of 1 × 1015 ions/cm2, while 2D peak of graphene nanosheets disappeared for nitrogen-ions have fluence more than 1014 ions/cm2. However, further increase of fluence causes the indistinguishable superimposition of D, D' and G peaks. Surface contact potential value analysis for ion implanted graphene nanosheets shows the increase in defect concentration from 1.15 × 1012 to 1.98 × 1014 defects/cm2 with increasing the nitrogen ion fluence, which resembles the Fermi level shift towards conduction band. XRD spectra confirmed that the crystallinity of graphene nanosheets was found to tamper with increasing fluence. These results revealed that the limit of nitrogen ion implantation resistant on the vibrational behaviors for graphene nanosheets was 1015 ions/cm2 that opens up the scope of application of graphene nanosheets in device fabrication for ion-active environment and space applications.

  14. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  15. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source.

    PubMed

    Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  16. Argon dye photocoagulator for microsurgery of the interior structure of the eye

    NASA Astrophysics Data System (ADS)

    Wolinski, Wieslaw L.; Kazmirowski, Antoni; Kesik, Jerzy; Korobowicz, Witold; Spytkowski, Wojciech

    1991-08-01

    Argon-dye laser photocoagulator for the microsurgery of the interior structure of the eye is described. Some technical specifications like power stability shape of the spots and the dependence of the power on the tissue vs. wavelenght for dye laser are given. Argon-dye photocoagulator was designed and constructed including argon laser tube and dye laser in Institute of Microelectronics and Optoelectronics Technical University of Warsaw.

  17. The response of a thermoluminescent dosimeter to low energy protons in the range 30-100 keV.

    PubMed

    Chu, T C; Lin, S Y; Hsu, C C; Li, J P

    2001-11-01

    This study demonstrates the thermoluminescence (TL) response of CaF2:Tm (commercial name TLD-300) to 30-100 keV protons which were generated by means of a Cockcroft-Walton accelerator. The phenomenon in which the total thermoluminescent output from CaF2:Tm (TLD-300) decreases with proton energy from 30 to 100 keV (with increase of LET) can be interpreted by the track structure theory (TST). The analysis of the glow peaks: P2 (131 degrees C), P3 (153.5 degrees C) and P6 (259 degrees C), of TLD-300 show the oscillatory decreasing phenomenon as a function of incident proton energy, which can be interpreted with the TST and the oscillatory emission of electrons in a thermoluminescent dosimeter (TLD) that is caused by resonant or quasi-resonant charge transfer in ion-atom interactions in this TLD-300.

  18. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  19. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  20. Ion irradiation-induced crystal structure changes in inverse spinel MgIn 2O 4

    DOE PAGES

    Tang, Ming; Valdez, James A.; Wang, Yongqiang; ...

    2016-07-29

    We performed 400 keV Ne and 200 keV He ion irradiations on fully inverse MgIn 2O 4 samples at cryogenic temperature (~ 77 K), in order to examine the influence of radiation-induced cation disordering on crystal structure. In the case of MgIn 2O 4 samples irradiated with Ne ions to a peak displacement damage dose of 4 displacements per atom (dpa), a spinel-to-rocksalt phase transformation was observed. Conversely, for MgIn 2O 4 samples irradiated with He ions to a peak displacement damage dose of 5 dpa, the only observed structural effect involved cation rearrangements from an inverse to a “random”more » spinel structure.« less

  1. Observations of strong ion-ion correlations in dense plasmas

    DOE PAGES

    Ma, T.; Fletcher, L.; Pak, A.; ...

    2014-04-24

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å –1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are howevermore » in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. Furthermore, we have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.« less

  2. Near-Infrared Scintillation of Liquid Argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilly, Elizabeth; Escobar, Carlos

    2017-01-01

    Liquid argon is well known to scintillate in the vacuum ultraviolet (VUV) range which is inherently difficult to detect. There has been recent evidence to suggest that it also emits near infrared (NIR) light. If this is the case, many large-scale time projection chambers and other similar detectors will be able to maximize light collection while minimizing cost. The goal of this project is to confirm and quantify this NIR emission. In order to accomplish this, an α-source was placed in a volume of highly purified liquid argon and observed using an infrared PMT with a filter excluding light withmore » wavelength <715 nm. Performing a simple counting experiment, there were indications of NIR scintillation. Further analysis is in progress.« less

  3. Carotid dual-energy CT angiography: Evaluation of low keV calculated monoenergetic datasets by means of a frequency-split approach for noise reduction at low keV levels.

    PubMed

    Riffel, Philipp; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Morelli, John N; Schmidt, Bernhard; Schoenberg, Stefan O; Henzler, Thomas

    2016-04-01

    Calculated monoenergetic ultra-low keV datasets did not lead to improved contrast-to-noise ratio (CNR) due to the dramatic increase in image noise. The aim of the present study was to evaluate the objective image quality of ultra-low keV monoenergetic images (MEIs) calculated from carotid DECT angiography data with a new monoenergetic imaging algorithm using a frequency-split technique. 20 patients (12 male; mean age 53±17 years) were retrospectively analyzed. MEIs from 40 to 120 keV were reconstructed using the monoenergetic split frequency approach (MFSA). Additionally MEIs were reconstructed for 40 and 50 keV using a conventional monoenergetic (CM) software application. Signal intensity, noise, signal-to-noise ratio (SNR) and CNR were assessed in the basilar, common, internal carotid arteries. Ultra-low keV MEIs at 40 keV and 50 keV demonstrated highest vessel attenuation, significantly greater than those of the polyenergetic images (PEI) (all p-values <0.05). The highest SNR level and CNR level was found at 40 keV and 50 keV (all p-values <0.05). MEIs with MFSA showed significantly lower noise levels than those processed with CM (all p-values <0.05) and no significant differences in vessel attenuation (p>0.05). Thus MEIs with MFSA showed significantly higher SNR and CNR compared to MEIs with CM. Combining the lower spatial frequency stack for contrast at low keV levels with the high spatial frequency stack for noise at high keV levels (frequency-split technique) leads to improved image quality of ultra-low keV monoenergetic DECT datasets when compared to previous monoenergetic reconstruction techniques without the frequency-split technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Expected charge states of energetic ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1979-01-01

    Major developments in magnetospheric heavy ion physics during the period 1974-1977 are reviewed with emphasis on charge state aspects. Particular attention is given to the high energy component at energies above tens of keV per ion. Also considered are charge exchange processes with application to the inner magnetosphere, a comparison between theory and measurements, and a survey of heavy ion and charge state observations in the outer magnetosphere, magnetosheath and the surrounding space.

  5. Neutralization of beam-emitting spacecraft by plasma injection

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1987-01-01

    An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.

  6. Ion neutral mass spectrometer results from the first flyby of Titan.

    PubMed

    Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-13

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  7. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  8. Ionizing Shocks in Argon. Part 2: Transient and Multi-Dimensional Effects (Preprint)

    DTIC Science & Technology

    2010-09-09

    stability in ionizing monatomic gases. Part 1. Argon ,” J. Fluid Mech., 84, 55 (1978). 2M. P. F. Bristow and I. I. Glass, “ Polarizability of singly...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ionizing Shocks in Argon . Part 2: Transient...Physics. 14. ABSTRACT We extend the computations of ionizing shocks in argon to unsteady and multi-dimensional, using a collisional-radiative

  9. Evolution of nanodot morphology on polycarbonate (PC) surfaces by 40 keV Ar{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Meetika, E-mail: meetika89@gmail.com; Chawla, Mahak; Gupta, Divya

    In the present paper we have discussed the effect of 40 keV Ar{sup +} ions irradiation on nanoscale surface morphology of Polycarbonate (PC) substrate. Specimens were sputtered at off normal incidences of 30°, 40° and 50° with the fluence of 1 × 10{sup 16} Ar{sup +}cm{sup −2}. The topographical behaviour of specimens was studied by using Atomic Force Microscopy (AFM) technique. AFM study demonstrates the evolution of nano dot morphology on PC specimens on irradiating with 1 × 10{sup 16} Ar{sup +}cm{sup −2}. Average size of dots varied from 37-95 nm in this specified range of incidence while density of dotsmore » varied from 0.17-3.0 × 107 dotscm{sup −2}. Such variations in morphological features have been supported by estimation of ion range and sputtering yield through SRIM simulations.« less

  10. Faraday-cup-type lost fast ion detector on Heliotron J.

    PubMed

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90 ∘ -140 ∘ , especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  11. Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Visco, A. M.; Campo, N.

    2004-10-01

    Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.

  12. Spectroscopic investigations of beam-plasma interactions in an ion plume

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Peng, X.; Celenza, J. A.; Keefer, D.

