Sample records for kev gallium beam

  1. Measurement of Minority Charge Carrier Diffusion Length in Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC)

    DTIC Science & Technology

    2009-12-01

    MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B

  2. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  3. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  4. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  5. RF conditioning and beam experiments on 400 keV RFQ accelerator at BARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shrikrishna; Rao, S.V.L.S.; Kumar, Rajesh, E-mail: sgupta@barc.gov.in

    2014-07-01

    A 400 keV Radio-frequency quadrupole accelerator (RFQ) has been designed, developed and tested at BARC. This will be used as a neutron generator (via D-T reaction). The RFQ operates at a resonant frequency of 350 MHz and needs an RF power of ∼ 60 kW to accelerate the deuteron beam to 400 keV within a length of 1.03 m. Though the RFQ is designed for deuteron beam, it was tested by accelerating both the proton and deuteron beams to their designed values of 200 and 400 keV respectively. The proton and deuteron beam experiments required peak RF power of approx.more » 15 kW and 60 kW respectively at 350 MHz. The RF power from the tetrode amplifier and coaxial transmission lines is coupled to the cavity by a coaxial loop coupler. As the coupler and cavity operated at vacuum of better than 2e-6 torr, extensive RF conditioning of the cavity and coupler was performed to reach at the desired power levels. (author)« less

  6. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Schilling, A.; Adams, T.; Bowman, R. M.; Gregg, J. M.

    2007-01-01

    As part of a study into the properties of ferroelectric single crystals at nanoscale dimensions, the effects that focused ion beam (FIB) processing can have, in terms of structural damage and ion implantation, on perovskite oxide materials has been examined, and a post-processing procedure developed to remove such effects. Single crystal material of the perovskite ferroelectric barium titanate (BaTiO3) has been patterned into thin film lamellae structures using a FIB microscope. Previous work had shown that FIB patterning induced gallium impregnation and associated creation of amorphous layers in a surface region of the single crystal material some 20 nm thick, but that both recrystallization and expulsion of gallium could be achieved through thermal annealing in air. Here we confirm this observation, but find that thermally induced gallium expulsion is associated with the formation of gallium-rich platelets on the surface of the annealed material. These platelets are thought to be gallium oxide. Etching using nitric and hydrochloric acids had no effect on the gallium-rich platelets. Effective platelet removal involved thermal annealing at 700 °C for 1 h in a vacuum followed by 1 h in oxygen, and then a post-annealing low-power plasma clean in an Ar/O atmosphere. Similar processing is likely to be necessary for the full recovery of post FIB-milled nanostructures in oxide ceramic systems in general.

  7. Low-energy ion beam-based deposition of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph; Wada, M.

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substratemore » was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.« less

  8. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    NASA Astrophysics Data System (ADS)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  9. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.

    PubMed

    Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  10. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    NASA Astrophysics Data System (ADS)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  11. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  12. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  13. SU-E-T-46: A Monte Carlo Investigation of Radiation Interactions with Gold Nanoparticles in Water for 6 MV, 85 KeV and 40 KeV Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flint, D B; O’Brien, D J; McFadden, C H

    Purpose: To determine the effect of gold-nanoparticles (AuNPs) on energy deposition in water for different irradiation conditions. Methods: TOPAS version B12 Monte Carlo code was used to simulate energy deposition in water from monoenergetic 40 keV and 85 keV photon beams and a 6 MV Varian Clinac photon beam (IAEA phase space file, 10x10 cm{sup 2}, SSD 100 cm). For the 40 and 85 keV beams, monoenergetic 2x2 mm{sup 2} parallel beams were used to irradiate a 30x30x10 µm {sup 3} water mini-phantom located at 1.5 cm depth in a 30x30x50 cm{sup 3} water phantom. 5000 AuNPs of 50 nmmore » diameter were randomly distributed inside the mini-phantom. Energy deposition was scored in the mini-phantom with the AuNPs’ material set to gold and then water. For the 6 MV beam, we created another phase space (PHSP) file on the surface of a 2 mm diameter sphere located at 1.5 cm depth in the water phantom. The PHSP file consisted of all particles entering the sphere including backscattered particles. Simulations were then performed using the new PHSP as the source with the mini-phantom centered in a 2 mm diameter water sphere in vacuum. The g4em-livermore reference list was used with “EMRangeMin/EMRangeMax = 100 eV/7 MeV” and “SetProductionCutLowerEdge = 990 eV” to create the new PHSP, and “SetProductionCutLowerEdge = 100 eV” for the mini-phantom simulations. All other parameters were set as defaults (“finalRange = 100 µm”). Results: The addition of AuNPs resulted in an increase in the mini-phantom energy deposition of (7.5 ± 8.7)%, (1.6 ± 8.2)%, and (−0.6 ± 1.1)% for 40 keV, 85 keV and 6 MV beams respectively. Conclusion: Enhanced energy deposition was seen at low photon energies, but decreased with increasing energy. No enhancement was observed for the 6 MV beam. Future work is required to decrease the statistical uncertainties in the simulations. This research is partially supported from institutional funds from the Center for Radiation Oncology Research

  14. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  15. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  16. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  17. Redundancy Technology With A Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro

    1989-08-01

    Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.

  18. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.

    PubMed

    Bartzsch, Stefan; Oelfke, Uwe

    2013-11-01

    The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques. In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived. The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV. The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.

  19. Design study of a 120-keV, He-3 neutral beam injector

    NASA Astrophysics Data System (ADS)

    Blum, A. S.; Barr, W. L.; Dexter, W. L.; Moir, R. W.; Wilcox, T. P.; Fink, J. H.

    1981-01-01

    A design for a 120-keV, 2.3-MW, He-3 neutral beam injector for use on a D-(He-3) fusion reactor is described. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. The vacuum system is also briefly described, and the use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer is also analyzed. Of crucial importance to the technical feasibility of the (He-3)-burning reactor are the injector efficiency and cost; these are 53% and $5.5 million, respectively, when power supplies are included.

  20. Design study of a 120-keV,3He neutral beam injector

    NASA Astrophysics Data System (ADS)

    Blum, A. S.; Barr, W. L.; Dexter, W. L.; Fink, J. H.; Moir, R. W.; Wilcox, T. P.

    1981-01-01

    We describe a design for a 120-keV, 2.3-MW,3He neutral beam injector for use on a D-3He fusion reactor. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. We also briefly describe the vacuum system and analyze use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer. Of crucial importance to the technical feasibility of the3He-burning reactor are the injector efficiency and cost; these are 53% and 5.5 million, respectively, when power supplies are included.

  1. Gallium

    USGS Publications Warehouse

    Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of optoelectronic devices (laser diodes, light-emitting diodes [LEDs], photo detectors, and solar cells), which are important for aerospace and telecommunications applications and industrial and medical equipment. GaAs is also used in the production of highly specialized integrated circuits, semiconductors, and transistors; these are necessary for defense applications and high-performance computers. For example, cell phones with advanced personal computer-like functionality (smartphones) use GaAs-rich semiconductor components. GaN is used principally in the manufacture of LEDs and laser diodes, power electronics, and radio-frequency electronics. Because GaN power transistors operate at higher voltages and with a higher power density than GaAs devices, the uses for advanced GaN-based products are expected to increase in the future. Gallium technologies also have large power-handling capabilities and are used for cable television transmission, commercial wireless infrastructure, power electronics, and satellites. Gallium is also used for such familiar applications as screen backlighting for computer notebooks, flat-screen televisions, and desktop computer monitors.Gallium is dispersed in small amounts in many minerals and rocks where it substitutes for elements of similar size and charge, such as aluminum and zinc. For example, gallium is found in small amounts (about 50 parts per million) in such aluminum-bearing minerals as diaspore-boehmite and gibbsite, which form bauxite deposits, and in the zinc-sulfide mineral sphalerite, which is found in many mineral deposits. At the present time, gallium metal is derived mainly as a

  2. SU-F-T-672: A Novel Kernel-Based Dose Engine for KeV Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhart, M; Fast, M F; Nill, S

    2016-06-15

    Purpose: Mimicking state-of-the-art patient radiotherapy with high precision irradiators for small animals allows advanced dose-effect studies and radiobiological investigations. One example is the implementation of pre-clinical IMRT-like irradiations, which requires the development of inverse planning for keV photon beams. As a first step, we present a novel kernel-based dose calculation engine for keV x-rays with explicit consideration of energy and material dependencies. Methods: We follow a superposition-convolution approach adapted to keV x-rays, based on previously published work on micro-beam therapy. In small animal radiotherapy, we assume local energy deposition at the photon interaction point, since the electron ranges in tissuemore » are of the same order of magnitude as the voxel size. This allows us to use photon-only kernel sets generated by MC simulations, which are pre-calculated for six energy windows and ten base materials. We validate our stand-alone dose engine against Geant4 MC simulations for various beam configurations in water, slab phantoms with bone and lung inserts, and on a mouse CT with (0.275mm)3 voxels. Results: We observe good agreement for all cases. For field sizes of 1mm{sup 2} to 1cm{sup 2} in water, the depth dose curves agree within 1% (mean), with the largest deviations in the first voxel (4%) and at depths>5cm (<2.5%). The out-of-field doses at 1cm depth agree within 8% (mean) for all but the smallest field size. In slab geometries, the mean agreement was within 3%, with maximum deviations of 8% at water-bone interfaces. The γ-index (1mm/1%) passing rate for a single-field mouse irradiation is 71%. Conclusion: The presented dose engine yields an accurate representation of keV-photon doses suitable for inverse treatment planning for IMRT. It has the potential to become a significantly faster yet sufficiently accurate alternative to full MC simulations. Further investigations will focus on energy sampling as well as

  3. Tin-gallium-oxide-based UV-C detectors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2018-02-01

    The emergence of conductive gallium oxide single crystal substrates offers the potential for vertical Schottky detectors operating in the UV-C spectral region. We report here on our recent work in the development of Tin Gallium oxide (TGO) thin film metal-semiconductor-metal (MSM) and Schottky detectors using plasma-assisted molecular beam epitaxy on c plane sapphire and bulk Ga2O3 substrates. Tin alloying of gallium oxide thin films was found to systematically reduce the optical band gap of the compound, providing tunability in the UV-C spectral region. Tin concentration in the TGO epilayers was found to be highly dependent on growth conditions, and Ga flux in particular. First attempts to demonstrate vertical Schottky photodetectors using TGO epilayers on bulk n-type Ga2O3 substrates were successful. Resultant devices showed strong photoresponse to UV-C light with peak responsivities clearly red shifted in comparison to Ga2O3 homoepitaxial Schottky detectors due to TGO alloying.

  4. Gallium scan

    MedlinePlus

    ... material called gallium and is a type of nuclear medicine exam. A related test is gallium scan ... Brown ML, Forstrom LA, et al. Society of nuclear medicine procedure guideline for gallium scintigraphy in inflammation. ...

  5. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  6. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; Dowling, Karen M.; Wang, Yongqiang; Senesky, Debbie G.

    2017-12-01

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm/10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W, while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements performed during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 × 1013 cm-2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 1013 cm-2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.

  7. Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation

    DOE PAGES

    Miller, Ruth A.; So, Hongyun; Chiamori, Heather C.; ...

    2017-12-11

    The electrical characteristics of gallium nitride (GaN) ultraviolet (UV) photodetectors with graphene and semitransparent Ni/Au electrodes subjected to 2 MeV proton irradiation are reported and compared. Graphene is shown to have a very high transmittance (87%) in the UV regime (365 nm) compared to semitransparent Ni/Au (3 nm / 10 nm) films (32%). Correspondingly, microfabricated graphene/GaN photodetectors showed a much higher pre-irradiation responsivity of 3388 A/W while that of semitransparent Ni/Au/GaN photodetectors was 351 A/W. For both types of electrodes, intermittent current-voltage measurements made during 2 MeV proton irradiation showed minimal variation up to a fluence of approximately 3.8 ×more » 10 13 cm -2. Additionally, Raman spectroscopy of 200 keV proton beam, 3.8 × 10 13 cm -2 irradiated graphene showed minimal disorder with only a 6% increase in ID/IG compared to pre-irradiated graphene. These results support the use of graphene-enhanced GaN UV photodetectors in radiation-rich environments such as deep space.« less

  8. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  9. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  10. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  11. Hard x-ray broad band Laue lenses (80-600 keV): building methods and performances

    NASA Astrophysics Data System (ADS)

    Virgilli, E.; Frontera, F.; Rosati, P.; Liccardo, V.; Squerzanti, S.; Carassiti, V.; Caroli, E.; Auricchio, N.; Stephen, J. B.

    2015-09-01

    We present the status of the LAUE project devoted to develop a technology for building a 20 meter long focal length Laue lens for hard X-/soft gamma-ray astronomy (80-600 keV). The Laue lens is composed of bent crystals of Gallium Arsenide (GaAs, 220) and Germanium (Ge, 111), and, for the first time, the focusing property of bent crystals has been exploited for this field of applications. We show the preliminary results concerning the adhesive employed to fix the crystal tiles over the lens support, the positioning accuracy obtained and possible further improvements. The Laue lens petal that will be completed in a few months has a pass band of 80-300 keV and is a fraction of an entire Laue lens capable of focusing x-rays up to 600 keV, possibly extendable down to ~20-30 keV with suitable low absorption crystal materials and focal length. The final goal is to develop a focusing optics that can improve the sensitivity over current telescopes in this energy band by 2 orders of magnitude.

  12. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  13. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Zhifu; Zhang, Heqiu; Liang, Hongwei; Tang, Bin; Peng, Xincun; Liu, Jianxun; Yang, Chao; Xia, Xiaochuan; Tao, Pengcheng; Shen, Rensheng; Zou, Jijun; Du, Guotong

    2018-06-01

    The temperature-dependent radiation-detection performance of an alpha-particle detector that was based on a gallium-nitride (GaN)-based pin structure was studied from 290 K to 450 K. Current-voltage-temperature measurements (I-V-T) of the reverse bias show the exponential dependence of leakage currents on the voltage and temperature. The current transport mechanism of the GaN-based pin diode from the reverse bias I-V fitting was analyzed. The temperature-dependent pulse-height spectra of the detectors were studied using an 241 Am alpha-particle source at a reverse bias of 10 V, and the peak positions shifted from 534 keV at 290 K to 490 keV at 450 K. The variation of full width at half maximum (FWHM) from 282 keV at 290 K to 292 keV at 450 K is almost negligible. The GaN-based pin detectors are highly promising for high-temperature environments up to 450 K.

  14. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers.

    PubMed

    Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne

    2018-02-26

    Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.

  15. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures.

    DTIC Science & Technology

    1982-12-01

    AD-A125 858 EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN 1/3 GALLIUM ARSENIDE-RL..(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB N R...EXPERIMENTAL STUDIES OF LATERALXILECTRON TRANSPORT ,:g IN GALLIUM ARSENIDE -ALUMINUM GALLIUM ARSENIDE- -HETEROSTRUCTURES APRVE O PUBLICRLEAS.DSRBUINULMTE. 2...EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN GALLIUM ARSENIDE-ALUMINUM GALLIUM ARSENIDE Technical Report R-975 HETEROSTRUCTURES 6. PERFORMING ONG

  16. Dose distribution of a 125 keV mean energy microplanar x-ray beam for basic studies on microbeam radiotherapy.

    PubMed

    Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto

    2008-07-01

    A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 microm high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 microm-thick polyimide sheets that were separated by 175 microm-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.

  17. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  18. Dose distribution of a 125 keV mean energy microplanar x-ray beam for basic studies on microbeam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao

    A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 {mu}m high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 {mu}m-thick polyimide sheets that were separated by 175 {mu}m-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of themore » dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.« less

  19. Multilayer diffraction at 104 keV

    NASA Technical Reports Server (NTRS)

    Krieger, Allen S.; Blake, Richard L.; Siddons, D. P.

    1993-01-01

    We have measured the diffraction peak of a W:Si synthetic multilayer reflector at 104 keV using the High Energy Bonse-Hart Camera at the X-17B hard X-ray wiggler beam line of the National Synchrotron Light Source at Brookhaven National Laboratory. The characteristics of the diffraction peak are described and compared to theory.

  20. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  1. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  2. Gallium-containing anticancer compounds.

    PubMed

    Chitambar, Christopher R

    2012-06-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin's lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks crossresistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed.

  3. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less

  4. Gallium-containing anticancer compounds

    PubMed Central

    Chitambar, Christopher R

    2013-01-01

    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is not myelosuppressive; it can be used when other drugs have failed or when the blood count is low. Given the therapeutic potential of gallium, newer generations of gallium compounds are now in various phases of preclinical and clinical development. These compounds hold the promise of greater anti-tumor activity against a broader spectrum of cancers. The development of gallium compounds for cancer treatment and their mechanisms of action will be discussed. PMID:22800370

  5. Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Raziuddin A.

    Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.

  6. Gas Source Molecular Beam Epitaxial Growth of GaN

    DTIC Science & Technology

    1992-11-25

    identify by block number) FIELW GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and Identify by block number) Aluminum gallium nitride (AlGaN...AND TASK OBJECTIVES Aluminum gallium nitride (AIGaN) has long been recognized as a promising radiation hard optoelectronic material. AIGaN has a wide...Efficient, pure, low temperature sources for the gas source molecular beam epitaxial (GSMBE) growth of aluminum gallium nitride will essentially

  7. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron

  8. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  9. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  10. Experimental verification of beam quality in high-contrast imaging with orthogonal bremsstrahlung photon beams.

    PubMed

    Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B

    2007-07-01

    Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.

  11. Dependence of reflection and transmission of soliton on angle of incidence at an interface between chalcogenide fibre and gallium nanoparticle film by phase plane trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruka, Preeti, E-mail: preety-naruka@Yyahoo.co.in; Bissa, Shivangi; Nagar, A. K.

    In the present paper, we study propagation of a soliton at an interface formed between special type of chalcogenide fibre and gallium in three different phases with the help of equivalent particle theory. Critical angle of incidence and critical power required for transmission and reflection of soliton beam have investigated. Here it is found that if the incident angle of the beam or initial velocity of the equivalent particle is insufficient to overcome the maximum increase in potential energy then the particle (light beam) is reflected by the interface and if this incident angle is greater than a critical anglemore » then light beam will be transmitted by the interface. From an equation these critical angles for α-gallium, one of a metastable phase and liquid gallium are calculated and concluded that at large incident angles, the soliton is transmitted through the boundary, whereas at small incidence angles the soliton get reflected on keeping the power of incident beam constant. These results are explained by phase plane trajectories of the effective potential which are experimentally as well as theoretically proved.« less

  12. ANALYSIS OF ENERGY LOSSES OF A 30-kev ELECTRON BEAM IN THE FLUORIDE, CHLORIDE, AND BROMIDE OF LITHIUM (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradal, F.; Gout, C.

    1963-02-01

    The energy loss of a 30-kev electron beam in films of LiF, LiCl, and LiBr were analyzed with a magnetic spectrograph. For LiF, the results are compared to the absorption curve in the ultraviolet. The rays observed seem due to the excitation of valence band electrons of the 2s band of F/sup -/ and the 1s band of Li/sup +/. In some cases, energy losses less than 10 ev were observed, which seems connected to the presence of color centers. (tr-auth)

  13. Influences of Gate Bias and Light Stresses on Device Characteristics of High-Energy Electron-Beam-Irradiated Indium Gallium Zinc Oxide Based Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Moon, Hye Ji; Ryu, Min Ki; Cho, Kyoung Ik; Yun, Eui-Jung; Bae, Byung Seong

    2012-09-01

    Under white light illumination, amorphous indium-gallium-zinc oxide (a-IGZO)-based thin-film transistors (TFTs) showed a large negative shift of threshold voltage of more than -15 V depending on the process conditions. We investigated the influences of both gate bias and white light illumination on device properties of IGZO-based TFTs untreated and treated with high-energy electron beam irradiation (HEEBI). The TFTs were treated with HEEBI in air at room temperature (RT), electron beam energy of 0.8 MeV, and a dose of 1×1014 electrons/cm2. The HEEBI-treated TFTs showed an improved stability under negative bias illumination stress (NBIS) and positive bias illumination stress (PBIS) compared with non-HEEBI-treated TFTs, suggesting that the acceptor-like defects might be generated by HEEBI treatment near the valence band edge.

  14. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gjorgieva, Slavica, E-mail: slavicagjorgieva89@gmail.com; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, POB 162, 1000 Skopje; Barandovski, Lambe, E-mail: lambe@pmf.ukim.mk

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using {sup 22}Na, {sup 60}Co {sup 133}Ba and {sup 133}Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  15. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  16. Renal amyloidosis. Evaluation by gallium imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V.W.; Skinner, M.; Cohen, A.S.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity formore » detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.« less

  17. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  18. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  19. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  20. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  1. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  2. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian W.

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  3. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.

    PubMed

    Wu, Pae C; Khoury, Christopher G; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V; Vo-Dinh, Tuan; Brown, April S; Everitt, Henry O

    2009-09-02

    Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.

  4. Controlled Electrochemical Deformation of Liquid-Phase Gallium.

    PubMed

    Chrimes, Adam F; Berean, Kyle J; Mitchell, Arnan; Rosengarten, Gary; Kalantar-zadeh, Kourosh

    2016-02-17

    Pure gallium is a soft metal with a low temperature melting point of 29.8 °C. This low melting temperature can potentially be employed for creating optical components with changeable configurations on demand by manipulating gallium in its liquid state. Gallium is a smooth and highly reflective metal that can be readily maneuvered using electric fields. These features allow gallium to be used as a reconfigurable optical reflector. This work demonstrates the use of gallium for creating reconfigurable optical reflectors manipulated through the use of electric fields when gallium is in a liquid state. The use of gallium allows the formed structures to be frozen and preserved as long as the temperature of the metal remains below its melting temperature. The lens can be readily reshaped by raising the temperature above the melting point and reapplying an electric field to produce a different curvature of the gallium reflector.

  5. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    PubMed

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  6. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  7. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    PubMed Central

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie

    2013-01-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  8. Ion Beam Materials Analysis and Modifications at keV to MeV Energies at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.

    2014-02-01

    The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.

  9. Study on the parameters of the scanning system for the 300 keV electron accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less

  10. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  11. Construction of Gallium Point at NMIJ

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Saito, I.; Yamazawa, K.

    2017-03-01

    Two open-type gallium point cells were fabricated using ingots whose nominal purities are 7N. Measurement systems for the realization of the melting point of gallium using these cells were built. The melting point of gallium is repeatedly realized by means of the measurement systems for evaluating the repeatability. Measurements for evaluating the effect of hydrostatic pressure coming from the molten gallium existing during the melting process and the effect of gas pressure that fills the cell were also performed. Direct cell comparisons between those cells were conducted. This comparison was aimed to evaluate the consistency of each cell, especially related to the nominal purity. Direct cell comparison between the open-type and the sealed-type gallium point cell was also conducted. Chemical analysis was conducted using samples extracted from ingots used in both the newly built open-type gallium point cells, from which the effect of impurities in the ingot was evaluated.

  12. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    DTIC Science & Technology

    2015-07-01

    optical loss mechanism, which limits the efficiency of the PV device.1 Photon absorption needs to occur inside the solar cell active region (near the...Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver

  13. Generator for gallium-68 and compositions obtained therefrom

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  14. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  15. Gallium-67 activity in bronchoalveolar lavage fluid in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauth, H.A.; Heimes, K.; Schubotz, R.

    1986-01-01

    Roentgenograms and gallium-67 scans and gallium-67 counts of BAL fluid samples, together with differential cell counts, have proved to be useful in assessing activity and lung involvement in sarcoidosis. In active pulmonary sarcoidosis gallium-67 scans are usually positive. Quantitation of gallium-67 uptake in lung scans, however, may be difficult. Because gallium-67 uptake and cell counts in BAL fluid may be correlated, we set out to investigate gallium-67 activity in BAL fluid recovered from patient of different groups. Sixteen patients with recently diagnosed and untreated sarcoidosis, nine patients with healthy lungs, and five patients with CFA were studied. Gallium-67 uptake ofmore » the lung, gallium-67 activity in the lavage fluid, SACE and LACE levels, and alpha 1-AT activity were measured. Significantly more gallium-67 activity was found in BAL fluid from sarcoidosis patients than in that from CFA patients (alpha = .001) or patients with healthy lungs (alpha = .001). Gallium-67 activity in BAL fluid could be well correlated with the number of lymphocytes in BAL fluid, but poorly with the number of macrophages. Subjects with increased levels of SACE or serum alpha 1-AT showed higher lavage gallium-67 activity than did normals, but no correlation could be established. High gallium-67 activity in lavage fluid may be correlated with acute sarcoidosis or physiological deterioration; low activity denotes change for the better. The results show that gallium-67 counts in BAL fluid reflects the intensity of gallium-67 uptake and thus of activity of pulmonary sarcoidosis.« less

  16. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.

    PubMed

    Jacobs, B W; Ayres, V M; Crimp, M A; McElroy, K

    2008-10-08

    In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a focused ion beam system. A coherent interface between the zinc-blende and wurtzite phases is identified. A mechanism for catalyst-free vapor-solid multiphase nanowire nucleation and growth is proposed.

