Science.gov

Sample records for kev range

  1. High resolution spectrometer for extended x-ray absorption fine structure measurements in the 6 keV to 15 keV energy range

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Hudson, L. T.; Henins, Albert; Feldman, U.

    2016-11-01

    A Cauchois transmission-crystal spectrometer has been developed with high crystal resolving power in the 6 keV-15 keV energy range and sufficient sensitivity to record single-shot spectra from the Lawrence Livermore National Laboratory (LLNL) Titan laser and other comparable or more energetic lasers. The spectrometer capabilities were tested by recording the W L transitions from a laboratory source and the extended x-ray absorption fine structure (EXAFS) spectrum through a Cu foil.

  2. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 × 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 × 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 × 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  3. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  4. Efficiency of Scintillator Materials in the Energy Range 8.0-32.0 keV

    SciTech Connect

    Kinney, J H; Haupt, D L

    2002-07-01

    X-ray microtomography requires the measurement of x-ray attenuation along ray paths through a specimen, and on the inversion of these data to obtain a spatially resolved mapping of the microstructure of the specimen. To do this efficiently, two-dimensional array detectors are often used to measure the transmitted x-rays by capturing and recording each x-ray incident on the detector. The highest resolution CT instruments perform this by converting the incident x-rays to visible light, and then focusing this light onto a charge-coupled-device (CCD) detector. The light output of the scintillator (photons per incident x-ray), the numerical aperture of the optical lens system, and the quantum efficiency of the CCD govern the efficiency of the detection process. Several years earlier, our group performed an investigation aimed at determining the best scintillator material for high-resolution synchrotron CT. The selection criteria included light output in the 8-32 keV energy range, the spatial resolution of the scintillator, the wavelength of the scintillation radiation, and the stability and ease of polishing of the scintillator. A list of the scintillators that we considered, with the exceptions of the more recently developed glass scintillators, is provided in Table 1. Among these scintillators, we concluded that single crystal cadmium tungstate was optimum; we have used this material in all subsequent synchrotron CT systems. Since this original study, several doped-glass scintillators have become available. The LSO (Lu orthosilicates) scintillators, developed for PET scanning, show considerable light output at high energy (energies above 500 keV). Theoretically, the light output of these scintillators should be twice that of the cadmium tungstate. The purpose of this study was to determine the efficiency of two such scintillators (LSO:Yt and IQI-401 high density terbium activated glass) in the energy range from 8-32 keV.

  5. Calibration of semiconductor detectors in the 200-8500 keV range at VNIIM.

    PubMed

    Tereshchenko, Evgeny E; Moiseev, Nikolay

    2012-09-01

    At the ionising radiation department of the D.I. Mendeleyev Institute for Metrology, a semiconductor detector was calibrated in the energy range 200-8500 keV using (n,2γ) and (n,γ) reactions. Separate cylindrical targets (77 mm diameter and 10mm height) were made from mercuric sulphate, sodium chloride and metallic titanium. A (252)Cf spontaneous fission neutron source, placed in 150 mm diameter polyethylene ball, was used to generate thermal neutrons. The optimal target dimensions were determined taking into account the thermal neutron cross-sections and gamma-radiation attenuations in the target materials. The influence of the background radiation induced by neutrons from the walls, floors and ceilings was also taken into account. The shapes of the efficiency curves for point and volume sources in the 200-8500 keV range have been investigated. The experimental results are in good agreement with Monte-Carlo calculations. The emission rate of the 6.13 MeV photons from a (238)Pu-(13)C source was determined with an expanded uncertainty, U(c), of 10% (k=2).

  6. Evaluation of silicon neutron resonance parameters in the thermal to 1800 keV energy range.

    PubMed

    Derrien, H; Leal, L C; Guber, K H; Larson, N M

    2005-01-01

    Because silicon is a major constituent of concrete and soil, neutron and gamma ray information on silicon is important for reactor shielding and criticality safety calculations. Therefore, much effort was put into the ENDF/B-VI evaluation for the three stable isotopes of silicon. The neutron capture cross section of natural silicon was recently measured at the Oak Ridge Electron Linear Accelerator (ORELA) in the energy range 1-700 keV. Using the ENDF/B-VI evaluation for initial values, a new evaluation of the resonance parameters was performed by adding the results of the ORELA capture measurements to the experimental database. The computer code SAMMY was used for the analysis of the experimental data; the new version of SAMMY allows accurate calculations of the self-shielding and multiple scattering effects in the capture measurements. The accuracy of the radiative capture widths of the resonances was improved by this analysis. Accurate values of the s-, p- and d-wave neutron strength functions were also obtained. Although the resonance capture component of the present evaluation is 2-3 times smaller than that in ENDF/B-VI, the total capture cross section is much larger, at least for energies >250 keV, because the direct capture component contributes values of the same order of magnitude as the resonance component. The direct component was not taken into account in the ENDF/B-VI evaluation and was calculated for the first time in the present evaluation.

  7. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  8. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  9. R-Matrix Analysis of 238U High Resolution Neutron Transmissions and Capture Cross Sections in the Energy Range 0 keV to 20 keV

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Larson, Nancy M

    2009-01-01

    The neutron resonance parameters of 238U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990 and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 to 200 pcm.

  10. A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Lin, Chun-Hung

    2017-03-01

    Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for

  11. Gamma ray interaction studies of organic nonlinear optical materials in the energy range 122 keV-1330 keV

    NASA Astrophysics Data System (ADS)

    Awasarmol, V. V.; Gaikwad, D. K.; Raut, S. D.; Pawar, P. P.

    The mass attenuation coefficients (μm) for organic nonlinear optical materials measured at 122-1330 keV photon energies were investigated on the basis of mixture rule and compared with obtained values of WinXCOM program. It is observed that there is a good agreement between theoretical and experimental values of the samples. All samples were irradiated with six radioactive sources such as 57Co, 133Ba, 22Na, 137Cs, 54Mn and 60Co using transmission arrangement. Effective atomic and electron numbers or electron densities (Zeff and Neff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa,en) were determined experimentally and theoretically using the obtained μm values for investigated samples and graphs have been plotted. The graph shows that the variation of all samples decreases with increasing photon energy.

  12. Mass attenuation coefficient of the Earth, Moon and Mars samples over 1keV-100GeV energy range.

    PubMed

    Camargo Moreira, Anderson; Roberto Appoloni, Carlos

    2006-09-01

    This work presents the calculation of the mass attenuation coefficient (micro) of lunar, Martian and terrestrial samples in function of the energy. WinXCOM software was employed to determine the micro values for the samples in the range from 1 keV to 100 GeV. The obtained values were practically the same for energies larger than 100 keV, but marked differences among the samples were observed for energies below 25 keV, which is the energy range of interest for the XRF system used in space probes.

  13. SOLEX: a tunable monochromatic X-ray source in the 1-20 keV energy range for metrology

    NASA Astrophysics Data System (ADS)

    Bonnelle, C.; Jonnard, P.; André, J.-M.; Avila, A.; Laporte, D.; Ringuenet, H.; Lépy, M. C.; Plagnard, J.; Ferreux, L.; Protas, J. C.

    2004-01-01

    A tunable monochromatic X-ray source covering the 1-20 keV energy range is described. The initial X-ray beam is obtained from a dedicated windowless X-ray tube. The energy selection is performed through a cylindrically bent crystal, used either in the reflection (Johann geometry) or in the transmission (Cauchois geometry) mode, by rotating the crystal holder by a 90° angle. Contrary to conventional geometries where the X-ray tube is fixed, here the direction of the exit beam impinging the X-ray detector is fixed. This setup is shown to be useful for various studies: high-resolution spectrometry, characterization of the response function and the efficiency of detectors and optical components, determination of transmission characteristics of different materials. Observations of the Lα line and Kα doublet from a copper anode are presented, that demonstrate the performance of this new setup.

  14. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    SciTech Connect

    Wu, Ming Rochau, Greg; Moy, Ken; Kruschwitz, Craig

    2014-11-15

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ∼10 μm in diameter pores, ∼12 μm center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  15. (239)Pu neutron resonance parameters revisited and covariance matrix in the neutron energy range from thermal to 2.5 keV

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Larson, Nancy M

    2008-01-01

    To obtain the resonance parameters in a single energy range up to 2.5 keV neutron energy and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the analysis code SAMMY. The most recent experimental data were analyzed in the energy range thermal to 2.5 keV. The experimental data were renormalized, aligned on a common energy scale, and corrected for residual background. Average neutron transmission and cross sections calculated with the new resonance parameters were compared to the corresponding experimental data and to ENDF/B-VI.

  16. Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV

    NASA Astrophysics Data System (ADS)

    Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.

    2017-01-01

    In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.

  17. Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145 1330 keV

    NASA Astrophysics Data System (ADS)

    Manjunathaguru, V.; Umesh, T. K.

    2006-09-01

    A semi-empirical relation which can be used to determine the total attenuation cross sections of samples containing H, C, N and O in the energy range 145-1332 keV has been derived based on the total attenuation cross sections of several sugars, amino acids and fatty acids. The cross sections have been measured by performing transmission experiments in a narrow beam good geometry set-up by employing a high-resolution hyperpure germanium detector at seven energies of biological importance such as 145.4 keV, 279.2 keV, 514 keV, 661.6 keV, 1115.5 keV, 1173.2 keV and 1332.1 keV. The semi-empirical relation can reproduce the experimental values within 1-2%. The total attenuation cross sections of five elements carbon, aluminium, titanium, copper and zirconium measured in the same experimental set-up at the energies mentioned above have been used in a new matrix method to evaluate the effective atomic numbers and the effective electron densities of samples such as cholesterol, fatty acids, sugars and amino acids containing H, C, N and O atoms from their effective atomic cross sections. The effective atomic cross sections are the total attenuation cross sections divided by the total number of atoms of all types in a particular sample. Further, a quantity called the effective atomic weight was defined as the ratio of the molecular weight of a sample to the total number of atoms of all types in it. The variation of the effective atomic number was systematically studied with respect to the effective atomic weight and a new semi-empirical relation for Zeff has been evolved. It is felt that this relation can be very useful to determine the effective atomic number of any sample having H, C, N and O atoms in the energy range 145-1332 keV irrespective of its chemical structure.

  18. Comparison between MCNP and PENELOPE for the simulation of X-ray spectra in electron microscopy in the keV range

    NASA Astrophysics Data System (ADS)

    Roet, D.; Ceballos, C.; Van Espen, P.

    2006-10-01

    In this paper two Monte Carlo codes, MCNP (version 4C2) and PENELOPE (version 2001), were used in a cluster environment to simulate the X-ray spectra emerging from bombarding pure element bulk targets with mono energetic electrons in the keV range (30 keV). The simulation results were compared to experimental data measured on a JEOL-6300 electron microscope with energy dispersive X-ray detector. The results from both codes were compared amongst each other as to find the best in terms of accuracy, ease of use and speed of the calculations.

  19. Performance of a medical imaging system for photons in the 60-140 keV energy range

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Bisogni, M. G.; Bottigli, U.; Ceccopieri, A.; Delogu, P.; Dipasquale, G.; Fantacci, M. E.; Maestro, P.; Marchi, A.; Marzulli, V. M.; Oliva, P.; Palmiero, R.; Pernigotti, E.; Rosso, V.; Stefanini, A.; Stumbo, S.

    2001-04-01

    We report the status of the art of a prototype based on a GaAs pixel detector bump-bonded to a dedicated VLSI chip to be possibly used for imaging in the nuclear medicine field. This device, with a 200 μm thick pixel matrix (64×64 square pixels, 170 μm side), has already been tested with very good results for digital mammography applications (mean energy 20 keV). For more energetic photons, as in nuclear medicine, a 600 μm thick detector has been chosen. Using radioactive sources ( 241Am, 60 keV and 99 mTc, 140 keV photons) we have measured the performance of our prototype in terms of charge collection and detection efficiency of the detector, discrimination capability of the electronics and imaging properties of the whole system. In particular, we have evaluated the spatial resolution properties measuring the Point Spread Function and the imaging capabilities using a home made thyroid phantom. We present also the comparison between these results and those obtained with a traditional gamma camera and the evaluation, made by both experimental measurements and software simulations, of the geometry related to the use of a collimator.

  20. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-01-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  1. A balloon-borne instrument for high-resolution astrophysical spectroscopy in the 20-8000 keV energy range

    NASA Astrophysics Data System (ADS)

    Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.

    1983-04-01

    The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).

  2. An improved long counter for neutron fluence measurement with a flat response over a wide energy range from 1 keV to 15 MeV

    NASA Astrophysics Data System (ADS)

    Hu, Q. Y.; Zhang, J. H.; Zhang, D.; Guo, H. S.; Yang, G. Z.; Li, B. J.; Ye, F.; Si, F. N.; Liu, J.; Fu, Y. C.; Ning, J. M.; Yang, J.; Yang, H. H.; Wang, W. C.

    2014-12-01

    A new long counter has been developed with a flat energy response over a wide range from 1 keV to 15 MeV. It consists of five 3He proportional counter tubes and a number of carefully designed polyethylene moderators. The structure of this detector was determined by careful Monte Carlo simulations. The calculated results show that the efficiency of this counter is uniform from 1 keV neutron energy to 15 MeV. Calibration was performed on an Am-Be source and the accelerator-produced monoenergetic D-D and D-T neutron sources. Fluctuation of the response curve is less than 10% over this energy range.

  3. Two-photon above-threshold ionization of hydrogen over the photon energy range from 15 eV to 50 keV

    SciTech Connect

    Florescu, Viorica; Budriga, Olimpia; Bachau, Henri

    2011-09-15

    We investigate the absorption of two identical photons from the ground state of hydrogen-like atoms over an energy range that extends beyond that explored up to now. Our approach is based on a hybrid formula, valid in second-order perturbation theory, in which the A{sup 2} contribution from the nonrelativistic Hamiltonian is treated exactly, while the A{center_dot}P contribution is calculated in dipole approximation. We find that, at least up to 50 keV, the nonrelativistic dipole approximation, based only on the A{center_dot}P contribution, determines the values of the total cross section. Our numerical results, covering photon energies from 90 nm (13.7 eV) to 0.0248 nm (50 keV) are in very good agreement with most previous theoretical works. Differences with recent results are discussed.

  4. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  5. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    PubMed

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility.

  6. Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV-100 GeV.

    PubMed

    Manjunatha, H C; Rudraswamy, B

    2013-02-01

    Effective atomic numbers' (Z(eff)) effective electron density (N(el)) for human organs and tissues have been computed in the energy region of 1 keV to 100 GeV using WinXCOM. The computed data of Z(eff) and N(el) are tabulated. The computed values are compared with previous results. The computed data of Z(eff)and N(el)for almost all tissues (34 tissues of different human organs) in the given energy range are not available in literature and find application in radiotherapy and dosimetry.

  7. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  8. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  9. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  10. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  11. A satellite-borne ion mass spectrometer for the energy range 0 to 16 keV

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Eberhardt, P.; Geiss, J.; Ghielmetti, A.; Walker, H. P.; Young, D. T.; Loidl, H.; Rosenbauer, H.

    1976-01-01

    The Ion Composition Experiment (ICE) on GEOS represents the first comprehensive attempt to measure the positive ion composition at high altitudes in the magnetosphere. Due to the heterogeneous nature of the magnetospheric plasma a novel mass spectrometer has been developed to cover the mass per charge range from H-1(+) to beyond Ba-138(+) and the energy per charge range from 0 to 16 keV/e. The ICE consists primarily of a cylindrical electrostatic analyzer followed by a curved analyzer incorporating crossed magnetic and electric fields. This combination has limited angular and energy focusing properties, but it maintains a mass resolution of about 4 over a wide range in energy and mass, sufficient for the objectives of measuring plasmas of both solar and terrestrial origin. High sensitivity and low background should allow measurements of rarer ion constituents down to flux levels of 0.01 ions/sq cm sec ster eV. A sophisticated electronics combined with powerful ground computer and telecommand systems allow for very efficient scanning of the mass-energy space.

  12. Single-crystal CVD diamond detector for low-energy charged particles with energies ranging from 100 keV to 2 MeV

    SciTech Connect

    Yuki Sato; Hiroyuki Murakami; Takehiro Shimaoka; Masakatsu Tsubota; Junichi, H. Kaneko

    2015-07-01

    The performance of a diamond detector made of a single-crystal diamond grown by chemical vapor deposition was studied for charged particles, having energies ranging from 100 keV to 2 MeV. Energy peaks of these low-energy ions were clearly observed. However, we observed that the pulse height for individual incident ion decreases with increasing atomic number of the ions. We estimated the charge collection efficiency of the generated charge carriers by charged particle incident. The charge collection above ∼95% is achieved for helium (He{sup +}) with the energy above 1.5 MeV. On the other hand, the charge collection efficiency for heavy-ions shows wrong values compared with that of He{sup +}, ∼70% for silicon (Si{sup +}) and 35 to 40% for gold (Au{sup 3+}), at the same incident energy range, respectively. (authors)

  13. Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range

    SciTech Connect

    Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  14. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  15. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    DOE PAGES

    Diakaki, M.; Karadimos, D.; Vlastou, R.; ...

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, andmore » the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.« less

  16. Measurement of mass attenuation coefficients of Eremurus-Rhizophora spp. particleboards for X-ray in the 16.63-25.30 keV energy range

    NASA Astrophysics Data System (ADS)

    Tousi, E. T.; Bauk, S.; Hashim, R.; Jaafar, M. S.; Abuarra, A.; Aldroobi, K. S. A.; Al-Jarrah, A. M.

    2014-10-01

    The roots of Eremurus spp. were used as a bio-adhesive in the fabrication of Rhizophora spp. particleboards. The mass attenuation coefficients of Eremurus-Rhizophora spp. particleboard of six samples with two different weight percentages of the Eremurus spp. root (6% and 12%) and three various Rhizophora spp. particle sizes (≤149 μm, 149-500 μm and 500-1000 μm) were determined by using X-ray fluorescence (XRF) photons in 16.63 keV and 25.30 keV of the photon energy range. The results were compared with theoretically calculated mass attenuations using the XCOM computer program for younger-age (breast 1: 75% muscle+25% fat), middle-age (breast 2: 50% muscle+50% fat), and old-age (breast 3: 25% muscle+75% fat) breasts. The results indicated that Eremurus-Rhizophora spp. particleboard is the appropriate suitable phantom in the diagnostic energy region. The mass attenuation coefficient in the low weight percentage of the bio-adhesive and the large Rhizophora spp. particle size were found very close to breast 1. Moreover the mass attenuation coefficient of the sample with high weight percentage of the bio-adhesive and small Rhizophora spp. particle size was found very close to water as a standard material phantom. In addition, the viscosity of dissolved Eremurus spp. root in water could be considerably higher than that of formaldehyde-based adhesives, which affects on some properties such as high strength and high binding.

  17. Gamma-ray bursts investigations: perspectives for the GAMMA-400 space experiment in the energy range of 100 keV-3 TeV

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, Irene; Yurkin, Yuri T.; Arkhangelsky, Andrey; Topchiev, Nikolay; Kheymits, Maxim; Runtso, Mikhail; Suchkov, Sergey; Galper, Arkady

    Several thousands of gamma-ray bursts were observed by various experiments, but their sources origin still remains unclear up to now. During several GRBs very high-energy photons were detected both in space and ground-based experiments (up to some tens of GeV and up to some TeV, respectively). The GAMMA-400 future space experiment consists of the GAMMA-400 gamma-ray telescope to detect gammas in the energy range of 100 MeV - 3 TeV and the KONUS-FG system to detect gamma-ray bursts in the range of 100 keV - 10 MeV similar to the KONUS/WIND instrument. The GAMMA-400 gamma-ray telescope will have the angular resolution of 0.02 deg for E > 100 GeV, the energy resolution of 2% for E > 10 GeV, time resolution of ˜ 0.1 ms and allow us together with KONUS-FG to investigate GRBs spectra and temporal profiles in details in the wide energy range.

  18. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  19. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    SciTech Connect

    Gonzales, D.; Cavness, B.; Williams, S.

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  20. An in-vacuum x-ray diffraction microscope for use in the 0.7-2.9 keV range

    SciTech Connect

    Vine, D. J.; Williams, G. J.; Clark, J. N.; Putkunz, C. T.; Abbey, B.; Nugent, K. A.; Pfeifer, M. A.; Legnini, D.; Roehrig, C.; Wrobel, E.; McNulty, I.; Huwald, E.; Riessen, G. van; Peele, A. G.; Beetz, T.; Irwin, J.; Feser, M.; Hornberger, B.

    2012-03-15

    A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result.

  1. FIRST INTEGRAL OBSERVATIONS OF V404 CYGNI DURING THE 2015 OUTBURST: SPECTRAL BEHAVIOR IN THE 20–650 KeV ENERGY RANGE

    SciTech Connect

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ∼200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT{sub 0} ∼ 7 keV) is introduced. Above this first component, a clear excess extending up to 400–600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10{sup −4} ph cm{sup −2} s{sup −1} (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum.

  2. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    NASA Astrophysics Data System (ADS)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  3. Albedo factors of some elements in the atomic number range 26≤Z≤79 for 59.54keV.

    PubMed

    Yılmaz, Demet; Uzunoğlu, Zeynep; Demir, Celalettin

    2017-04-01

    In this study, we aimed to determine the albedo factors for Fe, Co, Ni, Cu, Zr, Mo, Ag, Dy, Yb, and Au. Albedo factors were investigated experimentally for 59.54keV photon energy by using an HPGe detector with a resolution of 182eV at 5.9keV. Albedo number (AN), albedo energy (AE), and albedo dose (AD) were plotted as a function of atomic number of the target. It was observed that albedo factors decreased with increasing atomic number. In addition, there was a good third-order polynomial relationship between the albedo factors and atomic number.

  4. First INTEGRAL Observations of V404 Cygni during the 2015 Outburst: Spectral Behavior in the 20-650 keV Energy Range

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ˜200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT0 ˜ 7 keV) is introduced. Above this first component, a clear excess extending up to 400-600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10-4 ph cm-2 s-1 (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with the participation of Russia and USA.

  5. Total electron scattering cross sections of molecules containing H, C, N, O and F in the energy range 0.2-6.0 keV

    NASA Astrophysics Data System (ADS)

    Gurung, Meera Devi; Ariyasinghe, W. M.

    2017-03-01

    Based on the effective atomic total electron scattering cross sections (EATCS) of atoms in a molecular environment, a simple model is proposed to predict the total electron scattering cross sections (TCS) of H, C, N, O, and F containing molecules. The EATCS for these five atoms are reported for 0.2-6.0 keV energies. The predicted TCS by this model are compared with experimental TCS in the literature. The experimental TCS of CHF3, C2F4, C2F2H2, C4F6, and c-C4F8 have been obtained for 0.2-4.5 keV electrons by measuring the attenuation of the electron beam through a gas cell.

  6. Ionic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV

    PubMed Central

    2016-01-01

    Ionic liquids (ILs) are proposed as simple and efficient test materials to evaluate the performance of energy dispersive X-ray spectrometers (EDS) in the low energy range below 1 keV. By only one measurement, C Kα, N Kα, O Kα, and F Kα X-ray lines can be excited. Additionally, the S Kα line at 2.3 keV and, particularly, the S L series at 149 eV complete the picture with X-ray lines offered by the selected ILs. The well-known (certifiable) elemental composition of the ILs selected in the present study can be used to check the accuracy of results produced with the available EDS quantification routines in the low energy range, simultaneously, for several low atomic number elements. A comparison with other reference materials in use for testing the performance of EDS in the low energy range is included. PMID:27336962

  7. Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30 1333 keV

    NASA Astrophysics Data System (ADS)

    Gowda, Shivalinge; Krishnaveni, S.; Gowda, Ramakrishna

    2005-10-01

    The effective atomic numbers and electron densities of the amino acids glycine, alanine, serine, valine, threonine, leucine, isoleucine, aspartic acid, lysine, glutamic acid, histidine, phenylalanine, arginine, tyrosine, tryptophane and the sugars arabinose, ribose, glucose, galactose, mannose, fructose, rhamnose, maltose, melibiose, melezitose and raffinose at the energies 30.8, 35.0, 81.0, 145, 276.4, 302.9, 356, 383.9, 661.6, 1173 and 1332.5 keV were calculated by using the measured total attenuation cross-sections. The interpolations of total attenuation cross-sections for photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the XCOM data in the photon energy region 30-1500 keV. The best-fit coefficients obtained by a piece wise interpolation method were used to find the effective atomic number and electron density of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  8. Calculations of photo-induced X-ray production cross-sections in the energy range 1-150 keV and average fluorescence yields for Zn, Cd and Hg

    NASA Astrophysics Data System (ADS)

    Sampaio, J. M.; Guerra, M.; Parente, F.; Madeira, T. I.; Indelicato, P.; Santos, J. P.; Marques, J. P.

    2016-09-01

    In this paper, we calculate the K-, L- and M-shells X-ray production, and X-ray fluorescence cross-sections after photo-induced ionization, for Zn, Cd, and Hg, and for incident photon energy range from 1 to 150 keV. For this purpose, the corresponding average fluorescence yields for Zn, Cd, and Hg as well as the photoionization cross-sections were calculated using the Dirac-Fock method. Subshell fluorescence, intrashell and intershell yields are obtained consistently from radiative and radiationless transitions calculated in the exact same method. A comprehensive account of the relations between the X-ray production, X-ray fluorescence cross-sections and the photoionization cross-sections and these yields is presented. Comparisons are made with results from other authors. The obtained values for the photoionization cross-sections are in good agreement with the widely used data of Scofield in the studied energy range. However our results for the X-ray fluorescence cross sections seem to favor some data relatively to others. The energy dependence of the average fluorescence yields is discussed, in particular, the reliability of extrapolated data for lighter elements from measurements and calculations in heavier elements above the inner shell absorption edges is questioned. Tabulated data on photoionization and X-ray production cross-sections are presented for the incident photon energy range 1-150 keV in steps of 1 keV.

  9. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 - 25.26 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).

  10. Observation of lithium pick-up ions in the 5- to 20-keV energy range following the AMPTE solar wind releases

    SciTech Connect

    Moebius, E.; Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F.M.; Luehr, H.

    1986-02-01

    Newly created 5- to 20-keV lithium ions were observed for limited time periods following the first Active Magnetospheric Particle Tracer Explorers (AMPTE) lithium release in the solar wind on September 11, 1984. The detection of these so-called ''pick-up'' ions by the time-of-flight spectrometer SULEICA (suprathermal energy ionic charge analyzer) on the AMPTE/IRM satellite depends critically on the orientation of the interplanetary magnetic field with respect to the directions of the solar wind and the spin axis of the IRM spacecraft, which was favorable only during the short time when these ions were seen. Our observations are compatible with a shell-like expansion of the Li cloud with velocities of about 2.5 km/s. The signatures by which the artificial pick-up ions are identified can also be used to detect and investigate natural pick-up ions.

  11. Image information transfer properties of x-ray intensifying screens in the energy range from 17 to 320 keV.

    PubMed

    Ginzburg, A; Dick, C E

    1993-01-01

    The image information transfer properties of a number of x-ray fluorescent screens have been measured for x-ray energies from 17 to 320 keV. The detective quantum efficiency of the screens at each x-ray energy has been determined by separate measurements of the x-ray absorption efficiency and the statistical factor associated with the emission of optical photons upon absorption of an incident x-ray. Data have been recorded for both rare-earth phosphor screens and calcium tungstate screens. The value of the statistical factor for optical photon emission tends toward a constant value as the incident energy increases. Comparisons of the image information transfer properties are presented for several screens, which have been measured over a ten year interval. The utility of the screens for high-energy radiography is discussed.

  12. R-matrix analysis of {sup 235}U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    SciTech Connect

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of {sup 235}U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which {sup 235}U is present.

  13. a New Method for the Growth of CdTe Crystals for RT X-Ray Photon Detectors in the 1-100 keV Range

    NASA Astrophysics Data System (ADS)

    Lovergine, N.; Mancini, A. M.; Cola, A.; Prete, P.; Mazzer, M.; Quaranta, F.; Tapfer, L.

    2000-12-01

    We report on the growth of thick CdTe layers on ZnTe/(100)GaAs hybrid substrates by the novel H2 transport vapour phase epitaxy (H2T-VPE) method. High crystalline quality (100)-oriented CdTe single crystal epilayers can be fabricated under atmospheric pressure and at growth temperatures (TD) in the 600-800°C interval. Double crystal X-ray diffraction measurements performed on epilayers thicker than 30 μm show CdTe (400) peaks with FWHM<59 arcsec. CdTe samples grown under optimised conditions have mirror-like surfaces. Epilayers grown below 650°C are p-type and low resistive, but they turn n-type above 650°C, likely as a result of donor diffusion from the substrate. RT resistivities (ρ) ~ 106 Ω·cm are obtained for 675°C < TD < 700°C, but ρ decreases for higher temperatures and thinner samples. Layers grown under these conditions show RT electron concentrations in the 1014-1011 cm-3 range. The detection capability of H2T-VPE grown CdTe is demonstrated by the results of time-of-flight measurements performed at RT on Au/n-CdTe/n+-GaAs diode structures under reverse bias conditions.

  14. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    SciTech Connect

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  15. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of tin over the energy range of 29-60keV

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Paterson, David; Kanter, Elliot P.; Southworth, Stephen H.; Young, Linda; Beno, Mark A.; Linton, Jennifer A.; Jennings, Guy

    2007-03-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler , Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60keV to 0.04-3% accuracy, and typically in the range 0.1-0.2% . Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2% persist between calculated and observed values.

  16. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  17. High angular resolution cosmic X-ray astronomy observations in the energy range 0.15-2 keV and XUV observations of nearby stars from an attitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.

    1974-01-01

    The construction of a two dimensional focusing Wolter Type I mirror system for X-ray and XUV astronomical observations from an Astrobee F sounding rocket is described. The mirror design goal will have a one degree field, a 20-arc seconds resolution, an effective area of about 50 sq cm at 1 keV and 10 sq cm at 0.25 keV on axis. A star camera provides aspect data to about 15-arc seconds. Two detectors are placed at the focus with an interchange mechanism to allow a detector change during flight. The following specific developments are reported: (1) position sensitive proportional counter development; (2) channel plate multiplier development; (3) telescope mirror development and payload structure; (4) Australian rocket flight results; (5) Comet Kohoutek He I observation; and (6) Vela, Puppis A, and Gem-Mon bright patch observations.

  18. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 – 25.26 keV photon energy range

    SciTech Connect

    Mohd Yusof, Mohd Fahmi Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)

  19. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    NASA Astrophysics Data System (ADS)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  20. Neutron fluence and energy reconstruction with the IRSN recoil detector μ-TPC at 27 keV, 144 keV and 565 keV

    SciTech Connect

    Maire, D.; Lebreton, L.; Richer, J.P.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Riffard, Q.; Santos, D.

    2015-07-01

    The French Institute for Radioprotection and Nuclear Safety (IRSN), associated to the French Metrology Institute (LNE), is developing a time projection chamber using a Micromegas anode: μ-TPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize with a primary procedure the energy distribution of neutron fluence in the energy range 8 keV - 1 MeV. The time projection chambers are gaseous detectors, which are able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulated detector response. The μ-TPC is a new reliable detector which enables to measure energy distribution of the neutron fluence without deconvolution or neutron calibration contrary to usual gaseous counters. The μ-TPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27.2 keV, 144 keV and 565 keV are shown and compared to the complete detector simulation. This work shows the first direct

  1. Calculation of electron-impact rotationally elastic total cross sections for NH{sub 3}, H{sub 2}S, and PH{sub 3} over the energy range from 0.01 eV to 2 keV

    SciTech Connect

    Limbachiya, Chetan; Vinodkumar, Minaxi; Mason, Nigel

    2011-04-15

    This paper report results of calculation of the total cross section Q{sub T} for electron impact on NH{sub 3}, H{sub 2}S, and PH{sub 3} over a wide range of incident energies from 0.01 eV to 2 keV. Total cross sections Q{sub T} (elastic plus electronic excitation) for incident energies below the ionization threshold of the target were calculated using the UK molecular R-matrix code through the Quantemol-N software package and cross sections at higher energies were derived using the spherical complex optical potential formalism. The two methods are found to give self-consistent values where they overlap. The present results are, in general, found to be in good agreement with previous experimental and theoretical results.

  2. Linear attenuation coefficients of tissues from 1 keV to 150 keV

    NASA Astrophysics Data System (ADS)

    Böke, Aysun

    2014-09-01

    The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 Å-1 and from the relativistic modified atomic form factors for values of x≥1 Å-1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.

  3. Spectroscopy from 2 to 200 keV

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.; Chanan, G. A.; Novick, R.; Maccallum, C. J.; Leventhal, M.

    1981-01-01

    The astrophysical processes responsible for line and continuum emission in the spectra range 2 keV to 200 keV are examined from the viewpoint of designing a spectrometer which would operate in this regime. Phenomena considered include fluorescent line radiation in X-ray binaries, magnetically shifted iron lines and cyclotron emission from neutron star surfaces, line emission from cosmically abundant elements in thermal plasmas, and nuclear deexcitation lines in fresh nucleosynthetically produced matter. An instrument consisting of a approximately 10 sq cm array of planar germanium detectors surrounded by a large sodium-iodide anticoincidence shield is described and projected background rates and sensitivities are considered. A sample observing program for a two-day shuttle-based mission is included as an example of the wide range of scientific questions which could be addressed by such an instrument.

  4. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.

    PubMed

    Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M

    2006-10-21

    For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.

  5. Luminescent collisions of He+ and He++ ions with H2 molecules at energies below 2 keV

    NASA Astrophysics Data System (ADS)

    Pranszke, B.; Werbowy, S.; Miotk, R.; Borkowski, K. J.; Kowalski, A.

    2013-10-01

    Spectroscopic studies of collisions between He+ and He++ ions with H2 gas target have been performed in the 200-600 nm wavelength range. Atomic lines of hydrogen Balmer series and several helium lines were identified and their excitation functions between 50 eV and 1 keV (2 keV for He++) were determined.

  6. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    NASA Astrophysics Data System (ADS)

    Gjorgieva, Slavica; Barandovski, Lambe

    2016-03-01

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using 22Na, 60Co 133Ba and 133Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  7. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  8. The Search for 17-KEV Neutrino Emission in the Beta-Decay Spectrum of SULFUR-35.

    NASA Astrophysics Data System (ADS)

    Berman, Gregg Evan

    For this work, the electron momentum spectrum resulting from the beta-decay of ^{35}S, ^{35}{rm S} to ^ {35}{rm Cl} + {rm e }^- + |nu_{rm e}quad (E_0 - m_{e} = 167 {rm keV, T}_{1/2 } = 87.4 {rm days}), has been measured in order to search for the presence of 17-keV electron neutrino emission. Originally observed by J. Simpson in 1985, evidence supporting a 1% 17-keV neutrino branch in the decay spectra of ^3 H, ^{35}S, ^{63}Ni, ^{55 }Fe, ^{14}C and ^{71}Ge has since been reported. However, other groups observing these nuclei have not seen any evidence of 17-keV neutrino emission, and very stringent limits ruling out a 1% branch have been published. Therefore, an important goal of this work is to reduce and/or understand experimental systematic errors that can mask or mimic the effects of a 17-keV neutrino. This ^{35}S spectrum measurement was performed using Princeton's extensively renovated, iron-free, intermediate-image, magnetic spectrometer. To ensure radio-chemical purity, the ^{35 }S source was prepared by ion-implantation using an isotope separator. To accurately determine the overall response of the spectrometer, electron data was accumulated over the very wide energy range of 40-167 keV. In addition, a detailed study of the spectrometer response using various ^{111}In calibration sources was undertaken, and the effects of source positioning and background magnetic fields have been explored. Furthermore, new computer codes for electron orbit raytracing and Monte-Carlo simulations have been developed to help further study the response of the spectrometer as well as to predict the effects of electron backscattering in both the source and detector substrates. To analyze the experimental data for the presence of a 17-keV neutrino branch, the measured ^ {35}S spectrum was convolved with the overall response of the spectrometer, and then fit by least -squares reduction to a theoretical beta -decay shape that allows heavy-neutrino mixing. The results show that the

  9. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; McComas, D. J.; Moebius, E.; Moore, T. E.; Petrinec, S. M.; Quinn, M.; Reisenfeld, D.; Saul, L. A.; Scheer, J. A.; Schwardron, N.; Trattner, K. J.; Vanderspek, R.; Wurz, P.

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  10. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  11. Implications of the 17 keV neutrino

    SciTech Connect

    Hall, L.J.

    1991-06-01

    Constraints on the theoretical interpretation of the 17 keV neutrino are reviewed. A simple understanding of the 17 keV neutrino is provided by flavon models, which involve the spontaneous breaking of Abelian lepton symmetries and have only the usual three light neutrino species. Signatures for this class of models include neutrino oscillations, tau decay to an electron and a flavon, and invisible decay modes of the Higgs boson to two flavons.

  12. Evaluation of 238U Resonance Parameters from 0 to 20 keV

    SciTech Connect

    Derrien, H.; Leal, L.C.; Larson, N.; Courcelle, A.; Santamarina, A.

    2005-05-24

    The neutron resonance parameters of 238U were obtained in the energy range 0 to 20 keV from a sequential SAMMY analysis of the most recent high-resolution neutron transmission and neutron capture cross-section measurements. Special care was taken in the analysis of the lowest s-wave resonances leading to resonance parameters slightly different from those of ENDF/B-VI (Moxon-Sowerby resonance parameters). The resolved-resonance range was extended to 20 keV, taking advantage of the high-resolution neutron transmission data of Harvey and neutron capture data of Macklin et al. Preliminary integral tests were performed with the new resonance parameters; thermal low-enriched benchmark calculations show an improvement of the keff prediction, mainly due to a 1.5% decrease of the capture cross section at 0.0253 eV and about a 0.4% decrease of the effective shielded resonance capture integral.

  13. Compton polarimeter for 10-30 keV x rays

    NASA Astrophysics Data System (ADS)

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  14. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  15. The 93Zr(n,γ) reaction up to 8 keV neutron energy

    NASA Astrophysics Data System (ADS)

    Tagliente, G.; Milazzo, P. M.; Fujii, K.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2013-01-01

    The (n,γ) reaction of the radioactive isotope 93Zr has been measured at the n_TOF high-resolution time-of-flight facility at CERN. Resonance parameters have been extracted in the neutron energy range up to 8 keV, yielding capture widths smaller (14%) than reported in an earlier experiment. These results are important for detailed nucleosynthesis calculations and for refined studies of waste transmutation concepts.

  16. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    SciTech Connect

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.

  17. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  18. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  19. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  20. Measurement of 2-5 keV x-ray emission from laser-target interactions by using fluor-MCP and CsI-XRD detectors

    SciTech Connect

    Lee, P.H.Y.; Tirsell, K.G.; Leipelt, G.R.; Laird, W.B.

    1981-09-29

    For inertial confinement fusion plasma diagnostics, x-ray diode (XRD) detectors using conventional cathodes are not sensitive enough to measure x-rays above approx. 1.5 keV. However, for laser driver fusion targets, x-rays in the range of 2 to 5 keV are important because of their mobility in the target. We have successfully used fluor-microchannel plate (MCP) detectors to obtain absolute x-ray measurements in the 2 to 5 keV range. Recent data obtained from experiments on the Shiva laser system are presented. In addition, designs for a variety of channels in the range using fluor-MCP and CsI-XRD's above 1.5 keV will be discussed.

  1. The effect of 1 to 5 keV electrons on the reproductive integrity of microorganisms

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.; Brady, J.

    1977-01-01

    Microorganisms were exposed to simulated space environment in order to assess the effect of electrons in the energy range 1 to 5 keV on their colony-forming ability. The test system consisted of an electron gun and power supply, a dosimetry subsystem, and a vacuum subsystem. The system was capable of current densities ranging from 0.1 nA/sq cm to 5 micro A/sq cm on a 25 sq on target and an ultimate vacuum of 0.0006 N/sq m (0.000004 torr). The results of the experimental program show a significant reduction in microbial reproductive integrity.

  2. A Compton camera for spectroscopic imaging from 100keV to 1MeV

    NASA Astrophysics Data System (ADS)

    Earnhart, Jonathan Raby Dewitt

    The objective of this work is to investigate Compton camera technology for spectroscopic imaging of gamma rays in the 100keV to 1MeV range. An efficient, specific purpose Monte Carlo code was developed to investigate the image formation process in Compton cameras. The code is based on a pathway sampling technique with extensive use of variance reduction techniques. The code includes detailed Compton scattering physics, including incoherent scattering functions, Doppler broadening, and multiple scattering. Experiments were performed with two different camera configurations for a scene containing a 75Se source and a 137Cs source. The first camera was based on a fixed silicon detector in the front plane and a CdZnTe detector mounted in the stage. The second camera configuration was based on two CdZnTe detectors. Both systems were able to reconstruct images of 75Se, using the 265keV line, and 137Cs, using the 662keV line. Only the silicon-CdZnTe camera was able to resolve the low intensity 400keV line of 75Se. Neither camera was able to reconstruct the 75Se source location using the 136keV line. The energy resolution of the silicon-CdZnTe camera system was 4% at 662keV. This camera reproduced the location of the 137Cs source by event circle image reconstruction with angular resolutions of 10° for a source on the camera axis and 14° for a source 30° off axis. Typical detector pair efficiencies were measured as 3 x 10-11 at 662keV. The dual CdZnTe camera had an energy resolution of 3.2% at 662keV. This camera reproduced the location of the 137Cs source by event circle image reconstruction with angular resolutions of 8° for a source on the camera axis and 12° for a source 20° off axis. Typical detector pair efficiencies were measured as 7 x 10-11 at 662keV. Of the two prototype camera configurations tested, the silicon-CdZnTe configuration had superior imaging characteristics. This configuration is less sensitive to effects caused by source decay cascades and random

  3. Investigations into the origin of the spurious 17 keV neutrino signal observed in35S beta decay

    NASA Astrophysics Data System (ADS)

    Bowler, M. G.; Jelley, N. A.

    1995-09-01

    An exhaustive study has been made of the β spectrum of35S, recorded with a Si(Li) detector. The object was to identify the origin of a distortion in the35S β spectrum some 17 keV below the end point, reported over three years ago and interpreted then as evidence for a 17 keV neutrino. Measurements with different source-detector spacings and with varied collimation have shown that there is a long range curvature in the Kurie plot which is a sensitive function of configuration, but the principal origin of the distortion is energy loss in the35S sources. The35S sources, prepared by chemical adsorption of Ba35SO4 on a gold substrate, are clumped and locally thick. Electrons near the end point lose ˜0.3 keV in the source material and if this is taken into account the spectra are well fitted without any admixture of 17 keV neutrino. The source thickness has been investigated with a proton microprobe and determined from both source tilting and the yield of barium K X-rays; these studies are discussed in detail. The uncertainties in and justification for the form of the electron response function employed are also thoroughly discussed. If there is no systematic error common to the majority of 14 independent sets of35S data, the admixture of 17 keV neutrino is <10-3 (95% CL). A simple search for a kink at 150 keV in the combined data from all 14 runs yielded a limit of 1.8×10-3 (95% CL). The end point of the35S β spectrum is found to be 167.60±0.05 keV.