    1993-01-01

    We report the results of spectroscopic investigations of beam-plasma interactions in the plume from a 3 cm ion source operated on argon. Ion-electron, ion-neutral, and electron-neutral scattering are identified by studying the dependence of neutral and ion emission intensities on chamber pressure and mass flow rate, and by analyzing the emission lineshapes at a non-orthogonal angle to the plume axis. Through the Doppler shift, we are able to separate contributions from fast beam ions and fast charge-exchange neutrals on the one hand, and of slow neutrals and slow ions on the other. We discuss the application of this new technique to the characterization of beam plasma interactions in the downstream region of ion thruster engines, and its potential for identifying the processes which lead to grid erosion.

  13. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Argon laser photocoagulation versus intrastromal voriconazole injection in treatment of mycotic keratitis

    PubMed Central

    Khater, Mohammad M.; El-Shorbagy, Mohammad S.; Selima, Adel A.

    2016-01-01

    AIM To compare argon laser photocoagulation and intrastromal injection of voriconazole as adjunctive treatment modalities in cases of resistant mycotic corneal ulcers. METHODS Two groups each of them included 20 cases of resistant mycotic corneal ulcers. Both groups treated with local and systemic specific antimicrobial drugs guided with culture and sensitivity results. In one group argon laser photocoagulation was used as an adjunctive therapy to the specific antifungal drugs and in the other group, intrastromal injection of voriconazole was done besides the specific antifungal drugs. The 40 cases included in the study were proven according to culture and sensitivity to be 28 cases with pure fungal results and 12 cases with mixed (fungal and bacterial). In argon laser group, argon laser irradiation of the corneal ulcer was performed using argon laser 532 nm wavelength (Carl Zeiss LSL 532s AG; Meditec, Inc.) after fluorescein staining. In the other group, voriconazole solution (500 µg/mL) was prepared and injected in the corneal stroma. All cases were followed up for 3mo after healing was achieved. RESULTS Complete healing of the epithelial defect and resolution of stromal infiltration with no adverse effects were achieved in argon laser group in duration ranged from 2-4wk in 90% of cases. In voriconazole group 4 cases needed amniotic membrane graft due to thinning and 16 cases healed in duration ranged from 2-6wk (80% of cases). CONCLUSION Argon laser photocoagulation is superior to intrastromal voriconazole injection in treatment of resistant fungal corneal ulcers. PMID:26949639

  15. Evidence that Clouds of keV Hydrogen Ion Clusters Bounce Elastically from a Solid Surface

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Martin, James J.; Chakrabarti, Suman; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The behavior of hydrogen ion clusters is tested by an inject/hold/extract technique in a Penning-Malmberg trap. The timing pattern of the extraction signals is consistent with the clusters bouncing elastically from a detector several times. The ion clusters behave more like an elastic fluid than a beam of ions.

  16. Ion heating and flows in a high power helicon source

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.

    2017-06-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.

  17. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector.

    PubMed

    Pace, D C; Pipes, R; Fisher, R K; Van Zeeland, M A

    2014-11-01

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  18. Preparation of relatively clean carbon backings used in charged particle induced x-ray studies for x-rays below 4 KeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocur, P.; Duggan, J.L.; McDaniel, F.D.

    1983-04-01

    In a recent series of studies of M-shell ionization induced by protons, alpha particles, and fluorine ions, an unmanageable background of low energy contaminant x rays was observed. These K-shell x rays were primarily from Ca, K, Cl, S, P, Si and Na. The energy range of these contaminants is from 3.691 to 1.041 keV. The M-shell x rays being studied were for various elements from U ( about 3.5 keV) down to Eu (1.5 keV). In order to evaluate and reduce the problem, the contaminants for carbon foils from a number of different manufacturers and a wide variety ofmore » foil float-off procedures have been studied. Carbon foils have been produced in our laboratory using carbon rods from several different manufacturers. In this paper, techniques will be described that are most appropriate to reduce the above contaminants to a reasonable level. These techniques should be useful in trace element analysis (PIXE) studies and fundamental ionization measurements for low x-ray energies.« less

  19. Electronic excitation effects on nanoparticle formation in insulators under heavy-ion implantation

    NASA Astrophysics Data System (ADS)

    Kishimoto, N.; Plaksin, O. A.; Masuo, K.; Okubo, N.; Umeda, N.; Takeda, Y.

    2006-01-01

    Kinetic processes of nanoparticle formation by ion implantation was studied for the insulators of a-SiO2, LiNbO3, MgO · 2.4(Al2O3) and PMMA, either by changing ion flux or by using a co-irradiation technique of ions and photons. Under Cu-implantation of 60 keV Cu-, nanoparticles spontaneously formed without thermal annealing, indicating radiation-induced diffusion of implants. The high-flux implantation caused instable behaviors of nanoparticle morphology in a-SiO2, LiNbO3 and PMMA, i.e. enhanced atomic rearrangement or loss of nanoparticles. The spinel MgO · 2.4(Al2O3) also showed nanoparticle precipitation at 60 keV, but the precipitation tendency is less than the others. Combined irradiation of 3 MeV Cu ions and photons of 2.3 eV or 3.5 eV indicates that the electronic excitation during ion implantation significantly enhances nanoparticle precipitation, greatly depending on photon energy and fluence. The selectivity for photons can be applied to control nanoparticle precipitation.

  20. Slowing down of 100 keV antiprotons in Al foils

    NASA Astrophysics Data System (ADS)

    Nordlund, K.

    2018-03-01

    Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed.

  1. Influence of temperature on the ionization coefficient and ignition voltage of the Townsend discharge in an argon-mercury vapor mixture

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Fisher, M. R.; Kristya, V. I.

    2017-02-01

    The kinetics of main types of charged and excited particles present in a low-current discharge in an argon-mercury vapor mixture used in gas-discharge illuminating lamps has been investigated in a wide interval of the reduced electric field strength and temperature. Mechanisms behind the production and loss of ions and metastable atoms have been discovered, and the temperature dependences of their contributions to maintaining their balance have been determined. It has been shown that, when the discharge is initiated in the lamp and the mercury content in the mixture is low, the ionization coefficient exceeds that in pure argon, which is almost exclusively due to the Penning reaction. The influence of this reaction grows with a reduction of the electric field strength in the interelectrode gap. The dependences of the discharge ignition voltage on the interelectrode gap (Paschen curves) for different temperatures of the mixture have been calculated, and the nonmonotonicity of the temperature dependence of the ignition voltage has been explained.

  2. [Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].

    PubMed

    Tu, Xin; Lu, Sheng-yong; Yan, Jian-hua; Ma, Zeng-yi; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno

    2006-10-01

    The optical emission spectra of DC argon plasma at atmospheric pressure were measured inside and outside the arc chamber. The electron temperature was determined from the Boltzmann plot, and the electron density was derived from Stark broadening of Ar I lines. The criteria for the existence of local thermodynamic equilibrium (LTE)in the plasma was discussed. The results indicate that the DC argon plasma at atmospheric pressure under our experimental conditions is in LTE.

  3. Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.

    2006-06-01

    The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.

  4. Argon gas analysis to predict water leakage into the W88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, K.T.

    1990-08-01

    Analyses of the internal argon gas concentrations monitored on surveillance units of the W84 indicates that field aging of this weapon for times up to {approximately}4 years does not lead to important increases in the rate at which water leaks into the interior of the weapon. This implies that the EPDM environmental seals used on the W84 do not age significantly over this time period. By comparing the percentages of oxygen and argon in the internal atmosphere, an estimate of the oxygen consumption rate is made for a typical W84 unit. The argon gas analysis approach is then applied tomore » the W88, which is sealed with a new EPDM material. Predictive expressions are derived which relate the anticipated argon gas concentrations of future, field-returned units to their water leakage rates. The predictions are summarized in convenient plots, which can be immediately and easily applied to surveillance data as reported. Since the argon approach is sensitive enough to be useful over the entire lifetime of the W88, it can be used to point out leaking units and to determine whether long-term aging has any significant effect on the new EPDM material. 11 refs., 10 figs., 3 tabs.« less

  5. Modification of Wetting Properties of PMMA by Immersion Plasma Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mireault, N.; Ross, G. G.

    Advancing and receding contact angles below 5° have been obtained on PMMA surfaces with the implantation of argon and oxygen ions. The ion implantations were performed by means of the Immersion Plasma Ion Implantation (IPII) technique, a hybrid between ion beams and immersion plasmas. Characterization of treated PMMA surfaces by means of XPS and its combination with chemical derivatization (CD-XPS) have revealed the depletion of oxygen and the creation of dangling bonds, together with the formation of new chemical functions such as -OOH, -COOH and C=C. These observations provide a good explanation for the strong increase of the wetting properties of the PMMA surfaces.