  17. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  18. Acceleration of 500 keV Negative Ion Beams By Tuning Vacuum Insulation Distance On JT-60 Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2011-09-26

    Acceleration of a 500 keV beam up to 2.8 A has been achieved on a JT-60U negative ion source with a three-stage accelerator by overcoming low voltage holding which is one of the critical issues for realization of the JT-60SA ion source. In order to improve the voltage holding, preliminary voltage holding tests with small-size grids with uniform and locally intense electric fields were carried out, and suggested that the voltage holding was degraded by both the size and local electric field effects. Therefore, the local electric field was reduced by tuning gap lengths between the large size grids andmore » grid support structures of the accelerator. Moreover, a beam radiation shield which limited extension of the minimum gap length was also optimized so as to reduce the local electric field while maintaining the shielding effect. These modifications were based on the experiment results, and significantly increased the voltage holding from <150 kV/stage for the original configuration to 200 kV/stage. These techniques for improvement of voltage holding should also be applicable to other large ion sources accelerators such as those for ITER.« less

  19. Carbon nanothermometer containing gallium.

    PubMed

    Gao, Yihua; Bando, Yoshio

    2002-02-07

    Many applications have been found for carbon nanotubes, and we can now add a role as a 'nanothermometer' to this list. We describe how the height of a continuous, unidimensional column of liquid gallium inside a carbon nanotube (up to about 10 micrometres long and about 75 nanometres in diameter) varies linearly and reproducibly in the temperature range 50-500 degrees C, with an expansion coefficient that is the same as for gallium in the macroscopic state. We chose gallium as our thermal indicator because it has one of the greatest liquid ranges of any metal (29.78-2,403 degrees C) and a low vapour pressure even at high temperatures. This nanothermometer should be suitable for use in a wide variety of microenvironments.

  20. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  1. Gallium poisoning: a rare case report.

    PubMed

    Ivanoff, Chris S; Ivanoff, Athena E; Hottel, Timothy L

    2012-02-01

    The authors present a case of a college student who suffered acute gallium poisoning as a result of accidental exposure to gallium halide complexes. This is extremely rare and has never been reported in the literature. Acute symptoms after the incident, which initially presented as dermatitis and appeared relatively not life-threatening, rapidly progressed to dangerous episodes of tachycardia, tremors, dyspnea, vertigo, and unexpected black-outs. Had there been effective emergency medical care protocols, diagnostic testing, treatment and antidotes, the latent manifestations of irreversible cardiomyopathy may have been prevented. Given how quickly exposure led to morbidity, this article aims to raise an awareness of the toxic potential of gallium. This has particular relevance for workers involved in the production of semiconductors where there is a potential for accidental exposure to gallium by-products during device processing. It may also have implications for dentists who use gallium alloys to replace mercury containing amalgam. In the absence of threshold limit values and exposure limits for humans, as well as emergency medical guidelines for treatment of poisoning, the case calls on the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration to establish guidelines and medical management protocols specific for gallium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.

    PubMed

    Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu

    2013-10-01

    Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Contributions from gallium vacancies and carbon-related defects to the ``yellow luminescence'' in GaN

    NASA Astrophysics Data System (ADS)

    Armitage, R.; Hong, William; Yang, Qing; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K.

    2003-05-01

    Carbon-doped GaN layers grown by molecular-beam epitaxy are studied with photoluminescence and positron annihilation spectroscopy. Semi-insulating layers doped with >1018 cm-3 carbon show a strong luminescence band centered at ˜2.2 eV (yellow luminescence). The absolute intensity of the 2.2 eV band is compared with the gallium vacancy concentration determined by positron annihilation spectroscopy. The results indicate that a high concentration of gallium vacancies is not necessary for yellow luminescence and that there is in fact a causal relationship between carbon and the 2.2 eV band. Markedly different deep-level ionization energies are found for the high-temperature quenching of the 2.2 eV photoluminescence in carbon-doped and reference samples. We propose that while the model of Neugebauer and Van de Walle [Appl. Phys. Lett. 69, 503 (1996)] applies for GaN of low carbon concentration, a different yellow luminescence mechanism is involved when the interstitial carbon concentration is comparable to or exceeds the gallium vacancy concentration.

  4. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  5. Revised neutrino-gallium cross section and prospects of BEST in resolving the gallium anomaly

    NASA Astrophysics Data System (ADS)

    Barinov, Vladislav; Cleveland, Bruce; Gavrin, Vladimir; Gorbunov, Dmitry; Ibragimova, Tatiana

    2018-04-01

    O (1 )eV sterile neutrino can be responsible for a number of anomalous results of neutrino oscillation experiments. This hypothesis may be tested at short base line neutrino oscillation experiments, several of which are either ongoing or under construction. Here, we concentrate on the so-called gallium anomaly, found by SAGE and GALLEX experiments, and its foreseeable future tests with BEST experiment at Baksan Neutrino Observatory. We start with a revision of the neutrino-gallium cross section that is performed by utilizing the recent measurements of the nuclear final state spectra. We accordingly correct the parameters of gallium anomaly and refine the BEST prospects in testing it and searching for sterile neutrinos. We further evolve the previously proposed idea to investigate the anomaly with 65Zn artificial neutrino source as a next option available at BEST and estimate its sensitivity to the sterile neutrino model parameters following the Bayesian approach. We show that after the two stages of operation BEST will make 5 σ discovery of the sterile neutrinos, if they are behind the gallium anomaly.

  6. Serum and tissue concentrations of gallium after oral administration of gallium nitrate and gallium maltolate to neonatal calves.

    PubMed

    Monk, Caroline S; Sweeney, Raymond W; Bernstein, Lawrence R; Fecteau, Marie-Eve

    2016-02-01

    To determine serum and tissue concentrations of gallium (Ga) after oral administration of gallium nitrate (GaN) and gallium maltolate (GaM) to neonatal calves. 8 healthy neonatal calves. Calves were assigned to 1 of 2 groups (4 calves/group). Gallium (50 mg/kg) was administered as GaN or GaM (equivalent to 13.15 mg of Ga/kg for GaN and 7.85 mg of Ga/kg for GaM) by oral gavage once daily for 5 days. Blood samples were collected 0, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after Ga administration on day 1; 4 and 24 hours after Ga administration on days 2, 3, and 4; and 4, 12, and 24 hours after Ga administration on day 5. On day 6, calves were euthanized and tissue samples were obtained. Serum and tissue Ga concentrations were measured by use of mass spectrometry. Data were adjusted for total Ga dose, and comparisons were made between the 2 groups. Calves receiving GaM had a significantly higher dose-adjusted area under the curve and dose-adjusted maximum serum Ga concentration than did calves receiving GaN. Despite receiving less Ga per dose, calves receiving GaM had tissue Ga concentrations similar to those for calves receiving GaN. In this study, calves receiving GaM had significantly higher Ga absorption than did calves receiving GaN. These findings suggested that GaM might be useful as a prophylactic agent against Mycobacterium avium subsp paratuberculosis infection in neonatal calves.

  7. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  8. Structure of dental gallium alloys.

    PubMed

    Herø, H; Simensen, C J; Jørgensen, R B

    1996-07-01

    The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.

  9. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Lin, Chun-Hung

    2017-03-01

    Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for

  11. Preventing Supercooling Of Gallium

    NASA Technical Reports Server (NTRS)

    Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie

    1994-01-01

    Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.

  12. Repurposing of gallium-based drugs for antibacterial therapy.

    PubMed

    Bonchi, Carlo; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo; Frangipani, Emanuela

    2014-01-01

    While the occurrence and spread of antibiotic resistance in bacterial pathogens is vanishing current anti-infective therapies, the antibiotic discovery pipeline is drying up. In the last years, the repurposing of existing drugs for new clinical applications has become a major research area in drug discovery, also in the field of anti-infectives. This review discusses the potential of repurposing previously approved gallium formulations in antibacterial chemotherapy. Gallium has no proven function in biological systems, but it can act as an iron-mimetic in both prokaryotic and eukaryotic cells. The activity of gallium mostly relies on its ability to replace iron in redox enzymes, thus impairing their function and ultimately hampering cell growth. Cancer cells and bacteria are preferential gallium targets due to their active metabolism and fast growth. The wealth of knowledge on the pharmacological properties of gallium has opened the door to the repurposing of gallium-based drugs for the treatment of infections sustained by antibiotic-resistant bacterial pathogens, such as Acinetobacter baumannii or Pseudomonas aeruginosa, and for suppression of Mycobacterium tuberculosis growth. The promising antibacterial activity of gallium both in vitro and in different animal models of infection raises the hope that gallium will confirm its efficacy in clinical trials, and will become a valuable therapeutic option to cure otherwise untreatable bacterial infections. © 2014 International Union of Biochemistry and Molecular Biology.

  13. NIM Realization of the Gallium Triple Point

    NASA Astrophysics Data System (ADS)

    Xiaoke, Yan; Ping, Qiu; Yuning, Duan; Yongmei, Qu

    2003-09-01

    In the last three years (1999 to 2001), the gallium triple-point cell has been successfully developed, and much corresponding research has been carried out at the National Institute of Metrology (NIM), Beijing, China. This paper presents the cell design, apparatus and procedure for realizing the gallium triple point, and presents studies on the different freezing methods. The reproducibility is 0.03 mK, and the expanded uncertainty of realization of the gallium triple point is evaluated to be 0.17 mK (p=0.99, k=2.9). Also, the reproducibility of the gallium triple point was compared with that of the triple point of water.

  14. The surface tension of liquid gallium

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.

    1985-01-01

    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  15. Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2017-11-01

    Hybrid pixel sensor technology such as the Medipix3 represents a unique tool for electron imaging. We have investigated its performance as a direct imaging detector using a Transmission Electron Microscope (TEM) which incorporated a Medipix3 detector with a 300 μm thick silicon layer compromising of 256×256 pixels at 55 μm pixel pitch. We present results taken with the Medipix3 in Single Pixel Mode (SPM) with electron beam energies in the range, 60-200 keV . Measurements of the Modulation Transfer Function (MTF) and the Detective Quantum Efficiency (DQE) were investigated. At a given beam energy, the MTF data was acquired by deploying the established knife edge technique. Similarly, the experimental data required to determine DQE was obtained by acquiring a stack of images of a focused beam and of free space (flatfield) to determine the Noise Power Spectrum (NPS).

  16. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  17. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  18. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  19. Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon.

    PubMed

    Wu, Ko-Li; Chou, Yi; Su, Chang-Chou; Yang, Chih-Chaing; Lee, Wei-I; Chou, Yi-Chia

    2017-12-20

    We report single crystalline gallium nitride nanowire growth from Ni and Ni-Au catalysts on silicon using hydride vapor phase epitaxy. The growth takes place rapidly; efficiency in time is higher than the conventional nanowire growth in metal-organic chemical vapor deposition and thin film growth in molecular beam epitaxy. The effects of V/III ratio and carrier gas flow on growth are discussed regarding surface polarity and sticking coefficient of molecules. The nanowires of gallium nitride exhibit excellent crystallinity with smooth and straight morphology and uniform orientation. The growth mechanism follows self-assembly from both catalysts, where Au acts as a protection from etching during growth enabling the growth of ultra-long nanowires. The photoluminescence of such nanowires are adjustable by tuning the growth parameters to achieve blue emission. The practical range of parameters for mass production of such high crystal quality and uniformity of nanowires is suggested.

  20. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  1. Automated realization of the gallium melting and triple points

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  2. Gallium-mediated growth of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.

    2003-03-01

    Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.

  3. Radiochemical separation of gallium by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  4. Beam characterisation of the KIRAMS electron microbeam system.

    PubMed

    Sun, G M; Kim, E H; Song, K B; Jang, M

    2006-01-01

    An electron microbeam system has been installed at the Korea Institute of Radiological and Medical Sciences (KIRAMS) for use in radiation biology studies. The electron beam is produced from a commercial electron gun, and the beam size is defined by a 5 microm diameter pinhole. Beam energy can be varied in the range of 1-100 keV, covering a range of linear energy transfer from 0.4 to 12.1 keV microm-1. The micrometer-sized electron beam selectively irradiates cells cultured in a Mylar-bottomed dish. The positioning of target cells one by one onto the beam exit is automated, as is beam shooting. The electron beam entering the target cells has been calibrated using a Passivated Implanted Planar Silicon (PIPS) detector. This paper describes the KIRAMS microbeam cell irradiation system and its beam characteristics.

  5. Prebunched-beam free electron maser

    NASA Astrophysics Data System (ADS)

    Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.

    1994-05-01

    The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.

  6. Shock wave experiments on gallium

    NASA Astrophysics Data System (ADS)

    Jensen, Brian; Branch, Brittany; Cherne, Frank

    2017-06-01

    Gallium exhibits a complex phase diagram with multiple solid phases, an anomalous melt boundary, and a low-temperature melt transition making it a suitable material for shock wave studies focused on multiphase properties including kinetics and strength. Apart from high-pressure shock wave data that exists for the liquid phase, there is a clear lack of data in the low-pressure regime where much of the complexity in the phase diagram exists. In this work, a series of shock wave experiments were performed to begin examining the low-pressure region of the phase diagram. Additional data on a gallium alloy, which remains liquid at room temperature, will be presented and compared to data available for pure gallium (LA-UR-17-21449).

  7. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  8. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  9. 181Ta(n ,γ ) cross section and average resonance parameter measurements in the unresolved resonance region from 24 to 1180 keV using a filtered-beam technique

    NASA Astrophysics Data System (ADS)

    McDermott, B. J.; Blain, E.; Daskalakis, A.; Thompson, N.; Youmans, A.; Choun, H. J.; Steinberger, W.; Danon, Y.; Barry, D. P.; Block, R. C.; Epping, B. E.; Leinweber, G.; Rapp, M. R.

    2017-07-01

    A new array of four Deuterated Benzene (C6D6 ) detectors has been installed at the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute for the purpose of measuring neutron capture cross sections in the keV region. Measurements were performed on samples of 181Ta in the unresolved resonance region (URR) using a filtered-beam technique, by which a 30 cm iron filter was placed in a white-spectrum neutron beam to remove all time-dependent γ -ray background and all neutrons except those transmitted through resonance-potential interference "windows" in the iron. The resulting filtered beam was effectively a quasimonoenergetic neutron source, which was used for performing measurements on isotopes with narrow level spacings in the URR. The capture cross-section results obtained for two thicknesses of tantalum are in agreement with those documented in the JEFF-3.2 library, as are the average resonance parameters obtained via a fit to the data using the sammy-fitacs code.

  10. Nonlinear behaviour of reflectivity of gallium - Silica interface & its applications

    NASA Astrophysics Data System (ADS)

    Naruka, Preeti; Bissa, Shivangi

    2018-05-01

    In this paper Optical properties and nonlinear behaviour of Gallium-Silica Interface is studied. Change in reflectivity of gallium film is explained as a function of thickness of metallic layer and intensity of incident light by using non-thermal mechanism. Here variation of dielectric constant of gallium with temperature is also explained on considering Binary nanoshell model of gallium nanoparticles of spherical shape. In the present paper application of structural phase transformation of gallium is explained as a Grating assisted coupler.

  11. Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.

    PubMed

    Zhan, Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri; Nakanishi, Haruyuki

    2005-06-16

    It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.

  12. One-Micron Beams for Macromolecular Crystallography at GM/CA-CAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder, D. W.; Sanishvili, R.; Xu, S.

    2010-06-23

    GM/CA-CAT has developed a 1-{mu}m beam for challenging micro-diffraction experiments with macromolecular crystals (e.g. small crystals) and for radiation damage studies. Reflective (Kirkpatrick-Baez mirrors) and diffractive (Fresnel zone plates) optics have been used to focus the beam. Both cases are constrained by the need to maintain a small beam convergence. Using two different zone plates, 1.0x1.0 and 0.8x0.9 {mu}m{sup 2} (VxH,FWHM) beams were created at 15.2 keV and 18.5 keV, respectively. Additionally, by introducing a vertical focusing mirror upstream of the zone plate, a line focus at 15.2 keV was created (28x1.4 {mu}m{sup 2} VxH,FWHM) with the line oriented perpendicularmore » to the X-ray polarization and the crystal rotation axis. Crystal-mounting stages with nanometer resolution have been assembled to profile these beams and to perform diffraction experiments.« less

  13. Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER

    NASA Astrophysics Data System (ADS)

    Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele

    2004-02-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.

  14. Gallium nitrate ameliorates type II collagen-induced arthritis in mice.

    PubMed

    Choi, Jae-Hyeog; Lee, Jong-Hwan; Roh, Kug-Hwan; Seo, Su-Kil; Choi, Il-Whan; Park, Sae-Gwang; Lim, Jun-Goo; Lee, Won-Jin; Kim, Myoung-Hun; Cho, Kwang-rae; Kim, Young-Jae

    2014-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease. Gallium nitrate has been reported to reserve immunosuppressive activities. Therefore, we assessed the therapeutic effects of gallium nitrate in the mouse model of developed type II collagen-induced arthritis (CIA). CIA was induced by bovine type II collagen with Complete Freund's adjuvant. CIA mice were intraperitoneally treated from day 36 to day 49 after immunization with 3.5mg/kg/day, 7mg/kg/day gallium nitrate or vehicle. Gallium nitrate ameliorated the progression of mice with CIA. The clinical symptoms of collagen-induced arthritis did not progress after treatment with gallium nitrate. Gallium nitrate inhibited the increase of CD4(+) T cell populations (p<0.05) and also inhibited the type II collagen-specific IgG2a-isotype autoantibodies (p<0.05). Gallium nitrate reduced the serum levels of TNF-α, IL-6 and IFN-γ (p<0.05) and the mRNA expression levels of these cytokine and MMPs (MMP2 and MMP9) in joint tissues. Western blotting of members of the NF-κB signaling pathway revealed that gallium nitrate inhibits the activation of NF-κB by blocking IκB degradation. These data suggest that gallium nitrate is a potential therapeutic agent for autoimmune inflammatory arthritis through its inhibition of the NF-κB pathway, and these results may help to elucidate gallium nitrate-mediated mechanisms of immunosuppression in patients with RA. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Muonium formation at keV energies

    NASA Astrophysics Data System (ADS)

    Prokscha, T.; Morenzoni, E.; Garifianov, N.; Glückler, H.; Khasanov, R.; Luetkens, H.; Suter, A.

    2003-02-01

    Charge differentiation in μ + or muonium (Mu) as a consequence of the slowing down of μ + in matter is of fundamental interest in the μSR method. It is also of relevance for understanding the moderation process of μ + in van der Waals solids like s-Ne, s-Ar or s-N 2, which are the most suitable materials to generate epithermal μ + serving as a source for low-energy μ + (LE-μ +) beams. The LE-μ + beam at the Paul Scherrer Institut (PSI) allows us to study the formation of Mu at low implantation energies (0.5- 30 keV) in insulators and semiconductors. These investigations may help to clarify the interaction between the μ + and the electrons of its ionisation track since the number of track electrons can be tuned by varying the implantation energy. We present the first results of LE-μSR investigations on thin van der Waals solids (s-Ar, s-Xe), fused quartz ( SUPRASIL) and a quartz crystal, where the μ + and Mu fractions were measured as a function of the implantation energy.

  16. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  17. Potential for focused beam orthovoltage therapy

    NASA Astrophysics Data System (ADS)

    Mahato, Dip N.; MacDonald, C. A.

    2010-08-01

    Radiation therapy typically employs high energy photon beams because the low absorption coefficient at these energies minimizes skin dose with a conventional, unfocused beam. At orthovoltage energies less than 150 keV, the maximum dose for a single beam occurs very close to the skin surface. However a well-focused beam of low energy x rays can provide much higher flux at the target depth while sparing dose to the skin. The measured focal spot size for the polycapillary optic was 0.2 mm and was found to remain unchanged through 50 mm of phantom thickness. The calculated depth-dose curve was found to peak several centimeters below the surface with 25-40 keV radiation. Modeling indicates that the tumor dose would remain much higher than the skin dose even after scanning to cover a 1 cm3 tumor.

  18. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas M.; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r_{80%}=(212± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm2 is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  19. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  20. A FETISH for gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, A.R.

    1996-12-31

    An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [({sup t}Bu)GaS]{sub 4}, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulatingmore » properties of cubic-GaS make it suitable as the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).« less

  1. An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF

    NASA Astrophysics Data System (ADS)

    Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.

    2018-05-01

    Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

  2. Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation

    NASA Astrophysics Data System (ADS)

    Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann

    2016-12-01

    For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.

  3. P-n junctions formed in gallium antimonide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor phase deposition process forms a heavily doped n-region on a melt-grown p-type gallium antimonide substrate. HCl transports gallium to the reaction zone, where it combines with antimony hydride and the dopant carrier, hydrogen telluride. Temperatures as low as 400 degrees C are required.

  4. Deuteron Beam Source Based on Mather Type Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.

    2013-04-01

    A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.

  5. Transmission of ˜ 10 keV electron beams through thin ceramic foils: Measurements and Monte Carlo simulations of electron energy distribution functions

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Heindl, T.; Skrobol, C.; Wieser, J.; Krücken, R.; Ulrich, A.

    2008-07-01

    Electron beams with particle energy of ~10 keV were sent through 300 nm thick ceramic (Si3N4 + SiO2) foils and the resulting electron energy distribution functions were recorded using a retarding grid technique. The results are compared with Monte Carlo simulations performed with two publicly available packages, Geant4 and Casino v2.42. It is demonstrated that Geant4, unlike Casino, provides electron energy distribution functions very similar to the experimental distributions. Both simulation packages provide a quite precise average energy of transmitted electrons: we demonstrate that the maximum uncertainty of the calculated values of the average energy is 6% for Geant4 and 8% for Casino, taking into account all systematic uncertainties and the discrepancies in the experimental and simulated data.

  6. Gallium 67 scintigraphy in glomerular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, A.A.; Lopez-Majano, V.; Levy, P.S.

    1988-12-01

    To evaluate the diagnostic usefulness of gallium 67 scintigraphy in glomerular disease, 45 patients with various glomerulopathies, excluding lupus nephritis and renal vasculitis, were studied. Persistent renal visualization 48 hours after the gallium injection, a positive scintigram, was graded as + (less than), ++ (equal to), and +++ (greater than) the hepatic uptake. Positive scintigrams were seen in ten of 16 cases of focal segmental glomerulosclerosis, six of 11 cases of proliferative glomerulonephritis, and one case of minimal change, and one of two cases of membranous nephropathy; also in three of six cases of sickle glomerulopathy, two cases of diabeticmore » neuropathy, one of two cases of amyloidosis, and one case of mild chronic allograft rejection. The 25 patients with positive scans were younger than the 20 with negative scans (31 +/- 12 v 42 +/- 17 years; P less than 0.01), and exhibited greater proteinuria (8.19 +/- 7.96 v 2.9 +/- 2.3 S/d; P less than 0.01) and lower serum creatinine values (2 +/- 2 v 4.1 +/- 2.8 mg/dL; P less than 0.01). The amount of proteinuria correlated directly with the intensity grade of the gallium image (P less than 0.02), but there was no correlation between the biopsy diagnosis and the outcome of the gallium scan. It was concluded that gallium scintigraphy is not useful in the differential diagnosis of the glomerular diseases under discussion. Younger patients with good renal function and heavy proteinuria are likely to have a positive renal scintigram regardless of the underlying glomerulopathy.« less

  7. Assessment of gallium-67 scanning in pulmonary and extrapulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, H.L.; Gushue, G.F.; Park, C.H.

    1986-01-01

    Gallium-67 scans have been widely employed in patients with sarcoidosis as a means of indicating alveolitis and the need for corticosteroid therapy. Observation of 32 patients followed 3 or more years after gallium scans showed no correlation between findings and later course: of 10 patients with pulmonary uptake, 7 recovered with minor residuals; of 18 patients with mediastinal of extrathoracic uptake, 10 had persistent or progressive disease; of 4 patients with negative initial scans, 2 had later progression. The value of gallium-67 scans as an aid to diagnosis was studied in 40 patients with extrapulmonary sarcoidosis. In 12 patients, abnormalmore » lacrimal, nodal, or pulmonary uptake aided in selection of biopsy sites. Gallium-67 scans and serum ACE levels were compared in 97 patients as indices of clinical activity. Abnormal gallium-67 uptake was observed in 96.3% of the tests in active disease, and ACE level elevation occurred in 56.3%. In 24 patients with inactive or recovered disease, abnormal gallium-67 uptake occurred in 62.5% and ACE level elevation in 37.5%. Gallium-67 scans have a limited but valuable role in the diagnosis and management of sarcoidosis.« less

  8. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  9. SU-E-T-285: Dose Variation at Bone in Small-Animal Irradiation: A Monte Carlo Study Using Monoenergetic Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, A; Chow, J

    Purpose: The aim of this study is to investigate the variation of bone dose on photon beam energy (keV – MeV) in small-animal irradiation. Dosimetry of homogeneous and inhomogeneous phantoms as per the same mouse computed tomography image set were calculated using the DOSCTP and DOSXYZnrc based on the EGSnrc Monte Carlo code. Methods: Monte Carlo simulations for the homogeneous and inhomogeneous mouse phantom irradiated by a 360 degree photon arc were carried out. Mean doses of the bone tissue in the irradiated volumes were calculated at various photon beam energies, ranging from 50 keV to 1.25 MeV. The effectmore » of bone inhomogeneity was examined through the Inhomogeneous Correction Factor (ICF), a dose ratio of the inhomogeneous to the homogeneous medium. Results: From our Monte Carlo results, higher mean bone dose and ICF were found when using kilovoltage photon beams compared to megavoltage. In beam energies ranging from 50 keV to 200 keV, the bone dose was found maximum at 50 keV, and decreased significantly from 2.6 Gy to 0.55 Gy, when 2 Gy was delivered at the center of the phantom (isocenter). Similarly, the ICF were found decreasing from 4.5 to 1 when the photon beam energy was increased from 50 keV to 200 keV. Both mean bone dose and ICF remained at about 0.5 Gy and 1 from 200 keV to 1.25 MeV with insignificant variation, respectively. Conclusion: It is concluded that to avoid high bone dose in the small-animal irradiation, photon beam energy higher than 200 keV should be used with the ICF close to one, and bone dose comparable to the megavoltage beam where photoelectric effect is not dominant.« less

  10. Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.