  4. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  5. KevJumba and the Adolescence of YouTube

    ERIC Educational Resources Information Center

    Saul, Roger

    2010-01-01

    This article considers the significance of YouTube as a pedagogical space from which young people can play participatory roles as theorists in their own constructions as popular cultural subjects. Drawing upon the public profile of "KevJumba," a teenager who makes videos of himself on YouTube, the article suggests that representational practices…

  6. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  7. OSSE observations of galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Grabelsky, D. A.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Ulmer, M. P.

    1992-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory has performed several observations of the galactic plane and galactic center region to measure the distribution of galactic 511 keV positron annihilation radiation. Preliminary analysis of data collected during the observation of the galactic center region over the period 13-24 Jun. 1991, indicates the presence of a 511 keV line and positronium continuum superimposed on a power-law continuum. The line of flux was found to be (2.7 +/- 0.5) x 10(exp -4) gamma/sq cm sec, with a positronium fraction of (0.9 +/- 0.2). The 3(sigma) upper limit to daily variations in the 511 keV line flux from the mean during the observation interval is 3 x 10(exp -4) gamma/sq cm sec. If all of the observed annihilation radiation is assumed to originate from the x-ray source 1E 1740.7-2942, the corresponding 511 keV line flux would be (3.0 +/- 0.6) x 10(exp -4) gamma/sq cm sec. The 3(sigma) upper limit for 511 keV line emission from the x-ray binary GX1+4 is 6 x 10(exp -4) gamma/sq cm sec. Results from the galactic plane observations at galactic longitudes of 25 degrees (16-21 Aug. 1991) and 339 degrees (6-11 Sep. 1991) suggest that the emission is concentrated near the galactic center. The observations and the preliminary results are described.

  8. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  9. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN UP TO 200 KEV OF DAMAGE ENERGY AT 300, 1025, AND 2050 K

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-09-22

    We generated molecular dynamics database of primary defects that adequately covers the range of tungsten recoil energy imparted by 14-MeV neutrons. During this semi annual period, cascades at 150 and 200 keV at 300 and 1025 K were simulated. Overall, we included damage energy up to 200 keV at 300 and 1025 K, and up to 100 keV at 2050 K. We report the number of surviving Frenkel pairs (NF) and the size distribution of defect clusters. The slope of the NF curve versus cascade damage energy (EMD), on a log-log scale, changes at a transition energy (μ). For EMD > μ, the cascade forms interconnected damage regions that facilitate the formation of large clusters of defects. At 300 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 266 and 335, respectively. Similarly, at 1025 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 296 and 338, respectively. At 2050 K, large interstitial clusters also routinely form, but practically no large vacancy clusters do

  10. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV.

    PubMed

    Keskinbora, Kahraman; Robisch, Anna-Lena; Mayer, Marcel; Sanli, Umut T; Grévent, Corinne; Wolter, Christian; Weigand, Markus; Szeghalmi, Adriana; Knez, Mato; Salditt, Tim; Schütz, Gisela

    2014-07-28

    X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge. It is demonstrated here, that two multilayer type FZPs, delivered from the same multilayer deposit, focus both hard and soft X-rays with high fidelity. The results prove that these lenses can achieve at least 21 nm half-pitch resolution at 1.2 keV demonstrated by direct imaging, and sub-30 nm FWHM (full-pitch) resolution at 7.9 keV, deduced from autocorrelation analysis. Reported FZPs had more than 10% diffraction efficiency near 1.5 keV.

  11. DWBA analysis of {sup 12}C(d,p){sup 13}C cross section data below 300 keV deuteron energy

    SciTech Connect

    Naqvi, A.A.; Ayer, Z.; Ludwig, E. ||

    1994-12-31

    {sup 12}C(d,p){sup 13}T differential cross section data at 200, 220, 250, 280 and 300 keV deuteron energies has been analyzed using finite range DWBA codes PTOLEMY and TWOFNR. It was observed that shape and magnitude of the cross section data at 300, 280 keV energies can be fitted well but the shape of 250, 220 and 200 keV data cannot be fitted. However 250, 220 and 200 keV data shape can be fitted by changing the optical model parameters at each energy. This indicates a very strong energy dependence of the optical model parameters data of the entrance channel over such a small energy range which is not observed in the presently available elastic scattering data of the entrance channel.

  12. Grazing incidence diffraction of keV helium atoms on a Ag(110) surface.

    PubMed

    Bundaleski, N; Khemliche, H; Soulisse, P; Roncin, P

    2008-10-24

    Diffraction of fast atoms at grazing incidence has been recently demonstrated on the surface of alkali halides and wide band gap semiconductors, opening applications for the online monitoring of surface processes such as growth of ultrathin layers. This Letter reports energy resolved diffraction of helium on Ag(110) metal surface showing that a band gap is not mandatory to restrict the decoherence due to electron-hole pair excitations by the keV projectile. Measurement of the energy loss, which is in the eV range, sheds light on the scattering process.

  13. Simultaneous ejection of two molecular ions from keV gold atomic and polyatomic projectile impacts.

    PubMed

    Rickman, R D; Verkhoturov, S V; Parilis, E S; Schweikert, E A

    2004-01-30

    We present the first experimental data on the simultaneous ejection of two molecular ions from the impact of Au(+)(n) (1< or =n< or =4) with energies ranging between 17 and 56 keV. The yields from single phenylalanine (Ph) emission, coemission of two Ph ions, and emission of the Ph dimer were measured. Large increases (1 to 2 orders of magnitude) in coemitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the coemission of two Ph ions; their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles.

  14. Anisotropy measurements of nearly 50 KeV solar protons

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Bostrom, C. O.; Roelof, E. C.; Williams, D. J.

    1975-01-01

    The Energetic Particles Experiment on IMP-7 measures the angular distribution of 50-200 keV solar protons in 16 sectors. The velocity of 50 keV protons may be less than 5 times that of the solar wind. A generalized nonlinear Compton-Getting point transformation into the co-moving frame that contains no assumptions as to the angular distribution of either the spectrum or intensity is presented. Nearly 50 keV proton data in the spacecraft frame exhibit an anisotropy ratio that is large (not less than 5) and radial throughout the October 29, 1972 event lasting more than 9 days at this energy. This anisotropy argues against impulsive injection and diffusive decay in the inner solar system. Application of the transformation to the data reveals a long lasting residual anisotropy in the co-moving frame with protons streaming from the sun. Differences between the co-moving frame and solar wind frame velocities suggest residual electric fields upstream from the bow shock.

  15. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  16. Observational consistency and future predictions for a 3.5 keV ALP to photon line

    SciTech Connect

    Alvarez, Pedro D.; Conlon, Joseph P.; Day, Francesca V.; Marsh, M.C. David; Rummel, Markus

    2015-04-09

    Motivated by the possibility of explaining the 3.5 keV line through dark matter decaying to axion-like particles that subsequently convert to photons, we study ALP-photon conversion for sightlines passing within 50 pc of the galactic centre. Conversion depends on the galactic centre magnetic field which is highly uncertain. For fields at low or mid-range of observational estimates (10–100 μG), no observable signal is possible. For fields at the high range of observational estimates (a pervasive poloidal mG field over the central 150 pc) it is possible to generate sufficient signal to explain recent observations of a 3.5 keV line in the galactic centre. In this scenario, the galactic centre line signal comes predominantly from the region with z>20pc, reconciling the results from the Chandra and XMM-Newton X-ray telescopes. The dark matter to ALP to photon scenario also naturally predicts the non-observation of the 3.5 keV line in stacked galaxy spectra. We further explore predictions for the line flux in galaxies and suggest a set of galaxies that is optimised for observing the 3.5 keV line in this model.

  17. Evaluation of the 232Th Neutron Cross Sections between 4 keV and 140 keV

    SciTech Connect

    Volev, K.; Koyumdjieva, N.; Brusegan, A.; Borella, A.; Siegler, P.; Schillebeeckx, P.; Janeva, N.; Lukyanov, A.; Leal, L.

    2005-05-24

    An evaluation of the 232Th neutron total and capture cross sections has been performed in the energy region between 4 keV and 140 keV. The evaluation results from a simultaneous analysis of capture, transmission, and self-indication measurement data, including the most recent capture cross-section data obtained at the GELINA facility of the Institute for Reference Materials and Measurements at Geel (B) and at the n-TOF facility at CERN (CH). The experimental data have been analysed in terms of average resonance parameters exploiting two independent theoretical approaches -- the Characteristic Function model and the Hauser-Feshbach-Moldauer theory. The resulting parameters are consistent with the resolved resonance parameters deduced from the transmission measurements of Olsen et al. at the ORELA facility.

  18. Search for 511 keV emission in satellite galaxies of the Milky Way with INTEGRAL/SPI

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland; Vincent, Aaron C.; Guglielmetti, Fabrizia; Krause, Martin G. H.; Boehm, Celine

    2016-10-01

    Context. The positron (e+) annihilation γ-ray signal in the Milky Way (MW) shows a puzzling morphology: a very bright bulge and a very low surface-brightness disk. A coherent explanation of the e+ origin, propagation through the Galaxy and subsequent annihilation in the interstellar medium has not yet been found. Tentative explanations involve e+s from radioactivity, X-ray binaries, and dark matter (DM). Aims: Dwarf satellite galaxies (DSGs) are believed to be dominated by DM and hence are promising candidates in the search for 511 keV emission as a result of DM annihilation into e+e--pairs. The goal of this study is to constrain possible 511 keV γ-ray signals from 39 DSGs of the MW and to test the annihilating DM scenario. Methods: We used the spectrometer SPI on INTEGRAL to extract individual spectra for the studied objects in the range 490-530 keV. As the diffuse galactic 511 keV emission dominates the overall signal, we modelled the large-scale morphology of the MW accordingly and included this in a maximum likelihood analysis. Alternatively, a distance-weighted stacked spectrum was determined, representing an average DSG seen in 511 keV. Results: Only Reticulum II (Ret II) shows a 3.1σ signal. Five other sources show tentative 2σ signals. The ratio of mass to 511 keV luminosity, Υ511, shows a marginal trend towards higher values for intrinsically brighter objects in contrast to the mass-to-light ratio, ΥV in the V band, which is generally used to uncover DM in DSGs. Conclusions: All derived 511 keV flux values or upper limits are above the flux level implied by a DM interpretation of the MW bulge signal. The signal detected from Ret II is unlikely to be related to a DM origin alone, otherwise, the MW bulge would be ~100 times brighter in 511 keV than what is seen with SPI. Ret II is exceptional considering the DSG sample and rather points to enhanced recent star formation activity if its origins are similar to processes in the MW. Understanding this

  19. Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle

    SciTech Connect

    Kruschwitz, Craig; Wu, M.; Rochau, G. A.

    2013-06-13

    We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

  20. The Context for IMAP: Voyager and INCA Observations of the Heliosheath at E > 5 keV

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios M.

    2016-04-01

    The basic premise of the proposed Interstellar Mapping and Acceleration Probe (IMAP) is detailed scientific understanding of the Heliosheath (HS) and beyond, a region of space explored in situ by Voyager 1 (V1) since 2004, Voyager 2 (V2) since 2007, and remotely via energetic neutral atoms (ENA) by the Cassini/INCA (Ion and Neutral CAmera) since 2003 and IBEX since 2009. The IMAP instrumentation proposed for this purpose combines and extends the IBEX and INCA ENA energy ranges (0.3- 20 keV and 3-200 keV, for low and high energy, respectively). All three missions-Voyagers, Cassini/INCA, and IBEX- have made discovery-class measurements in the HS, the Voyagers providing in situ ion intensities at E > 30 keV, while INCA images ENA in the range 5 < E < 55 keV, and IBEX 0.3 < E < 6 keV. The partial overlap in energy coverage between Voyager ions and INCA ENA allows for the possibility of observing the intensity and time evolution of ions in the HS, thought to give rise to the ENAs via charge-exchange, and the resultant ENA images in the inner heliosphere and their spatial and/or temporal variability. Unfortunately, no such "ground truth" ion measurements are possible at Voyager in the ENA energy range imaged by IBEX. Some of the key findings from the Voyager and Cassini/INCA measurements are as follows: (1) The HS contains a hot plasma population that carries a substantial part (30-50 %) of the total pressure at E > 5 keV, the rest residing below that range, resulting in a beta (particle/magnetic pressure) always > 1, typically >10. (2) The width of the HS in the direction of V1 is ~ 30 AU, but is thought to be larger (40-70 AU) in the southern ecliptic where V2 currently travels.. (3) The ENA intensities at E > 5 keV exhibit a correlation with the solar cycle (SC) over the period 2003 to 2015, with minimum intensities in the anti-nose direction observed ~ 1.5 yrs after solar minimum followed by a recovery thereafter. (4) The in situ ion measurements at V2 within the HS

  1. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  2. Astrophysics and cosmology confront the 17 keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  3. Proposed FNAL 750 KeV Linac Injector Upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Schmidt, C.W.; /Fermilab

    2009-04-01

    The present FNAL linac H{sup -} injector has been operational since 1978 and consists of a magnetron H{sup -} source and a 750 keV Cockcroft-Walton Accelerator. The proposed upgrade to this injector is to replace the present magnetron source having a rectangular aperture with a circular aperture, and to replace the Cockcroft-Walton with a 200 MHz RFQ. Operational experience at other laboratories has shown that the upgraded source and RFQ will be more reliable and require less manpower than the present system.

  4. Astrophysics and cosmology confront the 17-keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  5. Measuring the 511 keV emission in the direction of 1E1740.7-2942 with BATSE

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Durouchoux, P.; Corbel, S.; Astier-Perret, L.; Poirot, L.

    1997-01-01

    Observations of the 511 keV emission in the direction of 1E 1740.7-2942 (1E) using the earth burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO), are presented. The CGRO phase 1 average spectrum of 1E is calculated using a method which assumes that a given source spectrum is the sum of the flux coming directly from the object and the contribution from the surrounding diffuse emission. The 1E light curve is calculated in the 40 to 150 keV range. It presents a constant flux excess of 70 mCrab in comparison with observations from the SIGMA gamma ray telescope onboard the GRANAT observatory. By removing this contribution, the 1E spectral transition from the low state to the high standard state observed by SIGMA is confirmed, and it is shown that the 511 keV flux is independent of the 1E long term evolution from low state to high standard state. It is concluded that the 511 keV emission of (4.2 +/- 1.3) x 140(exp -4) photons/sq cm s observed in the direction of 1E is mainly diffuse and spatially extended.

  6. NEW OBSERVATIONS OF THE SOLAR 0.5–5 KEV SOFT X-RAY SPECTRUM

    SciTech Connect

    Caspi, Amir; Woods, Thomas N.; Warren, Harry P.

    2015-03-20

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ∼0.2 and ∼4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ∼0.5 to ∼5 keV, with ∼0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5–10 MK) emission and are well fit by simple power-law temperature distributions with indices of ∼6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ∼1.6, below the usually observed value of ∼4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  7. Observations of the Galactic center 511 keV line

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    1991-01-01

    A review of observations of the positron annihilation 511 keV line from the Galactic center and plane is presented. Emphasis is given to the new data from balloon observations in 1988 and 1989. The positron annihilation source in the direction of the center was found to be turned on again in 1988 October after being observed in a quiescent state since the early 1980s. There is evidence for variability between May and October in 1988. The new observations give the first data in which the line is spectrally resolved and in which the Galactic center and plane components of the annihilation radiation are independently measured. These data support the two-component model of the emission with a variable point source near the center and a steady-state source distributed along the galactic plane. Comparing measurements of narrow and wide field instruments in the 1980s gives a flux of about 8 x 10 exp -4 photons/sq cm/s for the point source in its high state and a flux of about 1.2 x 10 exp-3 photons/sq cm/s/rad for the galactic plane component with a relatively flat distribution over the central radian. The line width for the point source component is about 3 keV FWHM.

  8. 100 keV 10-B + implantation into poly-(di-n-hexyl silane), (PDHSi)

    NASA Astrophysics Data System (ADS)

    Fink, D.; Müller, M.; Behar, M.; Papaleo, R. M.

    2006-07-01

    100 keV10B+ ions were implanted into poly-(di-n-hexyl silane) in different directions at a fluence of 1×1014 cm-2, and their depth distribution was determined by means of the neutron depth profiling technique. In no case were the projectile ions found to come to rest according to their predicted range profiles. Instead, they are always found to undergo considerable long-range migration. During the irradiation process this motion appears to be radiation-enhanced, and during the subsequent annealing steps one appears to deal with regular thermal diffusion. The implant redistribution is always found to be governed strongly by the self-created damage, insofar as both electronic and nuclear defects in the polymer act as trapping centers. Their population ratio is modified by thermal annealing.

  9. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  10. High resolution 17 keV to 75 keV backlighters for High Energy Density experiments

    SciTech Connect

    Park, H; Maddox, B R; Giraldez, E; Hatchett, S P; Hudson, L; Izumi, N; Key, M H; Pape, S L; MacKinnon, A J; MacPhee, A G; Patel, P K; Phillips, T W; Remington, B A; Seely, J F; Tommasini, R; Town, R; Workman, J

    2008-02-25

    We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution (< 10 {micro}m) radiography using high-intensity short pulse lasers. High energy K-{alpha} sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.

  11. Magnetospheric plasma modeling (0-100 keV)

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Spitale, G. C.

    1985-01-01

    Spacecraft surface charging, which is primarily a current balance phenomenon, is in general a function of the dominant currents to and from the vehicle's surface. Within the near-earth magnetosphere the dominant currents to the surface are the ambient space plasma fluxes between approximately 0 and 100 keV. A major effort to understand the near-earth environment was initiated when spacecraft charging became a major issue. The present paper has the objective to summarize the basic features of the models which have resulted from this effort. A description is given of four categories of models, based primarily on the degree of empirical and theoretical input. Types of quantitative models are discussed, taking into account definitions, statistical models, analytic models, static models, and time-dependent models. Engineering models are also considered, giving attention to baseline models and 'worst-case' models.

  12. Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.

    PubMed

    Tan, Zhenyu; Liu, Wei

    2014-05-01

    The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.

  13. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect

    Seely, J. F. Feldman, U.; Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2014-11-15

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 μm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  14. Study about the coloration of quartz glass induced by proton radiation with 80 keV

    NASA Astrophysics Data System (ADS)

    Wei, Q.; Liu, H.; He, S. Y.

    2004-03-01

    Under the environment of vacuum and heat sink, the change in optical transmittance of JGS3 optical quartz glass induced by radiation of protons with 80 keV was studied. When the radiation fluence exceeded 5 x 10(14) cm(-2) , two absorption bands appeared in the wavelength range of 209 and 220-240 nm and their peaks increased monotonously with the growing radiation fluence. With higher radiation fluence, weaker absorption bands were formed in the near-ultraviolet and visible regions. Color center E' was responsible for the 209 nm absorption peak, while it was disturbed by hydrogen for the 220-240 nm absorption peak. During the radiation, not only breaking of Si-O bonds and the formation of para-magnetism E' but also transition from the [=Si] and [=SiO] radicals into the [=SiH] and [=SiOH] should occur. Thus, a varied color center E' is formed.

  15. Microstructural investigation of alumina implanted with 30 keV nitrogen ions

    NASA Astrophysics Data System (ADS)

    Shikha, Deep; Jha, Usha; Sinha, S. K.; Barhai, P. K.; Sarkhel, G.; Nair, K. G. M.; Dash, S.; Tyagi, A. K.; Kothari, D. C.

    2007-11-01

    Among ceramics, alumina is being widely used as biomaterials now these days. It is being used as hip joints, tooth roots etc. Ion implantation has been employed to modify its surface without changing it bulk properties. 30 keV nitrogen with varying ion dose ranging from 5 × 10 15 ions/cm 2 to 5 × 10 17 ions/cm 2 is implanted in alumina. Surface morphology has been studied with optical microscope and atomic force microscope (AFM). Improvement in brittleness has been observed with the increase in ion dose. Compound formation and changes in grain size have been studied using X-Ray diffraction (XRD). AlN compound formation is also observed by Fourier transform infrared spectroscopy (FTIR). The change in the grain size is related with the nanohardness and Hall-Petch relationship is verified.

  16. A microwave beam waveguide undulator for a brilliant above 100 keV photon source.

    SciTech Connect

    Kang, Y. W.

    1999-04-19

    For generation of photons above 100-keV with a magnetic field strength in the range 0.2-0.5 Tesla, an undulator wavelength {lambda}{sub u} shorter than 5 mm may be needed with beam in the Advanced Photon Source (APS) storage ring. A microwave beam waveguide undulator system has been investigated for generation of such light. The waveguide structure consists of two parallel reflector surfaces that can be derived from an elliptically cylindrical waveguide. The structure can support deflecting TE{sub m0} modes with very low microwave loss. A microwave ring resonator circuit employing the beam waveguide is considered to construct an undulator with the above requirement. Microwave properties of the beam waveguide structure have been investigated, and the design criteria for a microwave undulator are discussed.

  17. Auroral electrons of energy less than 1 keV observed at rocket altitudes.

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Choy, L. W.

    1973-01-01

    Measurements of electrons of energy less than 1 keV in the auroral precipitation with detectors aboard three rocket flights are discussed. Detectors simultaneously measured the flux of electrons moving up and down the magnetic field lines. Electrons of energy less than a few hundred electron volts show directional intensities ranging from isotropic over the upper hemisphere, to field aligned into the atmosphere, to a net streaming out of the atmosphere. Cases of reflection coefficients greater than 1 for the few hundred electron volts and lower-energy electrons occur when measurements were made north of auroral forms. These electrons might represent the high-energy tail of the return Birkeland currents. The origin of the low-energy electrons is itself in question.

  18. QUIET-TIME INTERPLANETARY {approx}2-20 keV SUPERHALO ELECTRONS AT SOLAR MINIMUM

    SciTech Connect

    Wang, Linghua; Lin, Robert P.; Salem, Chadi; Pulupa, Marc; Larson, Davin E.; Luhmann, Janet G.; Yoon, Peter H.

    2012-07-01

    We present a statistical survey of {approx}2-20 keV superhalo electrons in the solar wind measured by the SupraThermal Electron instrument on board the two STEREO spacecraft during quiet-time periods from 2007 March through 2009 March at solar minimum. The observed superhalo electrons have a nearly isotropic angular distribution and a power-law spectrum, f{proportional_to}v{sup -{gamma}}, with {gamma} ranging from 5 to 8.7, with nearly half between 6.5 and 7.5, and an average index of 6.69 {+-} 0.90. The observed power-law spectrum varies significantly on a spatial scale of {approx}>0.1 AU and a temporal scale of {approx}>several days. The integrated density of quiet-time superhalo electrons at 2-20 keV ranges from {approx}10{sup -8} cm{sup -3} to 10{sup -6} cm{sup -3}, about 10{sup -9}-10{sup -6} of the solar wind density, and, as well as the power-law spectrum, shows no correlation with solar wind proton density, velocity, or temperature. The density of superhalo electrons appears to show a solar-cycle variation at solar minimum, while the power-law spectral index {gamma} has no solar-cycle variation. These quiet-time superhalo electrons are present even in the absence of any solar activity-e.g., active regions, flares or microflares, type III radio bursts, etc.-suggesting that they may be accelerated by processes such as resonant wave-particle interactions in the interplanetary medium, or possibly by nonthermal processes related to the acceleration of the solar wind such as nanoflares, or by acceleration at the CIR forward shocks.

  19. ON THE SPECTRAL HARDENING AT {approx}>300 keV IN SOLAR FLARES

    SciTech Connect

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-20

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies {approx}>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range {approx}k {sup -2.7}. A {approx}k {sup -2.7} dissipation range spectrum is consistent with recent solar wind observations.

  20. Charge transfer and electronic excitation in collisions of protons with water molecules below 10keV

    NASA Astrophysics Data System (ADS)

    Mada, Shogo; Hida, Ken-Nosuke; Kimura, Mineo; Pichl, Lukáš; Liebermann, Heinz-Peter; Li, Yan; Buenker, Robert J.

    2007-02-01

    Charge transfer and electronic excitation processes for H++H2O collisions are investigated theoretically below 10keV . Molecular-orbital close-coupling approach is employed for scattering dynamics, while an ab initio multireference single- and double-configuration interaction method is used for the determination of molecular states. The present results for charge transfer show rather weak energy dependence in the energy range from 10keV down to a few tens of eV with very slowly varying cross-section value of 4-13×10-16cm2 , and are found to be in excellent agreement with experimental measurements by Lindsay [Phys. Rev. A 55, 3945 (1997)] where the energy in the experiment and theory overlaps. The electronic-excitation cross sections are found to be much smaller than those for the charge transfer, but increase rapidly and become comparable to charge transfer at a few keV. Most of the water molecular ions and excited species produced in the collision are unstable and soon undergo dissociation; some insight into the fragmentation process and the fragmented species is given.

  1. Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bulbul, Esra; Markevitch, Maxim; Foster, Adam; Miller, Eric; Bautz, Mark; Loewenstein, Mike; Randall, Scott W.; Smith, Randall K.

    2016-11-01

    We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2σ -significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (˜ 2σ confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of {\\sin }2(2θ )=6.1× {10}-11 from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku.

  2. Charge transfer and electronic excitation in collisions of protons with water molecules below 10 keV

    SciTech Connect

    Mada, Shogo; Hida, Ken-nosuke; Kimura, Mineo; Pichl, Lukas; Liebermann, Heinz-Peter; Li, Yan; Buenker, Robert J.

    2007-02-15

    Charge transfer and electronic excitation processes for H{sup +}+H{sub 2}O collisions are investigated theoretically below 10 keV. Molecular-orbital close-coupling approach is employed for scattering dynamics, while an ab initio multireference single- and double-configuration interaction method is used for the determination of molecular states. The present results for charge transfer show rather weak energy dependence in the energy range from 10 keV down to a few tens of eV with very slowly varying cross-section value of 4-13x10{sup -16} cm{sup 2}, and are found to be in excellent agreement with experimental measurements by Lindsay et al. [Phys. Rev. A 55, 3945 (1997)] where the energy in the experiment and theory overlaps. The electronic-excitation cross sections are found to be much smaller than those for the charge transfer, but increase rapidly and become comparable to charge transfer at a few keV. Most of the water molecular ions and excited species produced in the collision are unstable and soon undergo dissociation; some insight into the fragmentation process and the fragmented species is given.

  3. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  4. Development of multilayer laminar-type diffraction gratings to achieve high diffraction efficiencies in the 1-8 keV energy region

    NASA Astrophysics Data System (ADS)

    Ishino, Masahiko; Heimann, Philip A.; Sasai, Hiroyuki; Hatayama, Masatoshi; Takenaka, Hisataka; Sano, Kazuo; Gullikson, Eric M.; Koike, Masato

    2006-09-01

    W/C and Co/SiO2 multilayer gratings have been fabricated by depositing a multilayer coating on the surface of laminar-type holographic master gratings. The diffraction efficiency was measured by reflectometers in the energy region of 0.6-8.0 keV at synchrotron radiation facilities as well as with an x-ray diffractometer at 8.05 keV. The Co/SiO2 and W/C multilayer gratings showed peak diffraction efficiencies of 0.47 and 0.38 at 6.0 and 8.0 keV, respectively. To our knowledge, the peak efficiency of the W/C multilayer grating is the highest measured with hard x rays. The diffraction efficiency of the Co/SiO2 multilayer gratings was higher than that of the W/C multilayer grating in the energy range of 2.5-6.0 keV. However, it decreased significantly in the energy above the K absorption edge of Co (7.71 keV). For the Co/SiO2 multilayer grating, the measured diffraction efficiencies agreed with the calculated curves assuming a rms roughness of ˜1 nm.

  5. Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus

    SciTech Connect

    Carlson, Eric; Jeltema, Tesla; Profumo, Stefano E-mail: tesla@ucsc.edu

    2015-02-01

    We test the origin of the 3.5 keV line photons by analyzing the morphology of the emission at that energy from the Galactic Center and from the Perseus cluster of galaxies. We employ a variety of different templates to model the continuum emission and analyze the resulting radial and azimuthal distribution of the residual emission. We then perform a pixel-by-pixel binned likelihood analysis including line emission templates and dark matter templates and assess the correlation of the 3.5 keV emission with these templates. We conclude that the radial and azimuthal distribution of the residual emission is incompatible with a dark matter origin for both the Galactic center and Perseus; the Galactic center 3.5 keV line photons trace the morphology of lines at comparable energy, while the Perseus 3.5 keV photons are highly correlated with the cluster's cool core, and exhibit a morphology incompatible with dark matter decay. The template analysis additionally allows us to set the most stringent constraints to date on lines in the 3.5 keV range from dark matter decay.

  6. Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line

    NASA Astrophysics Data System (ADS)

    Jeltema, Tesla; Profumo, Stefano

    2016-06-01

    We searched for an X-ray line at energies around 3.5 keV in deep, ˜1.6 Ms XMM-Newton observations of the dwarf spheroidal galaxy Draco. No line was found in either the Metal Oxide Semi-conductor (MOS) or the p-type/n-type semiconductor (PN) detectors. The data in this energy range are completely consistent with a single, unfolded power-law modelling the particle background, which dominates at these energies, plus instrumental lines; the addition of a ˜3.5 keV line feature gives no improvement to the fit. The corresponding upper limit on the line flux rules out a dark matter decay origin for the 3.5 keV line found in observations of clusters of galaxies and in the Galactic Centre at greater than 99 per cent confidence level.

  7. SURVIVAL DEPTH OF ORGANICS IN ICES UNDER LOW-ENERGY ELECTRON RADIATION ({<=}2 keV)

    SciTech Connect

    Barnett, Irene Li; Lignell, Antti; Gudipati, Murthy S.

    2012-03-01

    Icy surfaces in our solar system are continually modified and sputtered with electrons, ions, and photons from solar wind, cosmic rays, and local magnetospheres in the cases of Jovian and Saturnian satellites. In addition to their prevalence, electrons specifically are expected to be a principal radiolytic agent on these satellites. Among energetic particles (electrons and ions), electrons penetrate by far the deepest into the ice and could cause damage to organic material of possible prebiotic and even biological importance. To determine if organic matter could survive and be detected through remote sensing or in situ explorations on these surfaces, such as water ice-rich Europa, it is important to obtain accurate data quantifying electron-induced chemistry and damage depths of organics at varying incident electron energies. Experiments reported here address the quantification issue at lower electron energies (100 eV-2 keV) through rigorous laboratory data analysis obtained using a novel methodology. A polycyclic aromatic hydrocarbon molecule, pyrene, embedded in amorphous water ice films of controlled thicknesses served as an organic probe. UV-VIS spectroscopic measurements enabled quantitative assessment of organic matter survival depths in water ice. Eight ices of various thicknesses were studied to determine damage depths more accurately. The electron damage depths were found to be linear, approximately 110 nm keV{sup -1}, in the tested range which is noticeably higher than predictions by Monte Carlo simulations by up to 100%. We conclude that computational simulations underestimate electron damage depths in the energy region {<=}2 keV. If this trend holds at higher electron energies as well, present models utilizing radiation-induced organic chemistry in icy solar system bodies need to be revisited. For interstellar ices of a few micron thicknesses, we conclude that low-energy electrons generated through photoionization processes in the interstellar medium

  8. Search for a 17 keV neutrino in the internal bremsstrahlung spectrum of 125I

    NASA Astrophysics Data System (ADS)

    Hindi, M. M.; Kozub, R. L.; Robinson, S. J.

    1994-06-01

    We have searched for evidence of the emission of a 17 keV neutrino in the internal bremsstrahlung (IB) spectrum accompanying the electron capture decay of 125I. The IB spectrum, recorded in a planar Ge detector, has 1.2×106 counts per keV at 17 keV below the 2p end point. We set an upper limit of 0.4% for the admixture of a 17 keV neutrino, at the 90% confidence level, and exclude a 0.8% admixture at the 99.6% confidence level. The QEC value is found to be 185.77+/-0.06 keV. We also find that the recent calculations of Surić et al., which employ relativistic self-consistent-field atomic wave functions, reproduce the shape and relative intensity of IB partial spectra within a few percent.

  9. SU-E-T-46: A Monte Carlo Investigation of Radiation Interactions with Gold Nanoparticles in Water for 6 MV, 85 KeV and 40 KeV Photon Beams

    SciTech Connect

    Flint, D B; O’Brien, D J; McFadden, C H; Wolfe, T; Krishnan, S; Sawakuchi, G O; Hallacy, T M

    2015-06-15

    Purpose: To determine the effect of gold-nanoparticles (AuNPs) on energy deposition in water for different irradiation conditions. Methods: TOPAS version B12 Monte Carlo code was used to simulate energy deposition in water from monoenergetic 40 keV and 85 keV photon beams and a 6 MV Varian Clinac photon beam (IAEA phase space file, 10x10 cm{sup 2}, SSD 100 cm). For the 40 and 85 keV beams, monoenergetic 2x2 mm{sup 2} parallel beams were used to irradiate a 30x30x10 µm {sup 3} water mini-phantom located at 1.5 cm depth in a 30x30x50 cm{sup 3} water phantom. 5000 AuNPs of 50 nm diameter were randomly distributed inside the mini-phantom. Energy deposition was scored in the mini-phantom with the AuNPs’ material set to gold and then water. For the 6 MV beam, we created another phase space (PHSP) file on the surface of a 2 mm diameter sphere located at 1.5 cm depth in the water phantom. The PHSP file consisted of all particles entering the sphere including backscattered particles. Simulations were then performed using the new PHSP as the source with the mini-phantom centered in a 2 mm diameter water sphere in vacuum. The g4em-livermore reference list was used with “EMRangeMin/EMRangeMax = 100 eV/7 MeV” and “SetProductionCutLowerEdge = 990 eV” to create the new PHSP, and “SetProductionCutLowerEdge = 100 eV” for the mini-phantom simulations. All other parameters were set as defaults (“finalRange = 100 µm”). Results: The addition of AuNPs resulted in an increase in the mini-phantom energy deposition of (7.5 ± 8.7)%, (1.6 ± 8.2)%, and (−0.6 ± 1.1)% for 40 keV, 85 keV and 6 MV beams respectively. Conclusion: Enhanced energy deposition was seen at low photon energies, but decreased with increasing energy. No enhancement was observed for the 6 MV beam. Future work is required to decrease the statistical uncertainties in the simulations. This research is partially supported from institutional funds from the Center for Radiation Oncology Research, The

  10. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  11. Comparison between an event-by-event Monte Carlo code, NOREC, and ETRAN for electron scaled point kernels between 20 keV and 1 MeV.

    PubMed

    Cho, Sang Hyun; Vassiliev, Oleg N; Horton, John L

    2007-03-01

    An event-by-event Monte Carlo code called NOREC, a substantially improved version of the Oak Ridge electron transport code (OREC), was released in 2003, after a number of modifications to OREC. In spite of some earlier work, the characteristics of the code have not been clearly shown so far, especially for a wide range of electron energies. Therefore, NOREC was used in this study to generate one of the popular dosimetric quantities, the scaled point kernel, for a number of electron energies between 0.02 and 1.0 MeV. Calculated kernels were compared with the most well-known published kernels based on a condensed history Monte Carlo code, ETRAN, to show not only general agreement between the codes for the electron energy range considered but also possible differences between an event-by-event code and a condensed history code. There was general agreement between the kernels within about 5% up to 0.7 r/r (0) for 100 keV and 1 MeV electrons. Note that r/r (0) denotes the scaled distance, where r is the radial distance from the source to the dose point and r (0) is the continuous slowing down approximation (CSDA) range of a mono-energetic electron. For the same range of scaled distances, the discrepancies for 20 and 500 keV electrons were up to 6 and 12%, respectively. Especially, there was more pronounced disagreement for 500 keV electrons than for 20 keV electrons. The degree of disagreement for 500 keV electrons decreased when NOREC results were compared with published EGS4/PRESTA results, producing similar agreement to other electron energies.

  12. Electron-capture collisions at keV energies of multiply charged ions of carbon and argon with molecular deuterium

    SciTech Connect

    Bliman, S.; Aubert, J.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1981-04-01

    Single- and double-electron-capture cross sections have been measured for C/sup q/+ with initial charges 2 < or = q < or = 6 and for Ar/sup q/+ with initial charges 2 < or = q < or = 12 incident on molecular deuterium gas targets. The cross sections show little dependence on the incident-ion energy for the range studied 2q to 10q keV. The single-electron-capture cross sections do not vary monotonically with the initial charge, but show an oscillation about a mean curve, reflecting the projectile electronic structure.

  13. Frequency analysis of 4- to 6-keV electrons associated with an auroral arc

    NASA Technical Reports Server (NTRS)

    Murphree, J. S.; Anderson, H. R.

    1978-01-01

    The high time resolution (HTR) experiment considered consists of four sections, including electrostatic deflection plates, electron multiplier, preamplifier-integrator, and frequency analyzer. Electrons in the energy range from 4 to 6 keV electrons are selected by the deflection system, after which they are detected, multiplied, and passed to the charge sensitive preamplifier. The charge pulses are amplified and integrated, and the resulting voltage pulse series is fed to the frequency analyzer. The experiment is essentially a flux detector, so that estimates of the input flux can be made from the mean value of the output spectrum. The results obtained with the HTR in a rocket flight on March 14, 1974, are discussed. The lack of modulation noticed in the high-frequency range indicates that there is insufficient wave energy available in the vicinity of the rocket to produce a wave-particle interaction which the HTR is able to observe. This finding is consistent with the stabilization of the plasma by the low flux of energetic electrons.

  14. Electron back-scattering coefficient below 5 keV: Analytical expressions and surface-barrier effects

    NASA Astrophysics Data System (ADS)

    Cazaux, J.

    2012-10-01

    Simple analytical expressions for the electron backscattering coefficient, η, are established from published data obtained in the ˜0.4-5 keV range for 21 elements ranging from Be to Au. They take into account the decline in η with a decrease in energy E° for high-Z elements and the reverse behavior for low-Z elements. The proposed expressions for η (E°) lead to crossing energies situated in the 0.4-1 keV range and they may be reasonably extended to any of the other elements—via an interpolation procedure—to metallic alloys and probably to compounds. The influence of the surface barrier on the escape probability of the back-scattered electrons is next evaluated. This evaluation provides a theoretical basis to explain the observed deviation between various published data as a consequence of surface contamination or oxidation. Various practical applications and strategies are deduced for the η-measurements in dedicated instruments as well for the image interpretation in low voltage scanning electron microscopy based on the backscattered electron detection. In this microscopy, the present investigation allows to generalize the scarce contrast changes and contrast reversals previously observed on multi elemental samples and it suggests the possibility of a new type of contrast: the work function contrast.

  15. STABILITY OF EXTRATERRESTRIAL GLYCINE UNDER ENERGETIC PARTICLE RADIATION ESTIMATED FROM 2 keV ELECTRON BOMBARDMENT EXPERIMENTS

    SciTech Connect

    Maté, B.; Tanarro, I.; Escribano, R.; Moreno, M. A.; Herrero, V. J.

    2015-06-20

    The destruction of solid glycine under irradiation with 2 keV electrons has been investigated by means of IR spectroscopy. Destruction cross sections, radiolysis yields, and half-life doses were determined for samples at 20, 40, 90, and 300 K. The thickness of the irradiated samples was kept below the estimated penetration depth of the electrons. No significant differences were obtained in the experiments below 90 K, but the destruction cross section at 300 K was larger by a factor of 2. The radiolysis yields and half-life doses are in good accordance with recent MeV proton experiments, which confirms that electrons in the keV range can be used to simulate the effects of cosmic rays if the whole sample is effectively irradiated. In the low temperature experiments, electron irradiation leads to the formation of residues. IR absorptions of these residues are assigned to the presence CO{sub 2}, CO, OCN{sup −}, and CN{sup −} and possibly to amide bands I to III. The protection of glycine by water ice is also studied. A water ice film of ∼150 nm is found to provide efficient shielding against the bombardment of 2 keV electrons. The results of this study show also that current Monte Carlo predictions provide a good global description of electron penetration depths. The lifetimes estimated in this work for various environments ranging from the diffuse interstellar medium to the inner solar system, show that the survival of hypothetical primeval glycine from the solar nebula in present solar system bodies is not very likely.

  16. Stability of Extraterrestrial Glycine under Energetic Particle Radiation Estimated from 2 keV Electron Bombardment Experiments

    NASA Astrophysics Data System (ADS)

    Maté, B.; Tanarro, I.; Escribano, R.; Moreno, M. A.; Herrero, V. J.

    2015-06-01

    The destruction of solid glycine under irradiation with 2 keV electrons has been investigated by means of IR spectroscopy. Destruction cross sections, radiolysis yields, and half-life doses were determined for samples at 20, 40, 90, and 300 K. The thickness of the irradiated samples was kept below the estimated penetration depth of the electrons. No significant differences were obtained in the experiments below 90 K, but the destruction cross section at 300 K was larger by a factor of 2. The radiolysis yields and half-life doses are in good accordance with recent MeV proton experiments, which confirms that electrons in the keV range can be used to simulate the effects of cosmic rays if the whole sample is effectively irradiated. In the low temperature experiments, electron irradiation leads to the formation of residues. IR absorptions of these residues are assigned to the presence CO2, CO, OCN-, and CN- and possibly to amide bands I to III. The protection of glycine by water ice is also studied. A water ice film of ˜150 nm is found to provide efficient shielding against the bombardment of 2 keV electrons. The results of this study show also that current Monte Carlo predictions provide a good global description of electron penetration depths. The lifetimes estimated in this work for various environments ranging from the diffuse interstellar medium to the inner solar system, show that the survival of hypothetical primeval glycine from the solar nebula in present solar system bodies is not very likely.

  17. Institut d'Astrophysique Spatiale (IAS) 0.1- to 15-keV Synchrotron Radiation Facility beam lines

    NASA Astrophysics Data System (ADS)

    Dhez, Pierre; Jourdain, Erick; Hainaut, Olivier; Hochedez, Jean-Francois E.; Labeque, Alain; Salvetat, Philippe; Song, Xue Yan

    1997-10-01

    Two beam lines have been built at the Institute d'Astrophysique Spatiale (IAS) d'Orsay to perform absolute calibration of the EPIC (European photon imaging camera). EPIC consists of three x-ray charge coupled device (CCD) cameras having imaging and spectroscopic performances set at the Wolter telescope focal planes on board the x-ray multi mirror mission (XMM) planned to be launched by ESA in August 1999. To cover the desired 0.1 - 15 keV range a dedicated beam line has been built on each synchrotron sources of the Laboratoire pour l'Utilisation du Rayonnement Synchrotron (LURE): SACO (0.8 GeV) and DCI (1.5 GeV). Both beam lines are merging in a clean 23 m(superscript 3) vacuum tank containing the camera to calibrate. (1) The SACO windowless beam line is equipped with a grating monochromator. Four plane VLS gratings are used to cover the low energy range (0.1 - 1.2 keV). A triple grazing incidence mirror system set in front of the entrance slit removes the overlapping orders. (2) The high energy beam line on DCI has a 50 micrometer beryllium window and a double flat crystals monochromator equipped with four different crystal pairs. A double grazing incidence mirror system set close to the source absorbs the high energy photon spectra. CCD calibrations will be performed during 1997 second semester and years 1998.

  18. Making channeling visible: keV noble gas ion trails on Pt(111)

    NASA Astrophysics Data System (ADS)

    Redinger, A.; Standop, S.; Rosandi, Y.; Urbassek, H. M.; Michely, T.