  6. “Trunk-like” heavy ion structures observed by the Van Allen Probes

    DOE PAGES

    Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; ...

    2015-10-27

    Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Here, we report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He + and O + ions but not in H +. During the event, ion energies in the He+ trunk, located at L=3.6–2.6, magnetic local time (MLT)=9.1–10.5, and magnetic latitude (MLAT) =-2.4–0.09°, varymore » monotonically from 3.5 to 0.04 keV. Values at the two end points of the O + trunk are energy=4.5–0.7keV, L=3.6–2.5, MLT=9.1–10.7, and MLAT=-2.4–0.4°. Our results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.« less

  7. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  8. Mutation induction in yeast by very heavy ions

    NASA Astrophysics Data System (ADS)

    Kiefer, J.

    1994-10-01

    Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/μm. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.

  9. A comprehensive study of Interatomic Coulombic Decay in argon dimers: Extracting R-dependent absolute decay rates from the experiment

    DOE PAGES

    Rist, J.; Miteva, T.; Gaire, B.; ...

    2016-09-15

    In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.

  10. Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2018-01-01

    The paper "Using the Medipix3 detector for direct electron imaging in the range 60keV to 200keV in electron microscopy" by J.A. Mir, R. Plackett, I. Shipsey and J.M.F. dos Santos has been retracted following the authors' request on the basis of the existence of a disagreement about the ownership of the data, to prevent conflict between collaborators.

  11. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, F.I.; Biedermann, C.; Radtke, R.

    2006-03-15

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar{sup 17+} ions at energies {<=}5q keV with Ar atoms. Of particular interest is the velocity dependencemore » of the angular momentum capture state l{sub c}.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, D.J.; Panitz, J.K.G.; Mattox, D.M.

    The erosion of materials by low energy ions is of concern in fusion reactors since high Z impurities in the plasma cause radiation cooling. Ion bombardment of the fusion reactor chamber walls arises from ions of fuel (D, T) material, gaseous impurities (O, C), and impurities from eroded components (Fe, Co, Ni, C, Mo, etc.) being accelerated across the wall sheath potential (0.1 to 1 keV). A Kaufman type ion source has been characterized for use with hydrogen, and subsequently used to determine the relative erosion rates of bulk Mo, C, Cu, coating of TiB/sub 2/, B/sub 4/C, Be, VBe/submore » 12/ and other materials. Ions of hydrogen (Z=1), argon (Z=18), and xenon (Z=54) at acceleration potentials of 250, 500, and 1000 V have been used to determine erosion yields.« less

  13. Stormtime ring current and radiation belt ion transport: Simulations and interpretations

    NASA Technical Reports Server (NTRS)

    Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael

    1995-01-01

    We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in

  14. Analysis and design of ion thruster for large space systems

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Kami, S.

    1980-01-01

    Design analyses showed that an ion thruster of approximately 50 cm in diameter will be required to produce a thrust of 0.5 N using xenon or argon as propellants, and operating the thruster at a specific impulse of 3530 sec or 6076 sec respectively. A multipole magnetic confinement discharge chamber was specified.

  15. Analysis of the interactions between He + ions and transition metal surfaces using co-axial impact collision ion scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Walker, M.; Brown, M. G.; Draxler, M.; Fishwick, L.; Dowsett, M. G.; McConville, C. F.

    2011-01-01

    The interactions between low energy He + ions and a series of transition metal surfaces have been studied using co-axial impact collision ion scattering spectroscopy (CAICISS). Experimental data were collected from the Ni(110), Cu(100), Pd(111), Pt(111) and Au(111) surfaces using ion beams with primary energies between 1.5 keV and 4.0 keV. The shadow cone radii deduced from the experimental surface peak positions were found to closely match theoretical predictions. Data analysis was performed using both the FAN and Kalypso simulation codes, revealing a consistent requirement for a reduction of 0.252 in the screening length correction in the Molière approximation within the Thomas-Fermi (TFM) interaction potential. The adjustments of the screening length in the TFM potential, predicted by O'Connor, and the uncorrected Ziegler-Biersack-Littmark (ZBL) potential both yielded inaccurate results for all of the surfaces and incident energies studied. We also provide evidence that, despite their different computational methodologies, the FAN and Kalypso simulation codes generate similar results given identical input parameters for the analysis of 180° backscattering spectra.

  16. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    DOE PAGES

    Pace, D. C.; Pipes, R.; Fisher, R. K.; ...

    2014-08-05

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signaturemore » spanning across 50-140 keV. As a result, these calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.« less

  17. First spin-parity constraint of the 306 keV resonance in Cl 35 for nova nucleosynthesis

    DOE PAGES

    Chipps, K. A.; Rutgers Univ., New Brunswick, NJ; Pain, S. D.; ...

    2017-04-28

    Something of particular interest in astrophysics is the 34 S ( p , γ ) 35 Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Although the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35 Cl . Furthermore, measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34 Smore » ( p , γ ) 35 Cl proton capture reaction. By performing the 37 Cl ( p , t ) 35 Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35 Cl , and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ± 15 keV ( E r = 306 keV), inside the Gamow window for novae.« less

  18. First spin-parity constraint of the 306 keV resonance in 35Cl for nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Pain, S. D.; Kozub, R. L.; Bardayan, D. W.; Cizewski, J. A.; Chae, K. Y.; Liang, J. F.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Peters, W. A.; Pittman, S. T.; Schmitt, K. T.; Smith, M. S.

    2017-04-01

    Of particular interest in astrophysics is the 34S(p ,γ )35Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Though the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35Cl. Measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34S(p ,γ )35Cl proton capture reaction. By performing the 37Cl(p ,t )35Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35Cl, and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ±15 keV (Er=306 keV), inside the Gamow window for novae.

  19. Argon metastable dynamics and lifetimes in a direct current microdischarge

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-01

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  20. Energetic Ion Interactions with the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2000-01-01

    The principal research tasks of this investigation are: (1) specification of the energetic (keV to MeV) ion environments upstream of the four Galilean satellites and (2) data analysis and numerical modeling of observed ion interactions with the satellites. Differential flux spectra are being compiled for the most abundant ions (protons, oxygen, and sulfur) from measurements at 20 keV to 100 MeV total energy by the Energetic Particle Detector (EPD) experiment and at higher ion energies by the Heavy Ion Counter (HIC) experiment. Runge-Kutta and other numerical techniques are used to propagate test particles sampled from the measured upstream spectra to the satellite surface or spacecraft through the local magnetic and corotational electric field environment of each satellite. Modeling of spatial variations in directional flux anisotropies measured during each close flyby provides limits on atomic charge states for heavy (O, S) magnetospheric ions and on internal or induced magnetic fields of the satellites. Validation of models for magnetic and electric field configurations then allows computation of rates for ion implantation, sputtering, and energy deposition into the satellite surfaces for further modeling of observable chemical changes induced by irradiation. Our ongoing work on production of oxidants and other secondary species by ice irradiation on Europa's surface has significant applications, already acknowledged in current literature, to astrobiological evolution. Finally, the work will improve understanding of energetic ion sources and sinks at the satellite orbits for improved modeling of magnetospheric transport processes. The scope of the research effort mainly includes data from the primary Galileo mission (1995-1997) but may also include some later data where directly relevant (e.g., comparison of J0 and I27 data for Io) to the primary mission objectives. Funding for this contract also includes partial support for our related education and public

  1. Studies on the Extraction Region of the Type VI RF Driven H- Ion Source

    NASA Astrophysics Data System (ADS)

    McNeely, P.; Bandyopadhyay, M.; Franzen, P.; Heinemann, B.; Hu, C.; Kraus, W.; Riedl, R.; Speth, E.; Wilhelm, R.

    2002-11-01

    IPP Garching has spent several years developing a RF driven H- ion source intended to be an alternative to the current ITER (International Thermonuclear Experimental Reactor) reference design ion source. A RF driven source offers a number of advantages to ITER in terms of reduced costs and maintenance requirements. Although the RF driven ion source has shown itself to be competitive with a standard arc filament ion source for positive ions many questions still remain on the physics behind the production of the H- ion beam extracted from the source. With the improvements that have been implemented to the BATMAN (Bavarian Test Machine for Negative Ions) facility over the last two years it is now possible to study both the extracted ion beam and the plasma in the vicinity of the extraction grid in greater detail. This paper will show the effect of changing the extraction and acceleration voltage on both the current and shape of the beam as measured on the calorimeter some 1.5 m downstream from the source. The extraction voltage required to operate in the plasma limit is 3 kV. The perveance optimum for the extraction system was determined to be 2.2 x 10-6 A/V3/2 and occurs at 2.7 kV extraction voltage. The horizontal and vertical beam half widths vary as a function of the extracted ion current and the horizontal half width is generally smaller than the vertical. The effect of reducing the co-extracted electron current via plasma grid biasing on the H- current extractable and the beam profile from the source is shown. It is possible in the case of a silver contaminated plasma to reduce the co-extracted electron current to 20% of the initial value by applying a bias of 12 V. In the case where argon is present in the plasma, biasing is observed to have minimal effect on the beam half width but in a pure hydrogen plasma the beam half width increases as the bias voltage increases. New Langmuir probe studies that have been carried out parallel to the plasma grid (in the

  2. Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.