    1989-01-01

    Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patientsmore » with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake.« less

  11. Construction of an electrode modified with gallium(III) for voltammetric detection of ovalbumin.

    PubMed

    Sugawara, Kazuharu; Okusawa, Makoto; Takano, Yusaku; Kadoya, Toshihiko

    2014-01-01

    Electrodes modified with gallium(III) complexes were constructed to detect ovalbumin (OVA). For immobilization of a gallium(III)-nitrilotriacetate (NTA) complex, the electrode was first covered with collagen film. After the amino groups of the film had reacted with isothiocyanobenzyl-NTA, the gallium(III) was then able to combine with the NTA moieties. Another design featured an electrode cast with a gallium(III)-acetylacetonate (AA) complex. The amount of gallium(III) in the NTA complex was equivalent to one-quarter of the gallium(III) that could be utilized from an AA complex. However, the calibration curves of OVA using gallium(III)-NTA and gallium(III)-AA complexes were linear in the ranges of 7.0 × 10(-11) - 3.0 × 10(-9) M and 5.0 × 10(-10) - 8.0 × 10(-9) M, respectively. The gallium(III) on the electrode with NTA complex had high flexibility due to the existence of a spacer between the NTA and the collagen film, and, therefore, the reactivity of the gallium(III) to OVA was superior to that of the gallium(III)-AA complex with no spacer.

  12. Operation of the CESR-TA vertical beam size monitor at Eb = 4 GeV

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Conolly, C.; Edwards, E.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2015-10-01

    We describe operation of the CESR-TA vertical beam size monitor (xBSM) with e± beams with Eb=4 GeV. The xBSM measures vertical beam size by imaging synchrotron radiation x-rays through an optical element onto a detector array of 32 InGaAs photodiodes with 50 μm pitch. The device has previously been successfully used to measure vertical beam sizes of 10-100 μm on a bunch-by-bunch, turn-by-turn basis at e± beam energies of ~2 GeV and source magnetic fields below 2.8 kG, for which the detector required calibration for incident x-rays of 1-5 keV. At Eb = 4.0 GeV and B=4.5 kG, however, the incident synchrotron radiation spectrum extends to ~20 keV, requiring calibration of detector response in that regime. Such a calibration is described and then used to analyze data taken with several different thicknesses of filters in front of the detector. We obtain a relative precision of better than 4% on beam size measurement from 15 to 100 μm over several different ranges of x-ray energy, including both 1-12 keV and 6-17 keV. The response of an identical detector, but tilted vertically by 60° in order to increase magnification without a longer beamline, is measured and shown to improve x-ray detection above 4 keV without compromising sensitivity to beam size. We also investigate operation of a coded aperture using gold masking backed by synthetic diamond.

  13. Sensitizing effects of gallium citrate on hyperthermic cell killing in vitro.

    PubMed

    Miyazaki, N; Nakano, H; Kawakami, N; Kugotani, M; Nishihara, K; Aoki, Y; Shinohara, K

    2000-01-01

    The lethal effects of gallium citrate in combination with heat were studied using four cell lines, L5178Y, FM3A, P388 and HeLa. Cells were incubated with different concentrations (0.2 2 mM) of gallium citrate at 37 degrees C for 24 h and heated at a range of temperatures from 40-44 degrees C for various time periods up to 6 h in the absence of gallium citrate. Survival and cell viability were determined by clonogenic assay and the dye-exclusion test, respectively. All of the cell lines tested were insensitive to heat below 41 degrees C, but were very sensitive to heat above 43 degrees C. Gallium citrate was cytotoxic to these cell lines at different levels: P388 and HeLa were far more sensitive than L5178Y and FM3A. The killing effects of heat at 41 degrees C were greatly enhanced by gallium citrate in L5178Y and P388 cells. The Arrhenius analysis for the lethal effect of heat, determined by clonogenic assay, in L5178Y cells showed that the transition temperature was remarkably decreased for the gallium-treated cells from approximately 43 degrees C to 41 degrees C. The mechanism for this decrease in the transition temperature may be attributable to the additional effects of gallium citrate on energy metabolism. Preincubation with 0.05 mM gallium citrate at 37 degrees C for 7 days also enhanced heat sensitization at 41 degrees C in L5178Y. This preincubation condition may correspond to the condition for the continuous infusion of gallium that is clinically used for cancer treatment. In contrast, treatment with gallium did not greatly enhance the sensitivity of FM3A or HeLa cells to heat at 41 degrees C, but the effects of gallium were significant.

  14. Direct determination of gallium on polyurethane foam by X-ray fluorescence.

    PubMed

    Carvalho, M S; Medeiros, J A; Nóbrega, A W; Mantovano, J L; Rocha, V P

    1995-01-01

    Gallium chloride is easily extracted from 6M HCl by comminuted polyether-type polyurethane foam. After the extraction step, the gallium absorbed by the PU foam can be quantitatively determined by X-ray fluorescence. A procedure for the direct determination of gallium absorbed by PU foam by XRFS is thus described. Gallium is determined at levels as low as 60 ng/ml (C(L)), with a calibration sensitivity of 424 cps ml/mug, within a linear range 0.1-2.30 mug/ml. The procedure investigated was successfully applied to determination of gallium in aluminum alloys, bauxite and industrial residue samples.

  15. Challenges for critical raw material recovery from WEEE - The case study of gallium.

    PubMed

    Ueberschaar, Maximilian; Otto, Sarah Julie; Rotter, Vera Susanne

    2017-02-01

    Gallium and gallium compounds are more frequently used in future oriented technologies such as photovoltaics, light diodes and semiconductor technology. In the long term the supply risk is estimated to be critical. Germany is one of the major primary gallium producer, recycler of gallium from new scrap and GaAs wafer producer. Therefore, new concepts for a resource saving handling of gallium and appropriate recycling strategies have to be designed. This study focus on options for a possible recycling of gallium from waste electric and electronic equipment. To identify first starting points, a substance flow analysis was carried out for gallium applied in integrated circuits applied on printed circuit boards and for LEDs used for background lighting in Germany in 2012. Moreover, integrated circuits (radio amplifier chips) were investigated in detail to deduce first approaches for a recycling of such components. An analysis of recycling barriers was carried out in order to investigate general opportunities and risks for the recycling of gallium from chips and LEDs. Results show, that significant gallium losses arose in primary production and in waste management. 93±11%, equivalent to 43,000±4700kg of the total gallium potential was lost over the whole primary production process until applied in electronic goods. The largest share of 14,000±2300kggallium was lost in the production process of primary raw materials. The subsequent refining process was related to additional 6900±3700kg and the chip and wafer production to 21,700±3200kg lost gallium. Results for the waste management revealed only low collection rates for related end-of-life devices. Not collected devices held 300 ± 200 kg gallium. Due to the fact, that current waste management processes do not recover gallium, further 80 ± 10 kg gallium were lost. A thermal pre-treatment of the chips, followed by a manual separation allowed an isolation of gallium rich fractions, with gallium mass fractions up to

  16. Nuclear microprobe imaging of gallium nitrate in cancer cells

    NASA Astrophysics Data System (ADS)

    Ortega, Richard; Suda, Asami; Devès, Guillaume

    2003-09-01

    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  17. Focused ion beam direct micromachining of DOEs

    NASA Astrophysics Data System (ADS)

    Khan Malek, Chantal; Hartley, Frank T.; Neogi, Jayant

    2000-09-01

    We discuss here the capability of direct manufacture of various high- resolution diffractive optics, in particular regarding micromachining of DOEs in 3D. Preliminary demonstrations were made in 2-D using an automated FIB system operated at 30 KeV with a Gallium liquid metal ion source and equipped with a gas injection system (GIS). Gratings with a 20 nm line width and zone plates with 32 nm outer ring were milled in a reactive atmosphere (iodine) directly through 3.5 (mu) m and 800 nm of gold respectively. Plans for combining FIB and X-ray lithography to make diffractive optical elements (DOEs) for JPL are also mentioned.

  18. The Heidelberg compact electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Micke, P.; Kühn, S.; Buchauer, L.; Harries, J. R.; Bücking, T. M.; Blaum, K.; Cieluch, A.; Egl, A.; Hollain, D.; Kraemer, S.; Pfeifer, T.; Schmidt, P. O.; Schüssler, R. X.; Schweiger, Ch.; Stöhlker, T.; Sturm, S.; Wolf, R. N.; Bernitt, S.; Crespo López-Urrutia, J. R.

    2018-06-01

    Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.

  19. Gallium uptake by transferrin and interaction with receptor 1.

    PubMed

    Chikh, Zohra; Ha-Duong, Nguyêt-Thanh; Miquel, Geneviève; El Hage Chahine, Jean-Michel

    2007-01-01

    The kinetics and thermodynamics of Ga(III) exchange between gallium mononitrilotriacetate and human serum transferrin as well as those of the interaction between gallium-loaded transferrin and the transferrin receptor 1 were investigated in neutral media. Gallium is exchanged between the chelate and the C-site of human serum apotransferrin in interaction with bicarbonate in about 50 s to yield an intermediate complex with an equilibrium constant K (1) = (3.9 +/- 1.2) x 10(-2), a direct second-order rate constant k (1) = 425 +/- 50 M(-1) s(-1) and a reverse second-order rate constant k (-1) = (1.1 +/- 3) x 10(4) M(-1) s(-1). The intermediate complex loses a single proton with proton dissociation constant K (1a) = 80 +/- 40 nM to yield a first kinetic product. This product then undergoes a modification in its conformation which lasts about 500 s to produce a second kinetic intermediate, which in turn undergoes a final extremely slow (several hours) modification in its conformation to yield the gallium-saturated transferrin in its final state. The mechanism of gallium uptake differs from that of iron and does not involve the same transitions in conformation reported during iron uptake. The interaction of gallium-loaded transferrin with the transferrin receptor occurs in a single very fast kinetic step with a dissociation constant K (d) = 1.10 +/- 0.12 microM and a second-order rate constant k (d) = (1.15 +/- 0.3) x 10(10) M(-1) s(-1). This mechanism is different from that observed with the ferric holotransferrin and suggests that the interaction between the receptor and gallium-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of gallium incorporation by the transferrin receptor-mediated iron-acquisition pathway is discussed.

  20. The gallium melting-point standard: a determination of the liquid-solid equilibrium temperature of pure gallium on the International Practical Temperature Scale of 1968.

    PubMed

    Thornton, D D

    1977-01-01

    The sharpness and reproducibility of the gallium melting point were studied and the melting temperature of gallium in terms of IPTS-68 was determined. Small melting-point cells designed for use with thermistors are described. Nine gallium cells including three levels of purity were used in 68 separate determinations fo the melting point. The melting point of 99.99999% pure gallium in terms of IPTS-68 is found to be 29.771(4) +/- 0.001(4) degree C; the melting range is less than 0.0005 degree C and is reproducible to +/- 0.0004 degree C.

  1. Composition of the core from gallium metal–silicate partitioning experiments

    DOE PAGES

    Blanchard, I.; Badro, J.; Siebert, J.; ...

    2015-07-24

    We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results

  2. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  3. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  4. Optimization of single keV ion implantation for the construction of single P-donor devices

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Jamieson, David N.; Hopf, Toby; Andresen, Soren E.; Hearne, Sean M.; Hudson, Fay E.; Pakes, Christopher I.; Mitic, Mladen; Gauja, Eric; Tamanyan, Grigori; Dzurak, Andrew S.; Prawer, Steven; Clark, Robert G.

    2005-02-01

    We report recent progress in single keV ion implantation and online detection for the controlled implantation of single donors in silicon. When integrated with silicon nanofabrication technology this forms the "top down" strategy for the construction of prototype solid state quantum computer devices based on phosphorus donors in silicon. We have developed a method of single ion implantation and online registration that employs detector electrodes adjacent to the area into which the donors are to be implanted. The implantation sites are positioned with nanometer accuracy using an electron beam lithography patterned PMMA mask. Control of the implantation depth of 20 nm is achieved by tuning the phosphorus ion energy to 14 keV. The counting of single ion implantation in each site is achieved by the detection of e-/h+ pairs produced by the implanted phosphorus ion in the substrate. The system is calibrated by use of Mn K-line x-rays (5.9 and 6.4 keV) and we find the ionization energy of the 14 keV phosphorus ions in silicon to be about 3.5-4.0 keV for implants through a 5 nm SiO2 surface layer. This paper describes the development of an improved PIN detector structure that provides more reliable performance of the earlier MOS structure. With the new structure, the energy noise threshold has been minimized to 1 keV or less. Unambiguous detection/counting of single keV ion implantation events were achieved with a confidence level greater than 98% with a reliable and reproducible fabrication process.

  5. A specialized bioengineering ion beam line

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.

    2007-04-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.

  6. Two chain gallium fluorodiphosphates: synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate.

    PubMed

    Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard

    2002-04-21

    Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.

  7. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  8. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  10. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  11. Development of III-nitride semiconductors by molecular beam epitaxy and cluster beam epitaxy and fabrication of LEDs based on indium gallium nitride MQWs

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Chou Papo

    The family of III-Nitrides (the binaries InN, GaN, AIN, and their alloys) is one of the most important classes of semiconductor materials. Of the three, Indium Nitride (InN) and Aluminum Nitride (AIN) have been investigated much less than Gallium Nitride (GaN). However, both of these materials are important for optoelectronic infrared and ultraviolet devices. In particular, since InN was found recently to be a narrow gap semiconductor (Eg=0.7eV), its development should extend the applications of nitride semiconductors to the spectral region appropriate to fiber optics communication and photovoltaic applications. Similarly, the development of AIN should lead to deep UV light emitting diodes (LEDs). The first part of this work addresses the evaluation of structural, optical and transport properties of InN films grown by two different deposition methods. In one method, active nitrogen was produced in the form of nitrogen radicals by a radio frequency (RF) plasma-assisted source. In an alternative method, active nitrogen was produced in the form of clusters containing approximately 2000 nitrogen molecules. These clusters were produced by adiabatic expansion from high stagnation pressure through a narrow nozzle into vacuum. The clusters were singly or doubly ionized with positive charge by electron impact and accelerated up to approximately 20 to 25 KV prior to their disintegration on the substrate. Due to the high local temperature produced during the impact of clusters with the substrate, this method is suitable for the deposition of InN at very low temperatures. The films are auto-doped n-type with carrier concentrations varying from 3 x 1018 to 1020 cm-3 and the electron effective mass of these films was determined to be 0.09m0. The majority of the AIN films was grown by the cluster beam epitaxy method and was doped n- and p- type by incorporating silicon (Si) and magnesium (Mg) during the film deposition. All films were grown under Al-rich conditions at relatively

  12. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  13. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  14. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  15. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  16. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  17. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS...Government. AFIT/GAP/ENP/10-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS Presented to...ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS Austin C Bergstrom, BS 2 nd Lieutenant, USAF

  19. Measuring Incorporation Of Arsenic In Molecular-Beam Expitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, Blair F.; Fernandez, Rouel F.; Madhukar, Anupam; Grunthaner, Frank J.

    1988-01-01

    Changes in surface layers cause oscillations in RHEED measurements. Specular RHEED Beam intensity measured before, during, and after deposition of seven to eight monomolecular layers of gallium during 1.5 seconds. Arsenic pressure was 1.7x10 to the negative seventh power torr (2.3x10 to the negative fifth power Pa) throughout measurements.

  20. The Strongest Acceleration of >40 keV Electrons by ICME-driven Shocks at 1 au

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Linghua; Li, Gang; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Tian, Hui; Bale, Stuart D.

    2018-01-01

    We present two case studies of the in-situ electron acceleration during the 2000 February 11 shock and the 2004 July 22 shock, with the strongest electron flux enhancement at 40 keV across the shock, among all the quasi-perpendicular and quasi-parallel ICME-driven shocks observed by the WIND 3DP instrument from 1995 through 2014 at 1 au. We find that for this quasi-perpendicular (quasi-parallel) shock on 2000 February 11 (2004 July 22), the shocked electron differential fluxes at ∼0.4–50 keV in the downstream generally fit well to a double-power-law spectrum, J ∼ E ‑β , with an index of β ∼ 3.15 (4.0) at energies below a break at ∼3 keV (∼1 keV) and β ∼ 2.65 (2.6) at energies above. For both shock events, the downstream electron spectral indices appear to be similar for all pitch angles, which are significantly larger than the index prediction by diffusive shock acceleration. In addition, the downstream electron pitch-angle distributions show the anisotropic beams in the anti-sunward-traveling direction, while the ratio of the downstream over ambient fluxes appears to peak near 90° pitch angles, at all energies of ∼0.4–50 keV. These results suggest that in both shocks, shock drift acceleration likely plays an important role in accelerating electrons in situ at 1 au. Such ICME-driven shocks could contribute to the formation of solar wind halo electrons at energies ≲2 keV, as well as the production of solar wind superhalo electrons at energies ≳2 keV in interplanetary space.

  1. Controlled delivery of antimicrobial gallium ions from phosphate-based glasses.

    PubMed

    Valappil, S P; Ready, D; Abou Neel, E A; Pickup, D M; O'Dell, L A; Chrzanowski, W; Pratten, J; Newport, R J; Smith, M E; Wilson, M; Knowles, J C

    2009-05-01

    Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial activity. However, the delivery of gallium ions from these glasses can be improved by altering the calcium ion concentration to control the degradation rate of the glasses. In the present study, the effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-doped PBG potentially a highly promising new therapeutic agent. The results show that an increase in calcium content (14, 15 and 16 mol.% CaO) cause a decrease in degradation rate (17.6, 13.5 and 7.3 microg mm(-2) h(-1)), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. The most potent glass composition (containing 14 mol.% CaO) was then evaluated for its ability to prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.86 log(10) CFU reduction compared to Ga2O3-free glasses) after 48 h. Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results of the solubility and ion release studies show that this glass system is suitable for controlled delivery of Ga3+. 71Ga NMR and Ga K-edge XANES measurements indicate that the gallium is octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  2. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  3. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosal, A.; Schleissner, L.A.; Mishkin, F.S.

    1979-03-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. Itmore » was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.« less

  4. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  5. Recovery of Gallium from Secondary V-Recycling Slag by Alkali Fusion

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Zhang, Gui-fang

    Secondary V-recycling slag, an industrial waste containing high gallium is being dumped continuously, which causes the loss of gallium. Thus, the alkali fusion process was employed to recover gallium from this slag. The effects factors on extraction of gallium such as roasting temperature, roasting time, alkali fusion agent concentration and CaO concentration were investigated in the paper. The experimental results indicated that excessive roasting temperature and roasting time is unfavorable to the recovery rate of gallium. The appropriate roasting temperature and duration are 1000°C and 2 hours, respectively; The appropriate proportioning of Na2CO3: NaOH is 2:1 when the concentration of alkali fusion agent weighs 0.4 times the mass of the slag; In order to remove SiO2 from the leaching liquor, CaO should be used as an additive in the roasting process. The appropriate concentration of CaO should weigh 0.2 times the mass of the slag. Employing these optimal alkali fusion conditions in the roasting process, gallium recovery is above 90%.

  6. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, D.; Lebreton, L.; Richer, J.P.

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is usedmore » as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  7. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chauchat, A.-S.; Brasile, J.-P.; Le Flanchec, V.; Nègre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-01

    In a scope of a collaboration between Thales Communications & Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 μm width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  8. ALEX neutral beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade wasmore » designed.« less

  9. Construction of the Helsinki University of Technology (HUT) pulsed positron beam

    NASA Astrophysics Data System (ADS)

    Fallström, K.; Laine, T.

    1999-08-01

    We are constructing a pulsed positron beam facility for lifetime measurements in thin surface layers. Our beam system comprises a 22Na positron source and a tungsten foil moderator followed by a prebuncher and a chopper. A double-drift buncher will compress the beam into 120-ps pulses at the target. The end energy of the positron beam can be adjusted between 3 keV and 30 keV by changing the potential of the source end of the beam. The bunching electronics and most of the beam guiding magnets are also floating at the high voltage. The sample is at ground potential to facilitate variable temperature measurements. With a test source of 6 mCi 22Na we get a prebunched beam intensity of 4×10 3 positrons per second in 1.5-ns wide pulses (the bunching frequency is 33.33 MHz). We are currently testing the chopper and the following buncher stages and building the final accelerator/decelerator system.

  10. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  11. Gallium alloy films investigated for use as boundary lubricants

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Gallium alloyed with other low melting point metals has excellent lubricant properties of fluidity and low vapor pressure for high temperature or vacuum environments. The addition of other soft metals reduces the corrosivity and formation of undesirable alloys normally found with gallium.

  12. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this techniquemore » to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.« less

  13. Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Trybus, Elaissa

    The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cells have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15--30% In incorporation leading to a bandgap value of 2.3--2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent In xGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. This work presents results confirming the revised bandgap of InN grown on germanium (Ge) substrates and the effects of oxygen contamination on the bandgap. This research adds to the historical discussion of the bandgap value of InN. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for In xGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. InxGa 1-xN/GaN heterojunction solar cells require p-type doping to create the p-n subcell collecting junction, which facilitates current collection through the electrostatic field created by spatially separated ionized

  14. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  15. Active detection of shielded SNM with 60-keV neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmann, C; Dietrich, D; Hall, J

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimentalmore » results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.« less

  16. Novel solution-phase structures of gallium-containing pyrogallol[4]arene scaffolds**

    PubMed Central

    Kumari, Harshita; Kline, Steven R.; Wycoff, Wei G.; Paul, Rick L.; Mossine, Andrew V.; Deakyne, Carol A.; Atwood, Jerry L.

    2012-01-01

    The variations in architecture of gallium-seamed (PgC4Ga) and gallium-zinc-seamed (PgC4GaZn) C-butylpyrogallol[4]arene nanoassemblies in solution (SANS/NMR) versus the solid state (XRD) have been investigated. Rearrangement from the solid-state spheroidal to the solution-phase toroidal shape differentiates the gallium-containing pyrogallol[4]arene nanoassemblies from all other PgCnM nanocapsules studied thus far. Different structural arrangements of the metals and arenes of PgC4Ga versus PgC4GaZn have been deduced from the different toroidal dimensions, C–H proton environments and guest encapsulation of the two toroids. PGAA of mixed-metal hexamers reveals a decrease in gallium-to-metal ratio as the second metal varies from cobalt to zinc. Overall, the combined study demonstrates the versatility of gallium in directing the self-assembly of pyrogallol[4]arenes into novel nanoarchitectures. PMID:22511521

  17. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  18. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis

    PubMed Central

    Lindgren, Helena

    2015-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. PMID:26503658

  19. Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis.

    PubMed

    Lindgren, Helena; Sjöstedt, Anders

    2016-01-01

    The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Tin-Assisted Synthesis of ɛ -Ga2O3 by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kracht, M.; Karg, A.; Schörmann, J.; Weinhold, M.; Zink, D.; Michel, F.; Rohnke, M.; Schowalter, M.; Gerken, B.; Rosenauer, A.; Klar, P. J.; Janek, J.; Eickhoff, M.

    2017-11-01

    The synthesis of ɛ -Ga2O3 and β -Ga2O3 by plasma-assisted molecular beam epitaxy on (001 )Al2O3 substrates is studied. The growth window of β -Ga2O3 in the Ga-rich regime, usually limited by the formation of volatile gallium suboxide, is expanded due to the presence of tin during the growth process, which stabilizes the formation of gallium oxides. X-ray diffraction, transmission electron microscopy, time-of-flight secondary-ion mass spectrometry, Raman spectroscopy, and atomic force microscopy are used to analyze the influence of tin on the layer formation. We demonstrate that it allows the synthesis of phase-pure ɛ -Ga2O3 . A growth model based on the oxidation of gallium suboxide by reduction of an intermediate sacrificial tin oxide is suggested.

  1. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application.

    PubMed

    Chitambar, Christopher R

    2017-01-01

    Gallium, group IIIa metal, shares certain chemical characteristics with iron which enable it to function as an iron mimetic that can disrupt iron-dependent tumor cell growth. Gallium may also display antimicrobial activity by disrupting iron homeostasis in certain bacteria and fungi. Gallium's action on iron homeostasis leads to inhibition of ribonucleotide reductase, mitochondrial function, and changes in proteins of iron transport and storage. In addition, gallium induces an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Early clinical trials evaluated the efficacy of the simple gallium salts, gallium nitrate and gallium chloride. However, newer gallium-ligands such as Tris(8-quinolinolato)gallium(III) (KP46) and gallium maltolate have been developed and are undergoing clinical evaluation. Additional gallium-ligands that demonstrate antitumor activity in preclinical studies have emerged. Their mechanisms of action and their spectrum of antitumor activity may extend beyond the earlier generations of gallium compounds and warrant further investigation. This review will focus on the evolution and potential of gallium-based therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multiple scaling power in liquid gallium under pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renfeng; Wang, Luhong; Li, Liangliang

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiplemore » scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.« less

  3. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed.

  4. Preliminary Experimental Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    A low-energy gallium plasma source is used to perform a spatially and temporally broad spectroscopic survey in the 220-520 nm range. Neutral, singly, and doubly ionized gallium are present in a 20 J, 1.8 kA (peak) arc discharge operating with a central cathode. When the polarity of the inner electrode is reversed the discharge current and arc voltage waveforms remain similar. Utilizing a central anode configuration, multiple Ga lines are absent in the 270-340 nm range. In addition, neutral and singly ionized Fe spectral lines are present, indicating erosion of the outer electrode. With graphite present on the insulator to facilitate breakdown, line emission from the gallium species is further reduced and while emissions from singly and doubly ionized carbon atoms and molecular carbon (C2) radicals are observed. These data indicate that a significant fraction of energy is shifted from the gallium and deposited into the various carbon species.