    2011-01-01

    The impact of argon and xenon noble gas ions on Pt(111) in grazing incidence geometry are studied through direct comparison of scanning tunneling microscopy images and molecular dynamics simulations. The energy range investigated is 1-15 keV and the angles of incidence with respect to the surface normal are between 78.5° and 88°. The focus of the paper is on events where ions gently enter the crystal at steps and are guided in channels between the top most layers of the crystal. The trajectories of the subsurface channeled ions are visible as trails of surface damage. The mechanism of trail formation is analyzed using simulations and analytical theory. Significant differences between Xe+ and Ar+ projectiles in damage, in the onset energy of subsurface channeling as well as in ion energy dependence of trail length and appearance are traced back to the projectile and ion energy dependence of the stopping force. The asymmetry of damage production with respect to the ion trajectory direction is explained through the details of the channel shape and subchannel structure as calculated from the continuum approximation of the channel potential. Measured and simulated channel switching in directions normal and parallel to the surface as well as an increase of ions entering into channels from the perfect surface with increasing angles of incidence are discussed.

  19. Is keV ion-induced pattern formation on Si(001) caused by metal impurities?

    PubMed

    Macko, Sven; Frost, Frank; Ziberi, Bashkim; Förster, Daniel F; Michely, Thomas

    2010-02-26

    We present ion beam erosion experiments performed in ultrahigh vacuum using a differentially pumped ion source and taking care that the ion beam hits the Si(001) sample only. Under these conditions no ion beam patterns form on Si for angles theta < or = 45 degrees with respect to the global surface normal using 2 keV Kr+ and fluences of approximately 2 x 10(22) ions m(-2). In fact, the ion beam induces a smoothening of preformed patterns. Simultaneous sputter deposition of stainless steel in this angular range creates a variety of patterns, similar to those previously ascribed to clean ion-beam-induced destabilization of the surface profile. Only for grazing incidence with 60 degrees < or = theta < or = 83 degrees do pronounced ion beam patterns form. It appears that the angular-dependent stability of Si(001) against pattern formation under clean ion beam erosion conditions is related to the angular dependence of the sputtering yield, and not primarily to a curvature-dependent yield as invoked frequently in continuum theory models.

  20. Origins of Anisotropic 40 300 keV Electron Events Observed at Low and High Latitudes

    NASA Astrophysics Data System (ADS)

    Hawkins, S. E., III; Gold, R. E.; Pick, M.; Maia, D.

    2001-05-01

    Using a survey of anisotropic electron events in the energy range of ˜40 300 keV observed by HI-SCALE on Ulysses, we have selected several time intervals during 1999 when Ulysses traveled from about 20° S at 5.2 AU (January 1999) to 42° S at 4.2 AU (January 2000). We compare these events with observations at ˜1 AU using the nearly identical instrument, EPAM on ACE. In order to study the solar origins of these electrons using the imaging Nançay Radioheliograph, we further restricted the list of events to those in which interplanetary magnetic field lines with origins on the visible solar disk, intersected Ulysses. We find that not all the anisotropic electron events are observed by both spacecraft and there exists a strong dependence on the spacecraft's magnetic connection back to the Sun. We have identified the solar origin for five electron events using radio observations, and correlate these with interplanetary type-III radio emissions using the WIND/WAVES experiment.

  1. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia

    2016-07-01

    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are

  2. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation.

    PubMed

    Shridhar, Ravi; Estabrook, William; Yudelev, Mark; Rakowski, Joseph; Burmeister, Jay; Wilson, George D; Joiner, Michael C

    2010-03-01

    Electronic brachytherapy systems are being developed that can deliver X rays of varying energy depending on the material of a secondary target. A copper target produces characteristic 8 keV X rays. Our aim was to determine whether 8 keV X rays might deliver greater biological effectiveness than megavoltage photons. Cells of the U251 human glioma cell line were used to compare the biological effects of 8 keV X rays and (60)Co gamma rays in terms of relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and DNA damage. The RBE at 50% and 10% survival was 2.6 and 1.9, respectively. At 50% survival, the OER for cells treated with 8 keV X rays was 1.6 compared with 3.0 for (60)Co gamma rays. The numbers of H2AX foci per Gy after treatment with 8 keV X rays and (60)Co gamma rays were similar; however, the size of the foci generated at 8 keV was significantly larger, possibly indicating more complex DNA damage. The mean area of H2AX foci generated by 8 keV X rays was 0.785 microm(2) (95% CI: 0.756-0.814) compared with 0.491 microm(2) (95% CI: 0.462-0.520) for (60)Co gamma rays (P < 0.0001). Characteristic 8 keV X rays produce two to three times the biological effectiveness of megavoltage photons, with a radiobiological profile similar to higher-LET radiations.

  3. New Observations of the Solar 0.5-5 keV Soft X-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Woods, Thomas N.; Warren, Harry P.

    2015-03-01

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ˜0.2 and ˜4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ˜0.5 to ˜5 keV, with ˜0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5-10 MK) emission and are well fit by simple power-law temperature distributions with indices of ˜6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ˜1.6, below the usually observed value of ˜4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  4. Reevaluation of 58Ni and 60Ni Resonance Parameters in the Energy Range Thermal to 800 keV

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Guber, Klaus H; Wiarda, Dorothea; Arbanas, Goran

    2009-01-01

    The previous 58Ni and 60Ni set of resonance parameters (ENDF/B-VII-0, JEFF-3, etc.) was based on the SAMMY analysis of Oak Ridge National Laboratory neutron transmission, scattering cross section and capture cross section measurements by C. M. Perey et al. The present results were obtained by adding to the SAMMY experimental data base the capture cross sections measured recently at the Oak Ridge Linear Electron Accelerator by Guber et al. and the Geel Electron Linear Accelerator very high-resolution neutron transmission measurements performed by Brusegan et al. A complete resonance parameter covariance matrix (RPCM) was obtained from the SAMMY analysis of the experimental database. The data sets were made consistent, when needed, by adjusting the neutron energy scales, the normalization coefficients, and the background corrections. The RPCM allows the calculation of the cross section uncertainties due mainly to statistical errors in the experimental data. The systematic uncertainties of the experimental data, estimated from the preliminary analyses of the experimental database, were taken into account in the cross section covariance matrix (CSCM) for total, scattering, and capture cross sections. The diagonal elements of the CSCM were obtained by quadratic combination of the different components of the uncertainties. Because of a lack of experimental information, the energy correlations were not obtained, and a value of 0.5 was arbitrarily taken for all the CSCM nondiagonal elements.

  5. COCO, a Compton coincidence experiment to study liquid scintillator response in the 1-20 keV energy range

    NASA Astrophysics Data System (ADS)

    Péron, M. N.; Cassette, P.

    1994-12-01

    The use of Liquid Scintillation Counting (LSC) as a fundamental radionuclide standardisation method requires a correct description of the physical phenomena occurring during the LSC process. In that framework, a special point of interest is the description of the liquid scintillator response, especially for low-energy electrons, in a region where this response is known to be non-linear. As there is no simple way to produce monoenergetic electrons in the liquid scintillator, we have simulated these electrons using a Compton interaction coincidence method. Due to the energy conservation law, the selection of the energy of the scattered Compton X-ray photon is equivalent to the selection of the energy of a monoenergetic electron. This paper describes the experimental system and the methods used to analyse the experimental results in order to deduce the statistical distribution of the photons emitted by the scintillator. The effects of some artefacts are discussed, including the accidental coincidences and the influence of cascade Compton interactions.

  6. Observations of the scatter-free solar-flare electrons in the energy range 20-1000 keV

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Fisk, L. A.; Lin, R. P.

    1971-01-01

    Observations of the scatter-free electron events from solar active region McMath No. 8905 are presented. The measurements were made on Explorer 33 satellite. The data show that more than 80% of the electrons from these events undergo no or little scattering and that these electrons travel only approximately 1.5 a.u. between the sun and the earth. The duration of these events cannot be accounted fully by velocity dispersion alone. It is suggested that these electrons could be continuously injected into interplanetary medium for a time interval of approximately 2 to 3 minutes. Energy spectra of these electrons are discussed.

  7. Injection and diffusive transport of suprathermal through energetic solar flare protons (35 keV to 20 MeV)

    NASA Technical Reports Server (NTRS)

    Beeck, J.; Mason, G. M.; Hamilton, D. C.; Marsden, R. G.; Sanderson, T. R.

    1990-01-01

    Consideration is given to the injection and interplanetary propagation of low-energy protons caused by the solar particle event of July 20, 1981, in which flare protons in the range from 35 keV to 20 MeV were observed by instruments on ISEE 3. The observed time-intensity and time-anisotropy profiles were fitted over the entire energy range using a model based on the spherically symmetric Fokker-Plank equation, including convection, diffusion, and adiabatic deceleration. The results are used to discuss the behavior of the radial interplanetary diffusion coefficient and the scattering mean free path for protons. Also, evidence is found for diffusive coronal shock acceleration of protons during the event.

  8. Fragmentation of H2O by 1 -- 5 keV He^2+ ions: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Cabrera-Trujillo, R.; Ohrn, Y.; Deumens, E.; Sabin, J.

    2006-05-01

    Fragmentation of H2O molecules induced by ^3He^2+ impact was investigated experimentally as a function of the energy in the range from 1-5 keV. Collisions at large impact parameters are found to produce fragment protons with energies centered around peaks at 6 eV and 15 eV. The H^+ fragments were detected in the angular range from 25 to 135 with respect to the incident beam direction. Absolute fragmentation cross sections dσ/dφ, differential in the emission angle are found to be anisotropic, with protons preferentially emitted at angles near 90 . In addition to the experiments, we performed quantum-mechanical calculations to understand the fragmentation mechanisms producing protons at preferred energies and angles. The theoretical results are obtained using the Electron-Nuclear Dynamics formalism (END), which solves the time-dependent Schr"odinger equation.

  9. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  10. 1-40-keV fixed-exit monochromator for a wafer mapping TXRF facility

    NASA Astrophysics Data System (ADS)

    Comin, Fabio; Apostolo, G.; Freund, Andreas K.; Mangiagalli, P.; Navizet, M.; Troxel, C. L.

    1998-12-01

    An industrial facility for the mapping of trace impurities on the surface of 300 mm Silicon wafers will be commissioned at the end of 1998. The elements to be detected range from Na to Hg with a target routine detection limit of 108 atoms/cm2. The monochromator of the facility plays a central role and fulfills the following requirements: ease of operations and fast tuning (one single motor); extended energy range (1 - 40 KeV covered by a fixed exit Si(111) channel cut and multilayer pair); smooth and reliable running (water cooling even in the powerful ESRF undulator beams at high energies). The mechanical structure of the monochromator is based on well-established concepts: an external goniometer transfers the main rotation to the in-vacuum plateau via a hollow differentially pumped feed-through. The optical arrangement shows some novelties: the plateau can be cooled either by water or liquid nitrogen and it holds the convex- concave machined Si(111) channel-cut for fixed exit performances. The shape of the machined surfaces of the crystal helps also on to spread the power density of the beam on the silicon surface. A set of two identical multilayers are also mounted on the plateau and the transition from the Si(111) crystal to the multilayer operation is performed by rotating the wafer main axis by about 180 degrees. The whole facility is centered around the three main components: the monochromator, the wafer handling robots and the two linear arrays of solid state fluorescence detectors.

  11. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    PubMed

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  12. Neutron Fluence and Energy Reconstruction with the LNE-IRSN/MIMAC Recoil Detector MicroTPC at 27 keV

    SciTech Connect

    Maire, D.; Lebreton, L.; Querre, Ph.; Bosson, G.; Guillaudin, O.; Muraz, J.F.; Riffard, Q.; Santos, D.

    2015-07-01

    The French Institute for Radiation protection and Nuclear Safety (IRSN), designated by the French Metrology Institute (LNE) for neutron metrology, is developing a time projection chamber using a Micromegas anode: microTPC. This work is carried out in collaboration with the Laboratory of Subatomic Physics and Cosmology (LPSC). The aim is to characterize the energy distribution of neutron fluence in the energy range 8 keV - 5 MeV with a primary procedure. The time projection chambers are gaseous detectors able to measure charged particles energy and to reconstruct their track if a pixelated anode is used. In our case, the gas is used as a (n, p) converter in order to detect neutrons down to few keV. Coming from elastic collisions with neutrons, recoil protons lose a part of their kinetic energy by ionizing the gas. The ionization electrons are drifted toward a pixelated anode (2D projection), read at 50 MHz by a self-triggered electronic system to obtain the third track dimension. The neutron energy is reconstructed event by event thanks to proton scattering angle and proton energy measurements. The scattering angle is deduced from the 3D track. The proton energy is obtained by charge collection measurements, knowing the ionization quenching factor (i.e. the part of proton kinetic energy lost by ionizing the gas). The fluence is calculated thanks to the detected events number and the simulation of the detector response. The μTPC is a new reliable detector able to measure energy distribution of the neutron fluence without unfolding procedure or prior neutron calibration contrary to usual gaseous counters. The microTPC is still being developed and measurements have been carried out at the AMANDE facility, with neutrons energies going from 8 keV to 565 keV. After the context and the μ-TPC working principle presentation, measurements of the neutron energy and fluence at 27 keV and 144 keV are shown and compared to the complete detector response simulation. This work

  13. Effect of 200 keV Ar{sup +} implantation on optical and electrical properties of polyethyleneterepthalate (PET)

    SciTech Connect

    Kumar, Rajiv Goyal, Meetika Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-05-15

    In the present paper we have discussed the effect of 200 keV Ar{sup +} ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar{sup +} ions to various doses ranging from 1×10{sup 15} to 1×10{sup 17} Ar{sup +} cm{sup 2}. The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET.

  14. High Resolution, 20-100 keV X-ray Backlighters for ICF and HEDS Experiments

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Koch, J. A.; Landen, O. L.; Phillips, T. W.; Schmid, G. J.

    2002-11-01

    We are studying the feasibility of high resolution radiography using short pulse high intensity lasers. Specifically we wish to better characterize and optimize the Kalpha X-ray production and brightness created by relativistic electron plasma interactions in the target material. We plan to utilize this Kalpha source as a backlighter to image various stages of implosions and planar driven high Z materials. Particularly interesting are the production of Kalpha's in the range 20 100 keV. In order to assess in detail the characteristics of such high energy X-ray backlighters, we are performing experiments using the 10 J, 100 fs JanUSP laser at LLNL. We will measure Kalpha source generation efficiency as function of laser beam parameters such as pulse duration, spot size and laser beam energy. We are also developing a high resolution hard X-ray imaging detector system. This paper will present initial results from the JanUSP experiments. Reference:D.K. Bradley, O.L. Landen, A.B. Bullock, S.G. Glendinning, and R.E. Turner, "Efficient, High Spatial-Temporal Resolution, 1-100 keV X-ray Radiography," Opt. Lett. 27(2002) 134.

  15. Position detection of 17-25 keV x-rays in krypton and xenon with a resolution of 18-50 m (FWHM)

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-10-01

    Measurements have been made of x-ray position resolution in a proportional chamber with both Kr/10% CO2 and Xe/10% CO2, for the x-ray energy region 17 to 25 keV. Position resolutions in the range of 18 to 50 m (FWHM) are obtained in krypton, and in the range 50 to 100 m (FWHM) for xenon. These results are interpreted in terms of the physical limitation to resolution due to the range of photoelectrons and Auger electrons emitted from the x-ray absorbing atom.

  16. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect

    Pérez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; Villette, B.; Girard, F.; Reverdin, C.; May, M.; Emig, J.; Sorce, C.; Colvin, J.; Gammon, S.; Jaquez, J.; Satcher, J. H.; Fournier, K. B.

    2012-08-01

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5–8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm36-16 mg/cm3) and stainless steel foil-lined cavity targets (steel thickness 1-5 μm1-5 μm). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5%<5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%<2.5%). The aerogel targets produced Te=2Te=2 to 3 keV, ne=0.12-0.2ne=0.12-0.2 critical density plasmas yielding a 40%–60% laser-to-x-ray total conversion efficiency (CE) (1.2%–3% in the Fe K-shell range). The foil cavity targets produced Te~2 keV, Te~2 keV, ne~0.15ne~0.15 critical density plasmas yielding a 60%–75% conversion efficiency (1.6%–2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  17. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  18. 330-keV electron line in e sup + +Th interactions

    SciTech Connect

    Sakai, M.; Fujita, Y.; Imamura, M.; Omata, K.; Ohya, S.; Muto, S.; Miura, T.; Gono, Y.; Chojnacki, S. Niigata University, Niigata National Laboratory for High Energy Physics, Tsukuba Institute for Physical and Chemical Research, Wako-shi, Saitama-ken Accelerator Laboratory, Warsaw University, Warsaw )

    1991-09-01

    The previously reported 330.8{plus minus}1.0-keV electron line in {ital e}{sup +}+Th interactions has been reinvestigated to confirm its existence. We have made a definite observation of the relevant peak with an energy of 330.1{plus minus}0.3 keV, a fullwidth at half maximum of less than 1.7{plus minus}0.7 keV and a cross section of 160(1{plus minus}0.19{plus minus}0.25) mb. We have assigned the generation site of the electrons to the Th target by comparing the energy shift and the shape change of the line with those of the neighboring conversion lines in the spectra taken under different scattering conditions.

  19. Evaluation of the 1077 keV γ-ray emission probability from 68Ga decay

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; Jiang, Li-Yang; Chen, Xiong-Jun; Chen, Guo-Chang

    2014-04-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the 69Ga(n,2n) 68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is (2.72±0.16)%.

  20. keV sterile neutrino dark matter and low scale leptogenesis

    NASA Astrophysics Data System (ADS)

    Kang, Sin Kyu; Patra, Ayon

    2016-10-01

    We consider a simple extension of the Standard Model to consistently explain the observation of a peak in the galactic X-ray spectrum at 3.55 keV, the light neutrino masses, and the baryon asymmetry of the universe. The baryon asymmetry is generated through leptogenesis, the lepton asymmetry being generated by the decay of a heavy neutrino with a TeV mass scale. The extra singlet fermion introduced in the model can be identified as a dark matter candidate with a mass of 7.1 keV. It decays with a lifetime much larger than the age of the universe, producing a final state photon. The Yukawa interactions between the extra singlet neutrino and a heavier right-handed neutrino play a crucial role in simultaneously achieving low-scale leptogenesis and the relic density of the keV dark matter candidate.

  1. Quark nugget dark matter: no contradiction with 511 keV line emission from dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Lawson, Kyle; Zhitnitsky, Ariel

    2017-02-01

    The observed galactic 511 keV line has been interpreted in a number of papers as a possible signal of dark matter annihilation within the galactic bulge. If this is the case then it is possible that a similar spectral feature may be observed in association with nearby dwarf galaxies. These objects are believed to be strongly dark matter dominated and present a relatively clean observational target. Recently INTEGRAL observations have provided new constraints on the 511 keV flux from nearby dwarf galaxies [1] motivating further investigation into the mechanism by which this radiation may arise. In the model presented here dark matter in the form of heavy quark nuggets produces the galactic 511 keV emission line through interactions with the visible matter. It is argued that this type of interaction is not strongly constrained by the flux limits reported in [2].

  2. The energy spectrum of 662 keV photons in a water equivalent phantom

    NASA Astrophysics Data System (ADS)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E. N.; Yalcin, S.; Gundogdu, O.; Sharaf, J. M.; Bradley, D. A.

    2012-07-01

    Investigation is made on the energy spectrum of photons originating from interactions of 662 keV primary gamma-ray photons emitted by a point source positioned at the centre of a water equivalent solid phantom of dimensions 19 cm×19 cm×24 cm. Peaks resulting from total energy loss (photopeak) and multiple and back scattering have been observed using a 51 mm×51 mm NaI(Tl) detector; good agreement being found between the measured and simulated response functions. The energy spectrum of the gamma photons obtained through the Monte Carlo simulation reveals local maxima at about 100 keV and 210 keV, being also observed in the experimental response function. Such spectra can be used as a method of testing the water equivalence of solid phantom media before their use for dosimetry measurements.

  3. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  4. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  5. Passive Ranging

    DTIC Science & Technology

    1988-08-01

    1981). 5. R. Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. 32 32 APPENDIX A CALCULATION...K Courant and D. Hilbert, Methods of Mathematical Physics , Vol. I, English ed., * Interscience, New York, 1953. A-8 APPENDIX B * RANGING ACCURACY IN

  6. Calculations of stopping powers and inelastic mean free paths for 20 eV-20 keV electrons in 11 types of human tissue.

    PubMed

    Tan, Zhenyu; Liu, Wei

    2013-12-01

    Systematic calculations are performed for determining the stopping powers (SP) and inelastic mean free paths (IMFP) for 20 eV-20 keV electrons in 11 types of human tissue. The calculations are based on a dielectric model, including the Born-Ochkur exchange correction. The optical energy loss functions (OELF) are empirically evaluated, because of the lack of available experimental optical data for the 11 tissues under consideration. The evaluated OELFs are examined by the f-sum rule expected from the dielectric response theory, and by calculation of the mean excitation energy. The calculated SPs are compared with those for PMMA (polymethylmethacrylate, a tissue equivalent material) and liquid water. The SP and IMFP data presented here are the results for the 11 human tissues over the energy range of 20 eV-20 keV, and are of importance in radiotherapy planning and for studies of various radiation effects on human tissues.

  7. The response of a fast phosphor screen scintillator (ZnO:Ga) to low energy ions (0-60 keV)

    SciTech Connect

    Jimenez-Rey, D.; Rodriguez-Barquero, L.

    2010-10-15

    ZnO:Ga is a promising, high time resolution candidate for use as a fast-ion-loss detector in TJ-II. We compare its ionoluminescence with that of the standard fast-ion-loss detector material, SrGa{sub 2}S{sub 4}:Eu (also known as TG-Green), when irradiated by H{sup +} ions with a range of energies E{<=}60 keV using a dedicated laboratory setup. It is found that ZnO:Ga is a reasonably good candidate for detecting low energy (E<60 keV) ions as it has excellent time resolution; however, its sensitivity is about 100 times lower than TG-Green, potentially limiting it to applications with high energy ion loss signals.

  8. 3.55 keV line in minimal decaying dark matter scenarios

    SciTech Connect

    Arcadi, Giorgio; Covi, Laura; Dradi, Federico

    2015-07-20

    We investigate the possibility of reproducing the recently reported 3.55 keV line in some simple decaying dark matter scenarios. In all cases a keV scale decaying DM is coupled with a scalar field charged under SM gauge interactions and thus capable of pair production at the LHC. We will investigate how the demand of a DM lifetime compatible with the observed signal, combined with the requirement of the correct DM relic density through the freeze-in mechanism, impacts the prospects of observation at the LHC of the decays of the scalar field.

  9. Relative biological effectiveness of 280 keV neutrons for apoptosis in human lymphocytes.

    PubMed

    Ryan, L A; Wilkins, R C; McFarlane, N M; Sung, M M; McNamee, J P; Boreham, D R

    2006-07-01

    The relative biological effectiveness (RBE) of neutrons varies from unity to greater than ten depending upon neutron energy and the biological endpoint measured. In our study, we examined apoptosis in human lymphocytes to assess the RBE of low energy 280 keV neutrons compared to Cs gamma radiation and found the RBE to be approximately one. Similar results have been observed for high energy neutrons using the same endpoint. As apoptosis is a major process that influences the consequences of radiation exposure, our results indicate that biological effect and the corresponding weighting factors for 280 keV neutrons may be lower in some cell types and tissues.

  10. The formation of nanopores in metal materials after irradiation by beams of Ar+ with energy of 30 keV

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.

    2017-01-01

    In this paper are the results of direction observations of nanopores in the subsurface volume of metals materials Pt and Pd(CuAg) using field-ion microscopy (FIM). Radiation of tip specimens was carried out with ions having an energy ∼ 25-30 keV in the fluency range of 1016 ‑ 1018 ions/cm2, the current density lying within 150– 340 µA/cm2. Nanopores have been observed immediately after removal of the first atomic layers from the irradiated surface. It was established that, the threshold for ion-implanted platinum corresponds to fluence F = 1017 ions/cm2. For Pd(CuAg) it was revealed that nanopores have been down to 80 nm deep with current density 340 µA/cm2. Their dimensions and volume fractions were determined. The obtained results can be used for prediction of radiation stability of materials based on fcc metals.

  11. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  12. Imager of low energy neutral atoms (ILENA) - Imaging neutrals from the magnetosphere at energies below 20 keV

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Smith, Mark F.

    1992-01-01

    We describe a new imager suitable for measurements of magnetospheric neutrals with energies from about 100 eV to about 10 keV; an energy range adequate for imaging the plasmasheet neutral atoms out to about 10 R(E). The instrument, an outgrowth of a study of atom-surface collisions in support of satellite drag calculations, separates incident photons from neutral atoms by surface scattering and conversion of the neutrals to ions. Subsequently, the ions formed on the first surface are accelerated through a light rejection section which also disperses the ions according to energy. The dispersed ion beam is then allowed to impact a second surface where a start pulse is generated to obtain ion velocity and energy/charge. The second surface is chosen to give large secondary electron emission without regard to charge state of the particles reflected from it. The data supporting the proposed ILENA design is presented in the first part of the paper.

  13. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  14. Secondary ion yields produced by keV atomic and polyatomic ion impacts on a self-assembled monolayer surface

    PubMed

    Harris; Baker; Van Stipdonk MJ; Crooks; Schweikert

    1999-01-01

    A suite of keV polyatomic or 'cluster' projectiles was used to bombard unoxidized and oxidized self-assembled monolayer surfaces. Negative secondary ion yields, collected at the limit of single ion impacts, were measured and compared for both molecular and fragment ions. In contrast to targets that are orders of magnitude thicker than the penetration range of the primary ions, secondary ion yields from polyatomic projectile impacts on self-assembled monolayers show little to no enhancement when compared with monatomic projectiles at the same velocity. This unusual trend is most likely due to the structural arrangement and bonding characteristics of the monolayer molecules with the Au(111). Copyright 1999 John Wiley & Sons, Ltd.

  15. Echo 2 - Observations at Fort Churchill of a 4-keV peak in low-level electron precipitation

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Hendrickson, R. A.; Winckler, J. R.

    1975-01-01

    The Echo 2 rocket flight launched from Fort Churchill, Manitoba, offered the opportunity to observe high-latitude low-level electron precipitation during quiet magnetic conditions. Although no visual aurora was evident at the time of the flight, an auroral spectrum sharply peaked at a few keV was observed to have intensities from 1 to 2 orders of magnitude lower than peaked spectra typically associated with bright auroral forms. There is a growing body of evidence that relates peaked electron spectra to discrete aurora. The Echo 2 observations show that whatever the mechanism for peaking the electron spectrum in and above discrete forms, it operates over a range of precipitation intensities covering nearly 3 orders of magnitude down to subvisual or near subvisual events.

  16. Electron impact total cross section calculations for CH3SH (methanethiol) from threshold to 5 keV

    NASA Astrophysics Data System (ADS)

    Limbachiya, Chetan; Vinodkumar, Minaxi; Swadia, Mohit; Barot, Avani

    2014-01-01

    We report calculated total elastic cross sections Qel, total ionisation cross sections, Qion, summed total excitation cross sections ∑Qexc and total cross sections QT for CH3SH upon electron impact for energies from ionisation threshold to 5 keV. We have employed Spherical Complex Optical Potential (SCOP) formalism to calculate total elastic cross section Qel, and total inelastic cross section Qinel and used Complex Scattering Potential - the ionisation contribution (CSP-ic) method to extract the ionisation cross sections, Qion, from the calculated Qinel. The calculated total cross sections are examined as functions of incident electron energy and are compared with available data wherever possible and overall good agreement is observed. In this work Qel, Qion, and ∑Qexc are reported for the first time for CH3SH in this energy range.

  17. Solar wind ions accelerated to 40 keV by shock wave disturbances

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.

    1980-02-01

    Observations in the solar wind with the LASL/MPI fast plasma experiment on ISEE 1 and 2 reveal the common presence of ions with energies extending from 100 eV up to at least 40 keV in a broad region, typically 10 million kilometers wide, following interplanetary shocks. Peak differential fluxes up to 5000/sq cm s sr keV at 28 keV are observed either at the shock or within the first 1.5 hours following shock passage. In the solar wind frame the distribution function of these ions is roughly isotropic, peaks near zero velocity, and above 5 keV can adequately be characterized as power law in energy with a spectral index of 2.7. The effective 'temperature' of these ions generally exceeds 100 million K. These suprathermal interplanetary ions are almost certainly solar wind ions which have been accelerated by some mechanism associated with the shock wave disturbance. Present evidence leads the authors to favor stochastic particle acceleration involving electrostatic and/or electromagnetic turbulence in the postshock flow.

  18. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  19. A gas scintillation proportional detector to search for 17 keV neutrinos

    SciTech Connect

    Okx, W.J.C.; Bom, V.R.; Eijk, C.W.E. van; Hollander, R.W. )

    1993-08-01

    Evidence for the existence of a 17 keV neutrino was first reported in 1985. Since then many experiments have been performed with contradicting results. In this paper the authors describe an experiment with a new approach to the problem by the introduction of a Gas Scintillation Proportional Detector.

  20. A study on the microstructural parameters of 550 keV electron irradiated Lexan polymer films

    SciTech Connect

    Hareesh, K.; Pramod, R.; Petwal, V. C.; Dwivedi, Jishnu; Sangappa; Sanjeev, Ganesh

    2012-06-05

    Lexan polymer films irradiated with 550 keV Electron Beam (EB) were characterized using Wide Angle Xray Scattering (WAXS) data to study the microstructural parameters. The crystal imperfection parameters like crystal size , lattice strain (g in %) and enthalpy ({alpha}) have been determined by Line Profile Analysis (LPA) using Fourier method of Warren.

  1. A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2-4 keV

    SciTech Connect

    Imazono, T.; Koike, M.; Koeda, M.; Nagano, T.; Sasai, H.; Oue, Y.; Yonezawa, Z.; Kuramoto, S.; Terauchi, M.; Takahashi, H.; Handa, N.; Murano, T.

    2012-05-17

    A multilayer mirror with a novel layer structure to uniformly enhance the reflectivity in a few keV energy range at a fixed angle of incidence is invented and applied to a multilayer grating for use in a flat-field spectrograph attached to a conventional electron microscope. The diffraction efficiency of the fabricated multilayer grating having the new layer structure is evaluated at the angle of incidence of 88.65 deg. in the energy region of 2.1-4.0 keV. It is shown that the multilayer grating is effective to uniformly enhance the diffraction efficiency and able to be practically used in this energy region.

  2. Detection of 1 - 100 keV x-rays from high intensity, 500 fs laser- produced plasmas using charge-coupled devices

    SciTech Connect

    Dunn, J.; Young, B.K.F.; Conder, A.D.; Stewart, R.E.

    1996-01-01

    We describe a compact, vacuum compatible, large format, charge- coupled device (CCD) camera for scientific imaging and detection of 1- 100 keV x rays in experiments at LLNL JANUS-1ps laser. A standard, front-illuminated, multi-pin phase device with 250 k electron full well capacity, low dark current (10 pA/cm{sup 2} at 20 C) and low read noise (5 electron rms) is cooled to -35 C to give the camera excellent 15-bit dynamic range and signal-to-noise response. Intensity and x-ray energy linear response were determined for optical and x-ray (<65 keV) photons and are in excellent agreement. Departure from linearity was less than 0.7%. Inherent linearity and energy dispersive characteristics of CCD cameras are well suited for hard x-ray photon counting. X-rays absorbed within the depletion and field-free regions can be distinguished by studying the pulse height spectrum. Results are presented for the detection of 1-100 keV Bremsstrahlung continuum, K-shell and L-shell fluorescence spectra emitted from high intensity (10{sup 18}W cm{sup -2}), 500 fs laser- produced plasmas.

  3. High Voltage-Cylinder Sector Analyzer 300/15: A cylindrical sector analyzer for electron kinetic energies up to 15 keV

    NASA Astrophysics Data System (ADS)

    Rubio-Zuazo, J.; Escher, M.; Merkel, M.; Castro, G. R.

    2010-04-01

    We have developed an energy analyzer, High Voltage-Cylinder Sector Analyzer 300/15, for electron kinetic energies up to 15 keV. It is especially suited for hard x-ray photoelectron spectroscopy, but also for ultraviolet and soft x-ray photoelectron spectroscopy (ultraviolet photoemission spectroscopy, x-ray photoemission spectroscopy), Auger electron spectroscopy, and reflection high energy electron spectroscopy. The analyzer is based on a cylinder sector with 90° deflection, 300 mm slit-to-slit distance, and a four-element pre-retarding lens system with 50 mm sample-to-lens distance. The result is a very compact design of the analyzer that is easily integrated into a multipurpose experiment with different techniques. A low noise/low drift electronics is capable of continuous energy scans from 0 to 15 keV using nonlinear lens curves. The first analyzer is allocated at the Spanish CRG SpLine beamline at the ESRF at an end station where simultaneous surface x-ray diffraction is possible. The analyzer is operated routinely since 2006 up to 15 keV electron kinetic energy, expanding the achievable electron kinetic energy range compared to other commercial analyzers. In this work we present a detailed description of the developed electron analyzer. The analyzer capabilities, in terms of energy resolution and transmission, are shown by using an electron gun, an ultraviolet-discharge lamp, and hard x-ray synchrotron radiation as excitation sources.

  4. Elastic and inelastic processes in H{sup +}+C{sub 2}H{sub 6} collisions below the 10-keV regime

    SciTech Connect

    Suzuki, Reiko; Rai, Sachchida N.; Liebermann, Heinz-Peter; Buenker, Robert J.; Pichl, Lukas; Kimura, Mineo

    2005-11-15

    Charge-transfer processes in collisions of H{sup +} ions with C{sub 2}H{sub 6} molecules are investigated theoretically below 10-keV collision energies within a molecular representation. Converged total as well as differential cross sections are obtained in this energy range within a discrete basis of electronic states computed by ab inito methods. The present collision system suggests that the combination of the Demkov-type and Landau-Zener-type mechanisms primarily governs the scattering dynamics for the flux exit from the initial channel. The present charge-transfer cross sections determined are found to agree very well with all available experimental data below a few keV, but begin to deviate above 3 keV, in which the present results slowly decrease, while measurements stay nearly constant. From the study of the electronic state calculation, we provide some information on fragmented species, which should help shed some light on the fragmentation mechanism and process of C{sub 2}H{sub 6}{sup +} ions produced after charge transfer. In addition, the vibrational effect of the initial target to charge transfer is examined.

  5. RBE of nearly monoenergetic neutrons at energies of 36 keV-14.6 MeV for induction of dicentrics in human lymphocytes.

    PubMed

    Schmid, E; Schlegel, D; Guldbakke, S; Kapsch, R-P; Regulla, D

    2003-07-01

    We examined the induction of dicentric chromosomes in human lymphocytes irradiated in vitro with nearly monoenergetic neutrons at energies in the range of 36 keV-15.0 MeV. For the assessment of the relative biological effectiveness (RBE) both 220 kV x-rays and (60)Co gamma-rays were used as reference radiations. To avoid potential confounding factors that would influence the outcome of the experiments, only blood from one individual was used. The neutron RBE culture conditions ensured that the chromosome analysis could be performed exclusively in metaphases of the first cell cycle in vitro. For the reference radiation of 220 kV x-rays, the values of RBE(M) were found to increase from 16.6 (E(n)=36 keV) to the maximum value of 23.4 (E(n)=385 keV). For (60)Co gamma-rays utilized as the reference radiation, the corresponding RBE(M) values were found to be higher by a factor of 4. These results agree well with the previously published large data sets of three laboratories on dose-response relationships for dicentrics or dicentrics plus centric rings. They show a similar dependence of RBE on neutron energy.

  6. Accretion Properties of a Sample of Hard X-Ray (<60 keV) Selected Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2009-02-01

    We examine the accretion properties in a sample of 42 hard (3-60 keV) X-ray selected nearby broad-line active galactic nuclei (AGNs). The energy range in the sample is harder than that usually used in similar previous studies. These AGNs are mainly complied from the RXTE All Sky Survey, and complemented by the released INTEGRAL AGN catalog. The black hole masses, bolometric luminosities of AGN, and Eddington ratios are derived from their optical spectra in terms of the broad Hβ emission line. The tight correlation between the hard X-ray (3-20 keV) and bolometric/line luminosity is well identified in our sample. Also identified is a strong inverse Baldwin relationship of the Hβ emission line. In addition, all of these hard X-ray AGNs are biased toward luminous objects with a high Eddington ratio (mostly between 0.01 and 0.1) and a low column density (<1022 cm-2), which is most likely due to the selection effect of the surveys. The hard X-ray luminosity is consequently found to be strongly correlated with the black hole mass. We believe the sample completeness will be improved in the next few years by the ongoing Swift and the International Gamma-Ray Astrophysics Laboratory missions, and by the next advanced missions, such as NuSTAR, Simbol-X, and NeXT. Finally, the correlation between RFe (= optical Fe II/Hβ) and disk temperature as assessed by T vprop (L/L Edd)M -1 BH leads us to suggest that the strength of the Fe II emission is mainly determined by the shape of the ionizing spectrum.

  7. The effectiveness of monoenergetic neutrons at 565 keV in producing dicentric chromosomes in human lymphocytes at low doses.

    PubMed

    Schmid, E; Regulla, D; Guldbakke, S; Schlegel, D; Bauchinger, M

    2000-09-01

    The induction of dicentric chromosomes in human lymphocytes from one individual irradiated in vitro with monoenergetic neutrons at 565 keV was examined to provide additional data for an improved evaluation of neutrons with respect to radiation risk in radioprotection. The resulting linear dose-response relationship obtained (0.813 +/- 0.052 dicentrics per cell per gray) over the dose range of 0.0213-0.167 Gy is consistent with published results obtained for irradiation with neutrons from different sources and with different spectra at energies lower than 1000 keV. Comparing this value to previously published "average" dose-response curves obtained by different laboratories for (60)Co gamma rays and orthovoltage X rays resulted in maximum RBEs (RBE(m)) of about 37 +/- 8 and 16 +/- 4, respectively. However, when our neutron data were matched to low-LET dose responses that were constructed several years earlier for lymphocytes from the same individual, higher values of RBE(m) resulted: 76.0 +/- 29.5 for (60)Co gamma rays and 54.2 +/- 18.4 for (137)Cs gamma rays; differentially filtered 220 kV X rays produced values of RBE(m) between 20.3 +/- 2.0 or 37.0 +/- 7. 1. The results highlight the dependence of RBE(m) on the choice of low-LET reference radiation and raise the possibility that differential individual response to low-LET radiations may need to be examined more fully in this context.

  8. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  9. High order reflectivity of graphite (HOPG) crystals for x ray energies up to 22 keV

    SciTech Connect

    Doeppner, T; Neumayer, P; Girard, F; Kugland, N L; Landen, O L; Niemann, C; Glenzer, S H

    2008-04-30

    We used Kr K{alpha} (12.6 keV) and Ag K{alpha} (22.1 keV) x-rays, produced by petawatt class laser pulses interacting with a Kr gas jet and a silver foil, to measure the integrated crystal reflectivity of flat Highly Oriented Pyrolytic Graphite (HOPG) up to fifth order. The reflectivity in fourth order is lower by a factor of 50 when compared to first order diffraction. In second order the integrated reflectivity decreases from 1.3 mrad at 12.6 keV to 0.5 mrad at 22.1 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x ray sources (E {ge} 20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.

  10. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    NASA Astrophysics Data System (ADS)

    Pérez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; Villette, B.; Girard, F.; Reverdin, C.; May, M.; Emig, J.; Sorce, C.; Colvin, J.; Gammon, S.; Jaquez, J.; Satcher, J. H.; Fournier, K. B.

    2012-08-01

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm3) and stainless steel foil-lined cavity targets (steel thickness 1-5 μm). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced Te=2 to 3 keV, ne=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced Te˜ 2 keV, ne˜ 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  11. Study on the parameters of the scanning system for the 300 keV electron accelerator

    SciTech Connect

    Leo, K. W.; Chulan, R. M. Hashim, S. A.; Baijan, A. H.; Sabri, R. M.; Mohtar, M.; Glam, H.; Lojius, L.; Zahidee, M.; Azman, A.; Zaid, M.

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters of the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.

  12. Microbeam of 100 keV x ray with a sputtered-sliced Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Kamijo, Nagao; Suzuki, Yoshio; Takano, Hidekazu; Tamura, Shigeharu; Yasumoto, Masato; Takeuchi, Akihisa; Awaji, Mitsuhiro

    2003-12-01

    Microfocusing of 100 keV x ray with a sputtered-sliced Fresnel zone plate (ss-FZP) has been performed at the 250-m-long beamline (20XU) of SPring-8. The ss-FZP with an outermost zone width 0.16 μm which is composed of 70 layers of alternating Cu and Al layers and having thickness ˜180 μm was fabricated and characterized. The minimum focal spot size attained for the first order focal beam was 0.5 μm with a focal distance 900 mm at a photon energy 100 keV. The total flux of the microprobe was ˜2×106 photons s-1 μm-2.

  13. SMM detection of diffuse Galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.

    1988-01-01

    Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.

  14. Tuning of wettability of PANI-GNP composites using keV energy ions

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Avasthi, D. K.

    2016-07-01

    Polyaniline nanofiber composites with various nanomaterials have several applications in electrochemical biosensors. The surface properties of these composites coated electrodes play crucial role in enzyme absorption and analyte detection process. In the present study, Polyaniline-Graphene nanopowder (PANI-GNP) composites were prepared by rapid-mixing polymerization method. The films were prepared on ITO coated glass substrates and irradiated with 42 keV He+ ions produced by indigenously fabricated accelerator at IUAC, New Delhi. The films were characterized before and after irradiation by SEM, Raman spectroscopy and contact angle measurements. The as-prepared films show superhydrophilic nature and after irradiation the films show highly hydrophobic nature with water contact angle (135°). The surface morphology was studied by SEM and structural changes were studied by Raman spectra. The surface morphological modifications induced by keV energy ions helps in tuning the wettability at different ion fluences.

  15. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  16. State-selective electron capture in 30- and 100-keV He++He collisions

    NASA Astrophysics Data System (ADS)

    Guo, D. L.; Ma, X.; Zhang, R. T.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Gao, Y.; Hai, B.; Zhang, M.; Wang, H. B.; Huang, Z. K.

    2017-01-01

    A combined experimental and theoretical study on single capture in 30- and 100-keV He+ on He collisions was performed. By using a reaction microscope, we obtained the state selective cross sections and the angular-differential cross sections. It was found that the experimental state-selective cross sections were in good agreement with the dynamic screening classical trajectory Monte Carlo calculation for 100-keV He+ incident. The comparisons with various versions of such calculations reveal the roles played by different electron-electron correlation effects. Moreover, a prominent oscillatory structure was observed in the angular-differential cross sections for both projectile energies. With the single capture probability distribution obtained from the classical trajectory Monte Carlo calculation, the oscillation structures can be well explained by atomic-size Fraunhofer-type diffraction.

  17. Limits on a variable source of 511 keV annihilation radiation near the Galactic center

    NASA Technical Reports Server (NTRS)

    Share, Gerald H.; Leising, Mark D.; Messina, Daniel C.; Purcell, William R.