    1995-08-01

    Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.

  3. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  4. CVD diamond detector with interdigitated electrode pattern for time-of-flight energy-loss measurements of low-energy ion bunches

    NASA Astrophysics Data System (ADS)

    Cayzac, W.; Pomorski, M.; Blažević, A.; Canaud, B.; Deslandes, D.; Fariaut, J.; Gontier, D.; Lescoute, E.; Marmouget, J. G.; Occelli, F.; Oudot, G.; Reverdin, C.; Sauvestre, J. E.; Sollier, A.; Soullié, G.; Varignon, C.; Villette, B.

    2018-05-01

    Ion stopping experiments in plasma for beam energies of few hundred keV per nucleon are of great interest to benchmark the stopping-power models in the context of inertial confinement fusion and high-energy-density physics research. For this purpose, a specific ion detector on chemical-vapor-deposition diamond basis has been developed for precise time-of-flight measurements of the ion energy loss. The electrode structure is interdigitated for maximizing its sensitivity to low-energy ions, and it has a finger width of 100 μm and a spacing of 500 μm. A short single α-particle response is obtained, with signals as narrow as 700 ps at full width at half maximum. The detector has been tested with α-particle bunches at a 500 keV per nucleon energy, showing an excellent time-of-flight resolution down to 20 ps. In this way, beam energy resolutions from 0.4 keV to a few keV have been obtained in an experimental configuration using a 100 μg/cm2 thick carbon foil as an energy-loss target and a 2 m time-of-flight distance. This allows a highly precise beam energy measurement of δE/E ≈ 0.04%-0.2% and a resolution on the energy loss of 0.6%-2.5% for a fine testing of stopping-power models.

  5. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    NASA Astrophysics Data System (ADS)

    Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario

    2017-09-01

    We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  6. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressuremore » of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.« less

  7. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  8. Structure of Ion Outflow in the Martian Magnetotail

    NASA Astrophysics Data System (ADS)

    McFadden, J. P.; Mitchell, D.; Luhmann, J. G.; Connerney, J. E. P.; Jakosky, B. M.

    2017-12-01

    The Suprathermal And Thermal Ion Composition (STATIC) sensor on the MAVEN spacecraft provides a detailed look at the structure of ion outflow in the Martian magnetotail including ion composition, energization, and flow. Mars' magnetotail contains a mixture of cold (<10 eV) nearly-stationary multi-species ions, tailward-moving cold multi-species ions, suprathermal ions of a few tens of eV, warm (about 100 eV) proton populations, and heavy (primarily O+) pickup ions at energies from 1 to 10 keV which may display several simultaneous peaks in energy flux. The cold tailward-moving ions represent a significant fraction of the Martian ion loss, perhaps comparable to loses from molecular oxygen dissociation. The suprathermal tail that accompanies the cold ions varies greatly and provides clues to ion escape. The warm protons, on first examination, appear to be of sheath origin, displaying a similar energy distribution and accompanied by a tenuous warm population at M/Q=2 (which could be either solar wind alphas or molecular hydrogen ions of ionospheric origin). STATIC produces a weak ghost peak at M/Q=11-12 when observing molecular hydrogen ions, but not alphas, often allowing the instrument to distinguish the source of protons. Measurements show the warm protons are of ionospheric origin in the central tail and transition to sheath plasma in the umbra. Energetic (1-10 keV) pickup oxygen in the magnetotail is produced on the nightside, near the pole where the IMF convection electric field points toward the planet, the same hemisphere where sputtering occurs. When two spectral peaks are observed, these tailward-moving ions differ in direction by relatively small angles (about 20 degrees). These peaks can persist for tens of minutes indicating approximately time-stationary acceleration, and therefore acceleration in potential fields. Magnetotail structure and geometry can be inferred not only from the local magnetic field, but also from the measured electron distributions

  9. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    NASA Astrophysics Data System (ADS)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  10. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  11. Ion energetics at Saturn's magnetosphere using Cassini/MIMI measurements: A simple model for the energetic ion integral moments

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Paranicas, C.; Roussos, E.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.

    2015-12-01

    We present a composite analysis (H+ and O+) of energetic ion spectra and kappa distribution fits, using combined ion measurements from Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetospheric Measurements System (LEMMS, 0.024 < E < 18 MeV), and the Ion Neutral Camera (INCA, ~5.2 to >220 keV for H+). The modeled expressions of these energetic ion distributions are then used to obtain the four integral particle moments (from zeroth to 3rd moment: n, In, P, IE, i.e. Density, Integral number intensity, Pressure, Integral energy intensity) as well as the characteristic energy (EC=IE/In) of these ions as a function of Local Time and L-Shell. We find that a) protons dominate the energetic ion (>30 keV) integral number and energy intensity at all radial distances (L>5 Rs) and local times, while the H+ and O+ partial pressures and densities are comparable; b) the 12ion energetics (compared to the contribution of charge exchange with the Saturnian neutral cloud); c) energetic ion bundles in the 12ions are depleted inside the orbit of Rhea (~8 Rs), i.e. the energetic ion lifetimes due to charge exchange decrease significantly with decreasing distance in the innermost parts of Saturn's magnetosphere, so that pressure and density drop to minimum inside ~8 Rs. We then utilize a technique to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere, using a modified version of the Roelof and Skinner [2000] model in both local time and L-shell. Roelof, E. C., and A. J. Skinner (2000), Space Sci. Rev., 91, 437-459.

  12. Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Kajdič, Primož; Hietala, Heli; Blanco-Cano, Xóchitl

    2017-11-01

    We show for the first time that different types of suprathermal ion distributions may exist upstream of a single interplanetary shock. ACE and the two ARTEMIS satellites observed a shock on 2013 October 8. The ARTEMIS P1 and P2 spacecraft first observed field-aligned ions (P1) and gyrating ions (P2) arriving from the shock. These were followed by intermediate ions and later by a diffuse population. At the location of the P2 the shock exhibited an Alfvénic Mach number of M A = 5.7 and was marginally quasi-perpendicular ({θ }{Bn}=47^\\circ ). At P1 spacecraft the shock was weaker (M A = 4.9) and more perpendicular ({θ }{Bn}=61^\\circ ). Consequently, the observed suprathermal ion and ultra-low-frequency wave properties were somewhat different. At P2 the ultra-low-frequency waves are more intense and extend farther upstream from the shock. The energies of field-aligned and gyrating ions in the shock rest-frame were ˜20 keV, which is much more than in the case of the stronger (M A = 6-7) Earth’s bow shock, where they are less than 10 keV.

  13. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in; Kanjilal, A.

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used inmore » our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.« less

  14. O+ pickup ions outside of Venus' bow shock: Venus Express observations

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Fraenz, Markus; Dubinin, Eduard; Zhang, Tielong; Jarvinen, Riku; Wan, Weixing; Kallio, Esa; Collinson, Glyn; Barabash, Stars; Norbert, Krupp; Woch, Joachim; Lundin, Rickard; delva, Magda

    2013-04-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. In addition, Galileo also did not capture O+ outside bowshock during its 1-hour Venus flyby though its plasma instrument had ability to cover the energy band of O+ pickup ions [4]. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We

  15. Observation of fast and slow interatomic Coulombic decay in argon dimers induced by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Miteva, Tsveta; Kolorenč, Přemysl; Gokhberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Dorn, Alexander

    2017-09-01

    We investigate the interatomic Coulombic decay (ICD) in argon dimers induced by electron-impact ionization (E0=90 eV ) using a multiparticle coincidence experiment in which the momentum vectors and, consequently, the kinetic energies for electrons and fragment ions are determined. The signature of the ICD process is obtained from a correlation map between ejected electron energy and kinetic energy release (KER) for Ar++Ar+ fragment ions where low-energy ICD electrons can be identified. Furthermore, two types of ICD processes, termed fast and slow interatomic decay, are separated by the ICD initial-state energies and projectile energy losses. The dependence of the energies of emitted low-energy ICD electrons on the initial-state energy is studied. ICD electron energy spectra and KER spectra are obtained separately for fast and slow decay processes where the KER spectra for the slow decay channel are strongly influenced by nuclear motion. The KER and ICD electron energy spectra are well reproduced by ab initio calculations.