  5. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  6. Non-LTE gallium abundance in HgMn stars

    NASA Astrophysics Data System (ADS)

    Zboril, M.; Berrington, K. A.

    2001-07-01

    We present, for the first time, the Non-LTE gallium equivalent widths for the most prominent gallium transitions as identified in real spectra and in (hot) mercury-manganese star. The common feature of the departure coefficients is to decrease near the stellar surface, the collision rates are dominant in many cases and the Non-LTE equivalent widths are generally smaller. In particular, the abundance difference as derived from UV and visual lines is reduced. The photoionization cross sections were computed by means of standard R-matrix formalism. The gallium cross-sections are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/987

  7. Gallium nitrate: effects on cartilage during limb regeneration in the axolotl, Ambystoma mexicanum.

    PubMed

    Tassava, Roy A; Mendenhall, Luciara; Apseloff, Glen; Gerber, Nicholas

    2002-09-01

    Gallium nitrate, a drug shown to have efficacy in Paget's disease of bone, hypercalcemia of malignancy, and a variety of experimental autoimmune diseases, also inhibits the growth of some types of cancer. We examined dose and timing of administration of gallium nitrate on limb regeneration in the Mexican axolotl, Ambystoma mexicanum. Administered by intraperitoneal injection, gallium nitrate inhibited limb regeneration in a dose-dependent manner. Gallium nitrate initially suppressed epithelial wound healing and subsequently distorted both anterior-posterior and proximo-distal chondrogenic patterns. Gallium nitrate given at three days after amputation severely inhibited regeneration at high doses (6.25 mg/axolotl) and altered the normal patterning of the regenerates at low doses (3.75 mg/axolotl). Administration of 6.25 mg of gallium nitrate at four or 14 days prior to amputation also inhibited regeneration. In amputated limbs of gallium-treated axolotls, the chondrocytes were lost from inside the radius/ulna. Limbs that regenerated after gallium treatment was terminated showed blastema formation preferentially over the ulna. New cartilage of the regenerate often attached to the sides of the existing radius/ulna proximally into the stump and less so to the distal cut ends. J. Exp. Zool. 293:384-394, 2002. Copyright 2002 Wiley-Liss, Inc.

  8. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  9. The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.

    PubMed

    Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming

    2015-08-01

    Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.

  10. Hot and solid gallium clusters: too small to melt.

    PubMed

    Breaux, Gary A; Benirschke, Robert C; Sugai, Toshiki; Kinnear, Brian S; Jarrold, Martin F

    2003-11-21

    A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.

  11. Design and properties of novel gallium-doped injectable apatitic cements.

    PubMed

    Mellier, Charlotte; Fayon, Franck; Boukhechba, Florian; Verron, Elise; LeFerrec, Myriam; Montavon, Gilles; Lesoeur, Julie; Schnitzler, Verena; Massiot, Dominique; Janvier, Pascal; Gauthier, Olivier; Bouler, Jean-Michel; Bujoli, Bruno

    2015-09-01

    Different possible options were investigated to combine an apatitic calcium phosphate cement with gallium ions, known as bone resorption inhibitors. Gallium can be either chemisorbed onto calcium-deficient apatite or inserted in the structure of β-tricalcium phosphate, and addition of these gallium-doped components into the cement formulation did not significantly affect the main properties of the biomaterial, in terms of injectability and setting time. Under in vitro conditions, the amount of gallium released from the resulting cement pellets was found to be low, but increased in the presence of osteoclastic cells. When implanted in rabbit bone critical defects, a remodeling process of the gallium-doped implant started and an excellent bone interface was observed. The integration of drugs and materials is a growing force in the medical industry. The incorporation of pharmaceutical products not only promises to expand the therapeutic scope of biomaterials technology but to design a new generation of true combination products whose therapeutic value stem equally from both the structural attributes of the material and the intrinsic therapy of the drug. In this context, for the first time an injectable calcium phosphate cement containing gallium was designed with properties suitable for practical application as a local delivery system, implantable by minimally invasive surgery. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  13. Realization of the Gallium Triple Point at NMIJ/AIST

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Tamura, O.; Sakurai, H.

    2008-02-01

    The triple point of gallium has been realized by a calorimetric method using capsule-type standard platinum resistance thermometers (CSPRTs) and a small glass cell containing about 97 mmol (6.8 g) of gallium with a nominal purity of 99.99999%. The melting curve shows a very flat and relatively linear dependence on 1/ F in the region from 1/ F = 1 to 1/ F = 20 with a narrow width of the melting curve within 0.1 mK. Also, a large gallium triple-point cell was fabricated for the calibration of client-owned CSPRTs. The gallium triple-point cell consists of a PTFE crucible and a PTFE cap with a re-entrant well and a small vent. The PTFE cell contains 780 g of gallium from the same source as used for the small glass cell. The PTFE cell is completely covered by a stainless-steel jacket with a valve to enable evacuation of the cell. The melting curve of the large cell shows a flat plateau that remains within 0.03 mK over 10 days and that is reproducible within 0.05 mK over 8 months. The calibrated value of a CSPRT obtained using the large cell agrees with that obtained using the small glass cell within the uncertainties of the calibrations.

  14. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    NASA Astrophysics Data System (ADS)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  15. Optima MDxt: A high throughput 335 keV mid-dose implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisner, Edward; David, Jonathan; Justesen, Perry

    2012-11-06

    The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allowsmore » high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.« less

  16. Measurement of Lα and Lβ1,3,4 fluorescence cross sections of La, Ce, Pr and Nd induced by photons of energies between 7.01 keV and 8.75 keV

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, J.; Miranda, J.

    2016-06-01

    This study presents measurement results of x-ray production cross sections of Lα and Lβ1,3,4 emitted by four lanthanoid elements (La, Ce, Pr and Nd), after irradiation with Kα and Kβ X rays of the elements Co, Ni, Cu, and Zn (covering energies between 7.01 keV and 8.75 keV). Primary x-rays were induced in turn by the irradiation of thick targets of these elements with a beam of x-rays produced by a tube with an Rh anode, operating at 50 kV and 850 μA. The experimental results are compared with theoretical cross sections predicted using known tabulations of photoelectric cross sections. Dirac-Hartree-Slater (DHS) atomic parameters were used for these calculations. An acceptable match between experiment and both sets of tabulated data is found.

  17. Cutaneous gallium uptake in patients with AIDS with mycobacterium avium-intracellulare septicemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwright, S.J.; Chapman, P.R.; Antico, V.F.

    1988-07-01

    Gallium imaging is increasingly being used for the early detection of complications in patients with AIDS. A 26-year-old homosexual man who was HIV antibody positive underwent gallium imaging for investigation of possible Pneumocystis carinii pneumonia. Widespread cutaneous focal uptake was seen, which was subsequently shown to be due to mycobacterium avium-intracellulare (MAI) septicemia. This case demonstrates the importance of whole body imaging rather than imaging target areas only, the utility of gallium imaging in aiding the early detection of clinically unsuspected disease, and shows a new pattern of gallium uptake in disseminated MAI infection.

  18. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    PubMed

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  19. Cluster-impact fusion, or beam-contaminant fusion? (abstract)a),b)

    NASA Astrophysics Data System (ADS)

    Lo, Daniel H.; Petrasso, Richard D.; Wenzel, Kevin W.

    1992-10-01

    Beuhler, Friedlander, and Friedman (BFF) reported anomalously huge D-D fusion rates while bombarding deuterated targets with (D2O)N+ clusters (N˜25-1000) accelerated to ≊325 keV [R. J. Beuhler et al., Phys. Rev. Lett. 63, 1292 (1989); R. J. Beuhler et al., J. Phys. Chem. 94, 7665 (1990)] [i.e., ≊0.3 keV lab energy for D in (D2O)100+]. However, from our analysis of BFF's fusion product spectra, we conclude that their D lab energy was ˜50 keV. Therefore, no gross anomalies exist. Also, from our analysis of the BFF beam-ranging experiments through 500 μg/cm2 of Au, we conclude that light-ion-beam contaminants (e.g., D+ of order 100 keV) have not been ruled out, and are the probable cause of their fusion reactions. This work was supported by LLNL Subcontract B116798, Department of Energy (DOE) Grant No. DE-FG02-91ER54109, DOE Magnetic Fusion Energy Technology Fellowship Program (D. H. Lo), and DOE Fusion Energy Postdoctoral Research Program (Kevin W. Wenzel).

  20. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  1. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  2. A melting-point-of gallium apparatus for thermometer calibration.

    PubMed

    Sostman, H E; Manley, K A

    1978-08-01

    We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.

  3. Measurement of the 234U(n, f ) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

    NASA Astrophysics Data System (ADS)

    Stamatopoulos, A.; Kanellakopoulos, A.; Kalamara, A.; Diakaki, M.; Tsinganis, A.; Kokkoris, M.; Michalopoulou, V.; Axiotis, M.; Lagoyiannis, A.; Vlastou, R.

    2018-01-01

    The 234U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the 7Li ( p, n) and the 2H( d, n) reactions, respectively, relative to the 235U( n, f ) and 238U( n, f ) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research "Demokritos", using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via α-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions ( e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented.

  4. H- beam transport experiments in a solenoid low energy beam transport.

    PubMed

    Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P

    2012-02-01

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  5. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  6. Myopericarditis in acquired immunodeficiency syndrome diagnosed by gallium scintigraphy.

    PubMed Central

    Cregler, L. L.; Sosa, I.; Ducey, S.; Abbey, L.

    1990-01-01

    Myocarditis is among the cardiac complications of acquired immunodeficiency syndrome and, yet, is often not discovered until autopsy. Gallium scintigraphy has been employed in diagnosing this entity, but few data are available about its diagnostic accuracy and value. Here, the authors report two cases of myopericarditis as diagnosed by gallium scan. Images Figure 1 Figure 2 PMID:2398508

  7. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    NASA Astrophysics Data System (ADS)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  8. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity.

    PubMed

    Kurtjak, Mario; Vukomanović, Marija; Kramer, Lovro; Suvorov, Danilo

    2016-11-01

    Intensive research in the area of medical nanotechnology, especially to cope with the bacterial resistance against conventional antibiotics, has shown strong antimicrobial action of metallic and metal-oxide nanomaterials towards a wide variety of bacteria. However, the important remaining problem is that nanomaterials with highest antibacterial activity generally express also a high level of cytotoxicity for mammalian cells. Here we present gallium nanoparticles as a new solution to this problem. We developed a nanocomposite from bioactive hydroxyapatite nanorods (84 wt %) and antibacterial nanospheres of elemental gallium (16 wt %) with mode diameter of 22 ± 11 nm. In direct comparison, such nanocomposite with gallium nanoparticles exhibited better antibacterial properties against Pseudomonas aeruginosa and lower in-vitro cytotoxicity for human lung fibroblasts IMR-90 and mouse fibroblasts L929 (efficient antibacterial action and low toxicity from 0.1 to 1 g/L) than the nanocomposite of hydroxyapatite and silver nanoparticles (efficient antibacterial action and low toxicity from 0.2 to 0.25 g/L). This is the first report of a biomaterial composite with gallium nanoparticles. The observed strong antibacterial properties and low cytotoxicity make the investigated material promising for the prevention of implantation-induced infections that are frequently caused by P. aeruginosa.

  9. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10

  10. Solar wind ∼0.1-1.5 keV electrons at quiet times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jiawei; Wang, Linghua, E-mail: wanglhwang@gmail.com; Zong, Qiugang

    2016-03-25

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ∼0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature T{sub eff} and density n{sub 0}. We also integrate themore » the measurements over ∼0.1-1.5 keV to obtain the average electron energy E{sub avg} of the strahl and halo. We find a strong positive correlation between κ and T{sub eff} for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ∼68% have the halo κ smaller than the strahl κ, while ∼50% have the halo E{sub h} larger than the strahl E{sub s}.« less

  11. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2016-08-16

    Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required.

  12. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron x-ray microscopy.

    PubMed Central

    Bockman, R S; Repo, M A; Warrell, R P; Pounds, J G; Schidlovsky, G; Gordon, B M; Jones, K W

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium. Images PMID:2349224

  13. Effects of ion- and electron-beam treatment on surface physicochemical properties of polylactic acid

    NASA Astrophysics Data System (ADS)

    Pukhova, I. V.; Savkin, K. P.; Laput, O. A.; Lytkina, D. N.; Botvin, V. V.; Medovnik, A. V.; Kurzina, I. A.

    2017-11-01

    We describe our investigations of the surface physicochemical and mechanical properties of polylactic acid modified by silver, argon and carbon ion implantation to doses of 1 × 1014, 1 × 1015 and 1 × 1016 ions/cm2 at energies of 20 keV (for C and Ar) and 40 keV (for Ag), and by electron beam treatment with pulse-width of 100-300 μs in 50 μs increments at a beam energy 8 keV. Carbonyl bonds (sbnd Cdbnd O) related IR peak was reduced after ion and electron beam irradiation. Molecular weight of PLA decreases twice and does not depend on the nature of the bombarding particles. The microhardness of treated samples decreases by a factor of 1.3, and the surface conductivity increases by 6 orders of magnitude after ion implantation, and increases only modestly after electron beam treatment. Atomic force microscopy shows that surface roughness increases with irradiation dose. Samples irradiated with Ag to a dose of 1 × 1016 ions/cm2 show the greatest roughness of 190 nm.

  14. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    PubMed

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  15. Monte Carlo simulation of neutral-beam injection for mirror fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ronald Lee

    1979-01-01

    Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less

  16. The High Resolution Powder Diffraction Beam Line at ESRF.

    PubMed

    Fitch, A N

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.

  17. What should be impossible: resolution of the mononuclear gallium coordination complex, Tris(benzohydroxamato)gallium(III).

    PubMed

    Brumaghim, Julia L; Raymond, Kenneth N

    2003-10-08

    Complexes of Ga3+, a d10 metal ion which lacks ligand-field-stabilization energy, are considered labile. In fact, hexaaquagallium(III) has a ligand exchange rate of 403 s-1, 2.5 times that of the analagous Fe3+ complex (Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 4444-4450). Given this lability, resolution of Ga3+ complexes should be impossible. Despite this, we report the resolution of the Lambda and Delta isomers of tris(benzohydroxamate)gallium (III) (1), the first resolution of a mononuclear gallium complex. Not only is resolution possible, but these resolved complexes show remarkable resistance to racemization in aprotic solvents. The unprecedented stability of Lambda- and Delta-1 is a surprise, and as such, alters our understanding of classical coordination chemistry.

  18. Radiofrequency quadrupole-based beam cooler and buncher for the CANREB project at TRIUMF

    NASA Astrophysics Data System (ADS)

    Barquest, Brad; Pearson, Matt; Ames, Friedhelm; Dilling, Jens; Gwinner, Gerald; Kanungo, Rituparna; Kruecken, Reiner

    2016-09-01

    A new radiofrequency quadrupole-based ion beam cooler and buncher (BCB) and pulsed drift tube (PDT) have been designed as part of the CANREB project at TRIUMF. The BCB is designed to accept continuous 60 keV rare isotope beams from the ARIEL or ISAC production targets and efficiently deliver low-emittance, bunched beams of up to 107 ions per bunch to an electron beam ion source (EBIS) to charge-breed the bunch for post-acceleration. The PDT will adjust the energy of the bunched beam from 60 keV to 10-14 keV for injection into the EBIS. The injection energy is determined by the acceptance of the post-accelerating RFQ. The design of the BCB is nearing completion, and fabrication and assembly effort will proceed shortly. In addition, a PDT prototype is under development to test that the design concept satisfies the voltage and switching time requirements. Design features of the BCB and PDT will be discussed, and an update on BCB assembly and PDT testing progress will be presented. CANREB is funded by CFI, NSRIT, Manitoba Research and Innovation Fund, AAPS, Saint Mary's U, U of Manitoba and TRIUMF. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  19. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles

    PubMed Central

    Wu, Pae C; Khoury, Christopher G.; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V.; Vo-Dinh, Tuan; Brown, April S.; Everitt, Henry O.

    2009-01-01

    Size-controlled gallium nanoparticles deposited on sapphire are explored as alternative substrates to enhance Raman spectral signatures. Gallium’s resilience following oxidation is inherently advantageous compared to silver for practical ex vacuo, non-solution applications. Ga nanoparticles are grown using a simple, molecular beam epitaxy-based fabrication protocol, and by monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry, the nanoparticles are easily controlled for size. Raman spectroscopy performed on cresyl fast violet (CFV) deposited on substrates of differing mean nanoparticle size represents the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Non-optimized aggregate enhancement factors of ~80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm. PMID:19655747

  20. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions ofmore » a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.« less

  1. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  2. LABORATORY MEASUREMENTS COMPELLINGLY SUPPORT A CHARGE-EXCHANGE MECHANISM FOR THE “DARK MATTER” ∼3.5 keV X-Ray LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chintan; Dobrodey, Stepan; Bernitt, Sven

    2016-12-10

    The reported observations of an unidentified X-ray line feature at ∼3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the K-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produced S{sup 16+} and S{sup 15+} ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchange-induced X-ray feature at the Lyman seriesmore » limit (3.47 ± 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu et al.« less

  3. Abnormal gallium scan patterns of the salivary gland in pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishkin, F.S.; Tanaka, T.T.; Niden, A.H.

    1978-12-01

    The findings of gallium imaging suggest that parotid abnormalities in sarcoidosis are common. Correlation with lung and mediastinal uptake suggests that this represents an early disease state and that it responds to steroid administration. That the findings after therapy do not simply represent suppression of the uptake mechanism for gallium is supported by objective improvement in pulmonary function as well as symptomatic relief. Salivary gland accumulation of gallium citrate occurred in one third of our control group patients--in those who had collagen disease and presumably either were alcoholic or had infectious parotitis. This may also be seen in lymphoma andmore » after radiation therapy. Although the combination of salivary gland, pulmonary, and hilar concentration of gallium is not specific, in the appropriate clinical setting the pattern may be helpful in suggesting the correct diagnosis.« less

  4. Characteristic Behavior and Scaling Studies of Self Organized InP Nano-dots formed via keV and MeV irradiations

    NASA Astrophysics Data System (ADS)

    Paramanik, Dipak; Varma, Shikha

    2008-04-01

    The controlled formation of nano-dots, using ion beams as tool, has become important as it offers a unique method to generate non-equilibrium phases with novel physical properties and structures with nano-dimensions. We have investigated the creation of self assembled nano- dots on InP(111) surfaces after 3 keV as well as 1.5 MeV ion beams at a large range of fluences. We have studied the Scaling exponents of the evolved surfaces by utilizing the technique of Scanning Probe Microscopy (SPM). At keV energies ripening of the nano-dots is seen below a critical time whereas an inverse ripening is observed for longer durations. At the critical time square shaped array of nano --dots are observed. The dots are characterized by narrow height and size distributions. Nano dots have also been observed at MeV ion irradiations. Their size distribution though broad at lowest fluence decreases for larger fluences.

  5. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  6. Capacitive Behavior of Single Gallium Oxide Nanobelt

    PubMed Central

    Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin

    2015-01-01

    In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506

  7. Electron beam induced light emission

    NASA Astrophysics Data System (ADS)

    Ulrich, A.; Heindl, T.; Krücken, R.; Morozov, A.; Skrobol, C.; Wieser, J.

    2009-08-01

    Electron beams with a particle energy of typically 12keV are used for collisional excitation of dense gases. The electrons are sent through ceramic membranes of only 300nm thickness into gas targets. Excimer light emission from the pure rare gases and from gas mixtures are studied for the development of brilliant VUV and UV light sources. The application of the technology for gas kinetic studies is described and its potential for building very small electron beam pumped lasers is discussed.

  8. Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team

    2015-03-01

    Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  9. New ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul

    2012-02-01

    The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.

  10. A hypothesis for anti-nanobacteria effects of gallium with observations from treating kidney disease.

    PubMed

    Eby, George A

    2008-10-01

    Nanobacteria, 100-fold smaller than common bacteria, have been purported to exist in urine, and by precipitating calcium and other minerals into carbonate apatite around themselves, induce the formation of surrounding kidney stones. Nanobacteria-like structures have also been shown in blood, within arteries, aortic aneurysms, and cardiac valves. Gallium has antibiotic properties to iron-dependent bacteria and has potent anti-inflammatory, anticancer and anti-hypercalcemic properties, and it readily reverses osteoporosis. It was hypothesized that gallium nitrate might have benefit in treating kidney stones. Gallium nitrate (120mg gallium) was mixed with water making two liters of a gallium mineral water drink to treat chronic, treatment-resistant kidney stone pain and urinary tract bleeding in a 110 pound woman. On the third day of gallium mineral water treatment, the urine appeared snow white, thick (rope-like) and suggestive of a calcific crystalline nature. After release of the white urine, the urine returned to normal in color, viscosity and pH, kidney pain was no longer present, and there was no further evidence of blood in the urine. There were no treatment side effects or sequela. For a one year observation period thereafter, no kidney stones, white urine, kidney or urinary tract pain or blood in the urine was noted. The hypothetical susceptibility of nanobacteria to gallium treatment also suggests application to atherosclerosis and other diseases. Although some support for gallium in treating kidney stones is presented, this hypothesis is built upon another hypothesis, is extremely speculative, and alternative explanations for the white urine exist. Further research into gallium's effects on kidney disease and other nanobacteria-induced diseases such as cardiovascular diseases is suggested.

  11. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  12. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  13. Design and characterization of GaN p-i-n diodes for betavoltaic devices

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad R.; Smith, Joshua R.; Tompkins, Randy P.; Kelley, Stephen; Litz, Marc; Russo, John; Leathersich, Jeff; Shahedipour-Sandvik, Fatemeh (Shadi); Jones, Kenneth A.; Iliadis, Agis

    2017-10-01

    The performance of gallium nitride (GaN) p-i-n diodes were investigated for use as a betavoltaic device. Dark IV measurements showed a turn on-voltage of approximately 3.2 V, specific-on-resistance of 15.1 mΩ cm2 and a reverse leakage current of -0.14 mA/cm2 at -10 V. A clear photo-response was observed when IV curves were measured under a light source at a wavelength of 310 nm (4.0 eV). In addition, GaN p-i-n diodes were tested under an electron-beam in order to simulate common beta radiation sources ranging from that of 3H (5.6 keV average) to 63Ni (17 keV average). From this data, we estimated output powers of 53 nW and 750 nW with overall efficiencies of 0.96% and 4.4% for our device at incident electron energies of 5.6 keV and 17 keV corresponding to 3H and 63Ni beta sources respectively.

  14. Detection of deep venous thrombophlebitis by gallium 67 scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.

    1981-07-01

    Deep venous thrombophlebitis may escape clinical detection. Three cases are reported in which whole-body gallium 67 scintigraphy was used to detect unsuspected deep venous thrombophlebitis related to indwelling catheters in three children who were being evaluated for fevers of unknown origin. Two of these children had septicemia from Candida organisms secondary to these venous lines. Gallium 67 scintigraphy may be useful in the detection of complications of indwelling venous catheters.

  15. Detection of deep venous thrombophlebitis by Gallium 67 scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.H.

    1981-07-01

    Deep venous thrombophlebitis may escape clinical detection. Three cases are reported in which whole-body gallium 67 scintigraphy was used to detect unsuspected deep venous thrombophlebitis related to indwelling catheters in three children who were being evaluated for fevers of unknown origin. Two of these children had septicemia from Candida organisms secondary to these venous lines. Gallium 67 scintigraphy may be useful in the detection of complications of indwelling venous catheters.

  16. Biological Response of Cancer and Normal Cells on Irradiation from Electrons with Energies up to 200 keV.

    NASA Astrophysics Data System (ADS)

    Prilepskiy, Yuriy

    2007-03-01

    This paper presents continuation data of the series of experiments with the electron gun of the CEBAF machine at Jefferson Lab (Newport News, VA), which is capable of delivering electrons with energies up to 200 keV. This 1.5 GHz beam permits to generate cellular damage within minutes. We have performed irradiation of cancer and normal cells with different electron energies and currents to investigate cell biological responses. The biological response is measured through proteomics analysis before and after irradiation. The living cells are encased in special air containers allowing proper positioning in vacuum where the electrons are present. The containers receive the irradiation from the mono energetic electrons with energy up to 120 keV, resulting in an irradiation from both electrons and a small number of photons from the original beam passing through the thin container window. This window allows approximately half of the beam to come through. The study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature. We will discuss the experimental setup and the second stage of data collected with the new more developed system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.

  17. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  18. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  19. The X-ray Detectability of Electron Beams Escaping from the Sun

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  20. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.

  1. Cellular uptake and anticancer activity of carboxylated gallium corroles

    PubMed Central

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  2. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-10-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (~13 keV) radiation, consistent with theoretical predictions. This is ~10 × greater than previous work. The emission was produced from a 4.1 mm diameter, 4 mm tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the NIF laser beams deposited ~700 kJ of 3 ω light into the target in a ~140 TW, 5.0 ns duration square pulse. This laser configuration sufficiently heated the targets to optimize the K-shell x-ray emission. The Dante diagnostics measured ~5 TW into 4 π solid angle of >=12 keV x rays for ~4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Defense Threat Reduction Agency under the intera- gency agreements 10027-1420 and 10027-6167.

  3. High-surface Thermally Stable Mesoporous Gallium Phosphates Constituted by Nanoparticles as Primary Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V Parvulescu; V Parvulescu; D Ciuparu

    In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl{sub 3} and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C{sub 16}H{sub 33}(CH{sub 3})3NBr and C{sub 16}PyCl). These highly reactive precursors have so far not been usedmore » as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl{sub 3} and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m{sup 2} g{sup -1}, and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis.« less

  4. Study on the keV neutron capture reaction in 56Fe and 57Fe

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  5. Liquid gallium rotary electric contract

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.