    1990-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) has observed a strong Galactic source of 511 keV annihilation radiation from its launch in 1980 to its reentry in 1989. These observations are consistent with an extended source having an intensity of about 0.002 gamma/sq cm/s averaged over the central radian of Galactic longitude. These data are searched for evidence of the variable Galactic center source of 511 keV line radiation which was reported to have reappeared in 1988 by Leventhal et al. The SMM data are consistent with, but do not require, a compact source emitting a time-averaged flux of about 0.0004 gamma/sq cm/s during about 3 month transits in 1987 and 1988; they are inconsistent with a compact source flux in excess of 0.0008 gamma/sq cm/s for each year.

  18. Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akamatsu, H.; Akimoto, F.; Allen, S. W.; Angelini, L.; Arnaud, K. A.; Audard, M.; Awaki, H.; Axelsson, M.; Bamba, A.; Bautz, M. W.; Blandford, R. D.; Bulbul, E.; Brenneman, L. W.; Brown, G. V.; Cackett, E. M.; Chernyakova, M.; Chiao, M. P.; Coppi, P.; Costantini, E.; de Plaa, J.; den Herder, J.-W.; Done, C.; Dotani, T.; Ebisawa, K.; Eckart, M. E.; Enoto, T.; Ezoe, Y.; Fabian, A. C.; Ferrigno, C.; Foster, A. R.; Fujimoto, R.; Fukazawa, Y.; Furuzawa, A.; Galeazzi, M.; Gallo, L. C.; Gandhi, P.; Giustini, M.; Goldwurm, A.; Gu, L.; Guainazzi, M.; Haba, Y.; Hagino, K.; Hamaguchi, K.; Harrus, I.; Hatsukade, I.; Hayashi, K.; Hayashi, T.; Hayashida, K.; Hiraga, J.; Hornschemeier, A. E.; Hoshino, A.; Hughes, J. P.; Ichinohe, Y.; Iizuka, R.; Inoue, H.; Inoue, S.; Inoue, Y.; Ishibashi, K.; Ishida, M.; Ishikawa, K.; Ishisaki, Y.; Itoh, M.; Iwai, M.; Iyomoto, N.; Kaastra, J. S.; Kallman, T.; Kamae, T.; Kara, E.; Kataoka, J.; Katsuda, S.; Katsuta, J.; Kawaharada, M.; Kawai, N.; Kelley, R. L.; Khangulyan, D.; Kilbourne, C. A.; King, A. L.; Kitaguchi, T.; Kitamoto, S.; Kitayama, T.; Kohmura, T.; Kokubun, M.; Koyama, S.; Koyama, K.; Kretschmar, P.; Krimm, H. A.; Kubota, A.; Kunieda, H.; Laurent, P.; Lebrun, F.; Lee, S.-H.; Leutenegger, M. A.; Limousin, O.; Loewenstein, M.; Long, K. S.; Lumb, D. H.; Madejski, G. M.; Maeda, Y.; Maier, D.; Makishima, K.; Markevitch, M.; Matsumoto, H.; Matsushita, K.; McCammon, D.; McNamara, B. R.; Mehdipour, M.; Miller, E. D.; Miller, J. M.; Mineshige, S.; Mitsuda, K.; Mitsuishi, I.; Miyazawa, T.; Mizuno, T.; Mori, H.; Mori, K.; Moseley, H.; Mukai, K.; Murakami, H.; Murakami, T.; Mushotzky, R. F.; Nakagawa, T.; Nakajima, H.; Nakamori, T.; Nakano, T.; Nakashima, S.; Nakazawa, K.; Nobukawa, K.; Nobukawa, M.; Noda, H.; Nomachi, M.; O’ Dell, S. L.; Odaka, H.; Ohashi, T.; Ohno, M.; Okajima, T.; Ota, N.; Ozaki, M.; Paerels, F.; Paltani, S.; Parmar, A.; Petre, R.; Pinto, C.; Pohl, M.; Porter, F. S.; Pottschmidt, K.; Ramsey, B. D.; Reynolds, C. S.; Russell, H. R.; Safi-Harb, S.; Saito, S.; Sakai, K.; Sameshima, H.; Sasaki, T.; Sato, G.; Sato, K.; Sato, R.; Sawada, M.; Schartel, N.; Serlemitsos, P. J.; Seta, H.; Shidatsu, M.; Simionescu, A.; Smith, R. K.; Soong, Y.; Stawarz, Ł.; Sugawara, Y.; Sugita, S.; Szymkowiak, A. E.; Tajima, H.; Takahashi, H.; Takahashi, T.; Takeda, S.; Takei, Y.; Tamagawa, T.; Tamura, K.; Tamura, T.; Tanaka, T.; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, M.; Tawara, Y.; Terada, Y.; Terashima, Y.; Tombesi, F.; Tomida, H.; Tsuboi, Y.; Tsujimoto, M.; Tsunemi, H.; Tsuru, T.; Uchida, H.; Uchiyama, H.; Uchiyama, Y.; Ueda, S.; Ueda, Y.; Ueno, S.; Uno, S.; Urry, C. M.; Ursino, E.; de Vries, C. P.; Watanabe, S.; Werner, N.; Wik, D. R.; Wilkins, D. R.; Williams, B. J.; Yamada, S.; Yamaguchi, H.; Yamaoka, K.; Yamasaki, N. Y.; Yamauchi, M.; Yamauchi, S.; Yaqoob, T.; Yatsu, Y.; Yonetoku, D.; Yoshida, A.; Zhuravleva, I.; Zoghbi, A.; Hitomi Collaboration

    2017-03-01

    High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E≈ 3.5 {keV} emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of S xvi (E≃ 3.44 {keV} rest-frame)—a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.

  19. The 511 keV emission from positron annihilation in the Galaxy

    SciTech Connect

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  20. Origin of the Galactic Disk 6.7 kev Line Emission

    NASA Technical Reports Server (NTRS)

    Churchwell, Ed

    1997-01-01

    The goal of this program was to determine if the extended FeXXV 6.7 kev line emission might possibly be produced and confined by the hot wind-shocked bubbles to accompany UC HII regions. The main result of this study are: (1) FeXXV is detected in the W3 complex, but at a level that could only explain a small fraction of the galactic disk emission if all UC HII regions emit at about the same intensity as the W3 complex; (2) Two X-ray sources are detected in W3. W3-X 1 coincides with the radio image of this region, but W3-X2 has no radio, optical, or infrared counterpart; (3) There is no evidence for variability of W3-X1 during the period of observations (approx, 40,000 sec); (4) The X-ray spectrum of W3-X1 has no emission shortward of 1 kev, it peaks at approx. 2 kev and show significant emission out to approx. 6 kev. No individual lines are resolved. There is currently no generally accepted theory for extended hard X-ray emission in HII regions. Perhaps the most significant discovery of this program has been the detection of extended hard X-rays and the realization that some entirely new processes must be invoked to understand this; and (5)A minimum (chi)(sup 2) fit of the spectrum implies a H absorbing column of N(sub H) approx, equals to 2.1 x 10(exp 22)/ cm, a temperature of the emitting plasma of 7 x 10(exp 7) K, and a luminosity of approx. equal to 10(33)erg/s.

  1. Relative detection efficiency of back- and front-illuminated charge-coupled device cameras for X-rays between 1 keV and 18 keV.

    PubMed

    Szlachetko, J; Dousse, J-Cl; Hoszowska, J; Berset, M; Cao, W; Szlachetko, M; Kavcic, M

    2007-09-01

    High-resolution x-ray measurements were performed with a von Hamos-type bent crystal spectrometer using for the detection of the diffracted photons either a back-illuminated charge-coupled device (CCD) camera or a front-illuminated one. For each CCD the main x-ray emission lines (e.g., Kalpha, Kbeta, Lalpha, and Lbeta) of a variety of elements were measured in order to probe the performances of the two detectors between 1 and 18 keV. From the observed x-ray lines the linearity of the energy response, the noise level, the energy resolution, and the quantum efficiency ratio of the two CCDs were determined.

  2. Testing the Axion-Conversion Hypothesis of 3.5 keV Emission with Polarization

    NASA Astrophysics Data System (ADS)

    Gong, Yan; Chen, Xuelei; Feng, Hua

    2017-02-01

    The recently measured 3.5 keV line in a number of galaxy clusters, the Andromeda galaxy (M31), and the Milky Way (MW) center can be well accounted for by a scenario in which dark matter decays to axionlike particles (ALPs) and subsequently convert to 3.5 keV photons in magnetic fields of galaxy clusters or galaxies. We propose to test this hypothesis by performing x-ray polarization measurements. Since ALPs can only couple to photons with a polarization orientation parallel to the magnetic field, we can confirm or reject this model by measuring the polarization of the 3.5 keV line and compare it to the orientation of the magnetic field. We discuss luminosity and polarization measurements for both a galaxy cluster and spiral galaxy, and provide a general relation between the polarization and galaxy inclination angle. This effect is marginally detectable with x-ray polarimetry detectors currently under development, such as the enhanced X-ray Timing and Polarization satellite, the Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer. The sensitivity can be further improved in the future with detectors of a larger effective area or better energy resolutions.

  3. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  4. X-ray backlighting sources of 4 to 10 keV for laser-fusion targets

    SciTech Connect

    Rupert, V.C.; Matthews, D.L.; Koppel, L.N.

    1981-05-12

    High-intensity, short-duration x-ray pulses are necessary to diagnose the compression of laser film targets. Present target designs are such that backlighting sources ranging from a few thousand electron volts to 100 keV will be necessary. The desired source durations range from a few tens of picoseconds for flash radiography to several nanoseconds for streaked backlighting, and the source occurrence must be tightly synchronized to that of the target-irradiating laser pulse. For the latter reason, a laser-induced x-ray pulse is preferred. An initial study of the K lines of Ti, Ni, and Zn as possible backlighting sources was conducted. The conversion efficiency of laser light into line radiation was obtained as a function of laser intensity, pulse length, and wavelength. A threshold laser intensity for x-ray line production was identified. Information was obtained on the size and duration of the x-ray emission source, in relation to laser parameters. The experimental results, and their impact on backlighting capability for high-density laser function targets, are discussed.

  5. Determination of energy loss of 1200 keV deuterons along axial and planar channels of Si

    NASA Astrophysics Data System (ADS)

    Shafiei, S.; Lamehi-Rachti, M.

    2015-02-01

    In this paper, the energy loss of 1200 keV deuterons along the <1 0 0> and <1 1 0> axes as well as the {1 0 0} and {1 1 0} planes of Si were determined by the simulation of the channeling Rutherford backscattering spectra. The simulation was done by taking two considerations into account: (i) a minimum random component of the beam which enters the sample because of the scattering ions from the surface, (ii) the dechanneling starts at greater penetration depths, xDech. Moreover, it was assumed that the dechanneling follows a Gompertz type sigmoidal function with two parameters k and xc which present the dechanneling rate and range, respectively. The best simulation parameters, penetration depth at which the dechanneling starts, energy loss and dechanneling rate and range, were chosen by using the Levenberg-Marquardt algorithm. The experimental results are well reproduced by this simulation. The ratio of channeling energy loss to the random is changed from 0.63 ± 0.02 along the <1 1 0> axial channel to the 0.91 ± 0.02 along the {1 0 0} planar direction. The differences in the energy loss and the dechanneling process along the axial and planar channels are attributed to the potential barrier and the fractional area of each channel blocked by atoms. The ratio of channeling to random energy loss of deuterons along the <1 0 0> axial direction is in agreement with another reference.

  6. 63Cu(n ,γ ) cross section measured via 25 keV activation and time of flight

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Beinrucker, C.; Couture, A.; Fiebiger, S.; Fonseca, M.; Göbel, K.; Heftrich, M.; Heftrich, T.; Jandel, M.; Käppeler, F.; Krása, A.; Lederer, C.; Lee, H. Y.; Plag, R.; Plompen, A.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Ullmann, J. L.

    2017-01-01

    In the nuclear mass range A ≈60 to 90 of the solar abundance distribution the weak s -process component is the dominant contributor. In this scenario, which is related to massive stars, the overall neutron exposure is not sufficient for the s process to reach mass flow equilibrium. Hence, abundances and isotopic ratios are very sensitive to the neutron capture cross sections of single isotopes, and nucleosynthesis models need accurate experimental data. In this work we report on a new measurement of the 63Cu(n ,γ ) cross section for which the existing experimental data show large discrepancies. The 63Cu(n ,γ ) cross section at kBT =25 keV was determined via activation with a quasistellar neutron spectrum at the Joint Research Centre (JRC) in Geel, and the energy dependence was determined with the time-of-flight technique and the calorimetric 4 π BaF2 detector array DANCE at the Los Alamos National Laboratory. We provide new cross section data for the whole astrophysically relevant energy range.

  7. THE 0.3–30 keV SPECTRA OF POWERFUL STARBURST GALAXIES: NuSTAR AND CHANDRA OBSERVATIONS OF NGC 3256 AND NGC 3310

    SciTech Connect

    Lehmer, B. D.; Wik, D. R.; Yukita, M.; Tyler, J. B.; Hornschemeier, A. E.; Ptak, A.; Zhang, W. W.; Antoniou, V.; Zezas, A.; Boggs, S.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Stern, D.

    2015-06-10

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3–30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1–3 keV emission while ultraluminous X-ray sources (ULXs) provide majority contributions to the emission at E > 1–3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Γ ≈ 2.6 at E > 5–7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGNs (L{sub 2−10} {sub keV}/L{sub Edd} ≲ 10{sup −5}) or non-AGNs in nature (e.g., ULXs or crowded X-ray sources that reach L{sub 2−10} {sub keV} ∼ 10{sup 40} erg s{sup −1} cannot be ruled out). Combining our constraints on the 0.3–30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3–6 keV primarily due to ULX populations. Our observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that

  8. 20-150-keV proton-impact-induced ionization of uracil: Fragmentation ratios and branching ratios for electron capture and direct ionization

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-01-15

    Fragmentation ratios and branching ratios are measured for ionization and dissociative ionization for 20-150 keV (0.9-2.4v{sub 0}) proton collisions with gas-phase uracil molecules. Through event-by-event determination of the postcollision projectile charge, it is possible for such a key biomolecule to distinguish between electron capture (EC) by the incident proton and direct ionization (DI) without projectile neutralization. While the same fragment ion groups are observed in the mass spectra for both processes, EC induces dissociation with greater efficiency than DI in the impact energy range of 35-150 keV (1.2-2.4v{sub 0}). In this range EC is also less abundant than DI with a branching ratio for EC/total ionization of <50%. Moreover, whereas fragmentation ratios do not change with energy in the case of EC, DI mass spectra show a tendency for increased fragmentation at lower impact energies.

  9. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser"

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  10. The 2-10 keV X-Ray Background Dipole and Its Cosmological Implications

    NASA Astrophysics Data System (ADS)

    Scharf, C. A.; Jahoda, K.; Treyer, M.; Lahav, O.; Boldt, E.; Piran, T.

    2000-11-01

    The hard X-ray (>2 keV) emission of the local and distant universe as observed with the HEAO 1 A-2 experiment is reconsidered in the context of large-scale cosmic structure. Using all-sky X-ray samples of active galactic nuclei (AGNs) and galaxy clusters, we remove the dominant local X-ray flux from within a redshift of ~0.02. We evaluate the dipolar and higher order harmonic structure in four X-ray colors. The estimated dipole anisotropy of the unresolved flux appears to be consistent with a combination of the Compton-Getting effect due to the Local Group motion (dipole amplitude Δ=0.0042) and remaining large-scale structure (0.0023<~Δ<~0.0085), in good agreement with the expectations of cold dark matter models. The observed anisotropy does, however, also suggest a nonnegligible Galactic contribution that is more complex than current, simple models of >2 keV Galactic X-ray emission. Comparison of the soft and hard color maps with a harmonic analysis of the 1.5 keV ROSAT all-sky data qualitatively suggests that at least a third of the faint, unresolved ~18° scale structure in the HEAO 1 A-2 data may be Galactic in origin. However, the effect on measured flux dipoles is small (<~3%). We derive an expression for dipole anisotropy and acceleration and demonstrate how the dipole anisotropy of the distant X-ray frame can constrain the amplitude of bulk motions of the universe. From observed bulk motions over a local ~50 h-1 Mpc radius volume, we determine 0.14<~Ω0.60/bX(0)<~0.59, where Ω0 is the universal density parameter and bX(0) is the present-epoch bias parameter, defined as the ratio of fluctuations in the X-ray source density and the mass density.

  11. Decline of the 2-10 keV Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Liburd, Jamar; Corcoran, Michael F.; Hamaguchi, Kenji; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using processed data from the X-ray Telescope on Swift reveals a peak flux on July 16, 2014 of 0.046 photons s(exp -1) cm(exp -2) (3.37+/-0.15×10(exp -10) ergs s(exp -1) cm(exp -2). This flux is similar to the previous maximum flux seen by the XRT, 3.53+/-0.13×10(exp -10) ergs s(exp -1) cm(exp -2) (0.049 photons s(exp -1) cm(exp -2), ATEL #6298). Since this peak on July 16, the most recent Swift XRT quicklook data show a drop in flux. On July 20, 2014 the XRT flux as seen in the quicklook data was 0.011 photons s(exp -1) cm(exp -2) (8.3+/-0.5×10(exp -11) ergs s(exp -1) cm(exp -2)). This most likely indicates that the 2-10 keV flux is in its declining phase as Eta Car approaches its deep X-ray minimum stage (Hamaguchi et al., 2014, ApJ, 784, 125) associated with periastron passage of the 2024-day binary orbit. The column density derived from analysis of the July 20 XRT quicklook data is 7.2×10(exp 22) cm(exp -2). This is consistent with the column density seen near the same orbital phase in 2003 (7.7×10(exp 22) cm(exp -2), Hamaguchi et al., 2007, ApJ, 663, 522). Eta Car's deep X-ray minimum phase is expected to begin on July 30, 2014. Weekly Swift/XRT observations of Eta Car in the 2-10 keV band are planned throughout the X-ray minimum.

  12. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  13. Kinetic energy releases of small amino acids upon interaction with keV ions

    NASA Astrophysics Data System (ADS)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlathölter, T.

    2009-01-01

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV α-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies.

  14. Inelastic scattering of 45-keV neutrons by {sup 187}Os

    SciTech Connect

    Litvinskii, L.L.; Zhigalov, Ya.A.; Libman, V.A.; Murzin, A.V.; Shkarupa, A.M.

    1995-02-01

    The cross sections of elastic and inelastic scattering of 45-keV neutrons by {sup 187}Os are measured by the technique of filtered neutron beams at the Kiev VVR-M reactor and are found to be {sigma}{sub e1} = 11.90 {+-} 0.50 b and {sigma}{sub inel} = 1.51 {+-} 0.45 b, respectively. These results confirm the existence of a nonstatistical enhancement of the inelastic-scattering channel due to a noticeable contribution of a preequilibrium state involving two particles and a hole. 8 refs., 1 fig.

  15. A 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Senjanovic, G.; Tao, Zhijian; Berezhiani, Z. G.

    1992-08-01

    Zee-type models with Majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, a particularly simple solution is found to the solar neutrino problem, which besides nu(sub 17) predicts a light Zeldovich-Konopinski-Mahmoud neutrino nu(sub light) = nu(sub e) + nu(sub mu)(sup c) with a magnetic moment being easily as large as 10(exp -11)(mu)(sub B) through the Barr-Freire-Zee mechanism.

  16. 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-01-01

    Zee-type models with majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, we find a particularly simple solution to the solar neutrino problem, which besides ν17 predicts a light Zeldovich-Konopinski-Mahmoud neutrino νlight = νe + νcμ with a magnetic moment being easily as large as 10 -11μB through the Barr-Freire-Zee mechanism.

  17. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; Winkler, Christoph

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  18. On the vectorial photoelectric effect at 2.69 keV

    NASA Technical Reports Server (NTRS)

    Shaw, P. S.; Hanany, S.; Liu, Y.; Church, E. D.; Fleischman, J.; Kaaret, P.; Novick, R.; Santangelo, A.

    1991-01-01

    Recent experiments conducted to study the vectorial photoelectric effect with CsI, Al2O3 and Si photocathodes at 2.69 keV indicate null results. Detailed analysis shows that previously measured modulation can be well explained by geometrical misalignment and a combination of the asymmetric shape of the incident X-ray beam and a small detection area of the photoelectron detector. After the elimination of the sources of spurious modulation, we observed a modulation factor of less than 3 percent for a grazing incidence angle as small as 5 deg. There is no observable difference in the pulse height distribution between s and p states.

  19. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  20. 3.55 keV line in minimal decaying dark matter scenarios

    SciTech Connect

    Arcadi, Giorgio; Covi, Laura; Dradi, Federico E-mail: Laura.Covi@theorie.physik.uni-goettingen.de

    2015-07-01

    We investigate the possibility of reproducing the recently reported 3.55 keV line in some simple decaying dark matter scenarios. In all cases a keV scale decaying DM is coupled with a scalar field charged under SM gauge interactions and thus capable of pair production at the LHC. We will investigate how the demand of a DM lifetime compatible with the observed signal, combined with the requirement of the correct DM relic density through the freeze-in mechanism, impacts the prospects of observation at the LHC of the decays of the scalar field.

  1. Calibration of the 67 keV mössbauer resonance of73Ge

    NASA Astrophysics Data System (ADS)

    Svane, A.; Antoncik, E.

    1986-06-01

    Using the first-principles scalar-relativistic LMTO method, we have calculated the electronic structure of crystalline Ge and rutile-structured GeO2. By comparing the calculated electron contact densities with experimental isomer shifts of the 67 keV transition of73Ge in these materials, we obtain a value for the relative change in the nuclear radius of Δ R/R=(7.4±0.7)×10-4. The results of the present work are compared with previous attempts to calibrate this isomeric transition.

  2. Ionization and Fragmentation of 5-Chlorouracil induced by 100 keV protons collisions

    SciTech Connect

    Cafarelli, Pierre; Champeaux, Jean-Philippe; Le Padellec, Arnaud; Moretto-Capelle, Patrick; Rabier, Julien; Sence, Martine; Carcabal, Pierre

    2008-12-08

    We present preliminary experimental results on the dissociation of singly and doubly ionized 5-Chlorouracil induced by collisions with proton of 100 keV energy. Multiple coincidence techniques are used to detect the ionic fragments from single dissociation events. This enables a thorough analysis of kinetic momentums of the charged and neutral species involved in the dissociation. In many cases, this leads to the establishment of the scenario the molecule undergoes after ionization as well as the determination of the nature of intermediate (undetected) species. In other cases, the dissociation scenario cannot be unambiguously identified and further analysis as well as theoretical support is needed.

  3. Study of surface activation of PET by low energy (keV) Ni + and N + ion implantation

    NASA Astrophysics Data System (ADS)

    Nathawat, Rashi; Kumar, Anil; Kulshrestha, V.; Vijay, Y. K.; Kobayashi, T.; Kanjilal, D.

    2008-11-01

    Polyethyleneterephthalate (PET) has been modified by 100 keV Ni + and N + ions using metal ion from volatile compound (MIVOC) ion source to fluence ranging from 1 × 10 14 to 1 × 10 16 ions/cm 2. The increasing application of polymeric material in technological and scientific field has motivated the use of surface treatment to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionization radiation, it suffers damage leading to surface activation depending on the type. The surface morphology was observed by atomic force microscopy (AFM). That show the roughness increases with fluence in both the cases. The Ni particles as precipitation in PET were observed by cross-section transmission electron microscopy (XTEM). The optical band gap ( Eg) deduced from absorption spectra; was calculated by Tau'c relation. Raman spectroscopy shows quantitatively the chemical nature at the damage caused by the Ni + and N + bombardment. The ration of ID/ IG shows graphite-like structure is formed on the surface. A layer of hydrogenated amorphous carbon is formed on the surface, which has confirmed by XPS results also.

  4. New XAFS spectroscopic investigations in the 1-2 keV region. Final report on LDRD program

    SciTech Connect

    Wong, J.; Froba, M.; Tamura, E.

    1996-03-01

    Until recently x-ray absorption fine structure (XAFS) measurements in the 1-2 keV region remained a challenging experimental task. This was primarily due to the lack of an adequate monochromator crystal that possessed both the required x-ray properties (large d-spacing, high resolution and reflectivity) and materials properties (ultra-high vacuum (UHV) capability, damage resistance in a synchrotron radiation beam, absence of constituent element absorption edges and stability, both thermal and mechanical). Traditionally, XAFS spectra in this photon energy range have been measured in a piece-wise fashion using a combination of monochromator crystals. Very recently, we have an experimental breakthrough in XAFS spectroscopy in this soft x-ray region. This energy region is of great importance for materials and basic research since the K-edges of Na (1070 eV), Mg (1303 eV), Al (1557 eV) and Si (1839 eV), the L-edges of some 4p elements from Ga to Sr and the M-edges of the rare-earth elements fall within this energy window of the electromagnetic spectrum. YB{sub 66}, a complex binary semiconducting yttrium boride having a cubic crystal structure with a lattice constant of 23.44 {angstrom} has been singled out as a candidate monochromator material for synchrotron radiation in the 1-2 keV region. There is no intrinsic absorption by the constituent elements in this region, which can adequately be dispersed by the (400) reflection having a 2d value of 11.76 {angstrom}. In terms of vacuum compatibility, resistance to radiation damage, thermal and mechanical stability, YB{sub 66} satisfies all the material requirements for use as a monochromator in a synchrotron beam. In the past few years, LLNL in collaboration with a number of other research institutes has pioneered the development of this unique man-made crystal for use as soft x-ray monochromator with synchrotron light sources for materials science studies. 23 refs., 4 figs.

  5. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    SciTech Connect

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-10-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors.

  6. Measurement of the -3keV Resonance in the Reaction C13(α,n)O16 of Importance in the s-Process

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2012-12-01

    The C13(α,n)O16 reaction is the neutron source for the main component of the s-process, responsible for the production of most nuclei in the mass range 90≲A≲204. It is active inside the helium-burning shell in asymptotic giant branch stars, at temperatures ≲108K, corresponding to an energy interval where the C13(α,n)O16 is effective from 140 to 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3keV subthreshold resonance due to the 6.356 MeV level in O17, giving rise to a steep increase of the S(E)-factor. Notwithstanding that it plays a crucial role in astrophysics, no direct measurements exist inside the s-process energy window. The magnitude of its contribution is still controversial as extrapolations, e.g., through the R matrix and indirect techniques, such as the asymptotic normalization coefficient (ANC), yield inconsistent results. The discrepancy amounts to a factor of 3 or more right at astrophysical energies. Therefore, we have applied the Trojan horse method to the C13(Li6,nO16)d quasifree reaction to achieve an experimental estimate of such contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the Trojan horse method as well as the n-partial width, allowing to attain an unprecedented accuracy in the C13(α,n)O16 study. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E)-factor agrees with the most recent extrapolation in the literature in the 140-230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach.

  7. Dose dependence of surface damage profiles for Ge(111) irradiated with 3 keV Ar +

    NASA Astrophysics Data System (ADS)

    Kido, Yoshiaki; Nakano, Hirohiko

    1990-12-01

    The damage profiles of 3 keV Ar + -irradiated Ge(111) were measured by medium energy ion scattering (MEIS) with 220 keV H + beams. A depth resolution of 0.5 nm has been achieved using an electrostatic toroidal analyzer. With doses over 1 × 10 14Ar+/ cm2 at room temperature, an amorphous layer is formed and the amorphous layer thickness is saturated by a dose of 1 × 10 15Ar+/ cm2. The saturated amorphous layer thickness of 12-13 nm obtained is in good agreement with that observed by a cross section transmission electron microscope. The dose dependence of the induced defects derived from MEIS is consistent with that determined by electron channeling pattern analysis. The amorphized damage profiles determined directly by MEIS agree well with those obtained by solving the rate equation using the unsaturated initial defect profile for a dose of 2 × 10 13Ar+/ cm2 and assuming a sputtering rate of 2.4-3.0.

  8. Full characterization of a laser-produced keV x-ray betatron source

    NASA Astrophysics Data System (ADS)

    Albert, F.; Phuoc, K. Ta; Shah, R.; Corde, S.; Fitour, R.; Tafzi, A.; Burgy, F.; Douillet, D.; Lefrou, T.; Rousse, A.

    2008-12-01

    This paper presents the complete characterization of a kilo-electron-volt laser-based x-ray source. The main parameters of the electron motion (amplitude of oscillations and initial energy) in the laser wakefield have been investigated using three independent methods relying on spectral and spatial properties of this betatron x-ray source. First we will show studies on the spectral correlation between electrons and x-rays that is analyzed using a numerical code to calculate the expected photon spectra from the experimentally measured electron spectra. High-resolution x-ray spectrometers have been used to characterize the x-ray spectra within 0.8-3 keV and to show that the betatron oscillations lie within 1 µm. Then we observed Fresnel edge diffraction of the x-ray beam. The observed diffraction at the center energy of 4 keV agrees with the Gaussian incoherent source profile of full width half maximum <5 µm, meaning that the amplitude of the betatron oscillations is less than 2.5 µm. Finally, by measuring the far field spatial profile of the radiation, we have been able to characterize the electron's trajectories inside the plasma accelerator structure with a resolution better than 0.5 µm.

  9. Improving accuracy and reliability of 186-keV measurements for unattended enrichment monitoring

    SciTech Connect

    Ianakiev, Kiril D; Boyer, Brian D; Swinhoe, Martyn T; Moss, Calvin E; Goda, Joetta M; Favalli, Andrea; Lombardi, Marcie; Paffett, Mark T; Hill, Thomas R; MacArthur, Duncan W; Smith, Morag K

    2010-04-13

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants (GCEPs), whilst reducing the inspection effort, is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One aspect of this measurement is a simple, reliable and precise passive measurement of the 186-keV line from {sup 235}U. (The other information required is the amount of gas in the pipe. This can be obtained by transmission measurements or pressure measurements). In this paper we describe our research efforts towards such a passive measurement system. The system includes redundant measurements of the 186-keV line from the gas and separately from the wall deposits. The design also includes measures to reduce the effect of the potentially important background. Such an approach would practically eliminate false alarms and can maintain the operation of the system even with a hardware malfunction in one of the channels. The work involves Monte Carlo modeling and the construction of a proof-of-principle prototype. We will carry out experimental tests with UF{sub 6} gas in pipes with and without deposits in order to demonstrate the deposit correction.

  10. 3.55 keV line from exciting dark matter without a hidden sector

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; DiFranzo, Anthony; Hooper, Dan

    2015-04-01

    Models in which dark matter particles can scatter into a slightly heavier state which promptly decays to the lighter state and a photon (known as eXciting Dark Matter, or XDM) have been shown to be capable of generating the 3.55 keV line observed from galaxy clusters, while suppressing the flux of such a line from smaller halos, including dwarf galaxies. In most of the XDM models discussed in the literature, this up-scattering is mediated by a new light particle, and dark matter annihilations proceed into pairs of this same light state. In these models, the dark matter and the mediator effectively reside within a hidden sector, without sizable couplings to the Standard Model. In this paper, we explore a model of XDM that does not include a hidden sector. Instead, the dark matter both up-scatters and annihilates through the near resonant exchange of an O (1 02) GeV pseudoscalar with large Yukawa couplings to the dark matter and smaller, but non-neglibile, couplings to Standard Model fermions. The dark matter and the mediator are each mixtures of Standard Model singlets and S U (2 )W doublets. We identify parameter space in which this model can simultaneously generate the 3.55 keV line and the gamma-ray excess observed from the Galactic center, without conflicting with constraints from colliders, direct detection experiments, or observations of dwarf galaxies.

  11. Feasibility study for DEXA using synchrotron CT at 20-35 keV

    NASA Astrophysics Data System (ADS)

    Midgley, S. M.

    2013-02-01

    A nonlinear model for the x-ray linear attenuation coefficient μ is employed for dual energy x-ray analysis (DEXA). Nonlinear simultaneous equations formed by μ and energy dependent model parameters are solved for the electron density Ne and fourth compositional ratio R4 which has the same ‘units’ as the atomic number. Computed tomography data was acquired at 20-35 keV using bending magnet synchrotron radiation, a double crystal monochromator, a rotation stage and an area detector. Test objects contained liquid samples as mixtures of ethanol, water and salt solutions with known density and composition. Various noise sources are identified and give μ uncertainties of 1-2%. A fan beam geometry allowed the detection of forward scattered radiation with measured μ being 6% lower than expectations for a narrow beam. Energy dependent model parameters were obtained by solving linear simultaneous equations formed by μ and material parameters based upon Ne and R4. DEXA accuracy was studied as a function of photon energy and sample composition. Propagation of errors analysis identifies the importance of the fractional compositional cross-products whose difference at the two beam energies should exceed 0.1, requiring 10 keV or more separation. For a reasonable approximation for the adjustable model parameters, the mean difference between the DEXA solution and true values (ΔNe, ΔR4) are (1.0%, 0.5%) for soft tissue and (1.5%, 0.8%) for bone like samples.

  12. The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS

    SciTech Connect

    Hartse, H.E.

    1997-11-01

    Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{sub n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.

  13. Application of keV and MeV ion microbeams through tapered glass capillaries

    NASA Astrophysics Data System (ADS)

    Ikeda, T.; Kojima, T. M.; Kobayashi, T.; Meissl, W.; Mäckel, V.; Kanai, Y.; Yamazaki, Y.

    2012-11-01

    We have developed a method to produce micrometer-sized beams of keV energy highly charged ions (HCIs) and MeV energy protons/helium ions with tapered glass capillary optics for the applications of micrometer sized surface modifications and a biological tool, respectively. The transmission experiments of keV HCIs through the glass capillaries show a density enhancement of about 10, beam guiding up to 5°, and the extracted beam keeping the initial charge-state. The combination of MeV ion beams and the capillary with a thin end window at its outlet was used for the irradiation of a part of nucleus of a HeLa cell in culture solution. Escherichia coli cells are irradiated by MeV proton microbeam to determine the minimum dose to stop the single flagellar motor. Scanning irradiation of polymer surface by the beam extracted from the capillary in solution containing acrylic acid was found to provide a deposition layer with large affinity with water.

  14. ART: Surveying the Local Universe at 2-11 keV

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Ramsey, B. D.; Adams, M. L.; Areviev, V.; Brandt, W. N.; Buntov, M.; Elsner, R. F.; Grigorovich, S.; Gubarev, M. V.; Hasinger, G.; Lapshov, I.; Litvin, D.; Meidinger, N.; Pavlinsky, M.; Predehl, P.; Revnivtsev, M.; Romaine, S. E.; Sazonov, S.; Semena, N.; Swartz, D. A.; Tkachenko, A.; Urry, C. M.; Vikhlinin, A.; Weisskopf, M. C.

    2008-03-01

    The Astronomical Röntgen Telescope (ART) is a medium-energy x-ray telescope system proposed for the Russian-led mission Spectrum Röntgen-Gamma (SRG). Optimized for performance over the 2-11-keV band, ART complements the softer response of the SRG prime instrument - the German eROSITA x-ray telescope system. The anticipated number of ART detections is 50,000 - with about 1,000 heavily-obscured (NH > 3×1023 cm-2) active galactic nuclei (AGN) - in the SRG 4-year all-sky survey, plus a comparable number in deeper wide-field (500 deg2 total) surveys. ART's surveys will provide a minimally-biased, nearly-complete census of the local Universe in the medium-energy x-ray band (including Fe-K lines), at CCD spectral resolution. During long (�-ks) pointed observations, ART can obtain statistically significant spectral data up to about 15 keV for bright sources and medium-energy x-ray continuum and Fe-K-line spectra of AGN detected with the contemporaneous NuSTAR hard-x-ray mission.

  15. Measurement of the 10B(p ,α0)7Be cross section from 5 keV to 1.5 MeV in a single experiment using the Trojan horse method

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; Puglia, S. M. R.; La Cognata, M.; Lamia, L.; Cherubini, S.; Cvetinović, A.; D'Agata, G.; Gulino, M.; Guardo, G. L.; Indelicato, I.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.; Tudisco, S.; Tumino, A.; Del Santo, M. Gimenez; Carlin, N.; Munhoz, M. G.; Souza, F. A.; de Toledo, A. Szanto; Mukhamedzhanov, A.; Broggini, C.; Caciolli, A.; Depalo, R.; Menegazzo, R.; Rigato, V.; Lombardo, I.; Dell'Aquila, D.

    2017-03-01

    For the first time the astrophysical factor of the 10B(p ,α0)7Be reaction has been measured over a wide energy range, from 5 keV to 1.5 MeV, via the Trojan horse method (THM) applied to the quasifree 2H(10B,α 7Be)n reaction. Therefore, the S (E ) factor has been recast into absolute units by scaling in the energy range 200 keV-1.2 MeV to a recent measurement using the activation method, leading to a normalization uncertainty of 4 % . An R -matrix fit of the THM data was performed, to parametrize the S factor, obtain spectroscopic information on the populated resonances, and compare with other recent experiments. Finally, a new determination of the screening potential Ue has been obtained, Ue=240 ±50 eV, with a much smaller error than our previous measurement.

  16. Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays

    SciTech Connect

    Kyrala, George A.

    2006-05-15

    Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4 keV range and the iron spectrum in the 5-8.5 keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

  17. Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays

    NASA Astrophysics Data System (ADS)

    Kyrala, George A.

    2006-05-01

    Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4keV range and the iron spectrum in the 5-8.5keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

  18. Monte Carlo study of correction factors for Spencer-Attix cavity theory at photon energies at or above 100 keV.

    PubMed

    Borg, J; Kawrakow, I; Rogers, D W; Seuntjens, J P

    2000-08-01

    To develop a primary standard for 192Ir sources, the basic science on which this standard is based, i.e., Spencer-Attix cavity theory, must be established. In the present study Monte Carlo techniques are used to investigate the accuracy of this cavity theory for photons in the energy range from 20 to 1300 keV, since it is usually not applied at energies below that of 137Cs. Ma and Nahum [Phys. Med. Biol. 36, 413-428 (1991)] found that in low-energy photon beams the contribution from electrons caused by photons interacting in the cavity is substantial. For the average energy of the 192Ir spectrum they found a departure from Bragg-Gray conditions of up to 3% caused by photon interactions in the cavity. When Monte Carlo is used to calculate the response of a graphite ion chamber to an encapsulated 192Ir source it is found that it differs by less than 0.3% from the value predicted by Spencer-Attix cavity theory. Based on these Monte Carlo calculations, for cavities in graphite it is concluded that the Spencer-Attix cavity theory with delta = 10 keV is applicable within 0.5% for photon energies at 300 keV or above despite the breakdown of the assumption that there is no interaction of photons within the cavity. This means that it is possible to use a graphite ion chamber and Spencer-Attix cavity theory to calibrate an 192Ir source. It is also found that the use of delta related to the mean chord length instead of delta = 10 keV improves the agreement with Spencer-Attix cavity theory at 60Co from 0.2% to within 0.1% of unity. This is at the level of accuracy of which the Monte Carlo code EGSnrc calculates ion chamber responses. In addition, it is shown that the effects of other materials, e.g., insulators and holders, have a substantial effect on the ion chamber response and should be included in the correction factors for a primary standard of air kerma.

  19. Bremsstrahlung in Mo and Pt targets produced by {sup 90}Sr beta particles in the photon energy region of 1-100 keV

    SciTech Connect

    Singh, Amrit; Dhaliwal, A. S.

    2015-08-28

    Bremsstrahlung spectra in thick targets of Mo and Pt, produced by beta emitter {sup 90}Sr (end point energy = 546 keV) have been studied in the photon energy range of 1-100 keV. The experimentally measured bremsstrahlung spectra measured with Si(Li) detector were compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler (F{sub mod}BH) theory for ordinary bremsstrahlung (OB) and the modified Elwert factor (relativistic) Bethe-Heitler (F{sub mod}BH+PB) theory, which includes the polarization bremsstrahlung (PB) into total bremsstrahlung (BS). The present results indicate the correctness of F{sub mod}BH+PB theory in the low energy region, where the contributions of PB into BS are dominant, which is described in terms of stripped atom (SA) approximation. But at the middle and higher energy region of the bremsstrahlung spectrum, where the contribution of PB is negligible, the F{sub mod}BH theory is more close to the experimental results. Hence, it is clear that the production of PB in the low energy region, due to the dynamic response of the target atom suppresses the production of bremsstrahlung at higher energy ends.

  20. Reaction rate of the 13C(α,n)16O neutron source using the ANC of the -3 keV resonance measured with the THM

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2016-01-01

    The s-process is responsible of the synthesis of most of the nuclei in the mass range 90 ≤ A ≤ 208. It consists in a series of neutron capture reactions on seed nuclei followed by β-decays, since the neutron accretion rate is slower than the β-decay rate. Such small neutron flux is supplied by the 13C(α,n)16O reaction. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures < 108 K, corresponding to an energy interval of 140-230 keV. In this region, the astrophysical S (E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. In this work, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d quasi-free reaction to extract the 6.356 MeV level resonance parameters, in particular the asymptotic normalization coefficient . A preliminary analysis of a partial data set has lead to , slightly larger than the values in the literature. However, the deduced 13C(α, n)16O reaction rate is in agreement with most results in the literature at ˜ 108 K, with enhanced accuracy thanks to our innovative approach merging together ANC and THM.

  1. Electrical characterisation and predictive simulation of defects induced by keV Si{sup +} implantation in n-type Si

    SciTech Connect

    Nyamhere, C.; Cristiano, F.; Olivie, F.; Bedel-Pereira, E.; Essa, Z.; Bolze, D.; Yamamoto, Y.

    2013-05-14

    In this work, we focused on the analysis of implantation-induced defects, mainly small interstitial clusters (ICs) and {l_brace} 311{r_brace} defects introduced in n-type Si after ion implantation using deep level transient spectroscopy (DLTS). Silicon ions (at 160 keV or 190 keV) of fluences ranging from (0.1-8.0) Multiplication-Sign 10{sup 13} cm{sup -2} have been implanted into n-type Si and annealed at temperatures between 500 Degree-Sign C and 800 Degree-Sign C specifically to create small ICs or {l_brace} 311{r_brace} s rod-like defects. In samples dominated by small ICs, DLTS spectra show prominent deep levels at Ec - 0.24 eV and Ec - 0.54 eV. After increasing the fluence and temperature, i.e., reducing the number of small ICs and forming {l_brace} 311{r_brace} defects, the peak Ec - 0.54 eV is still dominant while other electron traps Ec - 0.26 eV and Ec - 0.46 eV are introduced. There were no observable deep levels in reference, non-implanted samples. The identity and origin of all these traps are interpreted in conjunction with recently developed predictive defect simulation models.

  2. Measurement of angular dependence of M X-ray production cross-sections in Re, Bi and U at 5.96 keV

    NASA Astrophysics Data System (ADS)

    Apaydın, G.; Tıraşoǧlu, E.; Söǧüt, Ã.-.