  16. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2015-01-01

    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.

  17. Synthesis of sponge-like hydrophobic NiBi3 surface by 200 keV Ar ion implantation

    NASA Astrophysics Data System (ADS)

    Siva, Vantari; Datta, D. P.; Chatterjee, S.; Varma, S.; Kanjilal, D.; Sahoo, Pratap K.

    2017-07-01

    Sponge-like nanostructures develop under Ar-ion implantation of a Ni-Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi3 phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.

  18. The extraction of negative carbon ions from a volume cusp ion source

    NASA Astrophysics Data System (ADS)

    Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli

    2017-08-01

    Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.

  19. Laser ion source for multi-nucleon transfer reaction products

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2015-06-01

    We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of

  20. Source Population and Acceleration Location of Suprathermal Heavy Ions in Corotating Interaction Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filwett, R. J.; Desai, M. I.; Dayeh, M. A.

    2017-03-20

    We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, whilemore » no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.« less

  1. Nitrogen Gas Field Ion Source (GFIS) Focused Ion Beam (FIB) Secondary Electron Imaging: A First Look.

    PubMed

    Schmidt, Marek E; Yasaka, Anto; Akabori, Masashi; Mizuta, Hiroshi

    2017-08-01

    The recent technological advance of the gas field ion source (GFIS) and its successful integration into systems has renewed the interest in the focused ion beam (FIB) technology. Due to the atomically small source size and the use of light ions, the limitations of the liquid metal ion source are solved as device dimensions are pushed further towards the single-digit nanometer size. Helium and neon ions are the most widely used, but a large portfolio of available ion species is desirable, to allow a wide range of applications. Among argon and hydrogen, $${\\rm N}_{2}^{{\\plus}} $$ ions offer unique characteristics due to their covalent bond and their use as dopant for various carbon-based materials including diamond. Here, we provide a first look at the $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB enabled imaging of a large selection of microscopic structures, including gold on carbon test specimen, thin metal films on insulator and nanostructured carbon-based devices, which are among the most actively researched materials in the field of nanoelectronics. The results are compared with images acquired by He+ ions, and we show that $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB can offer improved material contrast even at very low imaging dose and is more sensitive to the surface roughness.

  2. Results from the first use of low radioactivity argon in a dark matter search

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  3. Results from the first use of low radioactivity argon in a dark matter search

    DOE PAGES

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10 3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data,more » accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10 -44 cm 2 (8.6 x 10 -44 cm 2, 8.0 x 10 -43 cm 2) for a WIMP mass of 100 GeV/c 2 (1 TeV/c 2 , 10 TeV/c 2).« less

  4. Ion-Acoustic Wave-Particle Energy Flow Rates

    NASA Astrophysics Data System (ADS)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred

    2017-10-01

    We present an experimental characterization of the energy flow rates for ion acoustic waves. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon, inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 9 eV and B 660 kG. A 4 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the zeroth and first order ion velocity distribution functions (IVDF) is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Using these IVDFs along with Vlasov's equation the different energy rates are measured for different values of ion velocity and separation from the antenna. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.

  5. Carbonic Acid by Ion Implantation in Water_solarCarbon Dioxide Ice Mixtures

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    1997-01-01

    We present the results of experiments performed by keV ion (He and H) bombardment of frozen mixtures of H 2O:CO 2and of pure CO 2ice. Using keV He ions we confirm the already reported measurement of carbonic acid (H 2CO 3) production in an ice mixture of frozen water and carbon dioxide (1:1) after irradiation by 0.7 MeV H ions (Moore, M. H., and R. K. Khanna 1991. Spectrochim. Acta47, 255-262; Moore, M. H., R. K. Khanna, and B. Donn 1991. J. Geophys. Res. E96(2), 17,541-17,545.). Contrary to a previous report (Pirronello, V., W. L. Brown, L. J. Lanzerotti, K. J. Marcantonio, and E. H. Simmons 1982. Astrophys. J.262, 636-640.), formaldehyde (H 2CO), if any, is not a major product. Implantation with hydrogen ions demonstrates that carbonic acid is formed even if the irradiated target is pure CO 2; i.e., the implanted ion is incorporated into the target and forms new bonds. Some possible astrophysical applications on Solar System objects or (pre-solar) interstellar grains are discussed.

  6. Microwave Argon Plasma Torch

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada , Spain Microwave Argon plasma torch E. Benova1, M. Pencheva-Atanasova1,2, P. Marinova1, V. Marchev1, T...See also ADA594770. International Conference on Phenomena in Ionized Gases (31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013, The original...18 31st ICPIG, July 14-19, 2013, Granada , Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  7. [Tonsillotomy with the argon-supported monopolar needle--first clinical results].

    PubMed

    Huber, K; Sadick, H; Maurer, J T; Hörmann, K; Hammerschmitt, N

    2005-09-01

    Primary management of tonsillar hyperplasia in children is tonsillectomy. Recent data from clinical case-series are clearly in support of the hypothesis that tonsillotomy with the CO2-laser seems to be effective and is noted to have less postoperative bleeding and less pain as compared to tonsillectomy. For the first time we used a monopolar argon-supported needle for tonsillotomy in the following study. Fifty patients (age: 4.58 years; SD +/- 2.33) with benign tonsillar hyperplasia were recruited. For tonsillotomy we used the monopolar argon-supported needle. The outcome measures were postoperative pain, capability of oral intake, consumption of analgesics and postoperative bleeding. No postoperative bleeding occurred. Post-operative pain hardly occurred and could easily be controlled. The third postoperative day analgesics intake was under one portion per day (mean: 0.91; SD +/- 1.26). Capability of oral intake and swallowing was normal on the seventh postoperative day. It was concluded that tonsillotomy, using the monopolar argon-supported needle, is a valid treatment for benign tonsillar hyperplasia in children, which can be performed with slight post-operative pain and a low risk for postoperative bleeding. It offers good dissection and haemostasis abilities. Compared to the CO2-laser the monopolar argon-supported needle does not require any laser safety precautions.

  8. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    USGS Publications Warehouse

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  9. Ion-beam-induced damage formation in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rischau, C. W.; Schnohr, C. S.; Wendler, E.

    2011-06-01

    Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that themore » high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.« less

  10. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  11. Ion Heating and Flows in a High Power Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Remy; Plyushchev, Gennady; Thompson, Derek

    2017-10-01

    We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). RAID is equipped with a high power helicon source. Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  12. Presheath and Double Layer Structures in an Argon Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. Umair

    Ion velocities and temperatures, plasma density, potential, and electron temperatures are measured in a 13.56 MHz helicon produced argon plasma upstream from a grounded plate inside a 10 cm ID cylindrical Pyrex vacuum chamber. The plate is held at psi = 0° → 60° relative to the background axial magnetic field in the system. For the psi = 0° experiment, two distinct helicon discharge equilibria are observed at 500 W rf power, 900 G magnetic field, and a neutral pressure of 3 → 4 mTorr. Both modes exhibit a localized region of hot electrons (Th ≈ 10 eV, Tc ≈ 3.5 eV). For the first mode the hot electrons are confined by a localized potential structure and the density decreases monotonically towards the grounded plate. For the second mode the hot electrons cool off gradually in space due to heat conduction generating a downstream density peak and no major potential structures are observed. It is found that the type of discharge mode is determined by the location of the grounded plate, the length of the presheath, and the rf electron heating mechanism. For the psi = 16° → 60° plate positions, ion flow to the boundary where a 1 kG magnetic field is obliquely incident is measured at 1, 3, and 6.5 mTorr neutral pressure and 450 → 750 W rf power. The results are compared to the magnetic presheath models put forth by Chodura [Phys. Fluids 25, 1628 (1982)], Riemann [Phys. Plasmas 1, 552 (1994)], and Ahedo [Phys. Plasmas 4, 4419 (1997)]. The 1 mTorr dataset is used to benchmark a one-dimensional fluid model for the ion flow in the presheath. Definitions of the "magnetic presheath" are discussed. The fluid model in conjuction with the data show that the ion velocities in the E x B direction can be 10% → 40% percent of the sound speed for the angles investigated. Ion flow to fusion experiment boundaries and Hall thruster walls is discussed.

  13. Onset of space charge effects in liquid argon ionization chambers

    NASA Astrophysics Data System (ADS)

    Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R. B.

    2009-09-01

    Using a thin-gap liquid argon ionization chamber and Strontium-90 beta sources we have measured ionization currents over a wide range of gap potentials. These precision "HV plateau curves" advance the understanding of liquid argon sampling calorimeter signals, particularly at high ionization rates. The order of magnitude differences in the activities of the beta sources allow us to estimate where the ionization chamber is driven into the space-charge dominated regime.