    1969-01-01

    Due to its low vapor pressure, gallium, when substituted for mercury in a liquid slip ring system, transmits substantial amounts of electrical current to rotating components in an ultrahigh vacuum. It features low electrical loss, little or no wear, and long maintenance-free life.

  6. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  7. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.

    2017-11-01

    The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.

  8. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  9. Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres.

    PubMed

    Kumar, Vijay Bhooshan; Gedanken, Aharon; Kimmel, Giora; Porat, Ze'ev

    2014-05-01

    Pure gallium has a low melting point (29.8°C) and can be melted in warm water or organic liquids, thus forming two immiscible liquid phases. Irradiation of this system with ultrasonic energy causes cavitation and dispersion of the molten gallium as microscopic spheres. The resultant spheres were found to have radii range of 0.2-5 μm and they do not coalesce upon cessation of irradiation, although the ambient temperature is well above the m.p. of gallium. It was found that the spheres formed in water are covered with crystallites of GaO(OH), whereas those formed in organic liquids (hexane and n-dodecane) are smooth, lacking such crystallites. However, Raman spectroscopy revealed that the spheres formed in organic liquids are coated with a carbon film. The latter may be the factor preventing their coalescence at temperatures above the m.p. of gallium. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  11. Amorphization induced by focused ion beam milling in metallic and electronic materials.

    PubMed

    Huh, Yoon; Hong, Ki Jung; Shin, Kwang Soo

    2013-08-01

    Focused ion beam (FIB) milling using high-energy gallium ions is widely used in the preparation of specimens for transmission electron microscopy (TEM). However, the energetic ion beam induces amorphization on the edge of specimens during milling, resulting in a mischievous influence on the clearness of high-quality transmission electron micrographs. In this work, the amorphization induced by the FIB milling was investigated by TEM for three kinds of materials, metallic materials in bulk shape, and semiconductive and electronic ceramic materials as a substrate for the deposition of thin films.

  12. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    PubMed

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  13. Clinical value of gallium-67 scintigraphy in assessment of disease activity in Wegener's granulomatosis

    PubMed Central

    Slart, R; Jager, P; Poot, L; Piers, D; Cohen, T; Stegeman, C

    2003-01-01

    Background: Diagnosis of active pulmonary and paranasal involvement in patients with Wegener's granulomatosis (WG) can be difficult. The diagnostic value of gallium-67 scintigraphy in WG is unclear. Objective: To evaluate the added diagnostic value of gallium-67 scintigraphy in patients with WG with suspected granulomatous inflammation in the paranasal and chest regions. Methods: Retrospectively, the diagnostic contribution of chest and head planar gallium scans in 40 episodes of suspected vasculitis disease activity in 28 patients with WG was evaluated. Scans were grouped into normal or increased uptake for each region. Histological proof or response to treatment was the "gold standard" for the presence of WG activity. Results: WG activity was confirmed in 8 (20%) episodes, with pulmonary locations in three, paranasal in four, and both in one (n=7 patients); all these gallium scans showed increased gallium uptake (sensitivity 100%). Gallium scans were negative for the pulmonary area in 23/36 scans (specificity 64%), and negative for paranasal activity in 13/16 scans (specificity 81%) in episodes without WG activity. Positive predictive value of WG activity for lungs and paranasal region was 24% and 63%, respectively, negative predictive value was 100% for both regions. False positive findings were caused by bacterial or viral infections. Conclusion: Gallium scans are clinically helpful as a negative scan virtually excludes active WG. Gallium scintigraphy of chest and nasal region has a high sensitivity for the detection of disease activity in WG. However, because of positive scans in cases of bacterial or viral infections, specificity was lower. PMID:12810430

  14. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  15. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  16. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  17. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  18. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  19. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  20. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  1. Gallium scanning in cerebral and cranial infections. [/sup 67/Ga, /sup 99m/Tc tracer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waxman, A.D.; Siemsen, J.K.

    1976-08-01

    Eighteen patients with cranial or intracranial infections were studied with technetium and gallium brain scans. Seven of 18 lesions were noted with gallium and not with pertechnetate, while the reverse pattern was not seen. Brain abscesses were visualized with gallium but not with pertechnetate in two of five cases. Osteomyelitis of the skull and mastoiditis showed intense gallium uptake in all cases, while meningitis or cerebritis gave inconsistent results.

  2. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  3. Gallium phosphide nanowires as a substrate for cultured neurons.

    PubMed

    Hällström, Waldemar; Mårtensson, Thomas; Prinz, Christelle; Gustavsson, Per; Montelius, Lars; Samuelson, Lars; Kanje, Martin

    2007-10-01

    Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 microm long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.

  4. Complexometric determination of gallium with calcein blue as indicator

    USGS Publications Warehouse

    Elsheimer, H.N.

    1967-01-01

    A metalfluorechromic indicator, Calcein Blue, has been used for the back-titration of milligram amounts of EDTA in presence of gallium complexes. The indicator was used in conjunction with an ultraviolet titration assembly equipped with a cadmium sulphide detector cell and a microammeter for enhanced end-point detection. The result is a convenient and rapid method with an accuracy approaching 0.1 % and a relative standard deviation of about 0.4% for 10 mg of gallium. ?? 1967.

  5. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  6. A neutral lithium beam source

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoDong; Wang, ZhengMin; Hu, LiQun

    1994-04-01

    A low energy neutral lithium beam source with energy about 6 keV and a neutral beam equivalent current of 20 μA/cm2 has been developed in ASIPP in order to measure the density gradient and the fluctuations in the edge plasma of the HT-6M tokamak. In the source, lithium ions are extracted from a solid emitter (β-eucryptite), focused in a two-tube immersion lens, and neutralized in a charge-exchange cell with sodium. This source operates in pulsed mode. The pulse length is adjustable from 10 to 100 ms.

  7. X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.

    NASA Astrophysics Data System (ADS)

    Kawamoto, Eric Hitoshi

    A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent

  8. SU-E-T-327: Dosimetric Impact of Beam Energy for Intrabeam Breast IORT with Different Residual Cancer Cell Distributions After Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwid, M; Zhang, H

    Purpose: The purpose of this study was to evaluate the dosimetric impact of beam energy to the IORT treatment of residual cancer cells with different cancer cell distributions after breast-conserving surgery. Methods: The three dimensional (3D) radiation doses of IORT using a 4-cm spherical applicator at the energy of 40 keV and 50 keV were separately calculated at different depths of the postsurgical tumor bed. The modified linear quadratic model (MLQ) was used to estimate the radiobiological response of the tumor cells assuming different radio-sensitivities and density distributions. The impact of radiation was evaluated for two types of breast cancermore » cell lines (α /β=10, and α /β =3.8) at 20 Gy dose prescribed at the applicator surface. Cancer cell distributions in the postsurgical tissue field were assumed to be a Gaussian with the standard deviations of 0.5, 1 and 2 mm respectively, namely the cancer cell infiltrations of 1.5, 3, and 6 mm respectively. The surface cancer cell percentage was assumed to be 0.01%, 0.1%, 1% and 10% separately. The equivalent uniform doses (EUD) for all the scenarios were calculated. Results: The EUDs were found to be dependent on the distributions of cancer cells, but independent of the cancer cell radio-sensitivities and the density at the surface. EUDs of 50 keV are 1% larger than that of 40 keV. For a prescription dose of 20 Gy, EUDs of 50 keV beam are 17.52, 16.21 and 13.14 Gy respectively for 0.5, 1.0 and 2.0 mm of the standard deviation of cancer cell Gaussian distributions. Conclusion: The impact by selected energies of IORT beams is very minimal. When energy is changed from 50 keV to 40 keV, the EUDs are almost the same for the same cancer cell distribution. 40 keV can be safely used as an alternative of 50 keV beam in IORT.« less

  9. First neutral beam injection experiments on KSTAR tokamak.

    PubMed

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  10. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  11. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  12. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  13. Comparison of the antimicrobial activities of gallium nitrate and gallium maltolate against Mycobacterium avium subsp. paratuberculosis in vitro.

    PubMed

    Fecteau, Marie-Eve; Aceto, Helen W; Bernstein, Lawrence R; Sweeney, Raymond W

    2014-10-01

    Johne's disease (JD) is an enteric infection of cattle and other ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This study compared the antimicrobial activities of gallium nitrate (GaN) and gallium maltolate (GaM) against two field MAP isolates by use of broth culture. The concentrations that resulted in 99% growth inhibition of isolates 1 and 2 were, respectively, 636 µM and 183 µM for GaN, and 251 µM and 142 µM for GaM. For both isolates, time to detection was significantly higher for GaM than GaN. These results suggest that GaM is more efficient than GaN in inhibiting MAP growth in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    PubMed

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  15. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    PubMed

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  16. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    NASA Astrophysics Data System (ADS)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  17. Gallium nitrate induces fibrinogen flocculation: an explanation for its hemostatic effect?

    PubMed

    Bauters, A; Holt, D J; Zerbib, P; Rogosnitzky, M

    2013-12-01

    A novel hemostatic effect of gallium nitrate has recently been discovered. Our aim was to perform a preliminary investigation into its mode of action. Thromboelastography® showed no effect on coagulation but pointed instead to changes in fibrinogen concentration. We measured functional fibrinogen in whole blood after addition of gallium nitrate and nitric acid. We found that gallium nitrate induces fibrinogen precipitation in whole blood to a significantly higher degree than solutions of nitric acid alone. This precipitate is not primarily pH driven, and appears to occur via flocculation. This behavior is in line with the generally observed ability of metals to induce fibrinogen precipitation. Further investigation is required into this novel phenomenon.

  18. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  19. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    NASA Astrophysics Data System (ADS)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  20. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc.

  1. First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK

    NASA Astrophysics Data System (ADS)

    Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.

    2006-12-01

    The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.

  2. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages

    PubMed Central

    Soto, Ernesto R.; O'Connell, Olivia; Dikengil, Fusun; Peters, Paul J.; Clapham, Paul R.

    2016-01-01

    Glucan particles (GPs) are hollow, porous 3–5 μm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). The 1,3-β-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors. GPs have been used for macrophage-targeted delivery of a wide range of payloads (DNA, siRNA, protein, small molecules, and nanoparticles) encapsulated inside the hollow GPs or bound to the surface of chemically derivatized GPs. Gallium nanoparticles have been proposed as an inhibitory agent against HIV infection. Here, macrophage targeting of gallium using GPs provides for more efficient delivery of gallium and inhibition of HIV infection in macrophages compared to free gallium nanoparticles. PMID:27965897

  3. Gallium scan in intracerebral sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhija, M.C.; Anayiotos, C.P.

    1981-07-01

    Sarcoidosis involving the nervous system probably occurs in about 4% of patients. The usefulness of brain scintigraphy in these cases has been suggested. In this case of cerebral sarcoid granuloma, gallium imaging demonstrated the lesion before treatment and showed disappearance of the lesion after corticosteroid treatment, which correlated with the patient's clinical improvement.

  4. Gallium-positive Lyme disease myocarditis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, L.I.; Welch, P.; Fisher, N.

    1985-09-01

    In the course of a work-up for fever of unknown origin associated with intermittent arrhythmias, a gallium scan was performed which revealed diffuse myocardial uptake. The diagnosis of Lyme disease myocarditis subsequently was confirmed by serologic titers. One month following recovery from the acute illness, the abnormal myocardial uptake completely resolved.

  5. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  6. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  7. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE PAGES

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-04-20

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  8. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  9. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  10. Feasibility study for mega-electron-volt electron beam tomography.

    PubMed

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  11. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  12. THE X-RAY DETECTABILITY OF ELECTRON BEAMS ESCAPING FROM THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Hilaire, Pascal; Krucker, Saem; Christe, Steven

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams ({approx}>10{sup 35} electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number ofmore » escaping electrons (above 10 keV) to {approx}>3 x 10{sup 36} for RHESSI, {approx}>3 x 10{sup 35} for Hinode/XRT, and {approx}>10{sup 33} electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.« less

  13. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  14. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  15. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  16. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  17. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  18. Clinical Applications of Gallium-68

    PubMed Central

    Banerjee, Sangeeta Ray; Pomper, Martin G.

    2013-01-01

    Gallium-68 is a positron-emitting radioisotope that is produced from a 68Ge/68Ga generator. As such it is conveniently used, decoupling radiopharmacies from the need for a cyclotron on site. Gallium-68-labeled peptides have been recognized as a new class of radiopharmaceuticals showing fast target localization and blood clearance. 68Ga-DOTATOC, 8Ga-DOTATATE, 68Ga-DOTANOC, are the most prominent radiopharmaceuticals currently in use for imaging and differentiating lesions of various somatostatin receptor subtypes, overexpressed in many neuroendocrine tumors. There has been a tremendous increase in the number of clinical studies with 68Ga over the past few years around the world, including within the United States. An estimated ~10,000 scans are being performed yearly in Europe at about 100 centers utilizing 68Ga-labeled somatostatin analogs within clinical trials. Two academic sites within the US have also begun to undertake human studies. This review will focus on the clinical experience of selected, well-established and recently applied 68Ga-labeled imaging agents used in nuclear medicine. PMID:23522791

  19. The gallium melting-point standard: its role in our temperature measurement system.

    PubMed

    Mangum, B W

    1977-01-01

    The latest internationally-adopted temperature scale, the International Practical Temperature Scale of 1968 (amended edition of 1975), is discussed in some detail and a brief description is given of its evolution. The melting point of high-purity gallium (stated to be at least 99.99999% pure) as a secondary temperature reference point is evaluated. I believe that this melting-point temperature of gallium should be adopted by the various medical professional societies and voluntary standards groups as the reaction temperature for enzyme reference methods in clinical enzymology. Gallium melting-point cells are available at the National Bureau of Standards as Standard Reference Material No. 1968.

  20. Ion Temperature Measurements in an electron beam ion trap (EBIT)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1997-11-01

    An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).

  1. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  2. Electron beam simulation from gun to collector: Towards a complete solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less

  3. Application of a transverse phase-space measurement technique for high-brightness, H{sup {minus}} beams to the GTA H{sup {minus}} beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.

    1995-05-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.

  4. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements.

    PubMed

    Løvik, Amund N; Restrepo, Eliette; Müller, Daniel B

    2015-05-05

    Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.

  5. A new medium energy beam transport line for the proton injector of AGS-RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, M.; Briscoe, B.; Fite, J.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupolemore » magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.« less

  6. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Piot, P.; Sen, T.

    2018-04-12

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. We discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less

  8. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  9. Gallium-67 scintigraphy, bronchoalveolar lavage, and pathologic changes in patients with pulmonary sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, S.; Munakata, M.; Nishimura, M.

    1984-05-01

    The intensity of gallium-67 scintiscans, lymphocyte counts in bronchoalveolar lavage fluid, and pathologic changes were studied in 26 patients with untreated pulmonary sarcoidosis. Noncaseating granulomas were recognized with significantly greater frequency in stage 2 (80 percent; 8/10 cases) than in stage 1 (43 percent; 6/14 cases). Alveolitis showed little relation to the roentgenographic stage. There was a strong correlation between the intensity of gallium uptake in pulmonary parenchyma and the detection rate of granuloma; however, the detection rate of alveolitis was not statistically different from the intensity of gallium uptake. A highly significant correlation was revealed between the lymphocyte countsmore » in bronchoalveolar lavage fluid and the intensity of alveolitis. These observations suggest that the gallium uptake reflects mainly the presence of granuloma, and the lymphocyte count in bronchoalveolar lavage fluid reflects the intensity of alveolitis in patients with pulmonary sarcoidosis.« less

  10. Evaluation of the male reproductive toxicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M

    2012-10-01

    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Thermal imaging diagnostics of high-current electron beams.

    PubMed

    Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D

    2012-10-01

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  12. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  13. Extrapulmonary localization of gallium in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, P.K.; Singh, R.; Vieras, F.

    1987-01-01

    This paper describes the spectrum of extrapulmonary localization of gallium in patients with sarcoidosis. The usefulness of Ga-67 scintiscans in detecting clinically occult lesions, in directing clinicians to accessible sites for biopsy, and in following the course of extrapulmonary sites of involvement with therapy is emphasized.

  14. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  15. Observation of Threading Dislocations in Ammonothermal Gallium Nitride Single Crystal Using Synchrotron X-ray Topography

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ishikawa, Y.; Sugawara, Y.; Takahashi, Y.; Hirano, K.

    2018-04-01

    Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11-26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \\varvec b = < {11 - 20} > /3 did not exist in the sample. A dominant proportion of TDs were of mixed type with \\varvec b = < {11 - 20} > /3 + < {0001} > , i.e., so-called c + a dislocations. Pure 1c screw dislocations with \\varvec b = < {0001} > and TDs with c-component larger than 1c were also observed.

  16. Precise measurement of energy of the first excited state of 115Sn (Eexc ≃ 497.3 keV)

    NASA Astrophysics Data System (ADS)

    Zheltonozhsky, V. A.; Savrasov, A. M.; Strilchuk, N. V.; Tretyak, V. I.

    2018-01-01

    Single beta decay of 115In to the first excited level of 115Sn (E\\text{exc}≃ 497.3 \\text{keV} ) is known as β-decay with the lowest Qβ value. To determine the Qβ precisely, one has to measure very accurately the E\\text{exc} value. A sample of tin enriched in 115Sn to 50.7% was irradiated by a proton beam at the U-120 accelerator of INR, Kyiv. The 115Sb radioactive isotope, created in the 115Sn(p,n)115Sb reaction, decays with T1/2 = 32 \\text{min} to 115Sn populating the 497 keV level with ≃ 96{%} probability. The total statistics of ˜105 counts collected in the 497 keV peak in a series of measurements, the exact description of the peak shape and the precisely known calibration points around the 497 keV peak allowed to obtain the value E\\text{exc}= 497.342(3) \\text{keV} , which is the most precise to-date. This leads to the following Qβ\\ast value for the decay 115In → 115Sn*: Qβ\\ast= 147 +/- 10 \\text{eV} .

  17. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    PubMed

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  18. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  20. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode.

    PubMed

    Hamada, Hiroki

    2017-07-28

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1-11] and [11-1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects.

  1. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  2. Ion beam synthesis of Au nanoparticles embedded nano-composite glass

    NASA Astrophysics Data System (ADS)

    Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.

    2013-02-01

    Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.

  3. Influence of novel gallium complexes on the homeostasis of some biochemical and hematological parameters in rats.

    PubMed

    Gârban, Gabriela; Silaghi-Dumitrescu, Radu; Ioniţă, Hortensia; Gârban, Zeno; Hădărugă, Nicoleta-Gabriela; Ghibu, George-Daniel; Baltă, Cornel; Simiz, Florin-Dan; Mitar, Carmen

    2013-12-01

    The aim of this study was to detect possible homeostasis changes in some biochemical and hematological parameters after the administration of gallium (Ga) complexes C (24) and C (85) on an experimental animal model (Wistar strain rats). In order to observe chronobiological aspects, a morning (m) and an evening (e) animal series were constituted. Further on, each series were divided into three groups: control (C), experimental I (EI), and experimental II (EII). Both Ga complexes were solubilized in a carrier solution containing polyethylene glycol (PEG) 400, water, and ethanol. Animals of the C groups received the carrier solution by intraperitoneal injection, those from the EI groups received the solubilized C(24) gallium complex, and those of the EII groups received the solubilized C(85) gallium complex. At the end of the experiment, blood and tissue samples were taken and the following parameters were determined: serum concentration of the nonprotein nitrogenous compounds (uric acid, creatinine, and blood urea nitrogen), hematological parameters (erythrocytes, hemoglobin, leukocytes, and platelets), and the kidney tissue concentration of three essential trace elements (Fe, Cu, and Zn). With the exception of uric acid, the results revealed increased concentrations of the nonprotein nitrogenous compounds both in the morning and in the evening experimental groups. Hematological data showed increased levels of erythrocytes, hemoglobin, and leukocytes and decreased platelet levels in the experimental group given the C(24) gallium complex in the morning (EI-m) group; increased levels of leukocytes and decreased levels of the other parameters in the experimental group given the C(24) gallium complex in the evening (EI-e) group; and increased levels of all hematological parameters in the experimental groups receiving the C(85) gallium complex in the morning (EII-m) group and in the evening (EII-e) group. Decreased kidney tissue concentrations of metals were found in all

  4. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  5. Energy dependent calibration of XR-QA2 radiochromic film with monochromatic and polychromatic x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lillo, F.; Mettivier, G., E-mail: mettivier@na.infn.it; Sarno, A.

    2016-01-15

    Purpose: This work investigates the energy response and dose-response curve determinations for XR-QA2 radiochromic film dosimetry system used for synchrotron radiation work and for quality assurance in diagnostic radiology, in the range of effective energies 18–46.5 keV. Methods: Pieces of XR-QA2 films were irradiated, in a plane transverse to the beam axis, with a monochromatic beam of energy in the range 18–40 keV at the ELETTRA synchrotron radiation facility (Trieste, Italy) and with a polychromatic beam from a laboratory x-ray tube operated at 80, 100, and 120 kV. The film calibration curve was expressed as air kerma (measured free-in-air withmore » an ionization chamber) versus the net optical reflectance change (netΔR) derived from the red channel of the RGB scanned film image. Four functional relationships (rational, linear exponential, power, and logarithm) were tested to evaluate the best curve for fitting the calibration data. The adequacy of the various fitting functions was tested by using the uncertainty analysis and by assessing the average of the absolute air kerma error calculated as the difference between calculated and delivered air kerma. The sensitivity of the film was evaluated as the ratio of the change in net reflectance to the corresponding air kerma. Results: The sensitivity of XR-QA2 films increased in the energy range 18–39 keV, with a maximum variation of about 170%, and decreased in the energy range 38–46.5 keV. The present results confirmed and extended previous findings by this and other groups, as regards the dose response of the radiochromic film XR-QA2 to monochromatic and polychromatic x-ray beams, respectively. Conclusions: The XR-QA2 radiochromic film response showed a strong dependence on beam energy for both monochromatic and polychromatic beams in the range of half value layer values from 0.55 to 6.1 mm Al and corresponding effective energies from 18 to 46.5 keV. In this range, the film response varied by 170

  6. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  7. Lateral damage in graphene carved by high energy focused gallium ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Zhongquan, E-mail: zhongquan.liao@ikts-md.fraunhofer.de; Dresden Center for Nanoanalysis; Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Hallwachsstraße 3, 01069 Dresden

    2015-07-06

    Raman mapping is performed to study the lateral damage in supported monolayer graphene carved by 30 keV focused Ga{sup +} beams. The evolution of the lateral damage is tracked based on the profiles of the intensity ratio between the D (1341 cm{sup −1}) and G (1582 cm{sup −1}) peaks (I{sub D}/I{sub G}) of the Raman spectra. The I{sub D}/I{sub G} profile clearly reveals the transition from stage 2 disorder into stage 1 disorder in graphene along the direction away from the carved area. The critical lateral damage distance spans from <1 μm up to more than 30 μm in the experiment, depending on the parametersmore » used for carving the graphene. The wide damage in the lateral direction is attributed to the deleterious tail of unfocused ions in the ion beam probe. The study raises the attention on potential sample damage during direct patterning of graphene nanostructures using the focused ion beam technique. Minimizing the total carving time is recommended to mitigate the lateral damage.« less

  8. The mobility of indium and gallium in groundwater systems: constraining the role of sorption in sand column experiments

    NASA Astrophysics Data System (ADS)

    Dror, I.; Ringering, K.; Yecheskel, Y.; Berkowitz, B.

    2017-12-01

    The mobility of indium and gallium in groundwater environments was studied via laboratory experiments using quartz sand as a porous medium. Indium and gallium are metals of very low abundance in the Earth's crust and, correspondingly, the biosphere is only adapted to very small concentrations of these elements. However, in modern semiconductor industries, both elements play a central role and are incorporated in devices of mass production such as smartphones and digital cameras. The resulting considerable increase in production, use and discharge of indium and gallium throughout the last two decades, with a continuous and fast increase in the near future, raises questions regarding the fate of both elements in the environment. However, the transport behavior of these two metals in soils and groundwater systems remains poorly understood to date. Because of the low solubility of both elements in aqueous solutions, trisodium citrate was used as a complexation agent to stabilize the solutions, enabling investigation of the transport of these metals at neutral pH. Column experiments showed different binding capacities for indium and gallium, where gallium is much more mobile compared to indium and both metals are substantially retarded in the column. Different affinities were also confirmed by examining sorption isotherms of indium and gallium in equilibrium batch systems. The effect of natural organic matter on the mobility of indium and gallium was also studied, by addition of humic acid. For both metals, the presence of humic acid affects the sorption dynamics: for indium, sorption is strongly inhibited leading to much higher mobility, whereas gallium showed a slightly higher sorption affinity and very similar mobility compared to the same setup without humic acid addition. However, in all cases, the binding capacity of gallium to quartz is much weaker than that of indium. These results are consistent with the assumption that indium and gallium form different types

  9. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    PubMed

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  10. Annotating MYC Status in Treatment-Resistant Metastatic Castration-Resistant Prostate Cancer With Gallium-68 Citrate PET

    DTIC Science & Technology

    2017-09-01

    ongoing and interim analysis is planned within the next 6 months. Planned analyses include: 1) correlation of gallium citrate uptake on PET with MYC...utility of Gallium citrate PET as a pharmacodynamic and predictive biomarker of MYC pathway inhibition in mCRPC. Correlative pre- and post-treatment...completed Milestone Achieved: Last patient completes study follow up scan 36 Not yet completed Assess correlation between SUVmax on gallium

  11. Tumoral calcinosis associated with sarcoidosis and positive bone and gallium imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolpe, F.M.; Khedkar, N.Y.; Gordon, D.