    2008-03-01

    The M X-ray production differential cross sections in Re, Bi and U elements have been measured at the 5.96 keV incident photon energy in an angular range 135° 155°. The measurements were performed using a 55Fe source and a Si(Li) detector. The present results contradict the predictions of Cooper and Zare [ Atomic Collision Processes, Gordon and Breach, New York (1969)] and experimental results of Kumar et al. [J. Phys. B: At. Mol. Opt. 34, 613 (2001)]. that, after photoionization of inner shells, the vacancy state has equal population of magnetic substates and the subsequent X-ray emission is isotropic, but confirm the predictions of the calculations of Flügge et al. [Phys. Rev. Lett. 29, 7 (1972)] and experimental results of Sharma and Allawadhi [J. Phys. B: At. Mol. Opt. 32, 2343 (1999)] and Ertugrul [Nucl. Instrum. Meth. B 119, 345 (1996)]. Total M X-ray production cross sections from the decay at the 5.96 keV photon energies are found to be in good agreement with the calculated theoretical results using the theoretical values of M shell photoionization cross section.

  3. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  4. Neutral beam injector for 475 keV MARS sloshing ions

    SciTech Connect

    Goebel, D.M.; Hamilton, G.W.

    1983-12-13

    A neutral beam injector system which produces 5 MW of 475 keV D/sup 0/ neutrals continuously on target has been designed. The beamline is intended to produce the sloshing ion distribution required in the end plug region of the conceptual MARS tandem mirror commercial reactor. The injector design utilizes the LBL self-extraction negative ion source and Transverse Field Focusing (TFF) accelerator to generate a long, ribbon ion beam. A laser photodetachment neutralizer strips over 90% of the negative ions. Magnetic and neutron shield designs are included to exclude the fringe fields of the end plug and provide low activation by the neutron flux from the target plasma. The use of a TFF accelerator and photodetachment neutralizer produces a total system electrical efficiency of about 63% for this design.

  5. Preliminary resolved resonance region evaluation of copper-63 from 0 to 300 keV

    SciTech Connect

    Sobes, V.; Forget, B.; Leal, L.; Guber, K.

    2012-07-01

    A new preliminary evaluation of Cu-63 was done in the energy region from 0 to 300 keV extending the resolved resonance region of the previous, ENDF/B-VII.0, evaluation three-fold. The new evaluation was based on three experimental transmission data sets; two measured at the Oak Ridge Electron Linear Accelerator (ORELA) and one from the Massachusetts Inst. of Technology Nuclear Reactor (MITR). A total of 275 new resonances were identified and a corresponding set of external resonances was approximated to mock up the external levels. The negative external levels (bound level) were modified to match the thermal cross section values. A preliminary benchmarking calculation was made using 11 ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program. (authors)

  6. Charge transfer and excitation in H++CH3 collisions below 10keV

    NASA Astrophysics Data System (ADS)

    Nagao, Masatoshi; Hida, Ken-Nosuke; Kimura, Mineo; Rai, Sachchida N.; Liebermann, Heinz-Peter; Buenker, Robert J.; Suno, Hiroya; Stancil, Phillip C.

    2008-07-01

    Charge transfer and electronic excitation in collisions of H+ ions with CH3 from a few tens of eV up to 10keV are theoretically investigated. The adiabatic potential energy curves and corresponding wave functions are calculated by using the multireference single- and double-excitation configuration interaction method, and the scattering dynamics is studied based on the semiclassical impact parameter molecular-orbital close-coupling approach. Charge-transfer cross sections are found to be large and rather energy-dependent over the entire energy region studied. Electronic excitation is also energy-dependent with a sharp increase from below 10-17to10-16cm2 . Most of the molecular products produced through charge transfer or excitation are known to be unstable and undergo fragmentation producing various hydrocarbon radical species. Hence, identification of fragmented species and their production mechanism are important for spectroscopic analysis.

  7. Irradiation effects on secondary structure of protein induced by keV ions

    NASA Astrophysics Data System (ADS)

    Cui, F. Z.; Lin, Y. B.; Zhang, D. M.; Tian, M. B.

    2001-01-01

    Protein secondary structure changes by low-energy ion irradiation are reported for the first time. The selected system is 30 keV N + irradiation on bovine serum albumin (BSA). After irradiation at increasing fluences from 1.0×10 15 to 2.5×10 16 ion/cm 2, Fourier transform infrared spectra analysis was conducted. It was found that the secondary structures of BSA molecules were very sensitive to ion irradiation. Secondary conformations showed different trends of change during irradiation. With the increase of ion fluence from 0 to 2.5×10 16 ion/cm 2, the fraction of α-helix and β-turns decreased from 17 to 12%, and from 40 to 31%, respectively, while that of random coil and β-sheet structure increased from 18 to 27%, and from 25 to 30%, respectively. Possible explanations for the secondary conformational changes of protein are proposed.

  8. Electron Bremsstrahlung Cross Sections at 25 and 50 keV from Xe and Kr

    NASA Astrophysics Data System (ADS)

    Portillo, Salvador; Quarles, C. A.

    2002-05-01

    Absolute doubly differential bremsstrahlung cross sections for radiation at 90 from 25 and 50 keV electron bombardment of Kr and Xe of will be presented. The electrons were accelerated by a Cockcroft - Walton accelerator into an Al chamber through a .06" Al collimator. Thick target bremsstrahlung background was minimized by having Al nipples and fixtures and by the addition of a carbon lined nipple placed at 180 to the SiLi detector. A comparison of the doubly differential cross sections will be made with current bremsstrahlung theories. The ratio of the Kr and Xe cross sections will also be compared with the theoretical cross section ratios. The ratio provides a more sensitive test of the contribution, if any, of polarization bremsstrahlung.

  9. Effects of 70-keV electrons on two polyarylene ether ketones

    NASA Technical Reports Server (NTRS)

    Kingsbury, Kevin B.; Hawkins, Douglas S.; Orwoll, Robert A.; Kiefer, Richard L.; Long, Sheila A. T.

    1989-01-01

    Films prepared from two polyarylene ether ketones with the repeat units -PhC(O)PhC(O)-PhOPhXPhO- where X = C(CH3)2 or CH2 and Ph = C6H4, were bombarded with 70-keV electrons. The effects of irradiation were determined from the fraction of gel formed; the intrinsic viscosities, gel permeation chromatography, and NMR spectroscopy of the soluble portion of the irradiated films; and the changes in the IR spectra of the materials. In a Charlesby-Pinner analysis of the gel fractions of the polyarylene ether ketone with the isopropylidene group, the numbers of scission and cross-linking events per 100 eV (9649 kJ/mol) absorbed were found to be small with G(S) = 0.002 and G(X) = 0.009, respectively.

  10. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  11. Ion source development for the proposed FNAL 750keV injector upgrade

    SciTech Connect

    Bollinger, D.S.; /Fermilab

    2010-11-01

    Currently there is a Proposed FNAL 750keV Injector Upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200MHz Radio Frequency Quadruple (RFQ). The slit type magnetron being used now will be replaced with a round aperture magnetron similar to the one used at Brookhaven National Lab (BNL). Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime due to better power efficiency. The current source development effort is to produce a reliable source with >60mA of H- beam current, 15Hz rep-rate, 100s pulse width, and a duty factor of 0.15%. The source will be based on the BNL design along with development done at FNAL for the High Intensity Neutrino Source (HINS).

  12. A search for the 478 keV line from the decay of nucleosynthetic Be-7

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Leising, Mark D.; Share, Gerald H.

    1991-01-01

    Unstable Be-7 (half-life 53.28 days) is expected to be present in the ejecta of classical novae. If the frequency of novae in the central Galaxy is high enough, a nearly steady state abundance of Be-7 will be present there. Data accumulated during transits of the Galactic center across the aperture of the Solar Maximum Mission Gamma Ray Spectrometer have been searched for evidence of the 478 keV gamma-ray line resulting from Be-7 decay. A 3-sigma upper limit of 0.00016 gamma/sq cm s has been placed on the emission in this line from the central radian of the Galactic plane. Less stringent limits have been set on the production of Be-7 in Nova Aquilae 1982, Nova Vulpeculae 1984 No. 2, and Nova Centauri 1986 from observations with the same instrument.

  13. Laser acceleration and deflection of 963 keV electrons with a silicon dielectric structure

    DOE PAGES

    Leedle, Kenneth J.; Pease, R. Fabian; Byer, Robert L.; ...

    2015-02-12

    Radio frequency particle accelerators are ubiquitous in ultrasmall and ultrafast science, but their size and cost have prompted exploration of compact and scalable alternatives such as the dielectric laser accelerator. We present the first demonstration, to the best of our knowledge, of high gradient laser acceleration and deflection of electrons with a silicon structure. Driven by a 5 nJ, 130 fs mode-locked Ti:sapphire laser at 907 nm wavelength, our devices achieve accelerating gradients in excess of 200 MeV/m and suboptical cycle streaking of 96.30 keV electrons. These results pave the way for high gradient silicon dielectric laser accelerators using commercialmore » lasers and subfemtosecond electron beam experiments.« less

  14. Recent Updates on the Searches for the 3.55 keV Line

    NASA Astrophysics Data System (ADS)

    Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2016-04-01

    The abundance of ubiquitous dark matter is now well quantified by observations, yet its nature remains unknown. Dark matter is believed to be composed primarily of an elementary particle. The search for this particle is one of the major efforts in astrophysics and particle physics today. X-ray observations of dark matter dominated objects have the potential to reveal a signal from decaying or annihilating dark matter. We previously reported the detection of an unidentified emission line at 3.55 keV in the stacked XMM-Newton observations of galaxy clusters. The origin of this unidentified line could be attributed to the decay of dark matter particles. I will present the new results from the stacked Suzaku observations of galaxy clusters and provide a comprehensive review on the detections and limits in the literature.

  15. MOLECULAR DYNAMICS OF CASCADES OVERLAP IN TUNGSTEN WITH 20-KEV PRIMARY KNOCK-ON ATOMS

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-04-16

    Molecular dynamics simulations are performed to investigate the mutual influence of two subsequent cascades in tungsten. The influence is studied using 20-keV primary knock-on atoms, to induce one cascade after another separated by 15 ps, in a lattice temperature of 1025 K (i.e. 0.25 of the melting temperature of the interatomic potential). The center of mass of the vacancies at the peak damage during the cascade is taken as the location of the cascade. The distance between this location to that of the next cascade is taken as the overlap parameter. Empirical fits describing the number of surviving vacancies and interstitial atoms as a function of overlap are presented.

  16. Laboratory source based full-field x-ray microscopy at 9 keV

    SciTech Connect

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  17. Identification of the ~3.55 keV emission line candidate objects across the sky

    NASA Astrophysics Data System (ADS)

    Savchenko, D. O.; Iakubovskyi, D. A.

    2015-12-01

    An emission line at the energy ~3.55 keV detected in different galaxies and galaxy clusters has caused numerous discussions in high-energy astrophysics and particle physics communities. To reveal the origin of the line, we analyzed publicly-available observations of MOS cameras from XMM-Newton cosmic observatory - the instrument with the largest sensitivity for narrow faint X-ray lines - previously combined in X-ray sky maps. Because an extremely large timescale is needed for detailed analysis, we used the wavelet method instead. Extensive simulations of the central part of the Andromeda galaxy are used to check the validity of this method. The resulting list of wavelet detections now contains 235 sky regions. This list will be used in future works for more detailed spectral analysis.

  18. High Spatial Resolution STXM at 6.2 keV Photon Energy

    SciTech Connect

    Vila-Comamala, Joan; Kewish, Cameron M.; Thibault, Pierre; Guzenko, Vitaliy; Gorelick, Sergey; Menzel, Andreas; Bunk, Oliver; David, Christian; Dierolf, Martin; Pfeiffer, Franz; Pilvi, Tero; Faerm, Elina; Ritala, Mikko

    2010-04-06

    We report on a zone-doubling technique that bypasses the electron-beam lithography limitations for the production of X-ray diffractive optics and enables the fabrication of Fresnel zone plates with smaller outermost zone widths than other well-established approaches. We have applied this method to manufacture hard X-ray Fresnel zone plates with outermost zone widths of 25 and 20 nm. These lenses have been tested in scanning transmission X-ray microscopy (STXM) at energies up to 6.2 keV, producing images of test structures that demonstrate a spatial resolution of 25 nm. High spatial resolution STXM images of several biological specimens have been acquired in transmission, dark-field and differential phase contrast modes.

  19. Nonlinear optical properties of Cu nanocluster composite fabricated by 180 keV ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Wang, Y. M.; Lu, J. D.; Ji, L. L.; Zang, R. G.; Wang, R. W.

    2009-11-01

    Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 5×10 16 ions/cm 2 has been studied. The microstructural properties of the nanoclusters has been verified by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. Results of the investigation of nonlinear refraction by the off-axis Z-scan configuration were presented and the mechanisms responsible for the nonlinear response were discussed. Third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 8.7×10 -8 esu at 532 nm and 6.0×10 -8 esu at 1064 nm, respectively.

  20. Active detection of shielded SNM with 60-keV neutrons

    SciTech Connect

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  1. Mechanisms of O2 Sputtering from Water Ice by keV Ions

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Vidal, R. A.; Shi, J.; Baragiola, R. A.

    2005-01-01

    We have conducted experiments on the sputtering of water ice by 100 keV Ar(+) between 20 and 150 K. Our findings indicate that the temperature dependence of the total sputtering yield is heavily influenced by the thermal and irradiation history of the ice, showing a complex dependence on irradiation fluence that is correlated to the ejection of O2 molecules. The results suggest that O2 produced by the ions inside the ice diffuses to the surface where it is trapped and then ejected via sputtering or thermal desorption. A high concentration of O2 can trap in a subsurface layer during bombardment at 130 K, which we relate to the formation of hydrogen and its escape from that region. A simple model allows us to determine the depth profile of the absolute concentration of O2 trapped in the ice.

  2. K-(alpha) Radiography at 20-100 keV Using Short-Pulse Lasers

    SciTech Connect

    Park, H S; Chambers, D; Clarke, R; Eagleton, R; Giraldez, E; Goldsack, T; Heathcote, R; Izumi, N; Key, M; King, J; Koch, J; Landen, O L; Mackinnon, A; Nikroo, A; Patel, P; Pasley, J; Remington, B; Robey, H; Snavely, R; Steinman, D; Stephenson, R; Stoeckl, C; Storm, M; Tabak, M; Theobald, W; Town, R J

    2005-08-29

    X-ray radiography is an important tool for diagnosing and imaging planar and convergent hydrodynamics phenomena for laser experiments. Until now, hydrodynamics experiments at Omega and NIF utilize E{sub x-ray} < 9 keV backlighter x-rays emitted by thermal plasmas. However, future experiments will need to diagnose larger and denser targets and will require x-ray probes of energies from 20-100 keV and possibly up to 1 MeV. Hard K-{alpha} x-ray photons can be created through high-energy electron interactions in the target material after irradiation by petawatt-class high-intensity-short-pulse lasers with > 10{sup 17} W/cm{sup 2}. We have performed several experiments on the JanUSP, and the Vulcan 100TW, and Vulcan Petawatt lasers to understand K-{alpha} sources and to test radiography concepts. 1-D radiography using an edge-on foil and 2-D radiography using buried wires and cone-fiber targets were tested. We find that 1-D thin edge-on foils can have imaging resolution better than 10 {micro}m. Micro volume targets produce bright sources with measured conversion efficiency from laser energy to x-ray photons of {approx} 1 x 10{sup -5}. This level of conversion may not be enough for 2-D point projection radiography. A comparison of our experimental measurements of small volume sources with the LSP/PIC simulation show similar K-{alpha} creation profiles but discrepancy in absolute yields.

  3. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features

    SciTech Connect

    Merle, Alexander; Totzauer, Maximilian E-mail: totzauer@mpp.mpg.de

    2015-06-01

    We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all bounds related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now.

  4. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features

    SciTech Connect

    Merle, Alexander; Totzauer, Maximilian

    2015-06-08

    We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all bounds related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now.

  5. Ionization and fragmentation of polycyclic aromatic hydrocarbon clusters in collisions with keV ions

    SciTech Connect

    Johansson, H. A. B.; Zettergren, H.; Holm, A. I. S.; Seitz, F.; Schmidt, H. T.; Cederquist, H.; Rousseau, P.; Lawicki, A.; Capron, M.; Domaracka, A.; Lattouf, E.; Maclot, S.; Maisonny, R.; Chesnel, J.-Y.; Adoui, L.; Huber, B. A.

    2011-10-15

    We report on an experimental study of the ionization and fragmentation of clusters of k polycyclic aromatic hydrocarbon (PAH) molecules using anthracene, C{sub 14}H{sub 10}, or coronene, C{sub 24}H{sub 12}. These PAH clusters are moderately charged and strongly heated in small impact parameter collisions with 22.5-keV He{sup 2+} ions, after which they mostly decay in long monomer evaporation sequences with singly charged and comparatively cold monomers as dominating end products. We describe a simple cluster evaporation model and estimate the number of PAH molecules in the clusters that have to be hit by He{sup 2+} projectiles for such complete cluster evaporations to occur. Highly charged and initially cold clusters are efficiently formed in collisions with 360-keV Xe{sup 20+} ions, leading to cluster Coulomb explosions and several hot charged fragments, which again predominantly yield singly charged, but much hotter, monomer ions than the He{sup 2+} collisions. We present a simple formula, based on density-functional-theory calculations, for the ionization energy sequences as functions of coronene cluster size, rationalized in terms of the classic electrostatic expression for the ionization of a charged conducting object. Our analysis indicates that multiple electron removal by highly charged ions from a cluster of PAH molecules rapidly may become more important than single ionization as the cluster size k increases and that this is the main reason for the unexpectedly strong heating in these types of collisions.

  6. Multi-Kev X-Ray Emission from High-Z Gas Targets Fielded at Omega and NIF

    NASA Astrophysics Data System (ADS)

    May, Mark; Fournier, Kevin; Colvin, Jeff; Kane, Jave

    2010-11-01

    We report on the measured X-ray flux from gas-filled targets shot at both the OMEGA and NIF laser facilities. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ˜ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3φ (˜350 nm) laser energy delivered in a 1 ns square pulse. The NIF targets were thin walled (25 μm), 4 mm long, 4 mm inner-diameter epoxy pipes filled with 1.2 atm of a 65:35 Ar:Xe mixture. The NIF experiments heated these targets with 350 kJ of 3φ (˜350 nm) laser energy delivered in a 5 ns square pulse at up to 75 TW of laser power. The emitted X-ray flux was monitored with the X-ray diode based DANTE instruments in the sub-keV range. Two-dimensional X-ray images (for energies 3-5 keV) of the targets were recorded with gated X-ray detectors. The X-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. The results from both experiments will be compared. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).

  8. Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-09-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (≈13 keV) radiation, consistent with theoretical predictions. This is ≈10× greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited ≈700 kJ of 3ω light into the target in an ≈140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured ≈5 TW into 4π solid angle of ≥12 keV x rays for ≈4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV.

  9. The diffuse X-ray spectrum from 14-200 keV as measured on OSO-5

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Suri, A. N.; Frost, K. J.

    1973-01-01

    The measurement of energy spectrum of the diffuse component of cosmic X-ray flux made on the OSO-5 spacecraft is described. The contributions to the total counting rate of the actively shielded X-ray detector are considered in some detail and the techniques used to eliminate the non-cosmic components are described. Positive values for the cosmic flux are obtained in seven energy channels between 14 and 200 keV and two upper limits are obtained between 200 and 254 keV. The results can be fitted by a power law spectrum. A critical comparison is made with the OSO-3 results. Conclusions show that the reported break in the energy spectrum at 40 keV is probably produced by an erroneous correction for the radioactivity induced in the detector on each passage through the intense charged particle fluxes in the South Atlantic anomaly.

  10. Possible contributions of supernova remnants to the soft X-ray diffuse background (0.1 - 1keV)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Burrows, D. N.; Mccammon, D.; Kraushaar, W. L.

    1982-01-01

    Almost all of the B band (0.10-0.19 keV) and C band (0.15-0.28 keV) X-rays probably originate in a hot region surrounding the Sun, which Cox and Anderson modeled as a supernova remnant. This same region may account for a significant fraction of the M band (0.5-1 keV) X-rays if the nonequilibrium models of Cox and Anderson are applicable. A population of distant SNR similar to the local region, with center-to-center spacing of about 300 pc, could provide enough galactic M band emission to fill in the dip in the count rate in the galactic plane that would otherwise be present due to absorption of both the extra galactic power law flux and any large-scale-height stellar (or galactic halo) emission.

  11. Tables and graphs of photon-interaction cross sections from 0. 1 keV to 100 MeV derived from the LLL evaluated-nuclear-data library

    SciTech Connect

    Plechaty, E.F.; Cullen, D.E.; Howerton, R.J.

    1981-11-11

    Energy-dependent evaluated photon interaction cross sections and related parameters are presented for elements H through Cf(Z = 1 to 98). Data are given over the energy range from 0.1 keV to 100 MeV. The related parameters include form factors and average energy deposits per collision (with and without fluorescence). Fluorescence information is given for all atomic shells that can emit a photon with a kinetic energy of 0.1 keV or more. In addition, the following macroscopic properties are given: total mean free path and energy deposit per centimeter. This information is derived from the Livermore Evaluated-Nuclear-Data Library (ENDL) as of October 1978.

  12. Anomalous X-ray galactic signal from 7.1 keV spin-3/2 dark matter decay

    SciTech Connect

    Dutta, Sukanta; Goyal, Ashok; Kumar, Sanjeev E-mail: agoyal45@yahoo.com

    2016-02-01

    In order to explain the recently reported peak at 3.55 keV in the galactic X-ray spectrum, we propose a simple model. In this model, the Standard Model is extended by including a neutral spin-3/2 vector-like fermion that transforms like a singlet under SM gauge group. This 7.1 keV spin-3/2 fermion is considered to comprise a portion of the observed dark matter. Its decay into a neutrino and a photon with decay life commensurate with the observed data, fits the relic dark matter density and obeys the astrophysical constraints from the supernova cooling.

  13. Searching for a 3.5-keV line in the spectrum of the deepest Chandra blank fields

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan; Cappelluti, Nico; Bulbul, Esra

    2017-01-01

    We report results of our spectral analysis of ~10 Ms of data in the deep Chandra COSMOS Legacy and CDFS surveys. We discuss a possible emission feature at 3.5 keV, which has been reported in other XMM-Newton, Chandra and NuSTAR X-ray data. If due to dark matter decay, the 3.5-keV feature, together with the result from the DAMA dark matter detection experiment, is to date the only positive dark matter signature surviving experimental tests. We discuss possible instrumental contaminations, proper statistical treatment and interpretation in terms of dark matter decay or S XVII charge exchange.

  14. Measurement of the MACS of 159Tb(n, γ) at kT = 30 keV by Activation

    NASA Astrophysics Data System (ADS)

    Praena, J.; Mastinu, P. F.; Pignatari, M.; Quesada, J. M.; Capote, R.; Morilla, Y.

    2014-06-01

    The measurement of the Maxwellian-Averaged Cross-Section (MACS) of the 159Tb(n, γ) reaction at kT = 30 keV by the activation technique is presented. An innovative method for the generation of Maxwellian neutron spectra at kT = 30 keV is used. An experimental value of 2166 ± 181 mb agrees well with the MACS value derived from the ENDF/B-VII.1 evaluation, but is higher than KADoNiS recommended value of 1580 ± 150 mb. Astrophysical implications are studied.

  15. An innovative experimental setup for the measurement of sputtering yield induced by keV energy ions.

    PubMed

    Salou, P; Lebius, H; Benyagoub, A; Langlinay, T; Lelièvre, D; Ban-d'Etat, B

    2013-09-01

    An innovative experimental equipment allowing to study the sputtering induced by ion beam irradiation is presented. The sputtered particles are collected on a catcher which is analyzed in situ by Auger electron spectroscopy without breaking the ultra high vacuum (less than 10(-9) mbar), avoiding thus any problem linked to possible contamination. This method allows to measure the angular distribution of sputtering yield. It is now possible to study the sputtering of many elements such as carbon based materials. Preliminary results are presented in the case of highly oriented pyrolytic graphite and tungsten irradiated by an Ar(+) beam at 2.8 keV and 7 keV, respectively.

  16. Nighttime observations of 0.2- to 26-keV electrons in the South Atlantic anomaly made by Atmosphere Explorer C

    NASA Technical Reports Server (NTRS)

    Gledhill, J. A.; Hoffman, R. A.

    1981-01-01

    Atmosphere Explorer C satellite observations have determined that the flux of low energy ions in the South Atlantic Anomaly is much smaller than that of electrons, allowing the satellite's low-energy ion detector to monitor the high-energy background and correct the low-energy electron detector accordingly. It is shown that the electron spectra can be represented by a power law in the range 0.2-26.0 keV, with the spectral index close to -1.0, and that the mean energy flux carried by electrons in the middle of the anomaly is about 0.003 erg/sq cm/sec and may reach 5 times this value. Maps of the downward energy flux are included.

  17. Measurement of L X-ray fluorescence cross-sections for elements with 45 ⩽ Z ⩽ 50 using synchrotron radiation at 8 keV

    NASA Astrophysics Data System (ADS)

    Bonzi, Edgardo V.; Badiger, Nagappa M.; Grad, Gabriela B.; Barrea, Raúl A.; Figueroa, Rodolfo G.

    2011-10-01

    The L shell fluorescence cross-sections of the elements in range 45 ⩽ Z ⩽ 50 have been determined at 8 keV using Synchrotron radiation. The individual L X-ray photons, Ll, Lα, LβI, LβII, LγI and LγII produced in the target were measured with high resolution Si( Li) detector. The experimental set-up provided a low background by using linearly polarized monoenergetic photon beam, improving the signal-to-noise ratio. The experimental cross-sections obtained in this work were compared with available experimental data from Scofield [1,2] Krause [3,4] and Scofield and Puri et al. [5,6]. These experimental values closely agree with the theoretical values calculated using Scofield and Krause data, except for the case of Lγ, where values measured of this work are slighter higher.

  18. Coherent to incoherent cross section ratio for 59.54 keV gamma rays at scattering angle of 110°

    SciTech Connect

    Singh, M. P.; Singh, Bhajan; Sandhu, B. S.; Sharma, Amandeep

    2015-08-28

    The coherent (Rayleigh) to incoherent (Compton) scattering cross-section ratio of elements, in the range 13 ≤ Z ≤ 82, are determined experimentally for 59.54 keV incident gamma photons. An HPGe (High purity germanium) semiconductor detector is employed, at scattering angle of 110°, to record the spectra originating from interactions of incident gamma photons with the target under investigation. The intensity ratio of Rayleigh to Compton scattered peaks observed in the recorded spectra, and corrected for photo-peak efficiency of gamma detector and absorption of photons in the target and air, along with the other required parameters provides the differential cross-section ratio. The measured values of cross-section ratio are found to agree with theoretical predictions based upon non-relativistic form factor, relativistic form factor, modified form factor and S-matrix theory.

  19. Low-temperature volume radiation annealing of cold-worked bands of Al-Li-Cu-Mg alloy by 20-40 keV Ar+ ion

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Mozharovsky, S. M.; Kaigorodova, L. I.

    2017-01-01

    The processes of radiation-dynamic nature (in contrast to the thermally-activated processes) in the course of short-term irradiation of 1 mm thick bands of cold-worked aluminum alloy 1441 (of system Al-Li-Cu-Mg) with Ar+ 20-40 keV were studied. An effect of in-the-bulk (throughout the whole of metal bands thickness) low-temperature radiation annealing of the named alloy, multiply accelerated as compared with common thermal annealing processes was registered (with projected ranges of ions of considered energies definitely not exceeding 0.1 μm). The processes of recrystallization and intermetallic structure changes (occurring within a few seconds of Ar+ irradiation) have the common features as well as the differences in comparison with the results of two hour standard thermal annealing.

  20. 1-to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques.

    SciTech Connect

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry, Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-07-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a {approx}0.6 eVspectral bandpass, 10 {micro}m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser({lambda} = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  1. The 3-10 keV and 0.1- to 2-MeV observations of 4 gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Laros, J. G.; Evans, W. D.; Fenimore, E. E.; Klebesadel, R. W.; Shulman, S.; Fritz, G.

    Four catalogued (BETA) ray bursts that occurred between 79/3/7 and 79/7/31 were observed over the 3 to 10 keV range. The bursts were also well observed by members of the interplanetary network. Hardness ratios, X-ray/(BETA)-ray luminosity ratios, and are presented. The results are summarized as follows: (1) gamma ray bursters can emit fairly strongly at X-ray energies near the time of the (BETA) burst with L/sub x//L/sub (BETA)/approx. .02 (L/sub x/ approx. 10(37) ergs s(+1), 3 to 10 keV, assuming a distance of 1 kpc); (2) the centroid of the X-ray emission generally lags the (BETA)-ray centroid, but there is also evidence for one or more types of X-ray precursor activity; (3) the (BETA)-ray hardness ratios were not highly variable for these particular events; (4) the X-ray/(BETA)-ray power law number index during times of the strongest (BETA)-ray emission ranged from 0.8 to approx. 1.1 for the four bursts; (5) the X-ray tail of GB790307 probably can be modeled as the cooling of hot plasma generated during the (BETA)-ray burst. Simple versions of this model can be used to estimate various source parameters. These estimates imply a distance of a few hundred to a few thousand pc; (6) gamma-ray bursters probably do not produce events similar to classical X-ray bursts independently of the (BETA)-ray emission.

  2. WE-E-18A-05: Bremsstrahlung of Laser-Plasma Interaction at KeV Temperature: Forward Dose and Attenuation Factors

    SciTech Connect

    Saez-Beltran, M; Fernandez Gonzalez, F

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. For the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.

  3. Inner Magnetosphere keV Ion Drift Path Boundaries as Observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Strangeway, R. J.; Zhang, J.; Larsen, B.

    2014-12-01

    The drifts of keV ions in the inner magnetosphere are controlled by both electric field drifts and gradient and curvature (i.e., magnetic field) drifts, and further the magnetic field drifts oppose the corotation electric field drift in the dusk local time sector. Consequently, the ion drift paths can be quite complicated with the medium-energy ions drifting close to the Earth, but still being on open drift paths. In addition, structure in the energy-time spectrograms can be a consequence of either particle injection or particle loss. In order to distinguish between the two we will compare the energy-time spectrograms acquired with the Helium Oxygen Proton Electron (HOPE) mass spectrometer on board the Van Allen Probes with predictions of drift path boundaries. The simplest model assumes a uniform convection electric field and dipole model field, and we will use this a starting point for the comparison. The model can be modified to include shielding of the convection electric field, and rotation in local time of the zero-energy dusk-side stagnation point. As an additional check of the model we will compare the electric field used in the model with the electric field as measured by the Van Allen Probes, as well as the validity of using a dipole magnetic field through comparison with the measured magnetic field.

  4. The poker face of the Majoron dark matter model: LUX to keV line

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.; Sinha, Kuver

    2014-07-01

    We study the viability of pseudo Nambu-Goldstone bosons (Majorons) arising in see-saw models as dark matter candidates. Interestingly the stability of the Majoron as dark matter is related to the scale that sets the see-saw and leptogenesis mechanisms, while its annihilation and scattering cross section off nuclei can be set through the Higgs portal. For O (GeV)- O (TeV) Majorons, we compute observables such as the abundance, scattering cross section, Higgs invisible decay width, and emission lines and compare with current data in order to outline the excluded versus still viable parameter space regions. We conclude that the simplest Majoron dark matter models coupling through the Higgs portal, except at the Higgs resonance, are excluded by current direct detection data for Majorons lighter than 225 GeV and future runnings are expected to rule out decisively the 1 GeV-1 TeV window. Lastly, we point out that light keV-scale Majorons whose relic density is set by thermal freeze-in from sterile neutrinos can account for the keV line observed by XMM-Newton observatory in the spectrum of 73 galaxy clusters, within a see-saw model with a triplet Higgs.

  5. High-efficiency multilevel zone plates for keV X-rays

    NASA Astrophysics Data System (ADS)

    di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R.

    1999-10-01

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies has led to significant improvements in submicrometre probes for spectroscopy, diffraction and imaging applications. The generation of a small beam spot size is commonly based on three principles: total reflection (as used in optical elements involving mirrors or capillaries), refraction (such as in refractive lenses) and diffraction. The latter effect is employed in Bragg-Fresnel or Soret lenses, commonly known as Fresnel zone plate lenses. These lenses currently give the best spatial resolution, but are traditionally limited to rather soft X-rays-at high energies, their use is still limited by their efficiency. Here we report the fabrication of high-efficiency, high-contrast gold and nickel multistep (quaternary) Fresnel zone plates using electron beam lithography. We achieve a maximum efficiency of 55% for the nickel plate at 7keV. In addition to their high efficiency, the lenses offer the advantages of low background signal and effective reduction of unwanted diffraction orders. We anticipate that these lenses should have a significant impact on techniques such as microscopy, micro-fluorescence and micro-diffraction, which require medium resolution (500-100nm) and high flux at fixed energies.

  6. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    SciTech Connect

    Agueda, N.; Sanahuja, B.; Vainio, R.

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  7. The production and sputtering of S2 by keV ion bombardment

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Chrisey, D. B.; Oshaughnessy, D. J.; Phipps, J. A.; Zhao, N.

    1986-01-01

    The ion bombardment of S-containing molecules in comets is simulated experimentally. Mass-analyzed 30-keV beams of Ar(+) and He(+) are directed at solid S, H2S, and CS2 targets at temperatures 15 K, and the neutral molecular species produced are ionized and analyzed using a quadrupole mass spectrometer. The dominant species detected are S1 and S2 for the S target, H2S and S2 for the H2S target, and S, CS, S2, and CS2 for the CS2 target. In the latter case, it is found that after about 10 to the 14th He(+) ions/sq cm have struck the target, further sputtering is prevented by formation of a dark brown deposit which is stable at room temperature; the residue forms more slowly when Ar(+) ions are used. These results, indicating relatively efficient S2 production by ion bombardment, are applied to theoretical models of S2 production and/or ejection by solar-wind, solar-flare, or cosmic-ray ions striking comets. It is found that direct solar-wind production of S2 by sputtering is unlikely at realistic bombardment rates, but that H2S-S2 conversion by energetic ions could be significant, with less stringent ice-temperature and irradiation-flux constraints than in the case of S2 production by photons.

  8. Electron capture in Ar++H2 collisions in the keV energy regime

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Chapman, S.; Lane, N. F.

    1986-03-01

    Electron capture in Ar+( 2P)+H2(X 1Σg) collisions in the keV energy regime has been studied theoretically. The molecular-orbital expansion method was used within a semiclassical formalism and an electron translation factor correction was incorporated to the first order in the magnitude of the relative velocity V. The molecular wave function and eigenenergy were obtained using the diatoms-in-molecules (DIM) method. We have examined the effect of the orientation of the target H2 molecule on the electron-capture mechanism within the sudden adiabatic approximation. Since π symmetry arising from the p orbital of the Ar+ ion is involved in this system, a strong influence on the probability of the molecular orientation was found in all energies studied. As the collision energy increases, the Π-symmetry state in the initial channel becomes more important through the rotational coupling to the electron-capture mechanism, while at lower energies the Σ-symmetry state in the initial channel is the dominant source for the electron capture through strong radial coupling. Agreement of the present theory with measurements is good, but marked disagreement is seen with the atomic-orbital calculation.

  9. The galactic 511 keV line from electroweak scale WIMPs

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim; Ritz, Adam

    2007-07-01

    We consider possible mechanisms via which electroweak scale WIMPs χ could provide the source of the INTEGRAL/SPI 511 keV photon flux from the galactic centre. We consider scenarios where the WIMP spectrum contains near-degeneracies, with MeV-scale splitting, and focus on three possible production mechanisms for galactic positrons: (i) collisional excitation of the WIMP to a nearby charged state, χ+χ→χ+χ, with the subsequent decay producing positrons; (ii) capture of the WIMP by nuclei in the galactic interstellar medium, χ+N→e+(χN); and (iii) the decay of a nearby long-lived state surviving from the big bang, χ20→χ10+e+e. We find that process (i) requires a cross section which is significantly larger than the unitarity bound, process (ii) is allowed by unitarity, but is impractical due to terrestrial bounds on the χN cross section, while process (iii) is viable and we construct a simple model realization with singlet dark matter fields interacting with the Standard Model via the Higgs sector.

  10. Black-hole Binaries: Life Begins at 40 keV

    NASA Astrophysics Data System (ADS)

    Belloni, Tomaso M.; Motta, Sara

    2009-05-01

    In the study of black-hole transients, an important problem that still needs to be answered is how the high-energy part of the spectrum evolves from the low-hard to the high-soft state, given that they have very different properties. Recent results obtained with RXTE and INTEGRAL have given inconsistent results. With RXTE, we have found that the high-energy cutoff in GX 339-4 during the transition first decreases (during the low-hard state), then increases again across the Hard-Intermediate state, to become unmeasurable in the soft states (possibly because of statistical limitations). We show Simbol-X will be able to determine the spectral shape with superb accuracy. As the high-energy part of the spectrum is relatively less known than the one below 20 keV, Simbol-X will provide important results that will help out understanding of the extreme physical conditions in the vicinity of a stellar-mass black hole.

  11. The System of Nanosecond 280-KeV He+ Pulsed Beam

    SciTech Connect

    Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; Wiedemann, H.; /SLAC /SLAC, SSRL

    2006-05-01

    At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45{sup o}-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 {micro}A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length.

  12. Sputtering of octatetraene by 15 keV C60 projectiles: Comparison of reactive interatomic potentials

    NASA Astrophysics Data System (ADS)

    Kanski, Michal; Maciazek, Dawid; Golunski, Mikolaj; Postawa, Zbigniew

    2017-02-01

    Molecular dynamics computer simulations have been used to probe the effect of the AIREBO, ReaxFF and COMB3 interatomic potentials on sputtering of an organic sample composed of octatetraene molecules. The system is bombarded by a 15 keV C60 projectile at normal incidence. The effect of the applied force fields on the total time of simulation, the calculated sputtering yield and the angular distribution of sputtered particles is investigated and discussed. It has been found that caution should be taken when simulating particles ejection from nonhomogeneous systems that undergo significant fragmentation described by the ReaxFF. In this case, the charge state of many particles is improper due to an inadequacy of a procedure used for calculating partial charges on atoms in molecules for conditions present during sputtering. A two-step simulation procedure is proposed to minimize the effect of this deficiency. There is also a possible problem with the COMB3 potential, at least at conditions present during cluster impact, as its results are very different from AIREBO or ReaxFF.

  13. ART: Surveying the Local Universe at 2-11 keV

    NASA Technical Reports Server (NTRS)

    O'Dell, S. L.; Ramsey, B. D.; Adams, M. L.; Brandt, W. N.; Bubarev, M. V.; Hassinger, G.; Pravlinski, M.; Predehl, P.; Romaine, S. E.; Swartz, D. A.; Urry, C. M.; Vikhlinin, A.; Weisskopf, M. C.

    2008-01-01

    The Astronomical Rontgen Telescope (ART) is a medium-energy x-ray telescope system proposed for the Russian-led mission Spectrum Rontgen-Gamma (SRG). Optimized for performance over the 2-11-keV band, ART complements the softer response of the SRG prime instrument-the German eROSITA x-ray telescope system. The anticipated number of ART detections is 50,000-with 1,000 heavily-obscured (N(sub H)> 3x10(exp 23)/sq cm) AGN-in the SRG 4-year all-sky survey, plus a comparable number in deeper wide-field (500 deg(sup 2) total) surveys. ART's surveys will provide a minimally-biased, nearly-complete census of the local Universe in the medium-energy x-ray band (including Fe-K lines), at CCD spectral resolution. During long (approx.100-ks) pointed observations, ART can obtain statistically significant spectral data up to about 15 keY for bright sources and medium-energy x-ray continuum and Fe-K-line spectra of AGN detected with the contemporaneous NuSTAR hard-x-ray mission.

  14. Silicon photodiode characterization from 1 eV to 10 keV

    SciTech Connect

    Idzorek, G.C.; Bartlett, R.J.

    1997-10-01

    Silicon photodiodes offer a number of advantages over conventional photocathode type soft x-ray detectors in pulsed power experiments. These include a nominally flat response, insensitivity to surface contamination, low voltage biasing requirements, sensitivity to low energy photons, excellent detector to detector response reproducibility, and ability to operate in poor vacuum or gas backfilled experiments. Silicon photodiodes available from International Radiation Detectors (IRD), Torrance, California have been characterized for absolute photon response from 1 eV to 10 keV photon energy, time response, and signal saturation levels. The authors have assembled individually filtered photodiodes into an array designated the XUV-7. The XUV-7 provides seven photodiodes in a vacuum leak tight, electrically isolated, low noise, high bandwidth, x-ray filtered assembly in a compact package with a 3.7 cm outside diameter. In addition they have assembled the diodes in other custom configurations as detectors for spectrometers. Their calibration measurements show factor of ten deviations from the silicon photodiode theoretical flat response due to diode sensitivity outside the center `sensitive area`. Detector response reproducibility between diodes appears to be better than 5%. Time response measurements show a 10-90% rise time of about 0.1 nanoseconds and a fall time of about 0.5 nanoseconds. Silicon photodiodes have proven to be a versatile and useful complement to the standard photocathode detectors for soft x-ray measurement and are very competitive with diamond for a number of applications.

  15. Effect of positron range on spatial resolution.

    PubMed

    Phelps, M E; Hoffman, E J; Huang, S C; Ter-Pogossian, M M

    1975-07-01

    The effect of beta+ range on spatial resolution of imaging systems employing the detection of 511-keV annihilation radiation was determined by measuring the variation in the line-spread functions (LSFs) of positron-emitting radionuclides of 64Cu, 11C, and 15O as compared with the 514-keV gamma-ray emitter 85Sr. These radionuclides have maximum beta+ energies of 0.656, 0.960, and 1.72 MeV, respectively. The LSFs were measured in a tissue-equivalent phantom with high-resolution (approximately 2.4 mm FWHM) and low-resolution (approximately 8.8 mm FWHM) straightbore collimators coupled to a NaI(Tl) detector. Theoretical LSFs for the beta+ ranges were also calculated and convolved with the 85Sr LSF to yield the predicted LSFs for 11C and 15O. The high-resolution study showed a 0% and 2.3% increase in the full-width half-maximum (FWHM) and full-width tenth-maximum (FWO.1M) for the low-energy beta+ of 64Cu and a 37% (FWHM) and 52% (FWO.1M) increase for the high energy beta+ of 15O as compared with 85Sr. However, when the system resolution was decreased to 8.8 mm FWHM, the 64Cu showed no change at FWHM or FWO.1M and the 15O showed a 2.3% (FWHM) and 7.8% (FWO.1M) relative to 85Sr. The predicted LSFs were in good agreement with the experimental. These data indicate that the effect of beta+ range on spatial resolution is minimal unless the beta+ energy is larger than or equal to 1.5 MeV and the system resolution is on the order of a few millimeters.

  16. Pitch angle distributions of 35-1000 keV protons at quasi-perpendicular interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Erdoes, G.

    1985-01-01

    The characteristic features of the scatter-free acceleration process near perpendicular shocks are examined in the upstream and downstream pitch angle distributions of 35 to 1000 keV protons. Reasonable quantitative agreement is found between theoretical predictions and observations. The role played by bottle geometries, leading to enhanced acceleration, is highlighted.