  14. Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia.

    PubMed

    Broad, Kevin D; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D; Robertson, Nicola J

    2016-03-01

    Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy. Copyright © 2015. Published by Elsevier Inc.

  15. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  16. Quantitative Single-Ion Irradiation by ASIPP Microbeam

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Fei; Chen, Lian-Yun; Hu, Zhi-Wen; Wang, Xiao-Hua; Zhang, Jun; Li, Jun; Chen, Bin; Hu, Su-Hua; Shi, Zhong-Tao; Wu, Yu; Xu, Ming-Liang; Wu, Li-Jun; Wang, Shao-Hu; Yu, Zeng-Liang

    2004-05-01

    A single-ion microbeam facility has been constructed by the microbeam research group in ASIPP (Institute of Plasma Physics, Chinese Academy of Science). The system was designed to deliver defined numbers of hydrogen ions produced by a van de Graaff accelerator, covering an energy range from 200 keV to 3 MeV, into living cells (5 mum-20 mum diameter) growing in culture on thin plastic films. The beam is collimated by a 1- mum inner diameter HPLC (high performance liquid chromatography) capillary, which forms the micron-dimensional beam-line exit. A microbeam collimator, a scintillation ion counting system and a fast beam shutter, which constitute a precise dosage measuring and controlling system, jointly perform quantitative single-ion irradiation. With this facility, we can presently acquire ion-hitting efficiency close to 95%.

  17. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  18. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    NASA Astrophysics Data System (ADS)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-09-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas.

  19. Energetic metallic ion implantation in polymers via cost-effective laser-driven ion source

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Bilal; Rafique, M. Shahid; Ahmed, Rabia; Rafique, M.; Iqbal, Tahir; Hasan, Ali

    2017-07-01

    This research work reports the ions emission from the plasma generated by Nd:YAG laser having wavelength 1.064 μm, power 1.1 MW, pulse energy 10 mJ and intensity 1011 W/cm2 irradiated at 70° with respect to the target normal to the ions. These ions were accelerated through a home-made extraction assembly by means of a high voltage DC power supply. The energy of these ions were measured using Thomson parabola technique which utilizes Solid State Nuclear Track Detector (CR-39) and confirmed by Faraday cup as well that exploits a well-known technique known as time of flight. Interestingly, a significant increase in energy (from 490 to 730 keV) was observed with a discrete increase in acceleration potential from 0 to 18 kV. Polyethylene terephthalate (PET) and polypropylene were exposed to this recently developed ion source facility, to authenticate the reliability of this facility. The surface of the polymer is affected when energy of the irradiated ion is increased, which is evident from the optical micrographs. An increase in electrical conductivity was also observed with the increase in ion energy.

  20. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jingke; Stanford, Chris; Westerdale, Shawn

    Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less

  2. Two types of energy-dispersed ion structures at the plasma sheet boundary

    NASA Astrophysics Data System (ADS)

    Sauvaud, J.-A.; Kovrazhkin, R. A.

    2004-12-01

    We study two main types of ion energy dispersions observed in the energy range ˜1 to 14 keV on board the Interball-Auroral (IA) satellite at altitudes 2-3 RE at the poleward boundary of the plasma sheet. The first type of structure is named velocity dispersed ion structures (VDIS). It is known that VDIS represent a global proton structure with a latitudinal width of ˜0.7-2.5°, where the ion overall energy increases with latitude. IA data allow to show that VDIS are made of substructures lasting for ˜1-3 min. Inside each substructure, high-energy protons arrive first, regardless of the direction of the plasma sheet boundary crossing. A near-continuous rise of the maximal and minimal energies of consecutive substructures with invariant latitude characterizes VDIS. The second type of dispersed structure is named time-of-flight dispersed ion structures (TDIS). TDIS are recurrent sporadic structures in H+ (and also O+) with a quasi-period of ˜3 min and a duration of ˜1-3 min. The maximal energy of TDIS is rather constant and reaches ≥14 keV. During both poleward and equatorward crossings of the plasma sheet boundary, inside each TDIS, high-energy ions arrive first. These structures are accompanied by large fluxes of upflowing H+ and O+ ions with maximal energies up to 5-10 keV. In association with TDIS, bouncing H+ clusters are observed in quasi-dipolar magnetic field tubes, i.e., equatorward from TDIS. The electron populations generally have different properties during observations of VDIS and TDIS. The electron flux accompanying VDIS first increases smoothly and then decreases after Interball-Auroral has passed through the proton structure. The average electron energy in the range ˜0.5-2 keV is typical for electrons from the plasma sheet boundary layer (PSBL). The electron fluxes associated with TDIS increases suddenly at the polar boundary of the auroral zone. Their average energy, reaching ˜5-8 keV, is typical for CPS. A statistical analysis shows that

  3. Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.

    PubMed

    Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf

    2013-07-02

    The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.

  4. Database of ion temperature maps during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Keesee, Amy M.; Scime, Earl E.

    2015-02-01

    Ion temperatures as a function of the x and y axes in the geocentric solar magnetospheric (GSM) coordinate system and time are available for 76 geomagnetic storms that occurred during the period July 2008 to December 2013 on CDAWeb. The method for mapping energetic neutral atom data from the Two Wide-angle Imaging Spectrometers (TWINS) mission to the GSM equatorial plane and subsequent ion temperature calculation are described here. The ion temperatures are a measure of the average thermal energy of the bulk ion population in the 1-40 keV energy range. These temperatures are useful for studies of ion dynamics, for placing in situ measurements in a global context, and for establishing boundary conditions for models of the inner magnetosphere and the plasma sheet.

  5. Cold ion demagnetization near the X-line of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Toledo Redondo, S.; Andre, M.; Khotyaintsev, Y. V.; Vaivads, A.; Walsh, A. P.; Li, W.; Graham, D. B.; Lavraud, B.; Masson, A.; Aunai, N.; Divin, A. V.; Dargent, J.; Fuselier, S. A.; Gershman, D. J.; Dorelli, J.; Giles, B. L.; Avanov, L. A.; Pollock, C. J.; Saito, Y.; Moore, T. E.; Coffey, V. N.; Chandler, M. O.; Lindqvist, P. A.; Torbert, R. B.; Russell, C. T.

    2016-12-01

    We report observatios of the Ion Diffusion Region (IDR) of magnetic reconnection by MMS at the dayside magnetopause. Cold plasma (tens of eV) of ionospheric origin was present inside the IDR the 22 October 2015 and its behavior differed from the hot plasma (several keV). In particular, cold ions remained magnetized and followed E x B inside most of the IDR. We identify a sub-region and name it the cold IDR of the size of the cold ion gyroradius ( 15 km) where cold ions are demagnetized and accelerated parallel to E. Using multi-spacecraft measurements we identify a sharp cold ion density gradient separating the two regions.

  6. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  7. Maskless nano-implant of 20 keV Ga+ in bulk Si(1 0 0) substrates

    NASA Astrophysics Data System (ADS)

    Milazzo, R. G.; D'Arrigo, G.; Mio, A. M.; Rimini, E.; Spinella, C.; Peto, L.; Nadzeyka, A.; Bauerdick, S.

    2014-12-01

    Multidirectional SPEG (Solid Phase Epitaxial Growth) of silicon has been investigated in micro and nanoamorphous structures generated on a crystalline substrate by a nano-sized ion beam, Gaussian shaped and with a standard deviation of about 5 nm. The 20 keV Ga+ ions were implanted at a fluence of 5 × 1014 ions cm-2 in a bulk Si(1 0 0) single crystal. Two structures were used for the implants: circular regions of 100 nm and 1 μm diameters respectively and straight lines 10 nm in width and few microns in length along (1 0 0) or (1 1 0) directions. The lateral spread of ions has been taken into account in the damage estimation. Transmission Electron Microscopy indicates that the structures are made of an amorphous core surrounded by a defective and filamentary shell. The recovery of the damaged outer regions promptly occurs during the early stages of the thermal treatment at 500-600 °C for all the structures. By prolonging annealing time, re-crystallization of the amorphous cores is achieved too by the movement of the underneath crystal-amorphous interface. The re-growth is almost defects free when the contribution of the crystalline seed below the structures is present, defective and twin mediated if it misses as in the thinnest regions of the specimen.

  8. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  9. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  10. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  11. Ion beam synthesis of Au nanoparticles embedded nano-composite glass

    NASA Astrophysics Data System (ADS)

    Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.

    2013-02-01

    Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.

  12. Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation

    NASA Astrophysics Data System (ADS)

    van der Heide, P. A. W.