    1987-07-01

    A 63-year-old female with biopsy proven tumoral calcinosis presented with progressive and recurrent swelling and tenderness of the right hip, thigh, elbow, and wrist. Both gallium and bone imaging demonstrated intense, congruent uptake in these areas. This is the third case of tumoral calcinosis with sarcoidosis documented in the literature. However, these are the first published bone and gallium scans in a patient with a history of sarcoidosis and tumoral calcinosis.

  12. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Piot, P.; Sen, T.

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less

  13. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    DOE PAGES

    Hyun, J.; Piot, P.; Sen, T.

    2018-06-14

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less

  14. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  15. Large disparity between gallium and antimony self-diffusion in gallium antimonide.

    PubMed

    Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E

    2000-11-02

    The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.

  16. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    PubMed

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2018-01-01

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO 3 units with three bridging oxygens and asymmetric BO 3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018. © 2017 Wiley Periodicals, Inc.

  17. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  18. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  19. The status of the positron beam facility at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.

    2011-01-01

    The NEutron induced POsitron source MUniCh NEPOMUC provides a high intensity positron beam with 9·108 moderated positrons per second with a primary beam energy of 1keV. After remoderation, the positron beam is magnetically guided to five experimental setups: a coincident Doppler-broadening spectrometer (CDBS), a positron annihilation induced Auger-electron spectrometer (PAES), a pulsed low-energy positron system (PLEPS) as well as an interface for providing a pulsed beam with further improved brightness. An apparatus for the production of the negatively charged positronium ion Ps- is currently in operation at the open multi-purpose beam port, where additional experiments can be realized. Within this contribution, an overview of the positron beam facility NEPOMUC with its instrumentation at the research reactor FRMII is given.

  20. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane

    Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol wasmore » applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.« less

  1. Anticancer redox activity of gallium nanoparticles accompanied with low dose of gamma radiation in female mice.

    PubMed

    Kandil, Eman I; El-Sonbaty, Sawsan M; Moawed, Fatma Sm; Khedr, Ola Ms

    2018-03-01

    Guided treatments with nanoparticles and radiotherapy are a new approach in cancer therapy. This study evaluated the beneficial antitumor effects of γ-radiation together with gallium nanoparticles against solid Ehrlich carcinoma in female mice. Gallium nanoparticles were biologically synthesized using Lactobacillus helveticus cells. Transmission electron microscopy showed gallium nanoparticles with size range of 8-20 nm. In vitro study of gallium nanoparticles on MCF-7 revealed IC 50 of 8.0 μg. Gallium nanoparticles (0.1 mg/kg body weight) were injected intraperitoneally daily on the seventh day of Ehrlich carcinoma cells inoculation. Whole-body γ-radiation was carried out at a single dose of 0.25 Gy on eighth day after tumor inoculation. Biochemical analysis showed that solid Ehrlich carcinoma induced a significant increase in alanine aminotransferase activity and creatinine level in serum, calcium, and iron concentrations in liver tissue compared to normal control. Treatment of Ehrlich carcinoma-bearing mice with gallium nanoparticles and/or low dose of γ-radiation exposure significantly reduced tumor volume, decreased alanine aminotransferase and creatinine levels in serum, increased lipid peroxidation, and decreased glutathione content as well as calcium and iron concentrations in liver and tumor tissues with intense DNA fragmentation accompanied compared to untreated tumor cells. Moreover, mitochondria in the treated groups displayed a significant increase in Na+/K+-ATPase, complexes II and III with significant reduction in CYP450 gene expression, which may indicate a synergistic effect of gallium nanoparticles and/or low dose of γ-radiation combination against Ehrlich carcinoma injury, and this results were well appreciated with the histopathological findings in the tumor tissue. We conclude that combined treatment of gallium nanoparticles and low dose of gamma-radiation resulted in suppressive induction of cytotoxic effects on cancer cells.

  2. Low-energy plasma focus device as an electron beam source.

    PubMed

    Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  3. Graphene engineering by neon ion beams

    DOE PAGES

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He + and Ne + beam lithographymore » of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  4. A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 keV 22Ne(p,γ)23Na resonance

    NASA Astrophysics Data System (ADS)

    Ferraro, F.; Takács, M. P.; Piatti, D.; Mossa, V.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Chillery, T.; Ciani, G. F.; Corvisiero, P.; Csedreki, L.; Davinson, T.; Depalo, R.; D'Erasmo, G.; Di Leva, A.; Elekes, Z.; Fiore, E. M.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Kochanek, I.; Lugaro, M.; Marcucci, L. E.; Marigo, P.; Menegazzo, R.; Pantaleo, F. R.; Paticchio, V.; Perrino, R.; Prati, P.; Schiavulli, L.; Stöckel, K.; Straniero, O.; Szücs, T.; Trezzi, D.; Zavatarelli, S.

    2018-03-01

    The experimental study of nuclear reactions of astrophysical interest is greatly facilitated by a low-background, high-luminosity setup. The Laboratory for Underground Nuclear Astrophysics (LUNA) 400kV accelerator offers ultra-low cosmic-ray induced background due to its location deep underground in the Gran Sasso National Laboratory (INFN-LNGS), Italy, and high intensity, 250-500μA, proton and α ion beams. In order to fully exploit these features, a high-purity, recirculating gas target system for isotopically enriched gases is coupled to a high-efficiency, six-fold optically segmented bismuth germanate (BGO) γ-ray detector. The beam intensity is measured with a beam calorimeter with constant temperature gradient. Pressure and temperature measurements have been carried out at several positions along the beam path, and the resultant gas density profile has been determined. Calibrated γ-intensity standards and the well-known Ep = 278 keV 14N(p,γ)15O resonance were used to determine the γ-ray detection efficiency and to validate the simulation of the target and detector setup. As an example, the recently measured resonance at Ep = 189.5 keV in the 22Ne(p,γ)23Na reaction has been investigated with high statistics, and the γ-decay branching ratios of the resonance have been determined.

  5. The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam

    NASA Astrophysics Data System (ADS)

    Gryczka, Urszula; Migdał, Wojciech; Bułka, Sylwester

    2018-02-01

    The effectiveness of the radiation decontamination process was tested for electron beam of energy 200 keV and 300 keV. The energy of electrons was controlled by the measurements of its penetration ability in stack of B3 dosimetric film. In the presented work, the reduction of total aerobic bacteria count was observed, depending on time of irradiation for samples of dried black pepper, onion flakes and bay leaves. The results were compared with the effect observed for the process where high energy electron beam was used.

  6. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  7. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Hanada, M.; Kojima, A.

    2010-02-15

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cmx1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D{sup -} ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulsemore » duration to hold 500 kV reached 40 s of the power supply limitation.« less

  8. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style

    NASA Astrophysics Data System (ADS)

    Gaston, Nicola; Steenbergen, Krista

    2014-03-01

    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  9. Quiet-Time Suprathermal (˜0.1 - 200 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Linghua; Yang, Liu; Tao, Jiawei; Zong, Qiugang; Li, Gang; Wimmer-Schweingruber, Robert; He, Jiansen; Tu, Chuanyi; Bale, Stuart

    2017-04-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-200 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. The observed energy spectrum of both (beaming) strahl and (isotropic) halo electrons at ˜0.1-1.5 keV generally fits to a Kappa distribution function with an index κ and effective temperature Teff, while the observed energy spectrum of nearly isotropic superhalo electrons at ˜20-200 keV generally fits to a power-law function, J ˜ E-β. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl density and halo density. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. For the superhalo population, the spectral index β ranges from ˜1.6 to ˜3.7 and the integrated density nsup ranges from 10-8 cm-3 to 10-5 cm-3, with no clear association with the sunspot number. In solar cycle 23 (24), the distribution of β has a broad maximum between 2.4 and 2.8 (2.0 and 2.4). All the strahl, halo and superhalo populations show no obvious correlation with the solar wind core population. These results reflect the nature of the generation of solar wind suprathermal electrons.

  10. Quiet-Time Suprathermal ( 0.1-1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, L.; Tao, J.; Zong, Q.; Li, G.; Salem, C. S.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C.; Bale, S. D.

    2016-12-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND/3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  11. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  12. Epitaxial gallium arsenide wafers

    NASA Technical Reports Server (NTRS)

    Black, J. F.; Robinson, L. B.

    1971-01-01

    The preparation of GaAs epitaxial layers by a vapor transport process using AsCl3, Ga and H2 was pursued to provide epitaxial wafers suitable for the fabrication of transferred electron oscillators and amplifiers operating in the subcritical region. Both n-n(+) structures, and n(++)-n-n(+) sandwich structures were grown using n(+) (Si-doped) GaAs substrates. Process variables such as the input AsCl3 concentration, gallium temperature, and substrate temperature and temperature gradient and their effects on properties are presented and discussed.

  13. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device

    NASA Astrophysics Data System (ADS)

    Shamsian, Neda; Bidabadi, Babak Shirani; Pirjamadi, Hosein

    2017-07-01

    An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.

  14. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath

  15. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Espina, Aránzazu; Khainakov, Sergei A.

    2014-07-01

    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and β=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formedmore » by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (λ{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.« less

  16. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode

    PubMed Central

    Hamada, Hiroki

    2017-01-01

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01−1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1−11] and [11−1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects. PMID:28773227

  17. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    NASA Astrophysics Data System (ADS)

    Tricot, S.; Semmar, N.; Lebbah, L.; Boulmer-Leborgne, C.

    2010-02-01

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  18. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  19. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  20. Beam-induced electron modulations observed during TSS 1R

    NASA Astrophysics Data System (ADS)

    Rubin, A. G.; Burke, W. J.; Gough, M. P.; Machuzak, J. S.; Gentile, L. C.; Huang, C. Y.; Hardy, D. A.; Thompson, D. C.; Raitt, W. J.

    1999-08-01

    We report on modulations of electron fluxes at megahertz frequencies measured by the Shuttle Potential and Return Electron Experiment (SPREE) during fast pulsed electron gun (FPEG) beam experiments conducted after the tether break event of the Tethered Satellite System Reflight. Six intervals of sustained modulations were identified while FPEG emitted a 100 mA beam of 1 kev electrons. During five events the beam pitch angle αB was near 90° and the modulations were near even or odd half harmonics of the electron gyrofrequency fce. In the sixth event with 60°>=αB>=45°, electron modulations were near estimated values of the electron plasma frequency fpe and 2fpe. Whenever SPREE detected beam electrons modulated at a given frequency, secondary electrons were also modulated at the same frequency over a broad range of energies. Occasionally, some secondary electrons were modulated simultaneously at a second frequency. Multiple frequencies were related as ratios of low integers. In one case the beam electrons were simultaneously modulated at 0.8 MHz and 1.25 kHz. SPREE measurements suggest that the beam electrons propagate in cylindrical shells whose inner edge is marked by steep spatial gradients in fluxes at 1 keV [Hardy et al., 1995]. Inside the shell, electron distribution functions have positive slopes ∂f/∂v⊥>0 at velocities near that of the beam. Velocity space gradients act as free-energy sources to drive cavity modes that alter the instantaneous guiding centers of electrons causing SPREE to sample alternating parts of the beam cylinder's inner edge. Associated time-varying electric fields also modulated the fluxes of secondary electrons reaching SPREE. Other cavity modes may be excited through nonlinear processes [Calvert, 1982]. With αB far from 90°, electrons in the beam cylinder evolved toward bump-on-tail distributions to excite large-amplitude Langmuir modulations at fpe and its harmonics [Klimas, 1983]. Low-frequency modulations are attributed

  1. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  2. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  3. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  4. Carotid dual-energy CT angiography: Evaluation of low keV calculated monoenergetic datasets by means of a frequency-split approach for noise reduction at low keV levels.

    PubMed

    Riffel, Philipp; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Morelli, John N; Schmidt, Bernhard; Schoenberg, Stefan O; Henzler, Thomas

    2016-04-01

    Calculated monoenergetic ultra-low keV datasets did not lead to improved contrast-to-noise ratio (CNR) due to the dramatic increase in image noise. The aim of the present study was to evaluate the objective image quality of ultra-low keV monoenergetic images (MEIs) calculated from carotid DECT angiography data with a new monoenergetic imaging algorithm using a frequency-split technique. 20 patients (12 male; mean age 53±17 years) were retrospectively analyzed. MEIs from 40 to 120 keV were reconstructed using the monoenergetic split frequency approach (MFSA). Additionally MEIs were reconstructed for 40 and 50 keV using a conventional monoenergetic (CM) software application. Signal intensity, noise, signal-to-noise ratio (SNR) and CNR were assessed in the basilar, common, internal carotid arteries. Ultra-low keV MEIs at 40 keV and 50 keV demonstrated highest vessel attenuation, significantly greater than those of the polyenergetic images (PEI) (all p-values <0.05). The highest SNR level and CNR level was found at 40 keV and 50 keV (all p-values <0.05). MEIs with MFSA showed significantly lower noise levels than those processed with CM (all p-values <0.05) and no significant differences in vessel attenuation (p>0.05). Thus MEIs with MFSA showed significantly higher SNR and CNR compared to MEIs with CM. Combining the lower spatial frequency stack for contrast at low keV levels with the high spatial frequency stack for noise at high keV levels (frequency-split technique) leads to improved image quality of ultra-low keV monoenergetic DECT datasets when compared to previous monoenergetic reconstruction techniques without the frequency-split technique. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  6. Case Study of Ion Beams Observed By Cluster At Perigee

    NASA Astrophysics Data System (ADS)

    Sergeev, V.; Sauvaud, J.-A.; Perigee Beam Team

    During substorms the short beams of ions in the keV-to-tens keV energy range are injected into the auroral flux tubes from the magnetotail (sometimes extending up to >100 keV energy) carrying the information on the source distance, scale-size and temporal history of plasma acceleration. We present observations with the CLUSTER crossing inward the auroral zone flux tubes at ~4Re distance near its perigee during the substorm activity on February 14, 2001. The ion beams cover the same region (poleward half) of the auroral oval where the low-energy ions are extracted from the ionosphere, and where the small-scale transient transverse Alfven waves are observed which carry predominantly the downward parallel Poynting flux into the ionosphere. The multiple beams were basically confirmed to be the transient effects, although some effects including the (spatial) velocity filter and the parallel electric fields (im- posed by quasineutrality requirement) may complicate the interpretation. The gener- ation region of ion beams is not limited to most poleward, newly-reconnected flux tubes; the beam generation region could extend across magnetic field inward by as much as >100km (if mapped to the ionosphere). Surprising variety of injection dis- tances observed nearly simultaneously (ranging between >60 Re and ~10 Re) have been inferred when using the full available energy and time resolution, with shorter injection distances be possibly associated with the flow braking process. The beam multiplicity often displays the apparent ~3 min quasiperiodicity inherent to the basic dissipation process, it was not yet explained by any substorm theory.

  7. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  8. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  9. Lacrimal gland uptake of (67)Ga-gallium citrate correlates with biopsy results in patients with suspected sarcoidosis.

    PubMed

    Tannen, Bradford L; Kolomeyer, Anton M; Turbin, Roger E; Frohman, Larry; Langer, Paul D; Oh, Cheongeun; Ghesani, Nasrin V; Zuckier, Lionel S; Chu, David S

    2014-02-01

    To investigate whether lacrimal gland uptake on (67)Ga-gallium citrate scintigraphy correlates with histopathologic evidence of sarcoidosis. A retrospective, pilot study of 31 patients with suspected sarcoidosis who underwent gallium scintigraphy and lacrimal gland biopsy. Lacrimal gland gallium uptake was assessed by subjective visual scoring (SVS) and lacrimal uptake ratio (LUR). Eleven (36%) patients had lacrimal gland biopsies containing noncaseating granulomas. A statistically significant correlation was found between lacrimal gland gallium uptake and biopsy positivity using SVS (p = 0.03) or LUR (p = 0.01). Using SVS, biopsy positivity rate increased from 0 to 50% in patients with mild to intense uptake. Using LUR, biopsy positivity rate increased linearly as the ratio increased from 13% (LUR < 4) to 100% (LUR > 8). Lacrimal biopsy positivity rate significantly correlated with gallium uptake on scintigraphy. Both SVS and LUR methods appear to correlate with histologic results and may potentially aid in patient selection for biopsy.

  10. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  11. First spin-parity constraint of the 306 keV resonance in Cl 35 for nova nucleosynthesis

    DOE PAGES

    Chipps, K. A.; Rutgers Univ., New Brunswick, NJ; Pain, S. D.; ...

    2017-04-28

    Something of particular interest in astrophysics is the 34 S ( p , γ ) 35 Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Although the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35 Cl . Furthermore, measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34 Smore » ( p , γ ) 35 Cl proton capture reaction. By performing the 37 Cl ( p , t ) 35 Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35 Cl , and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ± 15 keV ( E r = 306 keV), inside the Gamow window for novae.« less

  12. First spin-parity constraint of the 306 keV resonance in 35Cl for nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Pain, S. D.; Kozub, R. L.; Bardayan, D. W.; Cizewski, J. A.; Chae, K. Y.; Liang, J. F.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Peters, W. A.; Pittman, S. T.; Schmitt, K. T.; Smith, M. S.

    2017-04-01

    Of particular interest in astrophysics is the 34S(p ,γ )35Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Though the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35Cl. Measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34S(p ,γ )35Cl proton capture reaction. By performing the 37Cl(p ,t )35Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35Cl, and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ±15 keV (Er=306 keV), inside the Gamow window for novae.

  13. Neutral beam dose and sputtering characteristics in an ion implantation system

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ash, R. L.; Berger, M. H.

    1973-01-01

    A technique and instrument design for calorimetric detection of the neutral atom content of a 60 keV argon ion beam. A beam sampling method is used to measure local heat flux to a small platinum wire at steady state; integration of power density profiles leads to a determination of equivalent neutral beam current. The fast neutral production occurs as a result of charge transfer processes in the region of the beam system between analyzing magnet and beam stop where the pressure remains less than .00001 torr. A description of the neutral beam detector is given in section along with a presentation of results. An elementary analysis of sputter material transport from target to substrate was performed; the analysis relates to semiconductor sputtering.

  14. A low cost ion beam profile monitor

    NASA Astrophysics Data System (ADS)

    Godfrey, L.; Hoyes, G. G.; Pairsuwan, W.

    1990-09-01

    An intercepting multiwire ion beam profile monitor, of thickness 0.9 cm and active area 5 × 5 cm, has been developed for use with the low-intensity deuteron beamline at the Fast Neutron Research Facility (FNRF), Chiang Mai University. It has been used to optimise the transport of a continuous ion beam of current up to 200 μA and kinetic energy up to 140 keV. The monitor enables the determination of the two-dimensional beam profile using closely-spaced samples at 1.5 mm, and the measurement of relative beam current. The design incorporates low material and labour costs, elimination of the need for commercial vacuum feedthroughs, a minimal amount of devoted electronics with no need for preamplifiers, and permits quick insertion of the monitors, wherever needed along the beamline, with minimum disruption to neighbouring elements.

  15. In Vitro and In Vivo Biological Activities of Iron Chelators and Gallium Nitrate against Acinetobacter baumannii

    PubMed Central

    Harris, Greg; KuoLee, Rhonda; Chen, Wangxue

    2012-01-01

    We investigated the ability of compounds interfering with iron metabolism to inhibit the growth of Acinetobacter baumannii. Iron restriction with transferrin or 2,2-bipyridyl significantly inhibited A. baumannii growth in vitro. Gallium nitrate alone was moderately effective at reducing A. baumannii growth but became bacteriostatic in the presence of serum or transferrin. More importantly, gallium nitrate treatment reduced lung bacterial burdens in mice. The use of gallium-based therapies shows promise for the control of multidrug-resistant A. baumannii. PMID:22825117

  16. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii.

    PubMed

    de Léséleuc, Louis; Harris, Greg; KuoLee, Rhonda; Chen, Wangxue

    2012-10-01

    We investigated the ability of compounds interfering with iron metabolism to inhibit the growth of Acinetobacter baumannii. Iron restriction with transferrin or 2,2-bipyridyl significantly inhibited A. baumannii growth in vitro. Gallium nitrate alone was moderately effective at reducing A. baumannii growth but became bacteriostatic in the presence of serum or transferrin. More importantly, gallium nitrate treatment reduced lung bacterial burdens in mice. The use of gallium-based therapies shows promise for the control of multidrug-resistant A. baumannii.

  17. 3φ Laser Beam Propagation in Inertial Confinement Plasmas*

    NASA Astrophysics Data System (ADS)

    Froula, Dustin

    2006-10-01

    A study of the relevant laser-plasma interaction processes in a long-scale length high-temperature transparent plasma has been performed using a new target platform to emulate the plasma conditions in an indirect drive fusion target. Recent experiments in this plasma emulator have demonstrated that for ignition relevant conditions (Te>3 keV, I < 2x10^15 W-cm-2) the 3φ laser light propagates through a high-density (5x10^20 cm-3) plasma with a peak transmission of 90%. Experiments have demonstrated an understanding of filamentation in these conditions that is consistent with theory increasing our confidence in our ability to execute the beam conditioning and focal spot designs for future ignition experiments. This target has been well characterized using Thomson-scattering where the peak electron temperature is shown to be 3.5 keV. The electron temperature measurements agree with HYDRA flux-limited radiation hydrodynamics calculations. Using a recently implemented 3φ transmitted beam diagnostic, the filamentation threshold has been experimentally measured for a beam that employs a continuous phase plate (CPP). For intensities above the threshold for filamentation, the beam was shown to spray. Defocusing the high-power laser beam reduced the backscatter while filamentation was not changed as predicted. Recent experiments investigating the importance of polarization and temporal smoothing of laser beams for propagation in this target platform will be presented. Detailed hydrodynamic and laser-plasma interaction simulations capture the stimulated Brillouin, stimulated Raman, and filamentation thresholds providing significant confidence that our models used for ignition designs can correctly predict the conditions where energy loss and beam propagation through the under dense NIF hohlraum plasmas will be small. ** Collaborators: L. Divol, S. H. Glenzer, J. S. Ross, N. Meezan, S. Prisbrey, S. Dixit.

  18. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y.

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally andmore » numerically demonstrated to be maintained as long as the ratio was constant.« less

  19. Investigation of beam self-polarization in the future e+e- circular collider

    NASA Astrophysics Data System (ADS)

    Gianfelice-Wendt, E.

    2016-10-01

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the e+e- Future Circular Collider (FCC-e+e-) for Z and W W physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of self-polarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-e+e- ring are presented.

  20. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector.

    PubMed

    Barbisan, M; Zaniol, B; Pasqualotto, R

    2014-11-01

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

  1. Student research with 400keV beams: {sup 13}N radioisotope production target development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fru, L. Che; Clymer, J.; Compton, N.

    2013-04-19

    The AN400 Van de Graaff accelerator at the Minnesota State University, Mankato, Applied Nuclear Science Lab has demonstrated utility as an accessible and versatile platform for student research. Despite the limits of low energy, the research team successfully developed projects with applications to the wider radioisotope production community. A target system has been developed for producing and extracting {sup 13}N by the {sup 12}C(d,n){sup 13}N reaction below 400keV. The system is both reusable and robust, with future applications to higher energy machines producing this important radioisotope for physiological imaging studies with Positron Emission Tomography. Up to 36({+-}1)% of the {supmore » 13}N was extracted from the graphite matrix when 35 A current was externally applied to the graphite target while simultaneously flushing the target chamber with CO{sub 2} gas.« less

  2. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Daniel; Yu, Zhiyuan; Dickey, Michael D., E-mail: mddickey@ncsu.edu, E-mail: aspnes@ncsu.edu

    Liquid metals based on gallium are promising materials for soft, stretchable, and shape reconfigurable electromagnetic devices. The behavior of these metals relates directly to the thicknesses of their surface oxide layers, which can be determined nondestructively by ellipsometry if their dielectric functions ε are known. This paper reports on the dielectric functions of liquid gallium and the eutectic gallium indium (EGaIn) alloy from 1.24 to 3.1 eV at room temperature, measured by spectroscopic ellipsometry. Overlayer-induced artifacts, a continuing problem in optical measurements of these highly reactive metals, are eliminated by applying an electrochemically reductive potential to the surface of the metalmore » immersed in an electrolyte. This technique enables measurements at ambient conditions while avoiding the complications associated with removing overlayers in a vacuum environment. The dielectric responses of both metals are closely represented by the Drude model. The EGaIn data suggest that in the absence of an oxide the surface is In-enriched, consistent with the previous vacuum-based studies. Possible reasons for discrepancies with previous measurements are discussed.« less

  3. Development of the JT-60SA Neutral Beam Injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, M.; Kojima, A.; Inoue, T.

    2011-09-26

    This paper describes the development of the neutral beam (NB) systems on JT-60SA, where 30-34 MW D{sup 0} beams are required to be injected for 100 s. A 30 s operation of the NB injectors suggests that existing beamline components and positive ion sources on JT-60U can be reused without the modifications on JT-60 SA. The JT-60 negative ion source was modified to improve the voltage holding capability, which leads to a successful acceleration of 2.8 A H{sup -} ion beam up to 500 keV of the rated acceleration energy for JT-60SA.

  4. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    NASA Technical Reports Server (NTRS)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  5. Gallium scintigraphic pattern in lung CMV infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganz, W.I.; Cohen, D.; Mallin, W.