  17. Intensity of 253 keV {gamma}-rays ({sup 245}Am) from {alpha}-decay of {sup 249}Bk

    SciTech Connect

    Popov, Yu.S.; Srurov, D.Kh.; Baranov, A.A.; Chistyakov, V.M.; Timofeev, G.A.

    1995-01-01

    The intensity of 253 keV {gamma}-rays ({sup 245}Am) from {alpha}-decay of {sup 249}Bk is 3.09(9)% at the P = 0.95 confidence level. Precision semi-conducting {gamma}-spectrometry and coulometry are used.

  18. Comparative Effects of 10.2 eV Photon and 200 keV Proton Irradiation on Condensed CO

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Baratta, G. A.; Palumbo, M. E.; Strazzulla, G.; Baragiola, R. A.

    2004-03-01

    We present results from experiments that use infrared spectroscopy to compare production rates of carbon dioxide formed by UV photolysis and 200 keV proton irradiation of carbon monoxide ice at 16 K. We find production rates to be similar for both types of irradiation.

  19. 3.55 keV photon lines from axion to photon conversion in the Milky Way and M31

    SciTech Connect

    Conlon, Joseph P.; Day, Francesca V. E-mail: francesca.day@physics.ox.ac.uk

    2014-11-01

    We further explore a scenario in which the recently observed 3.55 keV photon line arises from dark matter decay to an axion-like particle (ALP) of energy 3.55 keV, which then converts to a photon in astrophysical magnetic fields. This ALP scenario is well-motivated by the observed morphology of the 3.55 keV flux. For this scenario we study the expected flux from dark matter decay in the galactic halos of both the Milky Way and Andromeda (M31). The Milky Way magnetic field is asymmetric about the galactic centre, and so the resulting 3.55 keV flux morphology differs significantly from the case of direct dark matter decay to photons. However the Milky Way magnetic field is not large enough to generate an observable signal, even with ASTRO-H. In contrast, M31 has optimal conditions for a → γ conversion and the intrinsic signal from M31 becomes two orders of magnitude larger than for the Milky Way, comparable to that from clusters and consistent with observations.

  20. Radial Profile of the 3.5 keV Line Out to R200 in the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Franse, Jeroen; Bulbul, Esra; Foster, Adam; Boyarsky, Alexey; Markevitch, Maxim; Bautz, Mark; Iakubovskyi, Dmytro; Loewenstein, Mike; McDonald, Michael; Miller, Eric; Randall, Scott W.; Ruchayskiy, Oleg; Smith, Randall K.

    2016-10-01

    The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.

  1. OSSE observations of Galactic 511 keV positron annihilation radiation - Initial phase 1 results. [Oriented Scintillation Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Jung, G. V.

    1993-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory (GRO) has performed numerous observations of the Galactic plane and Galactic center region to measure the distribution of Galactic 511 keV positron annihilation radiation and to search for time variability of the emission. The initial 511 keV line fluxes for the observations performed during the first 18 months of the GRO mission are presented. The 511 keV line flux for a typical Galactic center observation is (2.5 +/- 0.3) x 10 exp -4 gamma/sq cm per sec, where the quoted uncertainty represents the 1 sigma statistical uncertainty. No statistically significant time variability of the line flux has been observed; the 3 sigma upper limit to daily variations from the mean is 3 x 10 exp -4 gamma/sq cm per sec. The distribution of Galactic 511 keV positron annihilation radiation implied by the OSSE observations is discussed and compared with observations by other instruments.

  2. Neutron transmission and capture measurements and analysis of /sup 60/Ni from 1 to 450 keV

    SciTech Connect

    Perey, C.M.; Harvey, J.A.; Macklin, R.L.; Winters, R.R.; Perey, F.G.

    1982-11-01

    High-resolution transmission and capture measurements of /sup 60/Ni-enriched targets have been made at the Oak Ridge Electron Linear Accelerator (ORELA) from a few eV to 1800 keV in transmission and from 2.5 keV to 5 MeV in capture . The transmission data from 1 to 450 keV were analyzed with a multi-level R-matrix code which uses the Bayes' theorem for the fitting process. This code provides the energies and neutron widths of the resonances inside the 1- to 450-keV region as well as a possible parameterization for outside resonances to describe the smooth cross section in this region. The capture data were analyzed with a least-squares fitting code using the Breit-Wigner formula. From 2.5 to 450 keV, 166 resonances were seen in both sets of data. Correspondence between the energy scales shows a discontinuity around 300 keV which makes the matching of resonances at higher energies difficult. Eighty-nine resonances were seen in the capture data only. Average parameters for the 30 observed s-wave resonances were deduced. The average level spacing D/sub 0/ was found to be equal to 15.2 +- 1.5 keV, the strength function, S/sub 0/, equal to (2.2 +- 0.6) x 10/sup -4/ and the average radiation width, GAMMA/sub ..gamma../, equal to 1.30 +- 0.07 eV. The staircase plot of the reduced level widths and the plot of the Lorentz-weighted strength function averaged over various energy intervals show possible evidence for doorway states. The level densities calculated with the Fermi-gas model for l = 0 and for l > 0 resonances were compared with the cumulative number of observed resonances, but the analysis is not conclusive. The average capture cross section as a function of the neutron incident energy is compared to the tail of the giant electric dipole resonance prediction.

  3. A Catalog of Soft X-Ray Shadows, and More Contemplation of the 1/4 KeV Background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Freyberg, M. J.; Kuntz, K. D.; Sanders, W. T.

    1999-01-01

    This paper presents a catalog of shadows in the 1/4 keV soft X-ray diffuse background 4 (SXRB) that were identified by a comparison between ROSAT All-Sky Survey maps and DIRB&corrected IRAS 100 micron maps. These "shadows" are the negative correlations between the surface brightness of the SXRB and the column density of the Galactic interstellar medium (ISIM) over limited angular regions (a few degrees in extent). We have compiled an extensive but not exhaustive set of 378 shadows in the polar regions of the Galaxy (Absolute value (beta) > and approximately equal 20 deg.), and determined their foreground and background X-ray intensities (relative to the absorbing features), and the respective hardness ratios of that emission. The portion of the sky that was examined to find these shadows was restricted in general to regions where the minimum column density is less than and approximately equal to 4 x 10(exp 20) H/square cm, i.e., relatively high Galactic latitudes, and to regions away from distinct extended features in the SXRB such as supernova remnants and superbubbles. The results for the foreground intensities agree well with the recent results of a general analysis of the local 1/4 KeV emission while the background intensities show additional. but not unexpected scatter. The results also confirm the existence of a gradient in the hardness of the local 1/4 keV emission along a Galactic center/ anticenter axis with a temperature that varies from 10(exp 6.13) K to 10(exp 6.02) K, respectively. The average temperature of the foreground component from this analysis is 10(exp 6.08) K, compared to 10(exp 6.06) K in the previous analysis. Likewise, the average temperature for the distant component for the current and previous analyses are 10(exp 6.06) K and 10(exp 6.02) K, respectively. Finally, the results for the 1/4 keV halo emission are compared to the observed fluxes at 3/4 keV, where the lack of correlation suggests that the Galactic halo's 1/4 keV and 3/4 keV

  4. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: A progress report

    NASA Astrophysics Data System (ADS)

    Bennett, G. R.; Smith, I. C.; Shores, J. E.; Sinars, D. B.; Robertson, G.; Atherton, B. W.; Jones, M. C.; Porter, J. L.

    2008-10-01

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26MA Z Accelerator, the terawatt-class, multikilojoule, 526.57nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151keV (1s2-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151keV two frame technique has recently been used to image imploding wire arrays, using a 7.3ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181keV Mn 1s2-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1ns gate time

  5. 2-20 ns interframe time 2-frame 6.151 keV x-ray imaging on the recently upgraded Z Accelerator: a progress report.

    PubMed

    Bennett, G R; Smith, I C; Shores, J E; Sinars, D B; Robertson, G; Atherton, B W; Jones, M C; Porter, J L

    2008-10-01

    When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns

  6. A 7.2 keV spherical crystal backlighter system for Sandia's Z Pulsed Power Facility

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Knapp, P. F.; Ampleford, D. J.; Loisel, G. P.; Robertson, G.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Porter, J. L.; McBride, R. D.

    2016-10-01

    Many experiments on Sandia's Z facility, a 30 MA, 100 ns rise-time, pulsed-power driver, use a monochromatic Quartz crystal imaging backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array. The x-ray source is generated by the Z-Beamlet Laser (ZBL), which provides up to 4.5 kJ at 527 nm during a 6 ns window. Radiographs of an imploding thick-walled Beryllium liner at a convergence ratio of about 20 [CR =Rin . (0) /Rin . (t) ] were too opaque to identify the inner surface of the liner with high confidence, demonstrating the need for a higher-energy x-ray backlighter between 6 and 10 keV. We present the design, test and first application of a Ge (335) spherical crystal x-ray backlighter system using the 7.242 keV Co Heα resonance line. The system operates at an almost identical Bragg angle as the existing 1.865 and 6.151 keV backlighters, enhancing our capabilities such as two-color, two-frame radiography, without changing detector shielding hardware. SAND No: SAND2016-6724 A. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. DoE NNSA under contract DE-AC04-94AL85000.

  7. NuSTAR Resolves the First Dual AGN above 10 keV in SWIFT J2028.5+2543

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Glidden, Ana; Baloković, Mislav; Stern, Daniel; Lamperti, Isabella; Assef, Roberto; Bauer, Franz; Ballantyne, David; Boggs, Steven E.; Craig, William W.; Farrah, Duncan; Fürst, Felix; Gandhi, Poshak; Gehrels, Neil; Hailey, Charles J.; Harrison, Fiona A.; Markwardt, Craig; Masini, Alberto; Ricci, Claudio; Treister, Ezequiel; Walton, Dominic J.; Zhang, William W.

    2016-06-01

    We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91″). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N H ≈ (1-2) × 1024 cm-2) and contribute equally to the BAT detection ({L}10-50 {keV}{{int}} ≈ 6 × 1042 erg s-1). The observed luminosity of both sources is severely diminished in the 2-10 keV band ({L} 2-10 {keV}{{obs}}\\lt 0.1× {L} 2-10 {keV}{{int}}), illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.

  8. R-MATRIX ANALYSIS of 232Th NEUTRON TRANSMISSIONS and CAPTURE CROSS SECTIONS in the ENERGY RANGE THERMAL to 4 keV

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Larson, Nancy M

    2008-01-01

    Neutron resonance parameters of 232Th were obtained from the Reich-Moore SAMMY analysis of high-resolution neutron transmission measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) by Olsen in 1981, along with the high-resolution neutron capture measurements performed in 2005 at the Geel Linear Accelerator (GELINA, Belgium) by Schillebeeckx and at the n-TOF facility (CERN, Switzerland) by Aerts. The ORELA data were analyzed previously by Olsen with the Breit-Wigner multilevel code SIOB, and the results were used in the ENDF/B-VI evaluation. In the new analysis of the Olsen neutron transmissions by the modern computer code SAMMY, better accuracy is obtained for the resonance parameters by including in the experimental data base the recent experimental neutron capture data. The experimental data base and the method of analysis are described in the report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared to the experimental values. A description is given of the statistical properties of the resonance parameters. The new evaluation results in a decrease in the capture resonance integral and improves the prediction of integral thermal benchmarks.

  9. Temperature-tuned Maxwell-Boltzmann neutron spectra for kT ranging from 30 up to 50 keV for nuclear astrophysics studies.

    PubMed

    Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M

    2012-08-01

    The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced.

  10. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    NASA Astrophysics Data System (ADS)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  11. The Swift/Fermi GRB 080928 from 1 eV to 150 keV

    NASA Technical Reports Server (NTRS)

    Sonbas, Eda; Rossi, A.; Schulze, S.; Klose, S.; Kann, D. A.; Ferrero, P.; NicuesaGuelbenzu, A.; Rau, A.; Kruehler, T.; Greiner, J.; Schady, P.; Afonso, P. M. J.; Clemens, C.; Filgas, R.; KuepcuYoldas, A.; McBreen, S.; Olivares, F.; Szokoly, G.; Yoldas, A.; Krimm, H. A.; Johannesson, G.; Panaitescu, A.; Yuan, F.; Pandey, S. B.; Akerlof, C. W.

    2010-01-01

    We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 08092 was a long burst detected by Swift/BAT and Fermi/GBM, It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. for nearly 100 seconds simultaneous optical X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral propertIes. and set lower limits on the initial Lorentz factor of the relativistic outflow, In particular. we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT. ROTSE-Illa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy injections into the forward shock. Furthermore, we provide evidence that the temporal and spectral evolution of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.

  12. Stochastic spatial energy deposition profiles for MeV protons and keV electrons

    NASA Astrophysics Data System (ADS)

    Udalagama, C.; Bettiol, A. A.; Watt, F.

    2009-12-01

    With the rapid advances being made in novel high-energy ion-beam techniques such as proton beam writing, single-ion-event effects, ion-beam-radiation therapy, ion-induced fluorescence imaging, proton/ion microscopy, and ion-induced electron imaging, it is becoming increasingly important to understand the spatial energy-deposition profiles of energetic ions as they penetrate matter. In this work we present the results of comprehensive yet straightforward event-by-event Monte Carlo calculations that simulate ion/electron propagation and secondary electron ( δ ray) generation to yield spatial energy-deposition data. These calculations combine SRIM/TRIM features, EEDL97 data and volume-plasmon-localization models with a modified version of one of the newer δ ray generation models, namely, the Hansen-Kocbach-Stolterfoht. The development of the computer code DEEP (deposition of energy due to electrons and protons) offers a unique means of studying the energy-deposition/redistribution problem while still retaining the important stochastic nature inherent in these processes which cannot be achieved with analytical modeling. As an example of an application of DEEP we present results that compare the energy-deposition profiles of primary MeV protons and primary keV electrons in polymethymethacrylate. Such data are important when comparing proximity effects in the direct write lithography processes of proton-beam writing and electron-beam writing. Our calculations demonstrate that protons are able to maintain highly compact spatial energy-deposition profiles compared with electrons.

  13. The Angular Distribution of Quiet-time ~20-300 keV Superhalo Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, L.; He, J.; Tu, C. Y.; Pei, Z.

    2014-12-01

    The angular distribution of solar wind superhalo electrons carries important information on the electron acceleration location and scattering in the interplanetary medium. Here we present a comprehensive study of the angular distribution of ~20-300 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet-time periods from 1995 January through 2013 December. For quiet-time intervals, we re-bin the observed electron pitch angle distributions into the outward-traveling and inward-traveling bins, according the direction of interplanetary magnetic field (IMF). The inward-outward anisotropy of superhalo electrons at energy E is defined as A = 2(fout - fin)/(fout + fin), where fout (fin) is the average flux of outward-traveling (inward-traveling) electrons. We find that among all the ~640 quiet-time intervals, ~5% have an A > 0.1 (referred to as "outward events"), ~5% have an A < -0.1 (referred to as "inward events"), and ~90% have an |A| ≤ 0.1 (referred to as "isotropic events"). Isotropic events show no clear correlation with solar wind parameters (nSW, Vsw and Tp), IMF and solar wind turbulence spectrum. Inward and outward events also have no association with the IMF and nSW. But the occurrence ratio of outward (inward) events over all the events, α, roughly decreases (increases) with increasing VSW. Moreover, for outward (inward) events, α roughly increases with ρe/ρTp, where ρTp is the solar wind thermal proton gyroradius that is related to the separation between the turbulence inertial and dissipation ranges. These results suggest that quite-time superhalo electrons are generally isotropic due to the wave-particle interaction in the interplanetary medium; outward-traveling (inward-traveling) superhalo electrons may come from the acceleration occurring beyond (within) 1 AU, probably by CIRs or turbulence. We will also present a case study of several quiet-time electron events with the anisotropy A increasing with the electron energy E.

  14. Measurement of Lα and Lβ1,3,4 fluorescence cross sections of La, Ce, Pr and Nd induced by photons of energies between 7.01 keV and 8.75 keV

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, J.; Miranda, J.

    2016-06-01

    This study presents measurement results of x-ray production cross sections of Lα and Lβ1,3,4 emitted by four lanthanoid elements (La, Ce, Pr and Nd), after irradiation with Kα and Kβ X rays of the elements Co, Ni, Cu, and Zn (covering energies between 7.01 keV and 8.75 keV). Primary x-rays were induced in turn by the irradiation of thick targets of these elements with a beam of x-rays produced by a tube with an Rh anode, operating at 50 kV and 850 μA. The experimental results are compared with theoretical cross sections predicted using known tabulations of photoelectric cross sections. Dirac-Hartree-Slater (DHS) atomic parameters were used for these calculations. An acceptable match between experiment and both sets of tabulated data is found.

  15. Time-Resolved Energy-Dispersive XAFS Station for Wide-Energy Range at SPring-8

    SciTech Connect

    Kato, K.; Uruga, T.; Tanida, H.; Yokota, S.; Imai, Y.; Irie, T.

    2007-01-19

    A time-resolved energy-dispersive XAFS (DXAFS) station has been constructed at the bending magnet beamline BL28B2 at SPring-8 to study the local structural changes of materials during chemical reactions and functional processes. The bending magnet source at SPring-8 has a high photon flux above 50 keV. The purpose of this station is to measure DXAFS spectra in a wide energy range from 7 to 50 keV covering K-edges of lanthanides. Its main components are a polychromator with a bent silicon crystal, a mirror to reject higher harmonics, and a position-sensitive detector (PSD). To correspond to a wide energy range, polychromators for Bragg and Laue geometry were developed for the energy range below and above 12 keV, respectively. The PSD used is CCD coupled with a fluorescent screen and lens system. The fluorescent materials and their thickness were optimized for measurement in the x-ray range. Good quality spectra of Ce K-edge (40.5 keV) were obtained with exposures of 360 ms for the standard samples. The present status of the system and some experimental examples are presented in this report.

  16. Monte Carlo Simulations of Defect Recovery within a 10 keV Collision Cascade in 3C-SiC

    SciTech Connect

    Rong, Zhouwen; Gao, Fei; Weber, William J.

    2007-11-26

    A kinetic lattice Monte Carlo (KLMC) model is developed to investigate the recovery and clustering of defects during annealing of a single 10 keV cascade in cubic silicon carbide. The 10 keV Si cascade is produced by molecular dynamics (MD), and a method of transferring the defects created by MD simulations to the KLMC model is developed. The KLMC model parameters are obtained from molecular dynamics simulations and ab initio calculations of defect migration, recombination and annihilation. The defects are annealed isothermally from 100 K to 1000 K in the KLMC model. Two distinct recovery stages for close Frenkel pairs are observed at about 200 and 550 K, and the growth of complex clusters is observed above 400 K. These simulation results are in good agreement with available experimental results.

  17. A highly stable 30 keV proton accelerator for studies of angular detection efficiency on Si detectors

    NASA Astrophysics Data System (ADS)

    Salas Bacci, Americo; Baessler, Stefan; Carr, Peter; Hefele, Thomas; Pocanic, Dinko; Roane, Nicholas; Ross, Aaron; Slater, R.; Smith, Alexander; Toth, Csaba; Warner, Dane; Zamperini, Shawn; Zotev, Panaiot; Nab experiment Collaboration

    2017-01-01

    The Nab experiment at the SNS measures the electron-neutrino correlation parameter and the Fierz interference term in free neutron beta decay by measuring in coincidence the electron energy and proton momentum in a magnetic spectrometer with two Si detectors. These large area, thick, and 127-hexagonal segmented Si detectors have to be carefully characterized for optimal performance and for control of systematic errors. The angular detection efficiency of 30 keV proton incident on Si is an important part of this studies. We will present the design, simulation, operation, and detection of 30 keV H+ and H2+as well as results to control the beam stability by the correlation of both detected ion signals. At present we have reached beam stability of (1.2 +/-1.3)E-7/sec.

  18. The determination of absolute intensity of 234mPa's 1001 keV gamma emission using Monte Carlo simulation.

    PubMed

    Begy, Robert-Csaba; Cosma, Constantin; Timar, Alida; Fulea, Dan

    2009-05-01

    The 1001 keV gamma line of (234m)Pa became important in gamma spectrometric measurements of samples with (238)U content with the advent of development of HpGe detectors of great dimension and high efficiency. In this study the emission probability of the 1001 keV (Y(gamma)) peak of (234m)Pa, was determined by gamma-ray spectrometric measurements performed on glass with Uranium content using Monte Carlo simulation code for efficiency calibration. This method of calculation was not applied for the values quoted in literature so far, at least to our knowledge. The measurements gave an average of 0.836 +/- 0.022%, a value that is in very good agreement to some of the recent results previously presented.

  19. GRIS detection of Al-26 1809 keV line emission from the Galactic center region as a broad line

    NASA Technical Reports Server (NTRS)

    Naya, Juan E.; Barthelmy, Scott D.; Bartlett, Lyle M.; Gehrels, Neil; Leventhal, Marvin; Parsons, Ann; Teegarden, Bonnard J.; Tueller, Jack

    1997-01-01

    The gamma ray imaging spectrometer (GRIS) was used to observe the 1809 keV emission from the Galactic center region. The observed line is broader than the instrument resolution. The measured intrinsic width is 5.4 +/- 1.4 keV full width half medium, which is more than three times the maximum Doppler broadening expected due to Galactic rotation. The detection of such a wide feature, suggesting a high dispersion velocity has implications for the origin of Galactic Al-26. It suggests a supernova explosion origin or a Wolf-Rayet stellar wind origin of Al-26. The fact that the Al-26 has not come to rest after 10(exp 6) years presents a challenge to the current understanding of the Al-26 production and propagation in the Galaxy.

  20. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chauchat, A.-S.; Brasile, J.-P.; Le Flanchec, V.; Nègre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-01

    In a scope of a collaboration between Thales Communications & Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 μm width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  1. The ratios of emission probabilities of Auger electrons for 3d transition elements at 59,5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The ratios of emission probabilities were determined by using the measured K shell X-ray intensity ratio values for elements from Sc to Zn. For the experimental measurements, the samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The ratios of emission probabilities were denoted as uand v which means p(KLX)/p(KLL) and p(KXY)/p(KLL) respectively. The extracted values from the measured intensity ratios and calculated intensity ratios were compared with the earlier studies. It was found that the ratios of emission probabilities that evaluated from the calculated intensity ratios were agree well with the earlier studies except for Zn.

  2. Experimental investigation of ≈130 keV kinetic energy antiprotons annihilation on nuclei

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Barna, D.; Corradini, M.; Hayano, R.; Hori, M.; Kobayashi, T.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; Soter, A.; Todoroki, K.; Vallazza, E.; Venturelli, L.; Zurlo, N.

    2014-04-01

    MeV. In 2012, the 100 keV region has been investigated for the first time (Aghai-Khozani et al. Eur. Phys. J. Plus 127, 125-128, 2012). We present here the first preliminary results of this experiment.

  3. keV electron heating in laser-cluster interaction probed by X-ray and electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, H.; Wachter, G.; Deiss, C.; Lemell, C.; Burgdörfer, J.; Lamour, E.; Prigent, C.; Ramond, C.; Rozet, J. P.; Steydli, S.; Trassinelli, M.; Vernhet, D.

    2014-04-01

    The interaction of intense laser pulses with nanoscopic rare-gas clusters provides a testing ground for laser-atom interaction at solid-state densities. We investigate the driven electronic dynamics on the femtosecond time scale both experimentally and theoretically using two complementary observables: the laser intensity dependence of characteristic X-ray emission and of high-energy (keV) electron spectra.

  4. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Patterson, J. R.; Regan, S. P.

    2013-10-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (~13 keV) radiation, consistent with theoretical predictions. This is ~10 × greater than previous work. The emission was produced from a 4.1 mm diameter, 4 mm tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the NIF laser beams deposited ~700 kJ of 3 ω light into the target in a ~140 TW, 5.0 ns duration square pulse. This laser configuration sufficiently heated the targets to optimize the K-shell x-ray emission. The Dante diagnostics measured ~5 TW into 4 π solid angle of >=12 keV x rays for ~4 ns, which includes both continuum emission and flux in the Kr Heα line at 13 keV. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Defense Threat Reduction Agency under the intera- gency agreements 10027-1420 and 10027-6167.

  5. GALAXY CLUSTERS IN THE SWIFT/BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV

    SciTech Connect

    Ajello, M.; Reimer, O.; Rebusco, P.; Cappelluti, N.; Boehringer, H.; La Parola, V.; Cusumano, G.

    2010-12-20

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/Burst Alert Telescope (BAT) all-sky survey. Among the newly BAT-discovered clusters there are Bullet, A85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters, we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters' emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and A3667), we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law-like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For A3667, the excess emission can be successfully modeled as a hot component (kT {approx} 13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely a thermal origin.

  6. THE X-RAY LINE FEATURE AT 3.5 KeV IN GALAXY CLUSTER SPECTRA

    SciTech Connect

    Phillips, K. J. H.; Sylwester, B.; Sylwester, J. E-mail: bs@cbk.pan.wroc.pl

    2015-08-10

    Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema and Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectral resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.

  7. FLUKA and PENELOPE simulations of 10 keV to 10 MeV photons in LYSO and soft tissue

    NASA Astrophysics Data System (ADS)

    Chin, M. P. W.; Böhlen, T. T.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Sala, P. R.

    2014-02-01

    Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or over-estimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 keV sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemented to account for the momentum of shell electrons.

  8. Galaxy Clusters in the Swift/BAT era II: 10 more Clusters detected above 15 keV

    SciTech Connect

    Ajello, M.; Rebusco, P.; Cappelluti, N.; Reimer, O.; Boehringer, H.; La Parola, V.; Cusumano, G.; /Palermo Observ.

    2010-10-27

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/BAT all-sky survey. Among the newly BAT-discovered clusters there are: Bullet, Abell 85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and Abell 3667) we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For Abell 3667 the excess emission can be successfully modeled as a hot component (kT = {approx}13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely thermal origin.

  9. Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters

    SciTech Connect

    Farzan, Yasaman; Akbarieh, Amin Rezaei E-mail: am_rezaei@physics.sharif.ir

    2014-11-01

    We present a Vector Dark Matter (VDM) model that explains the 3.5 keV line recently observed in the XMM-Newton observatory data from galaxy clusters. In this model, dark matter is composed of two vector bosons, V and V', which couple to the photon through an effective generalized Chern-Simons coupling, g{sub V}. V' is slightly heavier than V with a mass splitting m{sub V'} – m{sub V} ≅ 3.5 keV. The decay of V' to V and a photon gives rise to the 3.5 keV line. The production of V and V' takes place in the early universe within the freeze-in framework through the effective g{sub V} coupling when m{sub V'} < T < Λ, Λ being the cut-off above which the effective g{sub V} coupling is not valid. We introduce a high energy model that gives rise to the g{sub V} coupling at low energies. To do this, V and V' are promoted to gauge bosons of spontaneously broken new U(1){sub V} and U(1){sub V'} gauge symmetries, respectively. The high energy sector includes milli-charged chiral fermions that lead to the g{sub V} coupling at low energy via triangle diagrams.

  10. Range Reference Notebook

    DTIC Science & Technology

    2006-10-15

    rifle grenade (inert), tin can lid, 15” tent peg 3 Table FRD-7. Fort Ritchie Sector 3 Representative Examples of Non-MEC Clutter Description 1/2...Appendix B—Indirect Fire Range Examples SITES ( ADI ) Adak Naval Air Facility, AK, Mitt Lake Mortar Range (FRI) Fort Ritchie...example range. B- ADI -1 Indirect-Fire Range,: Adak, AK, Mitt Lake Mortar Range Impact Area Site-Specific References – Adak NAF Foster Wheeler

  11. A Long-Range Precision Ranging System

    NASA Technical Reports Server (NTRS)

    Easterling, Mahlon

    1961-01-01

    A technique is presented that may be used for precision real-time continuous range measuring at long ranges. The technique uses a carrier that is phase modulated by a pseudo-random binary sequence. The characteristics of the sequence that make it acquirable are discussed. The general form of a receiver capable of tracking the carrier is given and is shown to be a kind of phase-locked loop. A two-loop system capable of tracking a pseudo-random sequence and its clock is given. The combination of the receiver and the sequence tracking system form a ranging receiver. The power division necessary between the carrier and the sidebands is shown to be determined by the noise bandwidths of the two tracking systems. The bandwidths necessary for tracking space probes and Earth satellites are given and some experiments in radar-tracking Earth satellites are described. Based on these experiments, estimates are made of the useful range of such a system in tracking space probes.

  12. Dependence of Cell Survival on Iododeoxyuridine Concentration in 35-keV Photon-Activated Auger Electron Radiotherapy

    SciTech Connect

    Dugas, Joseph P.; Varnes, Marie E.; Sajo, Erno; Welch, Christopher E.; Ham, Kyungmin; Hogstrom, Kenneth R.

    2011-01-01

    Purpose: To measure and compare Chinese hamster ovary cell survival curves using monochromatic 35-keV photons and 4-MV x-rays as a function of concentration of the radiosensitizer iododeoxyuridine (IUdR). Methods and Materials: IUdR was incorporated into Chinese hamster ovary cell DNA at 16.6 {+-} 1.9%, 12.0 {+-} 1.4%, and 9.2 {+-} 1.3% thymidine replacement. Cells were irradiated from 1 to 8 Gy with 35-keV synchrotron-generated photons and conventional radiotherapy 4-MV x-rays. The effects of the radiation were measured via clonogenic survival assays. Surviving fraction was plotted vs. dose and fit to a linear quadratic model. Sensitization enhancement ratios (SER{sub 10}) were calculated as the ratio of doses required to achieve 10% surviving fraction for cells without and with DNA-incorporated IUdR. Results: At 4 MV, SER{sub 10} values were 2.6 {+-} 0.1, 2.2 {+-} 0.1, and 1.5 {+-} 0.1 for 16.6%, 12.0%, and 9.2% thymidine replacement, respectively. At 35 keV, SER{sub 10} values were 4.1 {+-} 0.2, 3.0 {+-} 0.1, and 2.0 {+-} 0.1, respectively, which yielded SER{sub 10} ratios (35 keV:4 MV) of 1.6 {+-} 0.1, 1.4 {+-} 0.1, and 1.3 {+-} 0.1, respectively. Conclusions: SER{sub 10} increases monotonically with percent thymidine replacement by IUdR for both modalities. As compared to 4-MV x-rays, 35-keV photons produce enhanced SER{sub 10} values whose ratios are linear with percent thymidine replacement and assumed to be due to Auger electrons contributing to enhanced dose to DNA. Although this Auger effectiveness factor is less than the radiosensitization factor of IUdR, both could be important for the clinical efficacy of IUdR radiotherapy.

  13. Passive infrared ranging

    NASA Astrophysics Data System (ADS)

    Leonpacher, N. K.

    1983-12-01

    The range of an infrared source was estimated by analyzing the atmospheric absorption by CO2 in several wavelength intervals of its spectrum. These bandpasses were located at the edge of the CO2 absorption band near 2300 1/cm (4.3 micron). A specific algorithm to predict range was determined based on numerous computer generated spectra. When tested with these spectra, range estimates within 0.8 km were obtained for ranges between 0 and 18 km. Accuracy decreased when actual source spectra were tested. Although actual spectra were available only for ranges to 5 km, 63% of these spectra resulted in range estimates that were within 1.6 km of the actual range. Specific spectral conditions that affected the range predictions were found. Methods to correct the deficiencies were discussed. Errors from atmospheric variations, and the effects of background noise, were also investigated. Limits on accuracy and range resolution were determined.

  14. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  15. Tau ranging revisited

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1987-01-01

    It is shown that a ranging receiver with a sufficient and reasonable number of correlators is competitive with the current sequential component ranging system by some 1.5 to 2.5 dB. The optimum transmitter code, the optimum receiver, and a near-maximum-lilelihood range-estimation algorithm are presented.

  16. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  17. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  18. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  19. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    SciTech Connect

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; He, Jiansen; Tu, Chuanyi; Li, Gang; Salem, Chadi S.; Bale, Stuart D.; Wimmer-Schweingruber, Robert F.

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl and halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)

  20. Motion of 3-6 keV Nonthermal Sources Along the Legs of a Flare Loop

    NASA Technical Reports Server (NTRS)

    Sui, Linhui; Holman, Gordon D.; Dennis, Brian R.

    2007-01-01

    Observations of nonthermal X-ray sources me critical to studying electron acceleration and transport in solar flares. Strong thermal emission radiated from the preheated plasma before the flare impulsive phase often makes it difficult to detect low-energy X-ray sources that are produced by relatively low-energy nonthermal electrons. Knowledge of the distribution of these low-energy nonthermal electrons is particularly important in determining the total nonthermal electron energy in solar flares. We report on an 'early impulsive flare' in which impulsive hard X-ray emission was seen early in the flare before the soft X-ray emission had risen significantly, indicating limited plasma pre-heating. Early in the flare, RHESSI < 25 keV images show coronal sources that moved first downward and then upwards along the legs of a flare loop. In particular, the 3-6 keV source appeared as a single coronal source at the start of the flare, and then it involved into two coronal sources moving down along the two legs of the loop. After nearly reaching the two footpoints at the hard X-ray peak, the two sources moved back up to the looptop again. RHESSI images and light curves all indicate that nonthermal emission dominated at energies as low as 3-6 keV. We suggest that the evolution of both the spectral index and the low-energy cutoff of the injected electron distribution could result in the accelerated electrons reaching a lower altitude along the legs of the dense flare loop and hence result in the observed downward and upward motions of the nonthermal sources.

  1. Channel electron multiplier efficiency for protons of 0.2-10 keV.

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Mcgarity, J. O.

    1971-01-01

    The initial results of absolute proton efficiency measurements made in an auroral particle study by sounding rockets are given. The measurements were made at several counting rates from 1000 to 40,000 counts/sec on rocket-borne equipment. The results agree with those of Egidi et al. (1969) in the high energy range and show a disagreement at low energies.

  2. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  3. On the source of the 5-55 keV Heliosphere ENAs measured with Cassini/INCA

    NASA Astrophysics Data System (ADS)

    Dialynas, Konstantinos; Roelof, Edmond; Mitchell, Donald; Krimigis, Stamatios; Decker, Robert

    2016-07-01

    The Low Energy Charged Particle (LECP) in situ measurements from V1 and V2 have revealed a reservoir of ions and electrons that constitute the heliosheath (HS) after crossing the termination shock (TS) 35deg north and 32deg south of the ecliptic plane at 94 and 84 astronomical units (1 AU= 1.5 x10 ^{8} km), respectively. The outer Heliosphere boundary, the Heliopause (HP), has now been determined in the direction of V1 to be at ˜122 AU. The in situ measurements by each Voyager were placed in a global context by remote sensing images using ENA obtained with the Ion and Neutral Camera (INCA) onboard Cassini orbiting Saturn. The ENA images have revealed a 5.2-55 keV hydrogen (H) ENA region (Belt) that loops through the celestial sphere and contributes to balancing the pressure of the interstellar magnetic field (ISMF). Here we address one of the remaining and most important questions: Where do the 5-55 keV ENAs that INCA measures come from? We analyzed INCA all-sky maps from 2003 to 2015 and compare the solar cycle (SC) variation of the ENAs in both the nose (upstream) and anti-nose (downstream) directions with the intensities of > 30 keV ions (source of ENA through charge exchange-CE with H) measured in-situ by V1 and V2, in overlapping energy bands ˜30-55 keV. ENA intensities decrease during the declining phase of SC23 by ˜x3 from 2003 to 2011 but recover through 2014 (SC24); similarly, V1 and V2 ion intensities also decrease and then recover through 2014. The similarity of time profiles of remotely sensed ENA and locally measured ions are consistent with (a) ENA originating in the HS, and (b) the global HS responding promptly (within ˜1-1.5 years) to outward-propagating solar wind changes throughout the SC. Further, recovery of the Belt during SC24 precedes asymmetrically from south to north in the general direction of the nose. This may be related to the non-symmetric evolution of solar coronal holes during SC recovery.

  4. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  5. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3 p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  6. Compact, rugged in-chamber transmission spectrometers (7-28 keV) for the Sandia Z facility.

    PubMed

    Sinars, D B; Wenger, D F; Pikuz, S A; Jones, B; Geissel, M; Hansen, S B; Coverdale, C A; Ampleford, D J; Cuneo, M E; McPherson, L A; Rochau, G A

    2011-06-01

    We describe a pair of time-integrated transmission spectrometers that are designed to survey 7-28 keV (1.9 to 0.43 Å) x-ray photons produced by experiments on the Sandia Z pulsed power facility. Each spectrometer uses a quartz 10-11 crystal in a Cauchois geometry with a slit to provide spatial resolution along one dimension. The spectrometers are located in the harsh environment of the Z vacuum chamber, which necessitates that their design be compact and rugged. Example data from calibration tests and Z experiments are shown that illustrate the utility of the instruments.

  7. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    SciTech Connect

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  8. Calculation of angular distribution of 662 keV gamma rays by Monte Carlo method in copper medium.

    PubMed

    Kahraman, A; Ozmutlu, E N; Gurler, O; Yalcin, S; Kaynak, G; Gundogdu, O

    2009-12-01

    This paper presents results on the angular distribution of Compton scattering of 662 keV gamma photons in both forward and backward hemispheres in copper medium. The number of scattered events graph has been determined for scattered gamma photons in both the forward and backward hemispheres and theoretical saturation thicknesses have been obtained using these results. Furthermore, response function of a 51 x 51 mm NaI(Tl) detector at 60 degrees angle with incoming photons scattered from a 10mm thick copper layer has been determined using Monte Carlo method.

  9. Development of a stacked detector system for the x-ray range and its possible applications

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  10. Low energy (10eV to 10 keV) equatorial particle fluxes and soft particle fluxes near the equator

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Heikkila, W. J.

    1974-01-01

    Several spectra are shown that represent one rotation of ISIS-1. Spectra 1, 2, 3, represent particles moving down the field line into northern ionosphere and spectra 4, 5, 6 represent particles moving up field lines towards the magnetic equator. The former are direct fluxes and the latter are albedo fluxes. The spectra observed are remarkably similar to these observed in the auroral zone. The direct fluxes exhibit a relative maximum in the few keV range and the albedo a power low spectrum with increased fluxes at low energies. Examination of concurrent topside sounder data on ISIS-1 revealed a positive correlation between a region of turbulent ionosphere and particle fluxes. This ionospheric condition is referred to as equatorial spread F and has been studied extensively with bottomside ionospheric sounders and backscatter radars. The perigee of ISIS crossed the magnetic equator at four local times (0400, 1000, 1600, 2100) during the lifetime of the particle spectrometer. No fluxes were observed at 0400 and 1000 local time. At 1600 a few instances of particles were observed. At 2100 essentially all passes included detectable equatorial fluxes. This is in agreement with the frequency of occurence of equatorial spread F.

  11. Modelling Neutron-induced Reactions on 232-237U from 10 keV up to 30 MeV

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2017-01-01

    Comprehensive calculations of cross sections for neutron-induced reactions on 232-237U targets are performed in the 10 keV-30 MeV incident energy range with the code EMPIRE-3.2 Malta. The advanced modelling and consistent calculation scheme are aimed at improving our knowledge of the neutron scattering and emission cross sections, and to assess the consistency of available evaluated libraries for light uranium isotopes. The reaction model considers a dispersive optical potential (RIPL 2408) that couples from five (even targets) to nine (odd targets) levels of the ground-state rotational band, and a triple-humped fission barrier with absorption in the wells described within the optical model for fission. A modified Lorentzian model (MLO) of the radiative strength function and Enhanced Generalized Superfluid Model nuclear level densities are used in Hauser-Feschbach calculations of the compound-nuclear decay that include width fluctuation corrections. The starting values for the model parameters are retrieved from RIPL. Excellent agreement with available experimental data for neutron emission and fission is achieved, giving confidence that the quantities for which there is no experimental information are also accurately predicted. Deficiencies in existing evaluated libraries are highlighted.

  12. Local structures of electrons with energies of hundreds of keV in the inner belt and the slot region observed from the Vernov satellite

    NASA Astrophysics Data System (ADS)

    Kovtyukh, A. S.; Myagkova, I. N.; Bogomolov, A. V.; Bogomolov, V. V.; Panasyuk, M. I.; Svertilov, S. I.

    2016-11-01

    The structure and dynamics of electron fluxes of subrelativistic energies in the range 235-300 keV at L < 4 during December 3-8, 2014, are analyzed according to the RELEC instrument onboard the Vernov satellite. Sharp changes in the parameters of the solar wind and the IMF were detected on December 6, but they did not lead to a magnetic storm. However, after the event of December 6, subrelativistic electron fluxes in the inner belt and the slot region were enhanced and structured. The dynamics of electron fluxes in the local transient bursts at L 1.5-1.7 is considered in detail. It is shown that these bursts are associated with the development of the cyclotron instability in the tops of magnetic flux tubes near the inner belt maximum. The electron anisotropic index is estimated in these bursts. It is shown that in the beginning these bursts are anisotropic and that they become isotropic as the decay proceeds. The most likely chain of physical mechanisms that could lead to variations in electron fluxes of the inner belt described in this paper is presented. For the first time, the topological effects in stationary distributions of the electrons of the inner belt observed at low altitudes in the South Atlantic Anomaly region are explained.

  13. Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2014-07-15

    The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.

  14. Time differential 57Fe Mössbauer spectrometer with unique 4π YAP:Ce 122.06 keV gamma-photon detector

    NASA Astrophysics Data System (ADS)

    Novak, Petr; Pechousek, Jiri; Prochazka, Vit; Navarik, Jakub; Kouril, Lukas; Kohout, Pavel; Vrba, Vlastimil; Machala, Libor

    2016-10-01

    This paper presents a conceptually new design of the 57Fe Time Differential Mössbauer Spectrometer (TDMS) with the gamma-photon detector optimized for registration of a radiation emitted in a maximum solid angle. A high detection efficiency of 80% in 4π region was achieved for 122.06 keV photons emitted from 57Co source. Detector parameters have been optimized for the use in the Time Differential Mössbauer Spectroscopy where the high time resolution in range of 176-200 ns is highly required. Technical concept of the TDMS is based on the virtual instrumentation technique and uses fast digital oscilloscope. Performance and detector utilization have been clarified by decreasing the Mössbauer spectral line-width of K2MgFe(CN)6 reference sample from 0.33 mm/s (integral mode) to 0.23 mm/s (time differential mode). This report also describes characterization and utilization of the detector together with additional electronic blocks and two-channel fast data-acquisition system construction.

  15. Partial-ionization cross sections of a CO{sub 2} molecule due to impact of 10-26-keV electrons

    SciTech Connect

    Bhatt, Pragya; Singh, Raj; Yadav, Namita; Shanker, R.

    2010-10-15

    Experimental data on total- and partial-ionization cross sections of ionic fragments of CO{sub 2} molecule produced by impact of 10-26-keV electrons are obtained on a crossed-beam apparatus in our laboratory. An ejected electron-produced ion-coincidence technique is employed together with a time-of-flight mass spectrometer for analysis of the ions. The six ionic fragments, CO{sub 2}{sup +}, CO{sup +}, CO{sub 2}{sup 2+}, O{sup +}, C{sup +}, and C{sup 2+}, resulting from dissociative ionization of the CO{sub 2} molecule are observed and identified; their relative ionization cross sections and branching ratios are determined as a function of impact energy. The binary-encounter Bethe model is found to overestimate the experimental data for total-ionization cross sections of the observed ions. No other experimental or theoretical data exist in the investigated energy range to make a direct comparison with the present results.