    2005-02-01

    Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.

  13. Test bed ion engine development

    NASA Technical Reports Server (NTRS)

    Aston, G.; Deininger, W. D.

    1984-01-01

    A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.

  14. Structural Changes in Polymer Films by Fast Ion Implantation

    NASA Astrophysics Data System (ADS)

    Parada, M. A.; Minamisawa, R. A.; Muntele, C.; Muntele, I.; De Almeida, A.; Ila, D.

    2006-11-01

    In applications from food wrapping to solar sails, polymers films can be subjected to intense charged panicle bombardment and implantation. ETFE (ethylenetetrafluoroethylene) with high impact resistance is used for pumps, valves, tie wraps, and electrical components. PFA (tetrafluoroethylene-per-fluoromethoxyethylene) and FEP (tetrafluoroethylene-hexa-fluoropropylene) are sufficiently biocompatible to be used as transcutaneous implants since they resist damage from the ionizing space radiation, they can be used in aerospace engineering applications. PVDC (polyvinyllidene-chloride) is used for food packaging, and combined with others plastics, improves the oxygen barrier responsible for the food preservation. Fluoropolymers are also known for their radiation dosimetry applications, dependent on the type and energy of the radiation, as well as of the beam intensity. In this work ETFE, PFA, FEP and PVDC were irradiated with ions of keV and MeV energies at several fluences and were analyzed through techniques as RGA, OAP, FTIR, ATR and Raman spectrophotometry. CF3 is the main specie emitted from PFA and FEP when irradiated with MeV protons. H and HF are released from ETFE due to the broken C-F and C-H bonds when the polymer is irradiated with keV Nitrogen ions and protons. At high fluence, especially for keV Si and N, damage due to carbonization is observed with the formation of hydroperoxide and polymer dehydroflorination. The main broken bonds in PVDC are C-O and C-Cl, with the release of Cl and the formation of double carbon bonds. The ion fluence that causes damage, which could compromise fluoropolymer film applications, has been determined.

  15. Measurement of longitudinal electron diffusion in liquid argon

    DOE PAGES

    Li, Yichen; Tsang, Thomas; Thorn, Craig; ...

    2016-02-07

    In this paper, we report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin. The quantum efficiency of the gold photocathode, the drift velocitymore » and longitudinal diffusion coefficients in gas argon are also presented.« less

  16. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  17. Multicharged iron ions produced by using induction heating vapor source.

    PubMed

    Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.

  18. A laboratory study on the dissociative recombination of vibrationally excited O2/+/ions

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.

    1980-01-01

    The dissociative recombination of vibrationally excited O2(+) ions is studied in light of the possible importance of this reaction in upper atmospheric chemistry. A plasma spectroscopy experiment was performed in a microwave cavity filled by an argon-oxygen mixture, with O(1S) production monitored by measurements of the 5577-A afterglow, the O2(+) density and the electron concentration. Plasma and optical data reveal the predominant afterglow ions to be Ar2(+) and O2(+), with an effective O(1S) dissociative recombination coefficient of 2.1 x 10 to the -8th cu cm/sec, corresponding to a quantum yield of 10%. Experiments with an argon-krypton-oxygen mixture reveal that vibrationally excited O2(+) ions are the chief source of the O(1S) atoms, with a specific recombination coefficient for the dissociation of O2(+)(2 pi g) into O(1S) and O(1D) of 4.2 x 10 to the -9th cu cm/sec. A comparison of the laboratory results with Atmospheric Explorer data on the 5577-A airglow implies that O2(+) ions in the sunlit ionosphere are vibrationally excited to the same degree as in the laboratory, with the vibrational relaxation of these ions much slower than dissociative recombination. Results also predict a dawn-twilight asymmetry in the effective O(1S) yield due to the normal variation of electron content.

  19. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  20. Comparison of 3D ion velocity distribution measurements and models in the vicinity of an absorbing boundary oriented obliquely to a magnetic field

    NASA Astrophysics Data System (ADS)

    Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.

    2016-10-01

    Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.

  1. Correlation between molecular secondary ion yield and cluster ion sputtering for samples with different stopping powers

    NASA Astrophysics Data System (ADS)

    Heile, A.; Muhmann, C.; Lipinsky, D.; Arlinghaus, H. F.

    2012-07-01

    In static SIMS, the secondary ion yield, defined as detected ions per primary ion, can be increased by altering several primary ion parameters. For many years, no quantitative predictions could be made for the secondary ion yield enhancement of molecular ions. For thick samples of organic compounds, a power dependency of the secondary ion yield on the sputtering yield was shown. For this article, samples with thick molecular layers and (sub-)monolayers composed of various molecules were prepared on inorganic substrates such as silicon, silver, and gold, and subsequently analyzed. For primary ion bombardment, monoatomic (Ne+, Ar+, Ga+, Kr+, Xe+, Bi+) as well as polyatomic (Bin+, Bin++) primary ions were used within an energy range of 10-50 keV. The power dependency was found to hold true for the different samples; however, the exponent decreased with increasing stopping power. Based on these findings, a rule of thumb is proposed for the prediction of the lower limit of the secondary ion yield enhancement as a function of the primary ion species. Additionally, effects caused by the variation of the energy deposition are discussed, including the degree of molecular fragmentation and the non-linear increase of the secondary ion yield when polyatomic primary ions are used.

  2. Simultaneous two-dimensional laser-induced-fluorescence measurements of argon ions.

    PubMed

    Hansen, A K; Galante, Matthew; McCarren, Dustin; Sears, Stephanie; Scime, E E

    2010-10-01

    Recent laser upgrades on the Hot Helicon Experiment at West Virginia University have enabled multiplexed simultaneous measurements of the ion velocity distribution function at a single location, expanding our capabilities in laser-induced fluorescence diagnostics. The laser output is split into two beams, each modulated with an optical chopper and injected perpendicular and parallel to the magnetic field. Light from the crossing point of the beams is transported to a narrow-band photomultiplier tube filtered at the fluorescence wavelength and monitored by two lock-in amplifiers, each referenced to one of the two chopper frequencies.

  3. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  4. Low-energy ion beam-based deposition of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph; Wada, M.

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substratemore » was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.« less

  5. Upstream energetic ions under radial IMF - A critical test of the Fermi model

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    Eight years of interplanetary magnetic field (IMF) and energetic particle observations obtained by the IMP-8 spacecraft upstream from the bow shock have been surveyed, and 63 cases when the upstream IMF remained radial for extended periods of time (greater than 1 hour) have been accumulated. Of these, two cases have been selected during which measurable fluxes of ambient solar or corotating energetic particle events were absent. These conditions provide an excellent test to the theories of the origin of upstream energetic ions. It is shown that there are extended periods with radial IMF when no upstream energetic ions were detected. It is further shown that energetic ions in the range E of between 50 keV and 1 MeV, inclusive, are not continuously present but appear in bursts of intensities varying by more than an order of magnitude under persistently radial IMF. These measurements contradict a fundamental prediction of the Fermi mechanism for the origin of the upstream energetic ions, namely that such ions should always be present on radial IMF lines. The observations are consistent with the hypothesis that energetic (greater than about 50 keV) ions leak out from, and appear in the upstream medium sporadically, following the onset of magnetic activity within the magnetosphere.

  6. The relationship between kappa and temperature in energetic ion spectra at Jupiter

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Hamilton, D. C.

    1995-01-01

    A universal energy per charge kappa function fit is simultaneously applied to the spectra of Voyager 2 Low Energy Charged Particle (LECP) proton, helium, oxygen, sulfur, and carbon ions during 33 Jovian plasma sheet crossings from 26 to 160 R(sub J). The fits yield an approximately linear relationship between high energy spectral index, kappa, and core proton temperature of the form kappa (T(sub H)) approximately = eta dot T(sub H) + kappa(sub 0) with eta = 0.080 ke/V, kappa(sub 0) = 2.86, and T(sub H) measured in keV. Core proton temperatures range from 5 to 35 keV with spectral indices ranging from 3 to 6.

  7. Fundamental experiment of ion thruster using ECR discharge

    NASA Astrophysics Data System (ADS)

    Yasui, Toshiaki; Kitayama, Jiro; Tahara, Hirokazu; Onoe, Ken-Ichi; Yoshikawa, Takao

    A microwave ion thruster has the potential to overcome a lifetime problem of electric propulsion by eliminating electrodes. Two types of microwave ion thruster have been investigated to examine the operational characteristics. The one is the thruster using cavity-resonance microwave discharge, and the other is the thruster using Electron Cyclotron Resonance (ECR) discharge. Cavity-resonance microwave discharge produced plasmas by strong electric field in the resonant cavity and sustained plasmas at argon mass flow rates above 10 sccm. However, ECR discharge was capable of sustaining plasmas at lower mass flow rate, because ECR discharge efficiently produced plasmas by resonance absorption. From these generated microwave plasmas, ions were electrostatically extracted by two multiaperture grids. In ECR discharge, the maximum ion beam current of 75 mA and the highest mass utilization efficiency of 18.7% were achieved at a total extraction voltage of 950 V.