    1994-05-01

    Due to extensive use of prophylactic therapy for Pneumonitis Carinii Pneumonia (PCP), Cytomegalic Viral (CMV) infection may now be the most common lung infection in AIDS patients. This study was performed to determine Gallium-67 patterns in AIDS patients with CMV. Pathology reports were reviewed in AIDS patients who had a dose of 5 to 10 mCi of Gallium-67 citrate. Analysis of images were obtained 48-72 hours later of the entire body was performed. Gallium-67 scans in 14 AIDS patients with biopsy proven CMV, were evaluated for eye, colon, adrenal, lung and renal uptake. These were compared to 40 AIDS patientsmore » without CMV. These controls had infections including PCP, Mycobacterial infections, and lymphocytic interstitial pneumonitis. 100% of CMV patients had bowel uptake greater than or equal to liver. Similar bowel activity was seen in 50% of AIDS patients without CMV. 71% had intense eye uptake which was seen in only 10% of patients without CMV. 50% of CMV patients had renal uptake compared to 5% of non-CMV cases. Adrenal uptake was suggested in 50%, however, SPECT imaging is needed for confirmation. 85% had low grade lung uptake. The low grade lung had perihilar prominence. The remaining 15% had high grade lung uptake (greater than sternum) due to superimposed PCP infection. Colon uptake is very sensitive indicator for CMV infection. However, observing eye, renal, and or adrenal uptake improved the diagnostic specificity. SPECT imaging is needed to confirm renal or adrenal abnormalities due to intense bowel activity present in 100% of cases. When high grade lung uptake is seen superimposed PCP is suggested.« less

  6. Optical properties of bismuth and gallium substituted thulium iron garnet films

    NASA Astrophysics Data System (ADS)

    Gerhardt, R.; Sure, S.; Dötsch, H.; Linkewitz, T.; Tolksdorf, W.

    1993-09-01

    Bismuth and gallium substituted films of thulium iron garnet, grown by liquid phase epitaxy on [111] oriented substrates of gadolinium gallium garnet, are investigated for optical isolator applications. At a wavelength of λ = 1.3 μm the optical damping, the refractive index, the optical anisotropy, and the Faraday rotation are measured as function of the substitution level. It turns out that the growth induced optical anisotropy is very small, similar to the magnetic anisotropy. The observed difference between forward and backward propagation constants of TM modes is in excellent agreement with calculations.

  7. Assessment of arsenic exposures and controls in gallium arsenide production.

    PubMed

    Sheehy, J W; Jones, J H

    1993-02-01

    The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.

  8. Toward single mode, atomic size electron vortex beams.

    PubMed

    Krivanek, Ondrej L; Rusz, Jan; Idrobo, Juan-Carlos; Lovejoy, Tracy J; Dellby, Niklas

    2014-06-01

    We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic "fork" aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1-2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥ 20 pA of current should be attainable at 100-200 keV in either instrument.

  9. Haemophilus parainfluenzae bacteremia associated with a pacemaker wire localized by gallium scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, G.S.; Calubiran, O.; Cunha, B.A.

    1990-05-01

    A young woman with a history of sick sinus syndrome and placement of a permanent pacemaker 6 months before admission had fever and Haemophilus parainfluenzae bacteremia. A gallium scan localized the infection to the site of the pacemaker wire. Echocardiograms were negative for any vegetations. The patient responded to cefotaxime and trimethoprim-sulfamethoxazole therapy. We believe that this is the first case of H. parainfluenzae bacteremia associated with a pacemaker wire and localized by gallium scan.

  10. Influence of various factors on the accuracy of gallium-67 imaging for occult infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maderazo, E.G.; Hickingbotham, N.B.; Woronick, C.L.

    1988-05-01

    To examine whether the results and interpretation of gallium-67 citrate imaging may be adversely influenced by factors present in compromised patients, we reviewed our 1-year experience in 69 patients in intensive care units, renal transplants, and those on hemodialysis. Our results indicate that it is an inappropriate diagnostic procedure for acute pancreatitis since seven of nine had false-negative results. Using loglinear modeling and chi-square analysis we found that treatment with antiinflammatory steroids, severe liver disease, end-stage renal disease, and renal transplantation with immunosuppressive therapy did not interfere with gallium-67 uptake. Increased rate of true-negative results in patients with end-stage renalmore » disease was due to a greater and earlier use of the test in the febrile transplant patient and in hemodialysis patients with infections not amenable to diagnosis with gallium-67 scan (transient bacteremia and bacteriuria). We conclude that gallium-67 imaging is a useful diagnostic tool that, with the exception of acute pancreatitis, has very few false-negative results.« less

  11. Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Makoto, E-mail: kuwahara@esi.nagoya-u.ac.jp; Saitoh, Koh; Tanaka, Nobuo

    2014-11-10

    The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had amore » high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.« less

  12. Self-consistent simulation of an electron beam for a new autoresonant x-ray generator based on TE 102 rectangular mode

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.

    2016-02-01

    The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.

  13. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  14. Tests of a solution-grown stilbene scintillator in mono-energetic neutron beams of 565 keV and 5 MeV

    NASA Astrophysics Data System (ADS)

    Dioni, Luca; Gressier, Vincent; Nardin, Gaëlle; Jacqmin, Robert; Stout, Brian; Sumini, Marco

    2018-02-01

    The results of measurements performed with a solution-grown stilbene scintillator placed in reference mono-energetic neutron fields are presented. The ∅ 25 mm organic scintillator was positioned in 5 MeV and 565 keV neutron fields delivered by the AIFIRA facility at CENBG. The goal of the experiment was to assess the performance of the solution-grown stilbene crystal (n- γ discrimination, response, anisotropy, sensitivity) relative to that of a BC501A liquid scintillator of larger size. Neutron pulse height spectra after gamma discrimination are compared. The results show that the stilbene crystal not only has a better discrimination capability than the BC501A (35% higher FoM) at 5 MeV, but is also able to separate neutrons from gamma-rays at 565 keV and below, a range where the BC501A is inoperative. This study also confirms the anisotropy of the crystal response, as already observed by other groups at different energies.

  15. Attenuation and Refraction of an Electromagnetic Wave in an Electron Beam Generated Plasma

    DTIC Science & Technology

    2001-02-01

    100 keV and 1 MeV respectively. Plasma chemistry plays a critical role in determining the electron plasma density and dictates the beam format required to achieve a desired level of EM wave attenuation.

  16. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  17. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  18. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  19. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  20. Improvement of efficiency in graphene/gallium nitride nanowire on Silicon photoelectrode for overall water splitting

    NASA Astrophysics Data System (ADS)

    Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok

    2017-11-01

    Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.

  1. Slowing down of 100 keV antiprotons in Al foils

    NASA Astrophysics Data System (ADS)

    Nordlund, K.

    2018-03-01

    Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed.

  2. High quality lamella preparation of gallium nitride compound semiconductor using Triple Beam™ system

    NASA Astrophysics Data System (ADS)

    Sato, T.; Nakano, K.; Matsumoto, H.; Torikawa, S.; Nakatani, I.; Kiyohara, M.; Isshiki, T.

    2017-09-01

    Gallium nitride (GaN) compound semiconductors have been known to be very sensitive to Ga focused ion beam (FIB) processing. Due to the nature of GaN based materials it is often difficult to produce damage-free lamellae, therefore applying the Triple Beam™ system which incorporates an enhanced method for amorphous removal is presented to make a high quality lamella. The damage or distortion layer thickness of GaN single crystal prepared with 30 kV Ga FIB and 1 kV Ga FIB were about 17 nm and 1.5 nm respectively. The crystallinity at the uppermost surface remained unaffected when the condition of 1 kV Ar ion milling with the Triple Beam™ system was used. The technique of combining traditional Ga FIB processing with an enhanced method for amorphous layer removal by low energy Ar ion milling allows us to analyse the InGaN/GaN interface using aberration corrected scanning transmission electron microscopy at atomic resolution levels.

  3. Photoeffect cross sections of several rare-earth elements for 323-keV photons

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Anasuya, S. J.; Shylaja Kumari, J.; Gowda, Channe; Gopinathan Nair, K. P.; Gowda, Ramakrishna

    1992-02-01

    Total-attenuation cross sections of the oxides of rare-earth elements such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er, and also NaNO3 and NaNO2 have been measured in a narrow-beam geometry setup at 323 keV. The total-attenuation cross section for oxygen was obtained as the difference in NaNO3 and NaNO2 cross sections. Using this, the total-attenuation cross sections of the individual lanthanides have been obtained with the aid of the mixture rule. From these, the photoeffect cross sections were derived by subtracting the scattering contribution. These values are found to agree well with Scofield's theoretical data [University of California Report No. UCRL 51326, 1973 (unpublished)].

  4. Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror

    2017-06-01

    We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  5. Preclinical characterization of anticancer gallium(III) complexes: solubility, stability, lipophilicity and binding to serum proteins.

    PubMed

    Rudnev, Alexander V; Foteeva, Lidia S; Kowol, Christian; Berger, Roland; Jakupec, Michael A; Arion, Vladimir B; Timerbaev, Andrei R; Keppler, Bernhard K

    2006-11-01

    The discovery and development of gallium(III) complexes capable of inhibiting tumor growth is an emerging area of anticancer drug research. A range of novel gallium coordination compounds with established cytotoxic efficacy have been characterized in terms of desirable chemical and biochemical properties and compared with tris(8-quinolinolato)gallium(III) (KP46), a lead anticancer gallium-based candidate that successfully finished phase I clinical trials (under the name FFC11), showing activity against renal cell cancer. In view of probable oral administration, drug-like parameters, such as solubility in water, saline and 0.5% dimethyl sulfoxide, stability against hydrolysis, measured as the rate constant of hydrolytic degradation in water or physiological buffer using a capillary zone electrophoresis (CZE) assay, and the octanol-water partition coefficient (logP) providing a rational estimate of a drug's lipophilicity, have been evaluated and compared. The differences in bioavailability characteristics between different complexes were discussed within the formalism of structure-activity relationships. The reactivity toward major serum transport proteins, albumin and transferrin, was also assayed in order to elucidate the drug's distribution pathway after intestinal absorption. According to the values of apparent binding rate constants determined by CZE, both KP46 and bis(2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazonato-N,N,S)gallium(III) tetrachlorogallate(III) (KP1089) bind to transferrin faster than to albumin. This implies that transferrin would rather mediate the accumulation of gallium antineoplastic agents in solid tumors. A tendency of being faster converted into the protein-bound form found for KP1089 (due possibly to non-covalent binding) seems complementary to its greater in vitro antiproliferative activity.

  6. Mathematical Description Development of Reactions of Metallic Gallium Using Kinetic Block Diagram

    NASA Astrophysics Data System (ADS)

    Yakovleva, A. A.; Soboleva, V. G.; Filatova, E. G.

    2018-05-01

    A kinetic block diagram based on a logical sequence of actions in the mathematical processing of a kinetic data is used. A type of reactions of metallic gallium in hydrochloric acid solutions is determined. It has been established that the reactions of the formation of gallium oxide and its salts proceed independently and in the absence of the diffusion resistance. Kinetic models connecting the constants of the reaction rate with the activation energy and describing the evolution of the process are obtained.

  7. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of Unmanned Aerial Vehicles

    DTIC Science & Technology

    2009-09-01

    Group V element to make them n or p material. Another common group of semiconductors are called III–V compounds , such as gallium arsenide (GaAs), or...these compounds used for photovoltaics are Cadmium Telluride (CdTe), and Copper Indium Gallium DiSelenide, commonly referred to as CIGS [49]. Figure...INDIUM GALLIUM DISELENIDE PHOTOVOLTAIC CELLS TO EXTEND THE ENDURANCE AND CAPABILITIES OF UNMANNED AERIAL VEHICLES by William R. Hurd

  8. Evidence for the bias-driven migration of oxygen vacancies in amorphous non-stoichiometric gallium oxide

    NASA Astrophysics Data System (ADS)

    Guo, D. Y.; Qian, Y. P.; Su, Y. L.; Shi, H. Z.; Li, P. G.; Wu, J. T.; Wang, S. L.; Cui, C.; Tang, W. H.

    2017-06-01

    The conductivity of gallium oxide thin films is strongly dependent on the growth temperature when they deposited by pulsed laser deposition under vacuum environment, exhibiting an insulative-to-metallic transition with the decrease of the temperature. The high conductive gallium oxide films deposited at low temperature are amorphous, non-stoichiometric, and rich in oxygen vacancy. Large changes in electrical resistance are observed in these non-stoichiometric thin films. The wide variety of hysteretic shapes in the I-V curves depend on the voltage-sweep rate, evidencing that the time-dependent redistribution of oxygen vacancy driven by bias is the controlling parameter for the resistance of gallium oxide.

  9. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  10. Beam line BL11 for LIGA process at the NewSUBARU

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2001-07-01

    A beam line BL11 is constructed for exposure Hard X-ray Lithography (HXL) in the LIGA (German acronym for Lithographite Galvanoformung and Abformung) process at the synchrotron radiation (SR) facility NewSUBARU of the Laboratory of Advanced Science and Technology for Industry (LASTI) in Himeji Institute of Technology (HIT). This beam line was designed by the criteria; photon energy range 4-6 keV, a beam spot size on the exposure stage ⩾60×5 mm 2, a density of total irradiated photons ⩾10 11 photons/cm 2. The PMMA sheet etching was successfully demonstrated by using the output beam. We conclude that this beam line performs sufficiently well to study the exposure of HXL in the LIGA process.

  11. Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy Retraction: Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2018-01-01

    The paper "Using the Medipix3 detector for direct electron imaging in the range 60keV to 200keV in electron microscopy" by J.A. Mir, R. Plackett, I. Shipsey and J.M.F. dos Santos has been retracted following the authors' request on the basis of the existence of a disagreement about the ownership of the data, to prevent conflict between collaborators.

  12. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  13. Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies.

    PubMed

    White, Sarah Jane O; Shine, James P

    2016-12-01

    The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.

  14. Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities.

    PubMed

    Jahangoshaei, Parisa; Hassani, Leila; Mohammadi, Fakhrossadat; Hamidi, Akram; Mohammadi, Khosro

    2015-10-01

    Curcumin has a wide spectrum of biological and pharmacological activities including anti-inflammatory, antioxidant, antiproliferative, antimicrobial and anticancer activities. Complexation of curcumin with metals has gained attention in recent years for improvement of its stability. In this study, the effect of gallium curcumin and gallium diacetylcurcumin on the structure, function and oxidative stability of horseradish peroxidase (HRP) enzyme were evaluated by spectroscopic techniques. In addition to the enzymatic investigation, the cytotoxic effect of the complexes was assessed on bladder, MCF-7 breast cancer and LNCaP prostate carcinoma cell lines by MTT assay. Furthermore, antibacterial activity of the complexes against S. aureus and E. coli was explored by dilution test method. The results showed that the complexes improve activity of HRP and also increase its tolerance against the oxidative condition. After addition of the complexes, affinity of HRP for hydrogen peroxide substrate decreases, while the affinity increases for phenol substrate. Circular dichroism, intrinsic and synchronous fluorescence spectra showed that the enzyme structure around the catalytic heme group becomes less compact and also the distance between the heme group and tryptophan residues increases due to binding of the complexes to HRP. On the whole, it can be concluded that the change in the enzyme structure upon binding to the gallium curcumin and gallium diacetylcurcumin complexes results in an increase in the antioxidant efficiency and activity of the peroxidise enzyme. The result of anticancer and antibacterial activities suggested that the complexes exhibit the potential for cancer treatment, but they have no significant antibacterial activity.

  15. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  16. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    NASA Astrophysics Data System (ADS)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantationmore » and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.« less

  18. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  19. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires.

    PubMed

    Zardo, I; Yu, L; Conesa-Boj, S; Estradé, S; Alet, Pierre Jean; Rössler, J; Frimmer, M; Roca I Cabarrocas, P; Peiró, F; Arbiol, J; Morante, J R; Fontcuberta I Morral, A

    2009-04-15

    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between <111> and <112>, depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires.

  20. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  1. Inverse time-of-flight spectrometer for beam plasma research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V.

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed atmore » ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.« less

  2. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  3. Electron beam irradiation processing for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra Nur

    2017-09-01

    In recent years, electron beam processing has been widely used for medical and industrial applications. Electron beam accelerators are reliable and durable equipments that can produce ionizing radiation when it is needed for a particular commercial use. On the industrial scale, accelerators are used to generate electrons in between 0.1-100 MeV energy range. These accelerators are used mainly in plastics, automotive, wire and electric cables, semiconductors, health care, aerospace and environmental industries, as well as numerous researches. This study presents the current applications of electron beam processing in medicine and industry. Also planned study of a design for such a system in the energy range of 200-300 keV is introduced.

  4. Observations of ionospheric electron beams in the plasma sheet.

    PubMed

    Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K

    2012-11-16

    Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.

  5. Gallium-67 scintigraphy and intraabdominal sepsis. Clinical experience in 140 patients with suspected intraabdominal abscess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, G.B.; Kan, M.; Mende, C.W.

    In 140 patients with suspected intraabdominal abscess, studies were made using gallium-67 citrate and technetium-99m labeled radiopharmaceuticals. Gallium-67 scintigrams correctly localized 52 of 56 intraabdominal abscesses confirmed at surgical operation or necropsy. In an additional 20 patients in whom findings on scintigrams were abnormal, there were clinically established infections. Sixty-one patients in whom findings on scintigrams were normal were conservatively managed and discharged from the hospital; none proved to have an abscess. Four false-negative and three false-positive studies were recorded. Gallium-67 scintigraphy is a useful noninvasive diagnostic adjunct that should be employed early in the evaluation of patients with suspectedmore » intraabdominal sepsis.« less

  6. Gallium Phosphide Integrated with Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chaomin

    It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch ( 0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si. In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM). The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation

  7. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samplesmore » that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.« less

  8. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    NASA Astrophysics Data System (ADS)

    Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario

    2017-09-01

    We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  9. Analysis of microscopic parameters of surface charging in polymer caused by defocused electron beam irradiation.

    PubMed

    Liu, Jing; Zhang, Hai-Bo

    2014-12-01

    The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High resolution energy analyzer for broad ion beam characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanarov, V.; Hayes, A.; Yevtukhov, R.

    2008-09-15

    Characterization of the ion energy distribution function (IEDF) of low energy high current density ion beams by conventional retarding field and deflection type energy analyzers is limited due to finite ion beam emittance and beam space charge spreading inside the analyzer. These deficiencies are, to a large extent, overcome with the recent development of the variable-focusing retarding field energy analyzer (RFEA), which has a cylindrical focusing electrode preceding the planar retarding grid. The principal concept of this analyzer is conversion of a divergent charged particle beam into a quasiparallel beam before analyzing it by the planar retarding field. This allowsmore » analysis of the beam particle total kinetic energy distribution with greatly improved energy resolution. Whereas this concept was first applied to analyze 5-10 keV pulsed electron beams, the present authors have adapted it to analyze the energy distribution of a low energy ({<=}1 KeV) broad ion beam. In this paper we describe the RFEA design, which was modified from the original, mainly as required by the specifics of broad ion beam energy analysis, and the device experimental characterization and modeling results. Among the modifications, an orifice electrode placed in front of the RFEA provides better spatial resolution of the broad ion beam ion optics emission region and reduces the beam plasma density in the vicinity of analyzer entry. An electron repeller grid placed in front of the RFEA collector was found critical for suppressing secondary electrons, both those incoming to the collector and those released from its surface, and improved energy spectrum measurement repeatability and accuracy. The use of finer mesh single- and double-grid retarding structures reduces the retarding grid lens effect and improves the analyzer energy resolution and accuracy of the measured spectrum mean energy. However, additional analyzer component and configuration improvements did not further change the

  11. Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieland, R.M.; Houlberg, W.A.

    1982-02-01

    A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Depositionmore » profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10/sup 13/ - 2 x 10/sup 14/ cm/sup -3/, and beam orientation ranging from perpendicular to tangential to the inside wall.« less

  12. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less

  13. Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele

    2012-10-01

    The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult withmore » traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.« less

  14. Electron beam dispersion measurements in nitrogen using two-dimensional imaging of N2(+) fluorescence

    NASA Technical Reports Server (NTRS)

    Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.

    1991-01-01

    Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.

  15. Gallium-67 complexes as radioactive markers to assess gastric and colonic transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellen, J.C.; Chatterton, B.E.; Penglis, S.

    1995-03-01

    Constipation and gastroparesis are gastrointestinal tract disorders that can be assessed by using radioactive markers in conjunction with scintigraphic techniques. Indium-111-DTPA is the radiopharmaceutical of choice for treating colonic transit in constipated patients, but it is an expensive product and its availability has been unreliable. Indium-113m-DTPA was the tracer used in our study to determine the liquid gastric emptying rate in dual-isotope solid-liquid emptying studies, however, cessation of the {sup 113}Sn/{sup 113m}In generator production makes it unavailable. Thus, development of alternative tracers to {sup 111}In-DTPA and {sup 113m}In-DTPA was essential. Gallium-67-citrate and {sup 67}Ga-EDTA were compared to {sup 111}In-DTPA tomore » assess their efficacy for exclusive retention in the GI tract. These markers were orally administered into rats and their three-day cumulative fecal excretion, urine excretion and carcass retention were measured. An in vitro gastric emptying model was used to determine liquid phase partitioning of {sup 113m}In-DTPA, {sup 67}Ga-citrate and {sup 67}Ga-EDTA at 37{degrees}. Gallium-67-citrate was predominantly excreted in the feces (97.2% {+-} 0.2%) after three days, with negligible urine excretion (0.1% {+-} 0.0%) and carcass retention (0.6% {+-} 0.2%). These results are analogous to those obtained for {sup 111}In-DTPA for fecal excretion (96.7% {+-} 2.6%), urine excretion (0.6% {+-} 0.0%) and retention in the carcass (0.2% {+-} 0.0%). Gallium-67-EDTA showed similar partitioning in the liquid phase of the gastric emptying model compared with {sup 113m}In-DTPA. Gallium-67-citrate is an economical and readily available alternative to {sup 111}In-DTPA as a colonic transit radiopharmaceutical. Gallium-67-EDTA is also an alternative to {sup 113m}In-DTPA for assessing liquid-phase emptying in a dual-isotope solid/liquid gastric emptying study. 17 refs., 3 figs., 2 tabs.« less

  16. System OptimizatIon of the Glow Discharge Optical Spectroscopy Technique Used for Impurity Profiling of ION Implanted Gallium Arsenide.

    DTIC Science & Technology

    1980-12-01

    AFIT/GEO/EE/80D-1 I -’ SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ...EE/80D-1 (\\) SYSTEM OPTIMIZATION OF THE GLOW DISCHARGE OPTICAL SPECTROSCOPY TECHNIQUE USED FOR IMPURITY PROFILING OF ION IMPLANTED GALLIUM ARSENIDE...semiconductors, specifically annealed and unan- nealed ion implanted gallium arsenide (GaAs). Methods to improve the sensitivity of the GDOS system have

  17. Research and development of an electron beam focusing system for a high-brightness X-ray generator.

    PubMed

    Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo

    2011-01-01

    A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.

  18. Synthesis and Structural characterization of β-ketoiminate-stabilized gallium hydrides for chemical vapor deposition applications.

    PubMed

    Marchand, Peter; Pugh, David; Parkin, Ivan P; Carmalt, Claire J

    2014-08-11

    Bis-β-ketoimine ligands of the form [(CH2 )n {N(H)C(Me)CHC(Me)O}2 ] (L(n) H2 , n=2, 3 and 4) were employed in the formation of a range of gallium complexes [Ga(L(n) )X] (X=Cl, Me, H), which were characterised by NMR spectroscopy, mass spectrometry and single-crystal X-ray diffraction analysis. The β-ketoimine ligands have also been used for the stabilisation of rare gallium hydride species [Ga(L(n) )H] (n=2 (7); n=3 (8)), which have been structurally characterised for the first time, confirming the formation of five-coordinate, monomeric species. The stability of these hydrides has been probed through thermal analysis, revealing stability at temperatures in excess of 200 °C. The efficacy of all the gallium β-ketoiminate complexes as molecular precursors for the deposition of gallium oxide thin films by chemical vapour deposition (CVD) has been investigated through thermogravimetric analysis and deposition studies, with the best results being found for a bimetallic gallium methyl complex [L(3) {GaMe2 }2 ] (5) and the hydride [Ga(L(3) )H] (8). The resulting films (F5 and F8, respectively) were amorphous as-deposited and thus were characterised primarily by XPS, EDXA and SEM techniques, which showed the formation of stoichiometric (F5) and oxygen-deficient (F8) Ga2 O3 thin films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sensitivity of MSE measurements on the beam atomic level population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.

    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam aremore » simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.« less

  20. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  1. The Imaging and Medical Beam Line at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stemmore » cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.« less

  2. Low Temperature Flux Growth of 2H-SiC and Beta-Gallium Oxide

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Choa, Fow-Sen; Su, Ching-Hua; Arnold, Bradley; Kelly, Lisa

    2016-01-01

    We present brief overview of our study on the low temperature flux growth of two very important novel wide bandgap materials 2H-SiC and Beta-gallium oxide (Beta-Ga2O3). We have synthesized and grown 5 millimeter to 1 centimeter size single crystals of Beta-gallium oxide (Beta-Ga2O3). We used a flux and semi wet method to grow transparent good quality crystals. In the semi-wet method Ga2O3 was synthesized with starting gallium nitrate solution and urea as a nucleation agent. In the flux method we used tin and other metallic flux. This crystal was placed in an alumina crucible and temperature was raised above 1050 degrees Centigrade. After a time period of thirty hours, we observed prismatic and needle shaped crystals of gallium oxide. Scanning electron microscopic studies showed step growth morphology. Crystal was polished to measure the properties. Bandgap was measured 4.7electronvolts using the optical absorption curve. Another wide bandgap hexagonal 2H-SiC was grown by using Si-Al eutectic flux in the graphite crucible. We used slight AlN also as the impurity in the flux. The temperature was raised up to 1050 degrees Centigrade and slowly cooled to 850 degrees Centigrade. Preliminary characterization results of this material are also reported.