  16. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    SciTech Connect

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.; Sabo, S.E.

    1995-12-31

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases with dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.

  17. Subattosecond keV beats of the high-harmonic x-ray field produced with few-cycle mid-IR laser pulses: Magnetic-field effects

    NASA Astrophysics Data System (ADS)

    Emelina, A. S.; Emelin, M. Yu.; Ryabikin, M. Yu.

    2016-04-01

    Using the theoretical description beyond the dipole approximation, we examine the impact of the electron magnetic drift caused by a strong midinfrared laser field on the feasibility and ultimate limitations of the method proposed recently [C. Hernández-García et al., Phys. Rev. Lett. 111, 033002 (2013), 10.1103/PhysRevLett.111.033002] as a route to the generation of zeptosecond x-ray waveforms; this method relies on the interference of high-harmonic emission from multiple reencounters of the electron wave packet with the ion. We show that the electron magnetic drift serves as the spectral filter changing the relative weights of the contributions to the high-harmonic signal from different rescattering events. For a range of driving wavelengths in the midinfrared, the use of the control of the carrier-envelope phase, occasionally in combination with the spectral filtering, to cope with the magnetic drift effect is shown to facilitate the production of intense high-contrast keV beats of durations shorter than 0.8 attosecond. The limitations on the laser wavelengths usable for implementing this approach are determined by the growing unamendable imbalance between the contributions of interfering paths and by an overall decline in the efficiency of high-harmonic generation at longer driving wavelengths.

  18. Low altitude emission of ring current ENA’s spanning 1-100 keV as observed by IMAGE and TWINS: Select case studies

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Goldstein, J.; Jahn, J.; Pollock, C. J.; Redfern, J.

    2009-12-01

    Ring current ion precipitation during the main phase of geomagnetic storms plays a role in magnetosphere/ionosphere/thermosphere coupling. This precipitation can be a regionally dominant source of energy deposition and ionization in Earths’ upper atmosphere. Charge exchange between ring current ions spiraling into the high latitude upper atmosphere and terrestrial neutral constituents produces a non-isotropic distribution of escaping Energetic Neutral Atoms (ENA). ENA’s produced in such a manner are no longer tied to the magnetic field, and can therefore be observed remotely by orbiting platforms. Those ENAs emitted from altitudes of several hundred km at ring current and/or plasma sheet magnetic footpoints often form very bright signatures, and have been referred to as Low Altitude Emissions (LAE). In this study we will build on previous work in detecting LAE signatures in the IMAGE/MENA dataset. The algorithm used in the MENA study will be modified to detect LAE signatures in IMAGE/HENA and TWINS images over an energy range covering roughly 1-100 keV. The study will initially be limited to detections using hydrogen ENA’s, with the option to expand into oxygen in future work. The operational epochs of the IMAGE and TWINS platforms allow the opportunity to select interesting periods of geomagnetic activity over most of one solar cycle to use as case studies, focusing on the relationship of LAE’s to geomagnetic storms.

  19. Results of total cross section measurements for 197Au in the neutron energy region from 4 to 108 keV at GELINA

    NASA Astrophysics Data System (ADS)

    Sirakov, I.; Becker, B.; Capote, R.; Dupont, E.; Kopecky, S.; Massimi, C.; Schillebeeckx, P.

    2013-11-01

    Transmission measurements have been performed to determine the total cross section for neutron-induced reactions with 197Au in the energy region from 4keV to 108keV. The experiments were carried out at a 50m measurement station of the time-of-flight facility GELINA using a 6Li glass scintillator. The average total cross section as a function of neutron energy was derived after correcting the observed average transmission for cross section fluctuations due to resonance structures. The results have been compared with literature data and with the total cross section resulting from a dispersive coupled-channel optical model potential. The neutron strength function for s -wave neutrons and an orbital-independent scattering radius, together with their covariance matrix, have been derived in the neutron energy region between 4keV and 108keV through a parameterization of the total cross section based on a nuclear reaction theory.

  20. Compressive laser ranging.

    PubMed

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  1. Silicon drift chamber with extended energy range

    NASA Astrophysics Data System (ADS)

    Labanti, Claudio; Dal Fiume, Daniele; Fiorini, Carlo; Longoni, Antonio; Mauri, Alessandro; Perotti, Francesco; Rossi, Elio; Stephen, John B.

    2000-12-01

    The requirement for future X-ray Astronomy instrumentation to exhibit a combination of good energy resolution and an extended energy range may be fulfilled by the development of a X ray detectors made from coupling a Silicon Drift Chamber (SDC), to a scintillation crystal. We report on such a detector made with an SDC of 3 mm diameter and using a Caesium Iodide [CsI(Tl)] scintillator. The radiation input window is located on the Si side of the assembly so than soft X-rays are directly detected by the SDC. This allows a minimum threshold of about 1 keV at 0 degrees Celsius to be obtained. The Silicon Drift Chamber acts also as a photodiode able to detect the scintillation light produced by the CsI(Tl), thus extending the energy range of such a device up to some MeV. The discrimination of events between these two detection layers is performed by using a pulse shape discriminator in order to differentiate between the different rise times of the collected charge. The detector concept is discussed on the basis of the results already achieved and the future developments foreseen.

  2. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  3. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  4. Is there evidence for a 17 keV neutrino in the 35S β spectrum? The case of Ohi et al.

    NASA Astrophysics Data System (ADS)

    Simpson, J. J.

    1986-06-01

    It is shown that there is a threshold 17 keV below the end point of the β spectrum of 35S in the published work of Ohio et al. The distortion of the Kurie plot is consistent with that seen in the 3H β spectrum, strengthening the earlier suggestion that the distortion is due to the emission of a neutrino of mass 17 keV.

  5. Operational Studies of the 10 keV Electron Storage Ring UMER

    SciTech Connect

    Bernal, S.; Sutter, D.; Cornacchia, M.; Beaudoin, B.; Haber, I.; Kishek, R. A.; Reiser, M.; Wu, C.; O'Shea, P. G.

    2009-01-22

    The University of Maryland Electron Ring (UMER) is now operational. UMER can operate with currents from 0.6 mA to 100 mA, ranging from the emittance dominated to the heavily space charge dominated regimes. Multiple turns have been achieved at all operating currents, from 250 turns at 0.6 mA to about 12 turns at 100 mA, but not yet optimized for operation above 25 mA. Machine development in the past year has been on understanding the single particle behavior in order to establish a strong basis for studying the effects of space charge. The effect of the earth's field has been studied and compensation implemented. Basic machine parameters such as the tune, equilibrium orbit, chromaticity and dispersion have been measured over a range of currents. We report here on these measurements and corresponding simulations.

  6. Measurement of the -3 keV resonance in the 13C(α,n)16O reaction and its influence on the synthesis of s-process nuclei

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2012-11-01

    The 13C(α,n)16O reaction is the neutron source for the main component of the s-process, responsible of the production of most nuclei in the mass range 90 < A < 204. It is active inside the helium-burning shell in asymptotic giant branch stars, at temperatures < 108 K, corresponding to an energy interval where the 13C(α,n)16O is effective of 140 - 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O, giving rise to a steep increase of the S-factor. Notwithstanding that it plays a crucial role in astrophysics, no direct measurements exist. Therefore, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d quasi-free reaction to achieve an experimental estimate of such contribution. For the first time, the ANC for the 6.356 MeV level has been deduced through the THM as well as the n-partial width, allowing to attain an unprecedented accuracy in the 13C(α,n)16O study. Though a larger ANC for the 6.356 MeV level is measured, our experimental S(E) factor agrees with the most recent extrapolation in the literature in the 140 - 230 keV energy interval, the accuracy being greatly enhanced thanks to this innovative approach.

  7. Presence of neutrons in the low-level background environment estimated by the analysis of the 595.8 keV gamma peak

    NASA Astrophysics Data System (ADS)

    Anđelić, Brankica; Knežević, David; Jovančević, Nikola; Krmar, Miodrag; Petrović, Jovana; Toth, Arpad; Medić, Žarko; Hansman, Jan

    2017-04-01

    In order to explore possible improvements of the existing techniques developed to estimate the neutron fluence in low-background Ge-spectroscopy systems, gamma spectra were collected by a HPGe detector in the presence of the 252Cf spontaneous fission neutron source. The spectra were taken with and without a Cd envelope on the detector dipstick, with different thicknesses of plastic used to slow down neutrons. We have analyzed the complex 595.8 keV gamma peak, as well as several more gamma peaks following the neutron interactions in the detector itself and surroundings materials. The investigation shows that some changes of the initial neutron spectra can be monitored by the analysis of the 595.8 keV gamma peak. We have found good agreement in the intensity changes between the long-tail component of the 595.8 keV and the 691 keV gamma peak (72Ge(n,n‧)72Ge reaction), usually used for the estimation of the fast neutron fluence. Results also suggest that the thermal neutrons can have a stronger influence on creation of the Gaussian-like part of 595.8 keV peak, than on the 139 keV one following 74Ge(n,γ)75mGe reaction and used in the standard methods (Škoro et al., 1992) [8] for determination of the thermal neutron flux.

  8. First direct high-precision energy determination for the 8.4 and 20.7 keV nuclear transitions in 169Tm

    NASA Astrophysics Data System (ADS)

    Inoyatov, A. Kh.; Kovalík, A.; Filosofov, D. V.; Ryšavý, M.; Perevoshchikov, L. L.; Gurov, Yu. B.

    2015-06-01

    Energies of 8410.1 ± 0.4, 20743.9 ± 0.3, and 63121.6 ± 1.2 eV were determined for the 8.4 keV M1 + E2, 20.7 keV M1 + E2, and 63.1 keV E1 nuclear transitions in 169Tm (generated in the EC decay of 169Yb, respectively, by means of the internal conversion electron spectroscopy. The 169Yb sources used were prepared by vacuum evaporation deposition on polycrystalline carbon and platinum foils as well as by ion implantation at 30keV into a polycrystalline aluminum foil. The relevant conversion electron spectra were measured by a high-resolution combined electrostatic electron spectrometer at 7 eV instrumental resoluition. Values of 0.0326(14) and 0.0259(17) were derived from our experimental data for the E2 admixture parameter |δ ( E2/ M1)| for the 8.4 and 20.7 keV transitions, respectively. A possible effect of nuclear structure on multipolarity of the 20.7 keV transition was also investigated.

  9. Agriculture, Forestry, Range Resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J., Jr.

    1973-01-01

    Significant results obtained from ERTS-1 observations of agriculture, forestry, and range resources are summarized. Four major parts are covered: (1) crop classification and mensuration; (2) timber and range resources survey and classification; (3) soil survey and mapping; and (4) subdiscipline areas.

  10. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.

  11. Long Range Facilities Planning

    DTIC Science & Technology

    1982-04-01

    Richard Muther range facilities Many alterna- analysis indi- cated that if NASSCO ever expected to surpass its output of the last several years, current...Marine Engineers (SNAME) SP-1 Panel Meeting. The Maritime Administration had Richard Muther (an authority on long range facility planning) address a

  12. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  13. Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.

    2015-11-01

    High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic

  14. ENHANCEMENT OF THE 6.4 keV LINE IN THE INNER GALACTIC RIDGE: PROTON-INDUCED FLUORESCENCE?

    SciTech Connect

    Nobukawa, K. K.; Nobukawa, M.; Tsuru, T. G.; Tanaka, T.; Koyama, K.; Uchiyama, H.; Torii, K.; Fukui, Y.; Chernyshov, D. O.; Dogiel, V. A.

    2015-07-01

    A common idea for the origin of the Galactic diffuse X-ray emission, particularly that of the iron lines from neutral and highly ionized atoms, is a superposition of many cataclysmic variables and coronally active binaries. In this scenario, the flux should symmetrically distribute between the east and west on the plane with respect to Sagittarius A* because the stellar mass distribution determined by infrared observations is nearly symmetric. This symmetry is confirmed for the highly ionized iron line as well as the continuum emission. However, a clear excess of the neutral iron line in the near east of the Galactic center compared to the near-west side is found. The flux distribution of the excess emission well correlates with the molecular column density. The X-ray spectrum of the excess emission is described by a power-law continuum plus a 6.4 keV line with a large equivalent width of ∼1.3 keV, which is hardly explained by the low-energy electron bombardment scenario. The longitudinal and latitudinal distribution of the excess emission disfavors the X-ray irradiation, either by Sagittarius A* or by nearby X-ray binaries. Then, the low-energy proton bombardment is the most probable origin, although the high-energy density ∼80 eV cm{sup −3} in 0.1–1000 MeV is required and there is no conventional proton source in the vicinity.

  15. Strength of the Ec.m.=1113 keV resonance in 20Ne(p,γ)21Na

    NASA Astrophysics Data System (ADS)

    Christian, G.; Hutcheon, D.; Akers, C.; Connolly, D.; Fallis, J.; Ruiz, C.

    2013-09-01

    The 20Ne(p,γ)21Na reaction is the starting point of the NeNa cycle, which is an important process for the production of intermediate mass elements. The Ec.m.=1113 keV resonance plays an important role in the determination of stellar rates for this reaction since it is used to normalize experimental direct capture yields at lower energies. The commonly accepted strength of this resonance, ωγ=1.13±0.07 eV, has been misinterpreted as the strength in the center-of-mass frame when it is actually the strength in the laboratory frame. This has motivated a new measurement of the Ec.m.=1113 keV resonance strength in 20Ne(p,γ)21Na using the DRAGON recoil mass spectrometer. The DRAGON result, 0.972±0.11 eV, is in good agreement with the accepted value when both are calculated in the same frame of reference.

  16. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  17. Sub-second variations of high energy ( 300 keV) hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1986-01-01

    Subsecond variations of hard X-ray emission from solar flares were first observed with a balloon-borne detector. With the launch of the Solar Maximum Mission (SMM), it is now well known that subsecond variations of hard X-ray emission occur quite frequently. Such rapid variations give constraints on the modeling of electron energization. Such rapid variations reported until now, however, were observed at relatively low energies. Fast mode data obtained by the Hard X-ray Burst Spectrometer (HXRBS) has time resolution of approximately 1 ms but has no energy resolution. Therefore, rapid fluctuations observed in the fast-mode HXRBS data are dominated by the low energy hard X-rays. It is of interest to know whether rapid fluctuations are observed in high-energy X-rays. The highest energy band at which subsecond variations were observed is 223 to 1057 keV. Subsecond variations observed with HXRBS at energies greater than 300 keV are reported, and the implications discussed.

  18. The Physical Nature of the Sharp Spectral Feature at 7 keV Detected in 1H0707-495

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    XMM-Newton acquired data on the accepted target, 1H0707-495, on 2002 October 13 during revolution 0521. The observation was successful, with only about 5% data loss due to background flaring. We compared the data from this observation with earlier data taken on this Narrow-Line Seyfert 1 about two years before, performing interpretation studies in the context of the partial-covering model. Our second longer observation once again displays a sharp (< 200 eV) spectral drop above 7 keV. However, in comparison to the first observation, the edge depth and energy have changed significantly. In addition to changes in the edge parameters, the high-energy spectrum appears steeper. The changes in the high-energy spectrum can be adequately explained in terms of a partial-covering absorber out-flowing from the central region. The low-energy spectrum also shows significant long-term spectral variability, including (1) a substantial increase in the disk temperature, (2) detection of an approx. 0.9 keV emission feature, and (3) the presence of ionized absorption that was detected during the ASCA mission. The large increase in disk temperature, and the more modest rise in luminosity, can be understood if we consider a slim-disk model for 1H0707-495. In addition, the higher disk luminosity could be the driving force behind the outflow and the re-appearance of an ionized medium during the second XMM-Newton observation.

  19. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Yan; Ma, Xiao-Yan; Li, Xia; Miao, Xiang-Yang; Jia, Xiang-Fu

    2012-07-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  20. Interactions of neutral and singly charged keV atomic particles with gas-phase adenine molecules

    SciTech Connect

    Alvarado, Fresia; Bari, Sadia; Hoekstra, Ronnie; Schlathoelter, Thomas

    2007-07-21

    KeV atomic particles traversing biological matter are subject to charge exchange and screening effects which dynamically change this particle's effective charge. The understanding of the collision cascade along the track thus requires a detailed knowledge of the interaction dynamics of radiobiologically relevant molecules, such as DNA building blocks or water, not only with ionic but also with neutral species. We have studied collisions of keV H{sup +}, He{sup +}, and C{sup +} ions and H{sup 0}, He{sup 0}, and C{sup 0} atoms with the DNA base adenine by means of high resolution time-of-flight spectrometry. For H{sup 0} and H{sup +} we find qualitatively very similar fragmentation patterns, while for carbon, strong differences are observed when comparing C{sup 0} and C{sup +} impact. For collisions with He{sup 0} and He{sup +} projectiles, a pronounced delayed fragmentation channel is observed, which has not been reported before.

  1. Interaction of 18-keV O{sup -} ions with Al{sub 2}O{sub 3} nanocapillaries

    SciTech Connect

    Sun Guangzhi; Chen Ximeng; Wang Jun; Chen Yifeng; Xu Junkui; Zhou Chunlin; Shao Jianxiong; Cui Ying; Ding Baowei; Yin Yongzhi; Wang Xinan; Lou Fengjun; Lv Xueyang; Qiu Xiyu; Jia Juanjuan; Chen Lin; Xi Fayuan; Chen Zichun; Li Lanting; Liu Zhaoyuan

    2009-05-15

    The transmission of 18-keV O{sup -} ions through Al{sub 2}O{sub 3} nanocapillaries with 50 nm in diameter and 12 {mu}m in length is studied in this work. By measuring angular distribution of transmitted particles when capillaries were tilted with respect to incident ion beam, two peaks were observed. It is distinguished that one of them is composed by direct transmitted ions and another one is composed by scattered ions. A phenomenon referred to as guiding effect, as found for highly charged ions and low-energy electrons, was observed. When negative ions (18-keV O{sup -}) are transmitted through nanocapillaries, most of them were ionized to neutral atoms and even positive ions. The intensity of transmitted particles (O{sup -}, O{sup 0}, and O{sup +}) decreased when the tilt angle increased. In transmitted particles, the fraction of O{sup -} declined but that of O{sup 0} and O{sup +} ions grew when the tilt angle grew. Both elastic collision and electrostatic scattering were found in scattered ions.

  2. Enhancement of the 6.4 keV Line in the Inner Galactic Ridge: Proton-induced Fluorescence?

    NASA Astrophysics Data System (ADS)

    Nobukawa, K. K.; Nobukawa, M.; Uchiyama, H.; Tsuru, T. G.; Torii, K.; Tanaka, T.; Chernyshov, D. O.; Fukui, Y.; Dogiel, V. A.; Koyama, K.

    2015-07-01

    A common idea for the origin of the Galactic diffuse X-ray emission, particularly that of the iron lines from neutral and highly ionized atoms, is a superposition of many cataclysmic variables and coronally active binaries. In this scenario, the flux should symmetrically distribute between the east and west on the plane with respect to Sagittarius A* because the stellar mass distribution determined by infrared observations is nearly symmetric. This symmetry is confirmed for the highly ionized iron line as well as the continuum emission. However, a clear excess of the neutral iron line in the near east of the Galactic center compared to the near-west side is found. The flux distribution of the excess emission well correlates with the molecular column density. The X-ray spectrum of the excess emission is described by a power-law continuum plus a 6.4 keV line with a large equivalent width of ˜1.3 keV, which is hardly explained by the low-energy electron bombardment scenario. The longitudinal and latitudinal distribution of the excess emission disfavors the X-ray irradiation, either by Sagittarius A* or by nearby X-ray binaries. Then, the low-energy proton bombardment is the most probable origin, although the high-energy density ˜80 eV cm-3 in 0.1-1000 MeV is required and there is no conventional proton source in the vicinity.

  3. Ruling out the light weakly interacting massive particle explanation of the Galactic 511 keV line

    NASA Astrophysics Data System (ADS)

    Wilkinson, Ryan J.; Vincent, Aaron C.; BÅ`hm, Céline; McCabe, Christopher

    2016-11-01

    Over the past few decades, an anomalous 511 keV gamma-ray line has been observed from the center of the Milky Way. Dark matter (DM) in the form of light (≲10 MeV ) weakly interacting massive particles (WIMPs) annihilating into electron-positron pairs has been one of the leading hypotheses of the observed emission. Given the small required cross section, ⟨σ v ⟩˜1 0-30 cm3 s-1 , a further coupling to lighter particles is required to produce the correct relic density. Here, we derive constraints from the Planck satellite on light WIMPs that were in equilibrium with either the neutrino or electron sector in the early universe. For the neutrino sector, we obtain a lower bound on the WIMP mass of 4 MeV for a real scalar and 10 MeV for a Dirac fermion DM particle, at 95% C.L. For the electron sector, we find even stronger bounds of 7 and 11 MeV, respectively. Using these results, we show that, in the absence of additional ingredients such as dark radiation, the light thermally produced WIMP explanation of the 511 keV excess is strongly disfavored by the latest cosmological data. This suggests an unknown astrophysical or more exotic DM source of the signal.

  4. Measurement of the Erc .m .=259 keV resonance in the 14N(p ,γ )15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, S.; Kelly, K. J.; Champagne, A. E.; Buckner, M. Q.; Iliadis, C.; Howard, C.

    2016-08-01

    The 14N(p ,γ )15O reaction regulates the power generated by the CN cycle and thus impacts the structure and evolution of every star at some point in its life. The lowest positive-energy resonance in this reaction is located at Erc .m .=259 keV, too high in energy to strongly influence quiescent stellar burning. However, the strength of this resonance is used as a cross-section normalization for lower-energy measurements of this reaction. We report on new measurements of the energy, strength, and γ -ray branching ratios for the 259-keV resonance, using different detection and data-analysis schemes. We have also reevaluated previous results, where possible. Our new recommended strength of ω γ =12.6 (3 ) meV is in agreement with the previous value of 13.1(6) meV, but is more precise and thus provides a more reliable normalization for low-energy (p ,γ ) measurements.

  5. Electric Fields Associated with Deep Injections of 10s to 100s keV Electrons in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Califf, S.; Li, X.; Jaynes, A. N.; Zhao, H.; Malaspina, D.

    2015-12-01

    Recent observations by HOPE and MagEIS onboard the Van Allen Probes show frequent penetration of 10s to 100s keV electrons through the slot region and into the inner belt, resulting in an abundant electron population below L=3. The conventional picture is that the source populations of these 10s to 100s keV electrons originate in the plasma sheet and are injected (along with plasma sheet ions) into the inner magnetosphere either through enhancements in the large-scale convection electric field and/or through earthward propagating dipolarization fronts associated with substorms. In such cases the inward radial limit of the injections should coincide with the plasmapause. However, these electron injections often extend inside the plasmasphere, are observed far earthward of the typically accepted "flow-braking" region for dipolarization fronts, and occur at much lower L shells than injections of ions with similar energies. We investigate the electric fields associated with these deep electron injections using data from the Van Allen Probes and THEMIS in order to shed light on the underlying mechanisms that allow them to penetrate so far into the inner magnetosphere.

  6. Range Safety Systems

    NASA Technical Reports Server (NTRS)

    Schrock, Kenneth W.; Humphries, Ricky H. (Technical Monitor)

    2002-01-01

    The high kinetic and potential energy of a launch vehicle mandates there be a mechanism to minimize possible damage to provide adequate safety for the launch facilities, range, and, most importantly, the general public. The Range Safety System, sometimes called the Flight Termination System or Flight Safety System, provides the required level of safety. The Range Safety System section of the Avionics chapter will attempt to describe how adequate safety is provided, the system's design, operation, and it's interface with the rest of the launch vehicle.

  7. Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Finger, M. H.

    1990-01-01

    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.

  8. Characteristic energy range of electron scattering due to plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Angelopoulos, V.

    2016-12-01

    We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4-200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

  9. Studies of total bremsstrahlung in thick targets of Al, Ti, Sn and Pb for 90Sr beta particles in the photon energy region of 1-100 keV

    NASA Astrophysics Data System (ADS)

    Singh, Amrit; Dhaliwal, A. S.

    2016-02-01

    Total bremsstrahlung (BS) spectra in thick targets of Al, Ti, Sn and Pb produced by beta emitter 90Sr (End point energy=546 keV) are studied in the photon energy range of 1-100 keV. The experimentally measured BS spectra are compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler [Fmod BH] theory for ordinary bremsstrahlung (OB) and the Avdonina and Pratt [Fmod BH+PB] theory, which include the contribution of polarization bremsstrahlung (PB) into OB. The present results are indicating the correctness of Fmod BH+PB theory in the low energy region, where PB dominates into the BS, but at the middle and higher photon energy region of the bremsstrahlung spectrum, the Fmod BH theory is more close to the experimental results. The description of the bremsstrahlung process in stripped atom (SA) approximation, which indicates the suppression of the bremsstrahlung at higher energy ends due to the production of PB in the low energy region, needs further considerations. Hence, the present measurements for BS for different target materials indicates that the considerations of the screening effects along with other secondary effects during the interaction of incident electrons with the target nuclei are important while describing the production of bremsstrahlung, particularly for the higher energy regions.

  10. Investigation of the effective atomic numbers of dosimetric materials for electrons, protons and alpha particles using a direct method in the energy region 10 keV-1 GeV: a comparative study.

    PubMed

    Kurudirek, Murat; Aksakal, Oğuz; Akkuş, Tuba

    2015-11-01

    A direct method has been used for the first time, to compute effective atomic numbers (Z eff) of water, air, human tissues, and some organic and inorganic compounds, for total electron proton and alpha particle interaction in the energy region 10 keV-1 GeV. The obtained values for Z eff were then compared to those obtained using an interpolation procedure. In general, good agreement has been observed for electrons, and the difference (%) in Z eff between the results of the direct and the interpolation method was found to be <10 % for all materials, in the energy range from 10 keV to 1 MeV. More specifically, results of the two methods were found to agree well (Dif. <10 %) for air, calcium fluoride, kapton polyimide film, paraffin wax and plastic scintillator in the entire energy region with respect to the total electron interaction. On the other hand, values for Z eff calculated using both methods for protons and alpha particles generally agree with each other in the high-energy region above 10 MeV.

  11. Variation in the calibrated response of LiF, Al2O3, and silicon dosimeters when used for in-phantom measurements of source photons with energies between 30 KeV AND 300 KeV.

    PubMed

    Poudel, Sashi; Currier, Blake; Medich, David C

    2015-04-01

    The MCNP5 radiation transport code was used to quantify changes in the absorbed dose conversion factor for LiF, Al2O3, and silicon-based electronic dosimeters calibrated in-air using standard techniques and summarily used to measure absorbed dose to water when placed in a water phantom. A mono-energetic photon source was modeled at energies between 30 keV and 300 keV for a point-source placed at the center of a water phantom, a point-source placed at the surface of the phantom, and for a 10-cm radial field geometry. Dosimetric calculations were obtained for water, LiF, Al2O3, and silicon at depths of 0.2 cm and 10 cm from the source. These results were achieved using the MCNP5 *FMESH photon energy-fluence tally, which was coupled with the appropriate DE/DF card for each dosimetric material studied to convert energy-fluence into the absorbed dose. The dosimeter's absorbed dose conversion factor was calculated as a ratio of the absorbed dose to water to that of the dosimeter measured at a specified phantom depth. The dosimeter's calibration value also was obtained. Based on these results, the absorbed dose conversion factor for a LiF dosimeter was found to deviate from its calibration value by up to 9%, an Al2O3 dosimeter by 43%, and a silicon dosimeter by 61%. These data therefore can be used to obtain LiF, Al2O3, and silicon dosimeter correction factors for mono-energetic and poly-energetic sources at measurement depths up to 10 cm under the irradiation geometries investigated herein.

  12. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  13. keV sterile neutrino dark matter from singlet scalar decays: the most general case

    SciTech Connect

    König, Johannes; Merle, Alexander; Totzauer, Maximilian

    2016-11-21

    We investigate the early Universe production of sterile neutrino Dark Matter by the decays of singlet scalars. All previous studies applied simplifying assumptions and/or studied the process only on the level of number densities, which makes it impossible to give statements about cosmic structure formation. We overcome these issues by dropping all simplifying assumptions (except for one we showed earlier to work perfectly) and by computing the full course of Dark Matter production on the level of non-thermal momentum distribution functions. We are thus in the position to study a broad range of aspects of the resulting settings and apply a broad set of bounds in a reliable manner. We have a particular focus on how to incorporate bounds from structure formation on the level of the linear power spectrum, since the simplistic estimate using the free-streaming horizon clearly fails for highly non-thermal distributions. Our work comprises the most detailed and comprehensive study of sterile neutrino Dark Matter production by scalar decays presented so far.

  14. Directivity of 100 keV-1 MeV photon sources in solar flares

    NASA Astrophysics Data System (ADS)

    Kane, S. R.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.

    1988-03-01

    Stereoscopic observations of 0.1-1.0 MeV photon sources in solar flares made with spectrometers aboard the ISEE 3 and PVO (Pioneer Venus Orbiter) have been analyzed to determine the directivity of the photon sources and its possible dependence on photon energy. During the period October 1, 1978-October 31, 1980, a total of 44 solar flares were observed simultaneously by the two instruments. Of these, 39 flares were in full view of both the instruments, the remaining five being partially occulted by the photosphere from the line of sight of at least one instrument. The view angles theta(P) and theta(I) of the PVO and ISEE 3 instruments with respect to the outward solar radius at the flare site varied from one flare to another and were in the range 9-88 deg. The difference between the two view angles varied from 1 deg to 66 deg. The observations of differential photon energy spectra averaged over more than about 16 s do not indicate any systematic directivity. In most flares the directivity of 0.1-1.0 MeV photon sources is found to be less than about 2.5.

  15. Monte Carlo simulation of 1-10-keV electron scattering in an aluminum target

    NASA Astrophysics Data System (ADS)

    Kotera, Masatoshi; Murata, Kenji; Nagami, Koichi

    1981-12-01

    New Monte Carlo simulations of electron scattering based on the single scattering model have been performed in the low-energy region for an aluminum target, where two basic equations are required, namely the elastic scattering cross section and the energy-loss rate. We investigated the screened Rutherford equation and the Mott equation for two different atomic potentials for the former, and the Rao Sahib-Wittry equation (the modified Bethe equation) for the latter. The validity of each model is discussed in a comparison between Monte Carlo results and experimental results such as the electron range, electron backscattering, and electron transmission which have been reported by various authors. Consequently, it was found that a combination of the Mott cross section and the Rao Sahib-Wittry equation showed the best accuracy. However, the accuracy of a previous model with the screened Rutherford equation is not as bad as aniticipated because of the higher accuracy of the Born approximation for light elements such as Al, compared to Au.

  16. Covariance data for{sup 232}Th in the resolved resonance region from 0 to 4 keV

    SciTech Connect

    Leal, L. C.; Derrien, H.; Arbanas, G.; Larson, N. M.; Wiarda, D.

    2006-07-01

    This paper reports on the generation and testing of the covariance matrix associated with the resonance parameter evaluation for {sup 232}Th up to 4 keV. [1] Covariance data are required to correctly assess uncertainties in design parameters in nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the US Evaluated Nuclear Data Library, ENDF/B. Uncertainty files in the ENDF/B library are obtained from analysis of experimental data and are stored as variance and covariance data. In this paper, we address the generation of covariance data in the resonance region via the computer code SAMMY, which is used in the evaluation of experimental data in the resolved and unresolved resonance energy regions. The resolved resonance parameter covariance matrix for {sup 232}Th, obtained using the retroactive approach, is also presented here. (authors)

  17. Observation of the 22.5-keV resonance in (149)Sm by the nuclear lighthouse effect.

    PubMed

    Röhlsberger, R; Quast, K W; Toellner, T S; Lee, P L; Sturhahn, W; Alp, E E; Burkel, E

    2001-07-23

    We have observed coherent nuclear resonant scattering of synchrotron radiation at the 22.5-keV resonance of (149)Sm. High-speed rotational sample motion led to an angular deflection of the resonantly scattered radiation off the nonresonant primary beam. This allowed us to determine the resonance energy of the first excited nuclear level of (149)Sm to be 22496(4) eV. Because of the angular deflection of the resonant photons, time spectra of coherent nuclear resonant scattering can be recorded as a function of a spatial coordinate. Time resolutions of a few 10 ps can be expected, which are beyond the limits of existing x-ray detection schemes.

  18. Analysis of photon emission from 50--350-keV proton impact on H2O

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.; Timpone, Stephanie A.; Monce, Michael N.; Mitchell, Laurel; Griffin, Brian

    2011-04-01

    We have measured photon emission cross sections from neutral fragments produced by collisions of 50-350 keV protons with H2O molecules. Balmer α-δ emissions from both the target and projectile were recorded. We also analyzed A2Σ+-X2Π (0,0) and (1,0) emission from the excited OH fragment produced during target dissociation. Trends in the cross sections revealed two key properties of the collision process: (1) The Bethe theory accurately describes target emission from both H and OH fragments and (2) the ratio of any two Balmer emission cross sections for both the target and projectile can be approximated by simple functions of the respective optical oscillator strengths. Finally, we provide the Bethe fit parameters necessary to calculate the target emission cross sections at all nonrelativistic impact energies.

  19. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  20. Fully differential cross section for single ionization of helium by 1 KeV electrons in the eikonal approximation

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2009-07-01

    We report new results for fully differential cross sections for the single ionization of helium by 1 KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the scattering and perpendicular planes. The present calculation is based on the eikonal approximation due to Glauber. Here we have also incorporated the effect of classical post collision interaction (PCI) in the Glauber approximation (GA). A comparison is made of the present calculation with the results of other theoretical methods and the recent experiment [M. Dürr, C. Dimopoulou, B. Najjari, A. Dorn, K. Bartschat, I. Bray, D.V. Fursa, Z. Chen, D.H. Madison, J. Ullrich, Phys. Rev. A 77 (2008) 032717]. The Glauber results are in good agreement with the experiment in the scattering plane, but strong discrepancies are observed in the plane perpendicular to it. The effect of PCI is not substantial in the present kinematics.

  1. Instrumentation for measurement of in-flight annihilations of 130 keV antiprotons on thin target foils

    NASA Astrophysics Data System (ADS)

    Todoroki, K.; Barna, D.; Hayano, R. S.; Aghai-Khozani, H.; Sótér, A.; Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Venturelli, L.; Prest, V.; Vallazza, L.; De Salvador, D.; Hori, M.

    2016-11-01

    We describe the instrumentation for an experiment to measure the cross sections of antiprotons with kinetic energies of 130±10 keV annihilating on carbon, palladium, and platinum target foils of sub-100 nm thicknesses. A 120 ns long pulsed beam containing 105 -106 antiprotons was allowed to traverse the foils, and the signal annihilations that resulted from this were isolated using a time-of-flight method. Backgrounds arose from Rutherford scattering of the antiprotons off the target foils, their annihilations in the target chamber walls, and π → μ → e decay of the charged pions that emerged from the annihilations. Some antiprotons slowed down and annihilated in the contamination on the target surfaces. This reduced the signal-to-background ratio of the measurement.

  2. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  3. Nuclear resonant forward scattering of synchrotron radiation from 121 Sb at 37.13 keV.

    SciTech Connect

    Wille, H. C.; Shvydko, Y. V.; Alp, E. E.; Ruter, H. D.; Leupold, O.; Sergueev, I.; Ruffer, R.; Barla, A.; Sanchez, J. P.; X-Ray Science Division; European Synchrotron Radiation Facility; Univ. of Hamburg; Hamburder Synchrotronstrahlungslabor

    2006-02-22

    We report on the observation of nuclear resonant forward scattering of synchrotron radiation from {sup 121}Sb nuclei. A temperature stabilized {alpha}Al{sub 2}O{sub 3} crystal Bragg backscattering high-resolution monochromator with a relative energy resolution of 2 x 10{sup -7} was introduced. As first spectroscopic applications the hyperfine parameters in Sb{sub 2}O{sub 3}, USb and DySb were determined. The energy of the nuclear transition in {sup 121}Sb was measured to be 37.1298(2)keV, 40 times more precisely than reported before. The results open the field of nuclear resonance spectroscopy on antimony compounds taking advantage of the outstanding features of 3rd-generation synchrotron sources. Nuclear resonance scattering on Sb compounds at these sources allows element-specific dynamical studies on thermoelectric materials as well as studies on magnetism in micro- and nanometer dimensional systems like spintronic devices.

  4. Differential cross sections for the single ionization of H2 by 75 keV proton impact

    NASA Astrophysics Data System (ADS)

    Igarashi, A.; Gulyás, L.

    2017-02-01

    We have calculated the double and triple differential cross sections for electron ejection with energy of 14.6 eV in single ionization of H2 by 75 keV proton impact. A molecular version of the continuum distorted wave-eikonal initial state approach is applied, where the interaction between the projectile and the residual molecular ion is considered more properly than in previous applications of the method. For triple differential cross sections, the present results are in better agreement with the experimental data than those of other descriptions when large momentum transfer values are considered. For double differential cross sections the experimental data are reproduced quite well for both coherent and incoherent proton beams.

  5. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  6. Enhanced room temperature oxidation in silicon and porous silicon under 10 keV x-ray irradiation

    SciTech Connect

    Ryckman, Judson D.; Reed, Robert A.; Weller, Robert A.; Fleetwood, D. M.; Weiss, S. M.

    2010-12-01

    We report the observation of enhanced oxidation on silicon and porous silicon samples exposed in air ambient to high-dose-rate 10 keV x-ray radiation at room temperature. The evolution of the radiation-induced oxide growth is monitored by ellipsometry and interferometric reflectance spectroscopy. Fourier transform infrared (FTIR) spectroscopy shows the emergence of Si-O-Si stretching modes and corresponding suppression of SiH{sub x} and Si-Si modes in the porous silicon samples. The radiation response depends strongly on initial native oxide thickness and Si-H surface species. The enhanced oxidation mechanism is attributed to photoinduced oxidation processes wherein energetic photons are used to dissociate molecular oxygen and promote the formation of more reactive oxygen species.

  7. Experimental observations of Z-dependence of saturation thickness of 662 keV gamma rays in metals and glasses

    NASA Astrophysics Data System (ADS)

    Ravindraswami, K.; Kiran, K. U.; Eshwarappa, K. M.; Somashekarappa, H. M.

    2013-11-01

    In this paper the energy, intensity and angular distributions of multiple scattering of 662 keV gamma photons, emerging from targets of aluminium, copper, iron and glass samples are studied as a function of target thickness. An intense collimated beam obtained from a 137Cs source of 5.8 mCi is allowed to impinge on samples of varying thickness. The scattered photons are detected by a properly shielded 76 mm × 76 mm NaI (Tl) scintillation detector. In Compton scattering experiments, it is observed that the number of multiple backscattered photons increase with an increase in target thickness and become almost constant for particular target thickness called saturation thickness. The saturation thickness decreases with increasing atomic number. The multiple scattering, an interfering background noise in Compton profile, has been successfully used to assign effective atomic number (Z eff ) to composite materials. The experimental results are compared with the Monte Carlo calculations using Monte Carlo nuclear particle code.

  8. CO2 synthesis in solid CO by Lyman-α photons and 200 keV protons

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Baratta, G. A.; Palumbo, M. E.; Strazzulla, G.; Baragiola, R. A.

    2005-05-01

    We have studied the synthesis of carbon dioxide from solid carbon monoxide at 16 K induced by photolysis with Lyman-α photons and by irradiation with 200 keV protons to quantitatively compare the effects of photolysis and ion irradiation on CO ice and to determine the importance of these processes in interstellar ice grains. The CO and CO{2} concentrations during irradiation of an initially pure CO film evolve with fluence to a saturation value, a behaviour that is explained by a two-state model. Our results indicate that the initial CO{2} production rates for both radiation processes are similar when normalized to the absorbed energy and that the solid CO{2} abundance observed in the interstellar ices cannot be explained only by radiolysis and photolysis of pure solid CO.

  9. Long-term stable transmission of 3-keV Ne7+ ions guided through nanocapillaries in polymers

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Herczku, P.; Juhász, Z.; Kovács, S. T. S.; Rácz, R.; Biri, S.; Sulik, B.

    2016-11-01

    We studied blocking effects on 3-keV Ne7+ ion guiding through nanocapillaries in highly insulating polyethylene terephthalate (PET) manufactured at different laboratories. The experiments were motivated in view of previous measurement with PET capillaries prepared at the GSI Helmholtz-Zentrum for which significant blocking effects were observed, whereas in various previous studies with PET capillaries these effects could not be detected. As the blocking effect on the GSI capillaries strongly depends on their areal density, similar dependencies were studied with the FLNR capillaries. Long-term stable transmission was observed for all densities of the FLNR capillaries in contrast to the previous results. These observations are interpreted by differences in the capillary surface conductivities in accordance with charge patch formations within the capillaries. It is pointed out that the observed stable transmission is favorable for applications of ion guiding in capillaries.

  10. Using contour maps to search for red-shifted 511 keV features in BATSE GRB spectra

    NASA Technical Reports Server (NTRS)

    Varmette, Peter G.

    1993-01-01

    Since their discovery twenty years ago, the origin of gamma-ray bursts (GRB's) has remained an intriguing mystery. The quest to understand these objects has given rise to a plethora of competing theories. Several theories suggest that GRB's are galactic in origin while others suggest that GRB's are cosmological. One piece of evidence that might provide scientistis with a key to understanding the origin of GRB's may be whether or not spectral emission and absorption features exist in burst spectra. If the features exist and can be attributed to either cyclotron lines or to red-shifted 511 keV annihilation lines then credence would be given to those theories that support a galactic origin, i.e. near neutron stars. A method of searching for spectral features in burst spectra (BATSE HER data) is outlined.

  11. X-ray filament with a strong 6.7-keV line in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Shimizu, Miku; Nakashima, Shinya; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Koyama, Katsuji

    2014-12-01

    An elongated X-ray source with a strong K-shell line from He-like iron (Fe XXVI) is found at (RA, Dec)J2000.0 = (17h44m00{s.}0, - 29°13'40{^''.}9) in the Galactic center region. The position coincides with the X-ray thread, G359.55+0.16, which is aligned with the radio non-thermal filament. The X-ray spectrum is well fitted with an absorbed thin thermal plasma (apec) model. The best-fitting temperature, metal abundance, and column density are 4.1^{+2.7}_{-1.8} keV, 0.58^{+0.41}_{-0.32} solar, and 6.1^{+2.5}_{-1.3} × 10^{22} cm-2, respectively. These values are similar to those of the largely extended Galactic center X-ray emission.

  12. Decrease of keV electron and ion fluxes in the dayside magnetosphere during the early phase of magnetospheric disturbances

    NASA Technical Reports Server (NTRS)

    Hultqvist, B.; Aparicio, B.; Borg, H.; Arnoldy, R.; Moore, T. E.