  8. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    In reactive ion etching of Si, varying amounts of O2 were added to the CF4 background. The experimental results indicated an etch rate less than that for Ar up to an O2 partial pressure of about .00006 Torr. Above this O2 pressure, the etch rate with CF4 exceeded that with Ar alone. For comparison the random arrival rate of O2 was approximately equal to the ion arrival rate at a partial pressure of about .00002 Torr. There were also ion source and ion pressure gauge maintenance problems as a result of the use of CF4. Large scale (4 sq cm) texturing of Si was accomplished using both Cu and stainless steel seed. The most effective seeding method for this texturing was to surround the sample with large inclined planes. Designing, fabricating, and testing a 200 sq cm rectangular beam ion source was emphasized. The design current density was 6 mA/sq cm with 500 eV argon ions, although power supply limitations permitted operation to only 2 mA/sq cm. The use of multiple rectangular beam ion sources for continuous processing of wider areas than would be possible with a single source was also studied. In all cases investigated, the most uniform coverage was obtained with 0 to 2 cm beam overlay. The maximum departure from uniform processing at optimum beam overlap was found to be +15%.

  9. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    DOE PAGES

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...

    2018-03-01

    Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less

  10. A pixelated charge readout for Liquid Argon Time Projection Chambers

    NASA Astrophysics Data System (ADS)

    Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.

    2018-02-01

    Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.

  11. New equipment the ion beam irradiation equipment installed at ISAS / JAXA

    NASA Astrophysics Data System (ADS)

    Nakauchi, Yusuke; Matsumoto, Toru; Asada, Yuma; Abe, Masanao; Tsuchiyama, Akira; Takigawa, Aki; Watanabe, Naoki; Yusuke Nakauchi

    2017-10-01

    Understanding of the space weathering effect by the solar wind implantation is thought to be important for the interpretation of the reflectance spectra on the airless body’s surface [e.g. 1]. It is important to elucidate the space weathering effect by hydrogen ions and helium ions which account for most of solar wind. In particular, it is suggested that the solar wind protons interact with the minerals in the surface layer of the airless bodies to form OH and H2O. To understanding the space weathering effect by solar wind protons will be an important clue to reveal the origin and the abundance of lunar water [e.g. 2].Solar wind consists of 95% protons, 4% helium and other ions [3]. The energy of protons is mainly 1.1 keV and the one of helium ions is mainly 4 keV. Then, we established the ion beam irradiation equipment in ISAS/JAXA. This device consists of a cold cathode ion gun, an ion irradiation chamber, a load lock chamber for specimen preparation and reflection spectrum measurement, and FTIR. The ion sources capable of irradiation are hydrogen and helium which occupy the most of solar wind and it is possible to selectively irradiate each ion with a magnetic separator. The energy can be selected from 500 eV to 5 keV. The ultimate degree of vacuum is about 10-6 Pa. The samples can move between the irradiation chamber and the load lock chamber without being exposed to the air. Moreover, since the nitrogen purge is possible for the optical path of FTIR, the influence of the adsorbed water can be ignored when measuring the reflection spectra.In this presentation, we will report the first results of the performance of ion beam irradiation equipment (e.g. beam current, beam-shape) and the proton irradiation to Sun Carlos olivine.[1] T. Noguchi et al., MPS, 49(2):188-214, 2014. [2] C.M. Pieters et al., Science, 326(5952):568-572, 2009. [3] J.T. Gosling, Encyclopedia of the Solar System (Second Edition), pages 99 -116, 2007. Acknowledgements Part of this work has

  12. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  13. Analysis of time-resolved argon line spectra from OMEGA direct-drive implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florido, R.; Nagayama, T.; Mancini, R. C.

    2008-10-15

    We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 {mu}m in diameter, 27 {mu}m wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for diagnostic purposes. The argon K-shell line spectrum is primarily emitted at the collapse of the implosion and its analysis provides a spectroscopic diagnostic of the core implosion conditions. The observed spectra includes the He{alpha}, Ly{alpha}, He{beta}, He{gamma}, Ly{beta}, and Ly{gamma} line emissions and their associatedmore » He- and Li-like satellites thus covering a broad photon energy range from 3100 to 4200 eV with a spectral resolution power of approximately 500. The data analysis relies on detailed atomic and spectral models that take into account nonequilibrium collisional-radiative atomic kinetics, Stark-broadened line shapes, and radiation transport calculations.« less

  14. Polarized negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less

  15. Study of argon-oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  16. Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.

    1987-01-01

    A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.

  17. Lenticular burns following argon panretinal photocoagulation.

    PubMed Central

    Bloom, S. M.; Mahl, C. F.; Schiller, S. B.

    1992-01-01

    Photocoagulation burns of the crystalline lens are a rare complication of posterior segment laser surgery. These burns occur more commonly in eyes with cataracts and with small, high-power, long-duration argon blue-green burns. We describe the first occurrence of lenticular burns caused by a fractured laser fibre optic cord. Images PMID:1340772

  18. Measurement of argon neutral velocity distribution functions near an absorbing boundary in a plasma

    NASA Astrophysics Data System (ADS)

    Short, Zachary; Thompson, Derek; Good, Timothy; Scime, Earl

    2016-10-01

    Neutral particle distributions are critical to the study of plasma boundary interactions, where ion-neutral collisions, e.g. via charge exchange, may modify energetic particle populations impacting the boundary surface. Neutral particle behavior at absorbing boundaries thus underlies a number of important plasma physics issues, such as wall loading in fusion devices and anomalous erosion in Hall thruster channels. Neutral velocity distribution functions (NVDFs) are measured using laser-induced fluorescence (LIF). Our LIF scheme excites the 1s4 non-metastable state of neutral argon with 667.913 nm photons. The subsequent decay emission at 750.590 nm is recorded synchronously with injection laser frequency. Measurements are performed near a grounded boundary immersed in a cylindrical helicon plasma, with the boundary plate oriented at an oblique angle to the magnetic field. NVDFs are recorded in multiple velocity dimensions and in a three-dimensional volume, enabling point-to-point comparisons with NVDF predictions from particle-in-cell models as well as comparisons with ion velocity distribution function measurements obtained in the same regions through Ar-II LIF. This work is supported by US National Science Foundation Grant Number PHYS-1360278.

  19. Materials characterization with MeV ions

    NASA Astrophysics Data System (ADS)

    Conlon, T. W.

    1989-04-01

    The inherent atomic and nuclear properties of energetic ions in materials can be exploited to characterize as well as to modify materials' properties. In nuclear reactors keV ions from neutron collisions damage containment materials. However, basic studies of the interactions of such ions has yielded improved understanding of their properties and has even led to a tailoring of conditions so that the ions can be made to beneficially modify structures (by ion implantation). At higher energies an understanding of the ion-material interaction provides techniques such as PIXE, RBS, and ERD for nondestructive analysis, either in broad beam or "microbeam" mode. At high energies still penetration of the Coulomb barrier opens up activation methods for materials' characterization (CPAA, NRA, TLA etc.). A short discussion of the general properties of energetic ions in materials is followed by a brief introduction to our generic work in these areas, and some examples of current work in the areas of: activation for the radioisotope labelling of nonmetals, mass resolved ERDA using TOF techniques and submicron MeV microprobes.

  20. Chemical characterization of 4140 steel implanted by nitrogen ions

    NASA Astrophysics Data System (ADS)

    Niño, E. D. V.; Pinto, J. L.; Dugar-Zhabon, V.; Henao, J. A.

    2012-06-01

    AISI SAE 4140 steel samples of different surface roughness which are implanted with 20 keV and 30 keV nitrogen ions at a dose of 1017 ions/cm2 are studied. The crystal phases of nitrogen compositions of the implanted samples, obtained with help of an x-ray diffraction method, are confronted with the data reported by the International Centre for Diffraction Data (ICDD) PDF-2. The implantation treatment is realized in high-voltage pulsed discharges at low pressures. The crystal structure of the implanted solid surfaces is analyzed by the x-ray diffraction technique which permits to identify the possible newly formed compounds and to identify any change in the surface structure of the treated samples. A decrease in the intensity of the plane (110), a reduction of the cell unity in values of 2-theta and a diminishing of the crystallite dimensions in comparison with non-implanted samples are observed.