  3. 5 MeV Mott polarimeter for rapid precise electron beam polarization measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J.S.; Poelker, B.M.; Sinclair, C.K.

    1997-11-01

    Low energy (E{sub k} = 100 keV) Mott scattering polarimeters are ill-suited to support operations foreseen for the polarized electron injector at Jefferson Lab. One solution is to measure the polarization at 5 MeV where multiple and plural scattering are unimportant and precision beam monitoring is straightforward. The higher injector beam current offsets the lower cross-sections; measured rates scale to 1 kHz/{mu}A with a 1 {mu}m thick gold target foil.

  4. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  5. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less

  6. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  7. Neutral beam dump with cathodic arc titanium gettering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less

  8. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  9. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor.

    PubMed

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem

    2013-01-01

    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  10. A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques.

    PubMed

    Lange, Jaclyn L; Hayne, David J; Roselt, Peter; McLean, Catriona A; White, Jonathan M; Donnelly, Paul S

    2016-09-01

    Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N 2 O 2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga 3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Lack of gallium uptake in primary hepatic amyloidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgen, T.G.; Taylor, A.; Alazraki, N.

    1976-06-01

    Technetium-99m-sulfur colloid and /sup 67/Ga citrate hepatic scintigrams showed matching defects in a patient with diffuse primary amyloidosis. Amyloidosis should be added to the usual differential diagnosis of such matching lesions which includes cysts, fibrosis, most benign tumors, and occasional metastatic lesions which do not concentrate gallium.

  12. Observations of waves artificially stimulated by an electron beam inside a region with auroral precipitation

    NASA Technical Reports Server (NTRS)

    Grandal, B.; Troim, J.; Maehlum, B.; Holtet, J. A.; Pran, B.

    1980-01-01

    Observations of waves stimulated by artificial injection inside an auroral arc by an electron accelerator mounted on the POLAR 5 sounding rocket are presented. The accelerator produced a pulsed electron beam with currents up to 130 mA and energies up to 10 keV; emissions after the end of beam injection were generated by perturbations in the ambient plasma near the accelerator during beam injection. These emissions were independent of the electron beam direction along the geomagnetic field. The high frequency emission observed after beam injection correlated with the passage through an auroral arc; the low frequency emissions after beam injection were concentrated in two bands below the lower hybrid frequency.

  13. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  14. Electron-Beam Produced Air Plasma: Optical and Electrical Diagnostics

    NASA Astrophysics Data System (ADS)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    High energy electron impact excitation is used to stimulate optical emissions that quantify the measurement of electron beam current. A 100 keV 10-ma electron beam source is used to produce air plasma in a test cell at a pressure between 1 mTorr and 760 Torr. Optical emissions originating from the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm are observed. Details on calibration using signals from an isolated transmission window and a Faraday plate are discussed. Results using this technique and other electrical signal are presented.

  15. Silicon nitride films deposited with an electron beam created plasma

    NASA Technical Reports Server (NTRS)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  16. Development and characterization of semiconductor ion detectors for plasma diagnostics in the range over 0.3 keV

    NASA Astrophysics Data System (ADS)

    Cho, T.; Sakamoto, Y.; Hirata, M.; Kohagura, J.; Makino, K.; Kanke, S.; Takahashi, K.; Okamura, T.; Nakashima, Y.; Yatsu, K.; Tamano, T.; Miyoshi, S.

    1997-01-01

    For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure.

  17. Long-pulse power-supply system for EAST neutral-beam injectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team

    2017-05-01

    The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.

  18. Gallium-67 imaging in muscular sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edan, G.; Bourguet, P.; Delaval, P.

    1984-07-01

    A case is presented of sarcoid myopathy in which radiogallium was seen to accumulate in the sites of muscle involvement. Uptake of the radiotracer disappeared following institution of corticosteroid therapy. The exceptional nature of this case contrasts with the high frequency of biopsy evidence of sarcoid granulomas in muscle. Gallium-67 imaging can be used to determine the extent of muscle involvement and, through evaluation of uptake intensity, the degree of disease activity before and after treatment.

  19. Surface analysis by means of high resolution energy loss spectroscopy of 180° elastic scattered protons in the 100 keV regime

    NASA Astrophysics Data System (ADS)

    Jun-ichi, Kanasaki; Noriaki, Matsunami; Noriaki, Itoh; Tomoki, Oku; Kensin, Kitoh; Masahiko, Aoki; Koji, Matsuda

    1988-06-01

    The design and computer simulation of the performance of a new ion-beam surface analyzer has been presented. The analyzer has the capability of analyzing the energy of ions incident at 100 keV and scattered by 180° at surfaces with a resolution of 5 eV. The analyzer consists of an ion source, an accelerating-decelerating tube and a multichannel analyzer. Computer simulation of the energy spectra of ions scattered from GaAs is reported.

  20. Electron beam induced damage in ITO coated Kapton. [Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    Data for the stability of thin conductive indium tin oxide films on 0.003 inch thick Kapton substrates during exposure of the surface to electron beams are reported. The electron beam energy was 3 keV and the diameter was about 0.8 mm. Thermal effects and surface modifications are considered. For primary current greater than 0.6 microamperes, an obvious dark discoloration with diameter approximately that of the beam was produced. The structure of the discolored region was studied with the scanning electron microscope, and the findings are stated. Surface modifications were explored by AES, obtaining spectra and secondary emission coefficient as a function of time for different beam intensities. In all cases beam exposure results in a decrease of the secondary yield but because of thermal effects this change, as well as composition changes, cannot be directly interpreted in terms of electron beam dosage.

  1. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    NASA Astrophysics Data System (ADS)

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-01

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of ɛ = AΕa+BΕb, where ɛ is efficiency, Ε is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a "knee" at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  2. Gallium scanning in sarcoidosis. [/sup 67/Ga tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israel, H.L.; Park, C.H.; Mansfield, C.M.

    1976-01-01

    The uptake of gallium-67 by pulmonary sarcoidosis was noted by Langhammer et al. in 1972 and by McKusick et al. in 1973. Heshiki et al. studied the application of this procedure in the diagnosis of sarcoidosis and concluded that although gallium-67 uptake in lungs and hilar regions correlated poorly with clinical activity, its measurement might prove useful in the diagnosis of sarcoidosis and in the measurement of response to therapy. We have undertaken to evaluate further the clinical usefulness of this technique. Thirty-six patients, 27 of whom had sarcoidosis, were given intravenous injections of 3 ml of commercially obtained (/supmore » 67/Ga) citrate. None were receiving corticosteroid therapy at the time of the initial study. Three days later simultaneous anterior and posterior scans of the thorax and the upper abdomen were performed in the supine position. 1 table.« less

  3. POLLUTION PREVENTION IN THE SEMICONDUCTOR INDUSTRY THROUGH RECOVERY AND RECYCLING OF GALLIUM AND ARSENIC FROM GAAS POLISHING WASTES

    EPA Science Inventory

    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  4. Rare isotope beam energy measurements and scintillator developments for ReA3

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Ying

    The ReAccelerator for 3 MeV/u beams (ReA3) at the National Superconducting Cyclotron Laboratory (NSCL) in Michigan State University can stop rare isotope beams produced by in-flight fragmentation and reaccelerate them in a superconducting linac. The precise knowledge of the energy and the energy spread of the ion beams extracted from the ReA3 linac is essential for experimental requirement in many applications. Beam energy determination methods such as implantation on a Si detector and/or using calibrated linac settings are precise within a few tens of keV/u. In order to determine beam energies with good resolution of less than 0.5 % FWHM, a 45 degree bending magnet with a movable slit is used to determine the absolute beam energy based on the magnetic rigidity. Two methods have been developed for the energy calibration of the beam analyzing magnet: gamma-ray nuclear resonance reactions and a time-of-flight (TOF) technique. The resonance energies of gamma-ray resonant reactions provide well-known and precise calibration points. The gamma ray yields of the 27Al(p,gamma)28Si at Ep= 992 keV and 632 keV resonances and 58Ni(p,gamma)59Cu at Ep= 1843 keV resonance have been measured with the high efficiency CAESAR (CAESium iodide ARray) and SuN (Summing NaI(Tl)) detectors. By fitting the observed resonant gamma-ray yields, not only the beam energy can be precisely correlated with the magnetic field but also beam energy spread can be obtained. The measured beam energy spread is consistent with beam optics calculations. A time-of-flight system for determining the absolute energy of ion beams and calibrating the 45 degree magnetic analyzer has been developed in ReA3 by using two identical secondary electron monitors (grid-MCP detectors) with appropriate separation. The TOF technique is applicable to the variety of beam energies and ion particles. Velocities of ion beam are determined by simultaneously measuring the arrival time of beam bunches at the two detectors with

  5. Impact of nanosecond proton beam processing on nanoblocks of copper

    NASA Astrophysics Data System (ADS)

    Borodin, Y. V.; Mantina, A. Y.; Pak, V.; Zhang, X. X.

    2017-01-01

    X-ray studies in conjunction with the method of recoil nuclei and electron microscopy of irradiated plates polycrystalline Cu by nanosecond high power density proton beams (E = 120 keV; I = 80 A/cm2, t = 50 ns) showed nano block nature of the formation of structure in the surface layer target and condensed-formed film.

  6. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less

  8. Elastic properties of crystalline and liquid gallium at high pressures

    NASA Astrophysics Data System (ADS)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'Gorova, O. V.; Brazhkin, V. V.

    2008-11-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson’s ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson’s ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a “quasi-molecular” (partially covalent) metal state to a “normal” metal state. An increase in the Poisson’s ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G( p) with increasing pressure and an increase in the slope of the

  9. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  10. Development of a He- and He0 beam source for alpha particle measurement in a burning plasma.

    PubMed

    Tanaka, N; Sasao, M; Terai, K; Okamoto, A; Kitajima, S; Yamaoka, H; Wada, M

    2012-02-01

    Proof of principle experiments of neutral helium beam production for alpha particle diagnostics was carried out on a test stand. Negative helium ions were produced in the Li charge exchange cell, in which stable and long time operation was possible. He(-) beam was accelerated to 157 keV. Finally, He(0) beam was successfully produced after the flight in the drift-tube through the auto-electron-detachment process from He(-) to He(0). A neutral beam detector using a pyroelectric device was also developed to measure He(0) beam intensity. The metastable component in the neutral helium beam was found to be less than 2%.

  11. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    PubMed Central

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe

    2013-01-01

    Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830

  12. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  13. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl andmore » halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)« less

  14. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  15. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  17. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    PubMed

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  18. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    NASA Astrophysics Data System (ADS)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  19. Development of a plasma generator for a long pulse ion source for neutral beam injectors.

    PubMed

    Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S

    2011-06-01

    A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics

  20. Modelling of Electron and Proton Beams in a White-light Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, R. O.; Procházka, O.; Reid, A.; Allred, J. C.; Mathioudakis, M.

    2017-12-01

    Observations of an X1 class WL solar flare on 2014 June 11 showed a surprisingly weak emission in both higher order Balmer and Lyman lines and continua. The flare was observed by RHESSI but low energy cut-off of non-thermal component was indeterminable due to the unusually hard electron spectrum (delta = 3). An estimate of power in non-thermal electron beams together with an area of WL emission observed by HMI yielded to an upper and lower estimate of flux 1E9 and 3E10 erg/cm2/s, respectively. We performed a grid of models using a radiative hydrodynamic code RADYN in order to compare synthetic spectra with observations. For low energy cut-off we chose a range from 20 to 120 keV with a step of 20 keV and delta parameter equal to 3. Electron beam-driven models show that higher low energy cut-off is more likely to produce an absorption Balmer line profile, if the total energy flux remains relatively low. On the other hand a detectable rise of HMI continuum (617 nm) lays a lower limit on the beam flux. Proton beam-driven models with equivalent fluxes indicate a greater penetration depth, while the Balmer lines reveal significantly weaker emission. Atmospheric temperature profiles show that for higher values of low energy cut-off the energy of the beam is deposited lower in chromosphere or even in temperature minimum region. This finding suggests, that suppressed hydrogen emission can indicate a formation of white-light continuum below chromosphere.

  1. Role of Oxidative Stress in the Induction of Metallothionein-2A and Heme Oxygenase-1 Gene Expression by the Antineoplastic Agent Gallium Nitrate in Human Lymphoma Cells

    PubMed Central

    Yang, Meiying; Chitambar, Christopher R.

    2008-01-01

    The mechanisms of action of gallium nitrate, an antineoplastic drug, are only partly understood. Using a DNA microarray to examine genes induced by gallium nitrate in CCRF-CEM cells, we found that gallium increased metallothionein-2A (MT2A) and heme oxygenase-1 (HO-1) gene expression and altered the levels of other stress-related genes. MT2A and HO-1 were increased after 6 and 16 h of incubation with gallium nitrate. An increase in oxidative stress, evidenced by a decrease in cellular GSH and GSH/GSSG ratio, and an increase in dichlorodihydrofluoroscein (DCF) fluorescence, was seen after 1 – 4 h incubation of cells with gallium nitrate. DCF fluorescence was blocked by the mitochondria-targeted antioxidant mitoquinone. N-acetyl-L-cysteine blocked gallium-induced MT2A and HO-1 expression and increased gallium’s cytotoxicity. Studies with a zinc-specific fluoroprobe suggested that gallium produced an expansion of an intracellular labile zinc pool, suggesting an action of gallium on zinc homeostasis. Gallium nitrate increased the phosphorylation of p38 mitogen-activated protein kinase and activated Nrf-2, a regulator of HO-1 gene transcription. Gallium-induced Nrf-2 activation and HO-1 expression were diminished by a p38 MAP kinase inhibitor. We conclude that gallium nitrate induces cellular oxidative stress as an early event which then triggers the expression of HO-1 and MT2A through different pathways. PMID:18586083

  2. Radiation Damage From Mono-energetic Electrons Up to 200 keV On Biological Systems

    NASA Astrophysics Data System (ADS)

    Prilepskiy, Yuriy

    2006-03-01

    The electron gun of the CEBAF machine at Jefferson lab (Newport News, VA) is capable of delivering electrons with energies up to 200 keV with a resolution of about 10-5. This 1.5 GHz beam permits to generate cellular radiation damage within minutes. We have performed irradiation of cancer cells with different energies and different currents to investigate their biological responses. This study will permit to address the physical processes involved in the RBE and LET at a level that supersedes current data listed in the literature by orders of magnitude. We will discuss the experimental setup and results of the first stage of data collected with this novel system. This research is part of a global program to provide detailed information for the understanding of radiation based cancer treatments.

  3. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.

    PubMed

    Cho, Seungho; Kim, Semi; Lee, Kun-Hong

    2011-09-15

    We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    DOE PAGES

    Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...

    2016-06-13

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less

  5. Measurement of 1323 and 1487 keV resonances in 15N(α ,γ )19F with the recoil separator ERNA

    NASA Astrophysics Data System (ADS)

    Di Leva, A.; Imbriani, G.; Buompane, R.; Gialanella, L.; Best, A.; Cristallo, S.; De Cesare, M.; D'Onofrio, A.; Duarte, J. G.; Gasques, L. R.; Morales-Gallegos, L.; Pezzella, A.; Porzio, G.; Rapagnani, D.; Roca, V.; Romoli, M.; Schürmann, D.; Straniero, O.; Terrasi, F.; ERNA Collaboration

    2017-04-01

    Background: The origin of fluorine is a widely debated issue. Nevertheless, the 15N(α ,γ )19F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the direct capture and the tails of the two broad resonances at Ec .m .=1323 and 1487 keV. Purpose: The broad resonances widths, Γγ and Γα, have to be measured with adequate precision in order to better determine their contribution to the 15N(α ,γ )19F stellar reaction rate. Methods: Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec .m .=1323 and 1487 keV is used to determine their widths in the α and γ channels. Results: We show that a direct measurement of the cross section of the 15N(α ,γ )19F reaction can be successfully obtained with the recoil separator ERNA, and the widths Γγ and Γα of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance Γα. Conclusions: The revision of the widths of the two more relevant broad resonances in the 15N(α ,γ )19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the 19F stellar nucleosynthesis is dominated by the uncertainties affecting the direct capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.

  6. Shear strengths of a gallium alloy bonded to human enamel following nine different surface treatments.

    PubMed

    Claire, J; Williams, P T

    2001-03-01

    Gallium and indium-containing alloys have demonstrated an ability to wet and bond to many types of materials including enamel. The purpose of this study was to evaluate and compare the bond strengths of a gallium-and-indium-containing alloy and a dental amalgam to human enamel surfaces. A flat enamel bonding surface was created by slicing recently extracted human molars with a 180-grit diamond wheel. Cylinders of amalgam or a gallium-indium alloy were bonded to the as-cut surfaces or to as-cut surfaces that had been pumiced, air-abraded or acid-etched for various times. Before testing, samples were stored under different conditions (100% humidity, immersed in water, thermocycled). The shear-bond strength was determined using a crosshead speed of 0.1 mm x min(-1). Sample size was 10. Data was subjected to ANOVA and a post-hoc Tukey's test. The bond strength of amalgam to enamel was zero. The bond strength of the gallium-indium alloy ranged between 6.5 MPa (10s etch with 10% phosphoric acid) and 4.2 MPa (pumiced enamel). Acid-etching significantly increased the bond strength (P>0.0001) The bond strength was not significantly affected by the type of mechanical surface preparation, storage conditions, thermocycling, etching times or acid concentrations. Bonding, particularly chemical bonding, suggests a greater potential for better wetting and therefore better sealing of a cavity. Since microleakage of restorations is one of the principal causes of restoration failure, materials that can bond may in turn posses enhanced resistance to microleakage and ultimately, resistance to restoration failure. The gallium-indium alloy evaluated in this study may be such an alloy.

  7. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less

  8. Determination of neutral beam injection accelerator grid deformation using beam emission measurements

    NASA Astrophysics Data System (ADS)

    Nightingale, M. P. S.; Kugel, H.; Gee, S. J.; Price, M. N.

    1999-01-01

    Theoretical modeling of 1-2 MW positive hydrogen ion neutral injectors developed at Oak Ridge National Laboratory (ORNL) has suggested that the plasma grid temperature could rise by up to 180 °C at pulse lengths above 0.5 s, leading to a grid deformation on the order of 5 mm, with a consequent change in focal length (from 4 to 2 m) and beamlet focusing. One of these injectors (on loan from ORNL) was used to achieve record β values on the Small Tight Aspect Ratio Tokamak at Culham, and two more are to be used on the Mega-Ampere Spherical Tokamak (MAST) at pulse lengths of up to 5 s. Since the grid modeling has never been tested experimentally, a method for diagnosing changes in beam transport as a function of pulse length using light emitted by the beam is now under development at Culham to see if grid modifications are required for MAST. Initial experimental results, carried out using a 50 A 30 keV hydrogen beam, are presented (including comparison with thermocouple data using an EK98 graphite beam stop). These confirm that emission measurement should allow the accelerator focal length and beamlet divergence to be determined to accuracies of better than ±0.45 m and ±0.2°, respectively (compared to nominal values of 4 m and 1.2°).

  9. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  10. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    PubMed

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  11. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    NASA Astrophysics Data System (ADS)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  12. Characterization of the NEPOMUC primary and remoderated positron beams at different energies

    NASA Astrophysics Data System (ADS)

    Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.

    2016-08-01

    We report on the characterization of the positron beam provided at the open beam port of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ) Garching. The absolute positron flux of the primary beam at 400 eV and 1 keV kinetic energy and of the remoderated beam at 5, 12 and 22 eV were determined. Energy-dependent intensities in the range of (1 - 5) ·108e+ / s and (2 - 6) ·107e+ / s have been observed for the primary and remoderated beam, respectively. We attribute the significant losses for the primary beam, in comparison with the expected value, to the non-adiabatic positron guiding in the beam line. We also measured the longitudinal energy distribution of the remoderated beam, yielding an energy spread below 3.3 eV. The mean transverse energy of the remoderated beam, determined from measurements in different final magnetic fields, was found to be below 1.3 eV. These results are likely to apply to the NEPOMUC beam delivered to other user stations.

  13. Note: Voltage and intensity dependence of the saturation curves of free-air ionization chambers irradiated with chopped synchrotron radiation beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyama, Nobuteru

    2012-01-15

    Current saturation characteristics of free-air ionization chambers with electrode gaps of 4.2 and 8.4 mm were investigated using pulsed photon beam obtained by periodically interrupting synchrotron radiation beams with a chopper. Pulsed photon beams of 10 and 15 keV with pulse duration of 2.5 {mu}s and a frequency of 230 Hz were produced by chopping the beam. The measured recombination rate was found to be proportional to the intensity and inversely proportional to the applied voltage.

  14. Appraisal of lupus nephritis by renal imaging with gallium-67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, A.A.; Lopez-Majano, V.; Hryhorczuk, D.O.

    1985-08-01

    To assess the activity of lupus nephritis, 43 patients with systemic lupus erythematosus (SLE) were studied by gallium imaging. Delayed renal visualization 48 hours after the gallium injection, a positive result, was noted in 25 of 48 scans. Active renal disease was defined by the presence of hematuria, pyuria (10 or more red blood cells or white blood cells per high-power field), proteinuria (1 g or more per 24 hours), a rising serum creatinine level, or a recent biopsy specimen showing proliferative and/or necrotizing lesions involving more than 20 percent of glomeruli. Renal disease was active in 18 instances, inactivemore » in 23, and undetermined in seven (a total of 48 scans). Sixteen of the 18 scans (89 percent) in patients with active renal disease showed positive findings, as compared with only four of 23 scans (17 percent) in patients with inactive renal disease (p less than 0.001). Patients with positive scanning results had a higher rate of hypertension (p = 0.02), nephrotic proteinuria (p = 0.01), and progressive renal failure (p = 0.02). Mild mesangial nephritis (World Health Organization classes I and II) was noted only in the patients with negative scanning results (p = 0.02) who, however, showed a higher incidence of severe extrarenal SLE (p = 0.04). It is concluded that gallium imaging is a useful tool in evaluating the activity of lupus nephritis.« less

  15. A pepper-pot emittance meter for low-energy heavy-ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S.

    2013-02-15

    A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beammore » intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.« less

  16. Synthesis, Structure, and Antiproliferative Activity of Three Gallium(III) Azole Complexes

    PubMed Central

    Zanias, Stergios; Papaefstathiou, Giannis S.; Raptopoulou, Catherine P.; Papazisis, Konstantinos T.; Vala, Vasiliki; Zambouli, Dimitra; Kortsaris, Alexandros H.; Kyriakidis, Dimitrios A.; Zafiropoulos, Theodoros F.

    2010-01-01

    As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the azole ligands 2,1,3-benzothiadiazole (btd), 1,2,3-benzotriazole (btaH), and 1-methyl-4,5-diphenylimidazole (L) have been isolated. Reaction of btaH or btd with GaBr3 or GaCl3 resulted in the mononuclear complexes [GaBr3(btaH)2] (1) and [GaCl3(btd)2] (2), respectively, while treatment of GaCl3 with L resulted in the anionic complex (LH)2[GaCl4] (3). All three complexes were characterized by single-crystal X-ray crystallography and IR spectroscopy, while their antiproliferative activities were investigated against a series of human and mouse cancer cell lines. PMID:20721278

  17. Longitudinal dynamics of an intense electron beam

    NASA Astrophysics Data System (ADS)

    Harris, John Richardson

    2005-11-01

    The dynamics of charged particle beams are governed by the particles' thermal velocities, external focusing forces, and Coulomb forces. Beams in which Coulomb forces play the dominant role are known as space charge dominated, or intense. Intense beams are of great interest for heavy ion fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams of interest are dominated by space charge forces when they are first created, so an understanding of space charge effects is critical to explain the later evolution of any beam. Historically, more attention has been paid to the transverse dynamics of beams. However, many interesting and important effects in beams occur along their length. These longitudinal effects can be limiting factors in many systems. For example, modulation or structure applied to the beam at low energy will evolve under space charge forces. Depending on the intended use of the beam and the nature of the modulation, this may result in improved or degraded performance. To study longitudinal dynamics in intense beams, experiments were conducted using the University of Maryland Electron Ring, a 10 keV, 100 mA electron transport system. These experiments concentrated on space charge driven changes in beam length in parabolic and rectangular beams, beam density and velocity modulation, and space charge wave propagation. Coupling between the transverse and longitudinal dynamics was also investigated. These experiments involved operating the UMER gun in space charge limited, temperature limited, triode amplification, photon limited, and hybrid modes. Results of these experiments are presented here, along with a theoretical framework for understanding the longitudinal dynamics of intense beams.

  18. Latest progress in gallium-oxide electronic devices

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Wong, Man Hoi; Konishi, Keita; Nakata, Yoshiaki; Lin, Chia-Hung; Kamimura, Takafumi; Ravikiran, Lingaparthi; Sasaki, Kohei; Goto, Ken; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Kuramata, Akito; Yamakoshi, Shigenobu; Murakami, Hisashi; Kumagai, Yoshinao

    2018-02-01

    Gallium oxide (Ga2O3) has emerged as a new competitor to SiC and GaN in the race toward next-generation power switching and harsh environment electronics by virtue of the excellent material properties and the relative ease of mass wafer production. In this proceedings paper, an overview of our recent development progress of Ga2O3 metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes will be reported.

  19. Development of the TFTR neutral beam injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Jr., B. A.

    1977-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed formore » separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982.« less

  20. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.