    1981-01-01

    It is shown that a decrease of the keV particle fluxes in the dayside magnetosphere near the geosynchronous orbit is characteristic of the first several hours of magnetospheric disturbances. After some hours newly injected plasma from the nightside reaches the 'evacuated' regions of the dayside magnetosphere and strong flux increases are observed. The 'evacuation' of the dayside magnetosphere is interpreted in terms of a change in the convection pattern associated with an increase of the large scale electric field at the onset of the disturbance. The model presented is capable of accommodating all characteristics of the observational data, such as the temporal and spatial distributions, energy and pitch angle characteristics, and differences between electrons and protons.

  13. Efficient and fast 511-keV γ detection through Cherenkov radiation: the CaLIPSO optical detector

    NASA Astrophysics Data System (ADS)

    Ramos, E.; Kochebina, O.; Yvon, D.; Verrecchia, P.; Sharyy, V.; Tauzin, G.; Mols, J. P.; Starzinski, P.; Desforges, D.; Flouzat, Ch.; Bulbul, Y.; Jan, S.; Mancardi, X.; Canot, C.; Alokhina, M.

    2016-11-01

    The CaLIPSO project aims to develop a high precision brain-scanning PET device with time-of-flight capability. The proposed device uses an innovative liquid, the TriMethyl Bismuth, as the detection medium. It detects simultaneously the ionization and optical signals from the 511 keV gamma conversion. In this paper we present the design, the Monte Carlo simulation, and the tests results for the CaLIPSO optical prototype. In this prototype we demonstrated the ability to detect efficiently the low number of the optical photons produced by the relativistic electron from the gamma conversion through the Cherenkov effect. The time resolution of the current prototype is limited by the moderate time transition spread of the PMT, but should be improved to the level better than 100 ps (FWHM) by using micro-channel-plate PMT according to the Geant 4 simulation.

  14. AMANDE: a new facility for monoenergetic neutron fields production between 2 keV and 20 MeV.

    PubMed

    Gressier, V; Guerre-Chaley, J F; Lacoste, V; Lebreton, L; Pelcot, G; Pochat, J L; Bolognese-Milstajn, T; Champion, D

    2004-01-01

    The variation of the response of the instruments with the neutron energy has to be determined in well-characterized monoenergetic neutron fields. The AMANDE facility will deliver such neutron fields between 2 keV and 20 MeV in an experimental hall designed with metallic walls for neutron scattering minimisation. The neutrons will be produced by nuclear interaction of accelerated protons or deuterons on thin targets of selected materials. The measuring devices to be characterised will be accurately placed with a fully automated detector transport system. The energy of the neutron field will be validated by time-of-flight experiments and a large set of standard detectors and fluence monitors will be used to determine the neutron fluence references. The scattered neutron fluence and dose equivalent were calculated by the MCNP Monte Carlo code at several measuring points in order to determine their contribution to the neutron field.

  15. INTEGRAL Observations of the Galactic 511 keV Emission and MeV Gamma-ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Watanabe, Ken

    2005-01-01

    Although there are a number of interesting phenomena, such as Nucleosynthesis in stars, in the MeV energy region, the observations have been difficult due to a small signal to noise (background) ratio (less than 1%). While NASA's Compton Gamma-ray Observatory (CGRO) enabled us to explore the Gamma-ray universe, ESA's INTEGRAL mission, launched in 2002, is providing us more detailed information with its superior energy and angular resolution. We will briefly discuss some of the current issues in MeV Gamma-ray Astrophysics. Then, we will focus on the Galactic 511 keV emission with the latest INTEGRAL observations, and talk about challenges we currently have.

  16. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  17. Broad host range plasmids.

    PubMed

    Jain, Aayushi; Srivastava, Preeti

    2013-11-01

    Plasmids are and will remain important cloning vehicles for biotechnology. They have also been associated with the spread of a number of diseases and therefore are a subject of environmental concern. With the advent of sequencing technologies, the database of plasmids is increasing. It will be of immense importance to identify the various bacterial hosts in which the plasmid can replicate. The present review article describes the features that confer broad host range to the plasmids, the molecular basis of plasmid host range evolution, and applications in recombinant DNA technology and environment.

  18. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  19. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    SciTech Connect

    Ross, James Steven

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  20. Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures

    SciTech Connect

    Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G. W.; Falcone, R. W.; Glenzer, S. H.; Kraus, D.; Landen, O. L.; Kritcher, A. L.

    2016-10-27

    In this study, we have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. Lastly, a preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.

  1. Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures

    NASA Astrophysics Data System (ADS)

    Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G. W.; Falcone, R. W.; Glenzer, S. H.; Kraus, D.; Landen, O. L.; Kritcher, A. L.

    2016-12-01

    We have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. A preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.

  2. Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures

    DOE PAGES

    Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; ...

    2016-10-27

    In this study, we have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation designmore » work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. Lastly, a preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.« less

  3. Characteristics of pitch angle distributions of hundreds of keV electrons in the slot region and inner radiation belt

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L˜3.5-4. In the region between, 90° minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90° minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, but this mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.

  4. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  5. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    SciTech Connect

    Zheng Yi; Sanche, Leon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV ({approx}4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  6. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Sanche, Léon

    2010-10-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (˜4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  7. SMM observations of gamma-ray transients. 2: A search for gamma-ray lines between 400 and 600 keV from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.

  8. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  9. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  10. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  11. Nonscanning confocal ranging system

    NASA Astrophysics Data System (ADS)

    Sun, P. C.; Arons, E.

    1995-03-01

    We demonstrate a nonscanning confocal ranging system based on spatially incoherent interferometry. Such a system has significant advantages over the conventional confocal imaging system and other interferometric systems. We develop the theory in terms of coherence cells and demonstrate the equivalence of our method to the conventional confocal methods. Experimental results are also provided.

  12. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  13. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  14. Long Range Plan.

    ERIC Educational Resources Information Center

    Jefferson Coll., Hillsboro, MO.

    This document presents Jefferson College's "Long Range Plan," which is intended to provide the College's governing board, administration, and faculty and staff with a task-oriented blueprint for maximizing the delivery of higher education services to students and the community in a predictable, programmatic, and fiscally sound manner.…

  15. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  16. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  17. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  18. Range expansion of mutualists

    NASA Astrophysics Data System (ADS)

    Muller, Melanie J. I.; Korolev, Kirill S.; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    The expansion of a species into new territory is often strongly influenced by the presence of other species. This effect is particularly striking for the case of mutualistic species that enhance each other's proliferation. Examples range from major events in evolutionary history, such as the spread and diversification of flowering plants due to their mutualism with pollen-dispersing insects, to modern examples like the surface colonisation of multi-species microbial biofilms. Here, we investigate the spread of cross-feeding strains of the budding yeast Saccharomyces cerevisiae on an agar surface as a model system for expanding mutualists. Depending on the degree of mutualism, the two strains form distinctive spatial patterns during their range expansion. This change in spatial patterns can be understood as a phase transition within a stepping stone model generalized to two mutualistic species.

  19. Long Range Materials Research

    DTIC Science & Technology

    1974-12-31

    India, also called bulat steels, are known to have high carbon contents, commonly 1.5 to 2.0% carbon. The high quality of these steels is well...gamma-cementite range, essentially all of the cementite is converted to the spheroidized form. However, during transformation...plus additional cementite In non-spheroldlzed form, typically l>iates. As set forth above, It is Important that essentially

  20. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  1. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  2. Long range chromatin organization

    PubMed Central

    Acuña, Luciana I Gómez; Kornblihtt, Alberto R

    2014-01-01

    Splicing is a predominantly co-transcriptional process that has been shown to be tightly coupled to transcription. Chromatin structure is a key factor that mediates this functional coupling. In light of recent evidence that shows the importance of higher order chromatin organization in the coordination and regulation of gene expression, we discuss here the possible roles of long-range chromatin organization in splicing and alternative splicing regulation. PMID:25764333

  3. CAN THE EXCESS IN THE Fe XXVI Ly{gamma} LINE FROM THE GALACTIC CENTER PROVIDE EVIDENCE FOR 17 keV STERILE NEUTRINOS?

    SciTech Connect

    Prokhorov, Dmitry; Silk, Joseph

    2010-12-20

    Sterile neutrinos (or right-handed neutrinos) are a plausible warm dark matter candidate. We find that the excess of the intensity in the 8.7 keV line (at the energy of the Fe XXVI Ly{gamma} line) in the spectrum of the Galactic center observed by Suzaku cannot be explained by standard ionization and recombination processes. We suggest that the origin of this excess is via decays of sterile neutrinos with a mass of 17.4 keV. The estimated value of the mixing angle sin{sup 2}(2{theta}) = (4.4 {+-} 2.2) x 10{sup -12} lies in the allowed region of the mixing angle for a dark matter sterile neutrino with a mass of 17-18 keV.

  4. Photometric Passive Range Sensor

    NASA Astrophysics Data System (ADS)

    Argueta-Diaz, Victor; García-Valenzuela, Augusto

    2008-04-01

    In this paper we present a passive optical ranging method that consists of taking several photometric measurements from the light radiated by an object and deriving the range from these measurements. This passive ranging device uses an iris of radius a, a lens of radius larger than a, and a photodetector of radius p

  5. Front Range Report, Abstracts

    NASA Astrophysics Data System (ADS)

    Spence, William

    The second regional conference of the Front Range Branch, AGU, was attended by more than 80 professionals and some 20 outstanding high school students. The conference included 2 days of interdisciplinary talks, and lots of discussion, that primarily were keyed to geophysical studies of Colorado, Wyoming, and New Mexico. Other talks reported on nonregional, and sometimes global, studies being done by geophypsicists of the Front Range region.Topics included tectonics of the Front Range and the Colorado Plateau, pollution of the Arkansas and Mississippi rivers, and a supreme polluting event that caused the late-Cretaceous extinctions. Other notable talks were on toxic cleanup, microburst (wind shear) detection at U.S. airports, and other meteorological studies. Several talks treated the audience to the excitement of new work and surprise discoveries. The meeting was multimedia, including the playing of two videos through a projection TV and the playing of a fascinating tape between an airport control tower and incoming pilots during a severe microburst event.

  6. Discovery of a transient MeV range gamma-ray source

    NASA Technical Reports Server (NTRS)

    Briggs, M. S.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.

    1995-01-01

    The University of California, San Diego (UCSD)/MIT hard X-ray and gamma-ray instrument on the HEAO 1 surveyed the region near the Galactic center 3 times during its lifetime in 1977-1979. During the 1977 September-October scan, a gamma-ray source was detected south of the Galactic center. The source was below the threshold sensitivity in the spring and fall of 1978. The source was detected with the medium energy phoswich scintillation counters which operated over the 80 keV-2 MeV range, had an area of 42 sq cm each, and a 17 deg FWHM aperture. The error box for the source is centered on l = 2.4 deg, b = -12.2 deg, with a 90% confidence error circle of approximately 3.5 deg radius. The flux in the 333-635 keV range was (1.89 +/- 0.29) x 10(exp -5) photons/(sq cm s keV) and was constant within statistics during the 1 month period the source was in the field of view. The spectrum can be characterized as a Gaussian in the range 300 less than or = E less than or = 650 keV, with a FWHM of 249 +/- 51 keV centered on 461 +/- 22 keV. The flux of this broad Gaussian is (6.6 +/- 1.1) x 10(exp -3) photons/(sq cm s). The source is tentatively identified with the 5.57 hr period low-mass X-ray-emitting binary system 1H 1822-371. Assuming this is correct, the ratio of gamma-ray to X-ray luminosity during the outburst was about 5; at a distance of 8 kpc, the gamma ray luminosity is 4 x 10(exp 37) ergs. The emission may be interpreted as a positron-pair plasma ejected from a compact object, possibly a black hole, and annihilating in a thick accretion disk surrounding the object.

  7. Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

    NASA Astrophysics Data System (ADS)

    Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T. J.; Pottschmidt, K.; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B. D.; Lien, A.; Williams, B.; Baganoff, F.; Boyd, P. T.; Enoto, T.; Kennea, J.; Page, K. L.; Choi, Y.

    2017-03-01

    We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR–Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5–10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT ∼ 0.2 keV) plus a hard spectrum with a power law of {{Γ }}∼ 1 and a cutoff around 15–20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (>3 {M}ȯ ) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (<3 {M}ȯ ) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.

  8. Absolute K-shell ionization cross sections and L{alpha} and L{beta}{sub 1} x-ray production cross sections of Ga and As by 1.5-39-keV electrons

    SciTech Connect

    Merlet, C.; Llovet, X.; Fernandez-Varea, J. M.

    2006-06-15

    Absolute K-shell ionization and L{alpha} and L{beta}{sub 1} x-ray production cross sections for Ga and As have been measured for incident electrons in the energy range from 1.5 to 39 keV. The cross sections were deduced from K{alpha}, L{alpha}, and L{beta}{sub 1} x-ray intensities emitted from ultrathin GaAs samples deposited onto self-supporting carbon films. The x-ray intensities were measured on an electron microprobe equipped with several wavelength-dispersive spectrometers and were converted into absolute cross sections by using estimated values of the target thickness, spectrometer efficiency, and number of incident electrons. Experimental results are compared with cross sections calculated from the plane-wave and distorted-wave Born approximations, the relativistic binary-encounter-Bethe model, the results of two widely used simple analytical formulas, and, whenever possible, experimental data from the literature.

  9. Measurement of the Np237(n,γ) cross section from 20 meV to 500 keV with a high efficiency, highly segmented 4π BaF2 detector

    NASA Astrophysics Data System (ADS)

    Esch, E.-I.; Reifarth, R.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Glover, S. E.; Greife, U.; Haight, R. C.; Hatarik, A. M.; Hatarik, R.; Jandel, M.; Kawano, T.; Mertz, A.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2008-03-01

    The Np237(n,γ)Np238 cross section has been measured in the neutron energy range from 20 meV to 500 keV using the DANCE array at the Los Alamos National Laboratory. This new facility allows experiments with submilligram samples and is therefore well suited to investigate isotopes with half-lives as low as a few hundred days. In this benchmark measurement, only 0.42 mg of Np237 was sufficient to determine differential cross sections relative to the well-known resonance at 0.5 eV. The thermal cross section was measured to σ2200m/s=177±5 barn, σkT=25.3meV=167±4 barn and the resonance integral to RI=693±6 barn.

  10. An electron-impact cross section data set (10 eV-1 keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bug, Marion U.; Yong Baek, Woon; Rabus, Hans; Villagrasa, Carmen; Meylan, Sylvain; Rosenfeld, Anatoly B.

    2017-01-01

    This work provides the first cross section data set of DNA constituents for an impact of electrons in the energy range between about 10 eV and 1 keV on a DNA target. The data set is designed for an implementation in Monte Carlo simulations and consists of model functions, taking into account elastic scattering, ionization and excitation interactions with the DNA constituents tetrahydrofuran, trimethylphosphate, pyrimidine and purine. It was developed on the basis of experimentally determined absolute differential and total scattering cross sections in accordance with the available literature data. The data set will be available in the Geant4-DNA toolkit to allow secondary electron transport in a DNA-like medium down to the ionization threshold.

  11. Measurement of the {sup 237}Np(n,{gamma}) cross section from 20 meV to 500 keV with a high efficiency, highly segmented 4{pi} BaF{sub 2} detector

    SciTech Connect

    Esch, E.-I.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Glover, S. E.; Haight, R. C.; Jandel, M.; Kawano, T.; Mertz, A.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Reifarth, R.; Greife, U.; Hatarik, A. M.; Hatarik, R.

    2008-03-15

    The {sup 237}Np(n,{gamma}){sup 238}Np cross section has been measured in the neutron energy range from 20 meV to 500 keV using the DANCE array at the Los Alamos National Laboratory. This new facility allows experiments with submilligram samples and is therefore well suited to investigate isotopes with half-lives as low as a few hundred days. In this benchmark measurement, only 0.42 mg of {sup 237}Np was sufficient to determine differential cross sections relative to the well-known resonance at 0.5 eV. The thermal cross section was measured to {sigma}{sub 2200m/s}=177{+-}5 barn, {sigma}{sub kT=25.3meV}=167{+-}4 barn and the resonance integral to RI=693{+-}6 barn.

  12. Laser Range Camera Modeling

    SciTech Connect

    Storjohann, K.

    1990-01-01

    This paper describes an imaging model that was derived for use with a laser range camera (LRC) developed by the Advanced Intelligent Machines Division of Odetics. However, this model could be applied to any comparable imaging system. Both the derivation of the model and the determination of the LRC's intrinsic parameters are explained. For the purpose of evaluating the LRC's extrinsic parameters, i.e., its external orientation, a transformation of the LRC's imaging model into a standard camera's (SC) pinhole model is derived. By virtue of this transformation, the evaluation of the LRC's external orientation can be found by applying any SC calibration technique.

  13. MiniAERCam Ranging

    NASA Technical Reports Server (NTRS)

    Talley, Tom

    2003-01-01

    Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.

  14. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  15. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  16. Nucleosynthesis of 92Nb and the relevance of the low-lying isomer at 135.5 keV

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-06-01

    Background: Because of its half-life of about 35 million years, 92Nb is considered as a chronometer for nucleosynthesis events prior to the birth of our sun. The abundance of 92Nb in the early solar system can be derived from meteoritic data. It has to be compared to theoretical estimates for the production of 92Nb to determine the time between the last nucleosynthesis event before the formation of the early solar system. Purpose: The influence of a low-lying short-lived isomer on the nucleosynthesis of 92Nb is analyzed. The thermal coupling between the ground state and the isomer via so-called intermediate states affects the production and survival of 92Nb. Method: The properties of the lowest intermediate state in 92Nb are known from experiment. From the lifetime of the intermediate state and from its decay branchings, the transition rate from the ground state to the isomer and the effective half-life of 92Nb are calculated as functions of the temperature. Results: The coupling between the ground state and the isomer is strong. This leads to thermalization of ground state and isomer in the nucleosynthesis of 92Nb in any explosive production scenario and almost 100% survival of 92Nb in its ground state. However, the strong coupling leads to a temperature-dependent effective half-life of 92Nb which makes the 92Nb survival very sensitive to temperatures as low as about 8 keV, thus turning 92Nb at least partly into a thermometer. Conclusions: The low-lying isomer in 92Nb does not affect the production of 92Nb in explosive scenarios. In retrospect this validates all previous studies where the isomer was not taken into account. However, the dramatic reduction of the effective half-life at temperatures below 10 keV may affect the survival of 92Nb after its synthesis in supernovae, which are the most likely astrophysical sites for the nucleosynthesis of 92Nb.

  17. Relic gravity waves and 7 keV dark matter from a GeV scale inflaton

    NASA Astrophysics Data System (ADS)

    Bezrukov, F. L.; Gorbunov, D. S.

    2014-09-01

    We study the mechanism of generation of 7 keV sterile neutrino Dark Matter (DM) in the model with light inflaton χ, which serves as a messenger of scale invariance breaking. In this model the inflaton, in addition to providing reheating to the Standard Model (SM) particles, decays directly into sterile neutrinos. The latter are responsible for the active neutrino oscillations via seesaw type I mechanism. While the two sterile neutrinos may also produce the lepton asymmetry in the primordial plasma and hence explain the baryon asymmetry of the Universe, the third one being the lightest may be of 7 keV and serve as DM. For this mechanism to work, the mass of the inflaton is bound to be light (0.1-1 GeV) and uniquely determines its properties, which allows to test the model. For particle physics experiments these are: inflaton lifetime (10-5-10-12 s), branching ratio of B-meson to kaon and inflaton (10-6-10-4) and inflaton branching ratios into light SM particles like it would be for the SM Higgs boson of the same mass. For cosmological experiments these are: spectral index of scalar perturbations (ns≃0.957-0.967), and amount of tensor perturbations produced at inflation (tensor-to-scalar ratio r≃0.15-0.005). β and ξ are related from the CMB normalization. mχ and β are related by the requirement of the generation of proper abundance of DM (given DM mass M1 or coupling f1 is known). ξ can be determined from the measurement of the tensor-to-scalar ratio r of the primordial perturbations. α is bound from below from the requirement of sufficient reheating, α is bound from above not to spoil the inflationary potential by radiative corrections, certain region in mχ and θ (or, equivalently β) is constrained from particle physics experiments. We show below that the first two are automatically satisfied with the parameters, leading to the proper DM generation, and the latter one leads to significant bound on the inflaton mass mχ (and hence effective upper bound

  18. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  19. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  20. Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources.

    PubMed

    Schollmeier, Marius S; Loisel, Guillaume P

    2016-12-01

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90(∘) which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 10(6) possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  1. High-resolution 22-52 keV backlighter sources and application to X-ray radiography

    NASA Astrophysics Data System (ADS)

    Vaughan, K.; Moore, A. S.; Smalyuk, V.; Wallace, K.; Gate, D.; Glendinning, S. G.; McAlpin, S.; Park, H. S.; Sorce, C.; Stevenson, R. M.

    2013-09-01

    The requirement for sources of hard X-rays suitable for high resolution radiography through large ρR targets is prominent in many aspects of current laser-driven plasma physics research. In recent work using the OMEGA EP laser facility [L. J. Waxer, M. J. Guardalben, J. H. Kelly et al., CLEO/QELS, Optical Society of America, San Jose, CA, IEEE (2008)] at the Laboratory for Laser Energetics (LLE) in Rochester, NY, experiments have been performed to measure characteristics of 22-52 keV X-ray sources using high intensity short-pulse lasers. High quality point projection, two-dimensional radiography was demonstrated by irradiating microwire targets with laser intensities of 1016 W cm-2-1019 W cm-2. Microwire targets were manufactured to dimensions of 10 μm × 10 μm × 300 μm and were supported by a 100 μm × 300 μm × 6 μm low-Z substrate. Measurements of the k-α conversion efficiency and X-ray source-size are discussed and, of particular importance for radiography, the spectral purity of the backlighter is characterized to assess the relative importance of the Kα emission to bremsstrahlung background.

  2. 60 keV Ar⁺-ion induced modification of microstructural, compositional, and vibrational properties of InSb

    SciTech Connect

    Datta, D. P.; Garg, S. K.; Som, T.; Satpati, B.; Kanjilal, A.; Dhara, S.; Kanjilal, D.

    2014-10-14

    Room temperature irradiation of InSb(111) by 60 keV Ar⁺-ions at normal (0°) and oblique (60°) angles of incidence led to the formation of nanoporous structure in the high fluence regime of 1×10¹⁷ to 3×10¹⁸ ions cm⁻². While a porous layer comprising of a network of interconnected nanofibers was generated by normal ion incidence, evolution of plate-like structures was observed for obliquely incident ions. Systematic studies of composition and structure using energy dispersive x-ray spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, Raman mapping, grazing incidence x-ray diffraction, and cross-sectional transmission electron microscopy revealed a high degree of oxidation of the ion-induced microstructures with the presence of In₂O₃ and Sb₂O₃ phases and presence of nanocrystallites within the nanoporous structures. The observed structural evolution was understood in terms of processes driven by ion-induced defect accumulation within InSb.

  3. FABRICATION AND REPAIR OF ION SOURCE COMPONENTS IN THE 80 keV NEUTRAL BEAM LINES FOR DIII-D

    SciTech Connect

    GRUNLOH,H.J; BUSATH,J.L; CALLIS,R.W; CHIU,H.K; DiMARTINO,M; HONG,R; KLASEN,R; MOELLER,C.P; ROBINSON,J.I; STRECKERT,H.H; TAO,R; TRESTER,P.W

    2003-10-01

    OAK-B135 After 8 years of operation, leaks began to develop in critical components of the ion sources of the 80 keV neutral beam lines in DIII-D. Operational adjustments were made that seemed to remedy the problems, but five years later leaks began occurring again, this time with greater frequency. Failures occurred in the stainless steel bellows and molybdenum rails of the grid rail modules as well as in the Langmuir probes. Failure analyses identified several root causes of the leaks and operational adjustments were again made to mitigate the problems, but the rash of failures depleted the program's supply of spare grid rail modules and probes and removed one of the ion sources from regular operation. Fifteen years after their original fabrication, the ion source components were no longer commercially available. In 2001, a program was initiated to fabricate new grid rail modules, including new molybdenum grid rails, bellows, and stainless steel grid rail holders, as well as new Langmuir probes. In parallel, components removed from service due to leaks were to be repaired with new rails and bellows and returned to service. An overview of the root causes of the service failures is offered, details of the repair processes are described, and a summary and evaluation of the fabrication procedures for the new molybdenum rails, grid modules, and Langmuir probes are given.

  4. Bent-crystal Laue spectrograph for measuring x-ray spectra (15keV)

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Wong, S.; Riordan, J. C.; Hudson, L. T.; O'Brien, C. M.; Seltzer, S. M.; Seiler, S.; Pressley, L.; Lojewski, D. Y.

    2006-10-01

    A bent-crystal Laue {or Cauchois [J. Phys. Radium 3, 320 (1932)] geometry} spectrograph is a good compromise between sensitivity and spectral resolution for measuring x-ray spectra (15keV) from large area x-ray sources because source-size spectral broadening is mitigated. We have designed, built, and tested such a spectrograph for measuring the spectra from electron-beam x-ray sources with diameters as large as 30cm. The same spectrograph geometry has also been used to diagnose (with higher spectral resolution) smaller sources, such as x-ray tubes for mammography and laser-driven inertial fusion targets. We review our spectrograph design and describe the performance of different components. We have compared the reflectivity and spectral resolution of LiF, and Ge diffracting crystals. We have also measured the differences in sensitivity and spectral resolution using different x-ray to light converters (plastic scintillator, CsI, and Gd2O2S) fiber optically coupled to an intensified charge-coupled device camera. We have also coupled scintillating fibers to photomultiplier tubes to obtain temporal records for discrete energy channels.

  5. Classical physics impossibility of magnetic fusion reactor with neutral beam injection at thermonuclear energies below 200 KeV

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Timothy; Vaucher, Alexander

    2016-10-01

    Lawson criterion was specifically derived for inertial fusion and DT gas of stable lifetime without ions and magnetic fields. It was revised with realistic parametrers. To account for the losses of unstable ions against neutralization with lifetime τ, n (t) = nτ [ 1 - exp (- t / - tτ τ) ] -> nτ for τ << t , where τ-1 =n0 [ ERR : md : MbegChr = 0 x 2329 , MendChr = 0 x 232 A , nParams = 1 ] , residual gas density. Second revised criterion becomes: ntL =1014cm-3 s , tL = Lawson conf. time becomes nτtL =1014 orntL =1016 / τ . In CT resonance regime below critical energy To, τ 10-5 , and Lawson requirement ntL 1021 i.e. not realistic. Luminosity (reaction rate for σ = 1) is that of two unstable particles each with lifetime τ: L =n2(t)v12 =n2t2v12 . In subcritical regime, L =10-10n2 forn =1014cm-3 , v 109 cms-1 = L =1027 . Which is negligible and implies a negative power flow reactor. But above T0 , atTD = 725 KeV , τ = 20 s was observed implying L =1039 i.e. massive fusion energy production.

  6. Analysis of 20 KEV Electron Induced X-Ray Production in Skull, Femur/tibia Bones of Rats

    NASA Astrophysics Data System (ADS)

    Mehta, Rahul; Watson, Alec; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2010-04-01

    Hind-limb suspension (HLS) of rats is a NASA validated model of simulated weightlessness. This study examines the effects of microgravity on the skeletal system of rats to assess whether or not exposure of rats to HLS for one week will induce alteration of structural features in selected bones. Four groups of rats were used: two unsuspended controls and two suspended groups. Body weight, food, and water intake were monitored daily before and after suspension. X-rays were measured by a liquid nitrogen cooled Si(li) detector on a Scanning Electron Microscope (SEM) that provided the 20 keV electron beam. X-ray data were collected from square cross sections between 100 μm2 and 104 μm2. The bones were measured for elemental levels of calcium, phosphorus, oxygen and carbon from both control and HLS rats. The average body weight of all HLS groups decreased compared to their respective unsuspended controls. Food and water intake was also lower in both suspended groups. A correlation among HLS and control samples in terms of the distribution of the primary elements was found in the bone tissue when analyzed as a function of position along the hind-leg and within the cross sections.

  7. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, A.; Bourdarie, S.; Boscher, D.; Friedel, R. H. W.; Thomsen, M.; Goka, T.; Matsumoto, H.; Koshiishi, H.

    2008-07-01

    Département Environnement Spatial, Office National d'Etudes et de Recherches Aérospatiales (ONERA) has been developing a model for the geostationary electron environment since 2003. Until now, this model was called Particle ONERA-LANL Environment (POLE), and it is valid from 30 keV up to 5.2 MeV. POLE is based on the full complement of Los Alamos National Laboratory geostationary satellites, covers the period 1976-2005, and takes into account the solar cycle variation. Over the period 1976 to present, four different detectors were flown: charged particle analyzer (CPA), synchronous orbit particle analyzer (SOPA), energetic spectra for particles (ESP), and magnetospheric plasma analyzer (MPA). Only the first three were used to develop the POLE model. Here we extend the energy coverage of the model to low energies using MPA measurements. We further include the data from the Japanese geostationary spacecraft, Data Relay Test Satellite (DRTS). These data are now combined into an extended geostationary electron model which we call IGE-2006.

  8. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    SciTech Connect

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.

  9. Irradiation Effect of keV Region Electron Beam on Bleaching and Cracking of Various Types of Sapphires

    NASA Astrophysics Data System (ADS)

    Lee, Bo-Hyun; Teraji, Tokuyuki; Ito, Toshimichi

    Various types of single-crystalline α-Al2O3 have been investigated on bleaching and cracking effects of keV electron beams using scanning electron microscope (SEM) and cathodoluminescence (CL) measurements. These electron-irradiation-induced effects observed at room temperature were different among four types of sapphires examined, namely, Be-diffusion-treated natural, untreated natural, synthetic orange, and synthetic red sapphires. The bleaching phenomenon occurred at electron dosages and the surface cracking phenomenon was subsequently observed at substantially higher dosages. The former was reversible so that an appropriate annealing in an oxygen atmosphere completely removed the bleached areas whereas the latter was a permanent change in structure that was not able to be recovered at all by such a treatment. It is found from these evidences that the crystalline quality of each specimen was well correlated with its beam-dose dependences of the electron-beam-induced phenomena observed. It should be noted that such electron-induced effects were almost completely reduced by the presence of a thin conductive layer on the insulating specimen surfaces.

  10. A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen

    NASA Astrophysics Data System (ADS)

    Yakushev, M. V.; Krustok, J.; Grossberg, M.; Volkov, V. A.; Mudryi, A. V.; Martin, R. W.

    2016-03-01

    CuInSe2 single crystals ion implanted with 5 keV hydrogen at doses from 3  ×  1014 to 1016 cm-2 are studied by photoluminescence (PL). The PL spectra before and after implantation reveal two bands, a main dominant band centred at 0.96 eV and a lower intensity band centred at 0.93 eV. Detailed analysis of the shape of these bands, their temperature and excitation intensity dependencies allow the recombination mechanisms to be identified as band-to-tail (BT) and band-to-impurity (BI), respectively. The implantation causes gradual red shifts of the bands increasing linearly with the dose. The average depth of potential fluctuations is also estimated to increase with the dose and saturates for doses above 1015 cm-2. A model is proposed which associates the potential fluctuations with the antisite defects copper on indium site and indium on copper site. The saturation is explained by full randomization of copper and indium atoms on the cation sub-lattice.

  11. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    SciTech Connect

    Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A.; Czerwinski, Bartlomiej; Young, Amanda E.; Delcorte, Arnaud

    2015-10-28

    We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimental yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.

  12. Production and Performance of the InFOCmicronS 20-40 keV Graded Multilayer Mirror

    NASA Technical Reports Server (NTRS)

    Berendse, F.; Owens, S. M.; Serlemitsos, P. J.; Tueller, J.; Chan, K.-W.; Soong, Y.; Krimm, H.; Baumgartner, W. H.; Tamura, K.; Okajima, T.; Tawara, Y.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.

  13. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    DOE PAGES

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more thanmore » 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.« less

  14. Changes in mass loss and chemistry of AG-80 epoxy resin after 160 keV proton irradiations

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Sun, Mingren; Yang, Dezhuang; He, Shiyu; Wang, Jinhe; Xiao, Jingdong; Li, Zhijun

    2005-06-01

    The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 160 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterized by X-ray photoelectron spectroscopy. Experimental results show that with increasing the proton fluence, the surface colour of specimens is getting darker. Mass loss ratios ascend remarkably until the fluence of approximately 5.5 × 10 15 cm -2, and then tend to leveling off. The surface roughness of specimens exhibits an increasing trend followed by decreasing as a function of proton fluence. Under the exposure, the C-C, C-H, C-N and C-O bonds are broken, a variety of molecule ions with smaller molecule weight are formed, and carbon is enriched in the surface layer of specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.

  15. Effect of 120 keV proton irradiation on mass loss and chemical structure of AG-80 epoxy resin

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Jiang, Sheng-Ling; Dong, Shang-Li; Yang, De-Zhuang

    2010-11-01

    The AG-80 resin is a new type of thermosetting matrix for advanced carbon/epoxy composites. Mass loss effect and the related outgassing are major concerns for its application in space. The changes in mass loss, outgassing and chemical structure under 120 keV proton exposure were investigated for the AG-80 epoxy resin. The variation in chemistry was characterised by X-ray photoelectron spectroscopy. Experimental results show that by increasing the proton fluence, the surface colour of specimens becomes darker. Mass loss ratios ascend remarkably until the fluence of approximately 6.3×1015 cm-2 and then tend to level off. The surface roughness of specimens exhibits an increasing trend followed by a decreasing trend as a function of proton fluence. Under the exposure, the C‒C, C‒H, C‒N and C‒O bonds are broken, a variety of molecule ions with smaller molecular weight are formed and carbon is enriched in the surface layer of the specimens. The changes in mass loss and surface roughness of the AG-80 epoxy resin could be attributed to the formation of the molecule ions and the enrichment of carbon content in the surface layer due to proton radiation.

  16. Gold nanoislands for sensitivity enhancement in organic and imaging mass spectrometries (LDIMS, keV- and MeV-SIMS)

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud; Restrepo, Oscar; Prabhakaran, Aneesh

    2011-03-01

    Gold nanoparticles condensed on the surface of organic materials induce large ion yield enhancements in secondary ion mass spectrometry, using atomic projectiles. Here, we first show that the interest of surface metallization extends to MeV-SIMS and to UV laser desorption/ionization, in which the energy of the primary beam is deposited through the electronic subsystems (but not to keV-cluster-SIMS). For the three methods, gold nanoislands induce at least a ten-fold increase of the characteristic fragment and molecular ion yields, making surface metallization an interesting approach for imaging MS of organic surfaces. In the second part of this report, we discuss the underlying physics. For instance, using molecular dynamics simulations, we explain why 10 keV atomic projectiles interacting with metallized organic surfaces desorb more molecules, and why it is not the case with cluster projectiles such as C60 and Au 400 . For the other regimes of irradiation, arguments involving photon absorption and electronic effects are proposed.

  17. The 3H(d,γ)5He Reaction for Ec.m. ≤ 300 keV

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Brune, C. R.; Massey, T. N.; O'Donnell, J. E.; Richard, A. L.; Sayre, D. B.

    2016-03-01

    The 3H(d, γ)5He reaction has been measured using a 500-keV pulsed deuteron beam incident on a stopping titanium tritide target at Ohio University's Edwards Accelerator Laboratory. The time-of-flight (TOF) technique has been used to distinguish the γ-rays from neutrons detected in the bismuth germinate (BGO) γ-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)4He reaction using both the pulse-shape discrimination and TOF techniques. A newly-designed target holder with a silicon surface barrier detector to simultaneously measure α-particles to normalize the neutron count was incorporated for subsequent measurements. The γ-rays have been measured at laboratory angles of 0°, 45°, 90°, and 135°. Information about the γ-ray energy distribution for the unbound ground state and first excited state of 5He can be obtained experimentally by comparing the BGO data to Monte Carlo simulations. The 3H(d, γ)/3H(d, n) branching ratio has also been determined.

  18. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    PubMed

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  19. A panoply of insertion devices at SOLEIL for a wide spectral range and flexible polarisation

    SciTech Connect

    Couprie, M. E.; Benabderrahmane, C.; Berteaud, P.; Briquez, F.; Chapuis, L.; Elajjouri, T.; Marteau, F.; Filhol, J. M.; Kitegi, C.; Marcouille, O.; Massal, M.; Valleau, M.; Veteran, J.; Chubar, O.

    2010-06-23

    The SOLEIL storage ring presents a very high fraction of its circumference dedicated to accommodate Insertion Devices (ID). Over the 25 presently planned insertion devices presenting a large variety of systems, 16 have been already installed and commissioned in September 2009. The UV-VUV region is covered with electromagnetic devices, offering tuneable polarisations. An electromagnet/permanent magnet undulator using copper sheets coils for fast switching of the helicity is under construction. 13 APPLE-II type undulators, with period ranging from 80 down to 36 mm, provide photons in the 0.1-10 keV region, some of them featuring tapering or quasi-periodicity. Five U20 in vacuum undulators cover typically the 3-30 keV range whereas an in vacuum wiggler, with compensation of the magnetic forces via adequate springs will cover the 10-50 keV spectral domain. R and D on cryogenic in-vacuum undulator is also under progress. A magnetic chicane using permanent magnet dipoles has also been designed in order to accommodate two canted undulators on the same straight section. A wiggler dedicated to slicing (production of femto second long pulses) is also being designed, its radiation will also serve for an X-ray beamline.

  20. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    SciTech Connect

    Takeda, Tohoru; Wu Jin; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Itai, Yuji; Yoneyama, Akio; Hyodo, Kazuyuki

    2004-05-12

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  1. An X-ray Raman spectrometer for EXAFS studies on minerals: bent Laue spectrometer with 20 keV X-rays.

    PubMed

    Hiraoka, N; Fukui, H; Tanida, H; Toyokawa, H; Cai, Y Q; Tsuei, K D

    2013-03-01

    An X-ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back-scattering spectrometers using ≤10 keV X-rays, a spectrometer utilizing ~20 keV X-rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band-pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K-edge in SiO(2) glass and crystal (α-quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre-edge curve based on a theoretical Compton profile and a Monte Carlo multiple-scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high-pressure studies.

  2. The Soft Gamma-Ray Spectrum of A0535+26: Detection of an Absorption Feature at 110 keV by OSSE

    DTIC Science & Technology

    1995-01-01

    At the maximum, the pulsed emission reached 8 Crab ( nebula + pulsar) ux units in the 20{40 keV band (Finger, Wilson, & Hagedon 1994; Wilson et al...observation, the source and background elds were placed to ensure that the Crab Nebula , a potentially contaminating source, did not cause a signi cant

  3. Physics of reflective optics for the soft gamma-ray photon energy range

    SciTech Connect

    Fernandez-Perea, Monica; Descalle, Marie -Anne; Soufli, Regina; Ziock, Klaus P.; Alameda, Jennifer; Baker, Sherry L.; McCarville, Tom J.; Honkimaki, Veijo; Ziegler, Eric; Jakobsen, Anders C.; Christensen, Finn E.; Pivovaroff, Michael J.

    2013-07-12

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takes place in the mirrors but it does not affect the performance at the Bragg angles of operation. Furthermore, our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.

  4. Physics of Reflective Optics for the Soft Gamma-Ray Photon Energy Range

    NASA Astrophysics Data System (ADS)

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina; Ziock, Klaus P.; Alameda, Jennifer; Baker, Sherry L.; McCarville, Tom J.; Honkimäki, Veijo; Ziegler, Eric; Jakobsen, Anders C.; Christensen, Finn E.; Pivovaroff, Michael J.

    2013-07-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takes place in the mirrors but it does not affect the performance at the Bragg angles of operation. Our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.

  5. Photoelectron range limitations to the spatial resolution for x-rays in gas proportional chambers

    SciTech Connect

    Smith, G.C.; Fischer, J.; Radeka, V.

    1983-11-01

    Measurements have been made, for x-ray energies from a few keV to 18 keV, of the limiting spatial resolution caused by the finite range of the photoelectron, or electrons, created when an x-ray is absorbed in the gas of a proportional chamber. In hydrocarbon gases such as methane and ethane, where the photoelectron receives the bulk of the x-ray energy, the limiting spatial resolution is found to vary as a power law of x-ray energy. In argon and xenon, at an x-ray energy approximately twice that of the A/sub K/ edge and the Xe/sub L/ edge respectively, the measured limiting resolution is better than expected from an equivalent power law behavior.

  6. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  7. Impact of IUdR on Rat 9L glioma cell survival for 25-35 keV photon-activated auger electron therapy.

    PubMed

    Alvarez, Diane; Hogstrom, Kenneth R; Brown, Thomas A D; Ii, Kenneth L Matthews; Dugas, Joseph P; Ham, Kyungmin; Varnes, Marie E

    2014-12-01

    The goal of the current study was to measure the energy dependence of survival of rat 9L glioma cells labeled with iododeoxyuridine (IUdR) that underwent photon-activated Auger electron therapy using 25-35 keV monochromatic X rays, i.e., above and below the K-edge energy of iodine. Rat 9L glioma cells were selected because of their radioresistance, ability to be implanted for future in vivo studies and analogy to radioresistant human gliomas. Survival curves were measured for a 4 MV X-ray beam and synchrotron produced monochromatic 35, 30 and 25 keV X-ray beams. IUdR was incorporated into the DNA at levels of 0, 9 and 18% thymidine replacement for 4 MV and 35 keV and 0 and 18% thymidine replacement for 30 and 25 keV. For 10 combinations of beam energy and thymidine replacement, 62 data sets (3-13 per combination) provided 776 data points (47-148 per combination). Survival versus dose data taken for the same combination, but on different days, were merged by including the zero-dose points in the nonlinear, chi-squared data fitting using the linear-quadratic model and letting the best estimate to the zero-dose plating efficiency for each of the different days be a fitting parameter. When comparing two survival curves, the ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear energy transfer (LET) (SER10,LET), IUdR radiosensitization (SER10,RS), the Auger effect (SER10,AE) and the total of all effects (SER10,T) were determined. At 4 MV and 35, 30 and 25 keV, SER10,LET values were 1.00, 1.08 ± 0.03, 1.22 ± 0.02 and 1.37 ± 0.02, respectively. At 4 MV SER10,RS values for 9 and 18% IUdR were 1.28 ± 0.02 and 1.40 ± 0.02, respectively. Assuming LET effects were independent of percentage IUdR and radiosensitization effects were independent of energy, SER10,AE values for 18% IUdR at 35, 30 and 25 keV were 1.35 ± 0.05, 1.06 ± 0.03 and 0.98 ± 0.03, respectively. The value for 9% IUdR at 35 keV was 1

  8. Range parameters of slow gold ions implanted into light targets

    NASA Astrophysics Data System (ADS)

    Kuzmin, V.

    2009-08-01

    Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.

  9. A universal equation for the emission range of x rays from bulk specimens.

    PubMed

    Gauvin, Raynald

    2007-10-01

    The derivation of a universal equation to compute the range of emitted X rays is presented for homogeneous bulk materials. This equation is based on two fundamental assumptions: the varphi(rhoz) curve of X-ray generation is constant and the ratio of the emitted to the generated X-ray range is equal to the ratio of the emitted to the generated X-ray intensity. An excellent agreement is observed with data obtained from Monte Carlo simulations of 200,000 electron trajectories in C, Al, Cu, Ag, Au, and an Fe-B alloy with boron weight fractions equal to 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, performed with the electron beam energy varied from 1 to 30 keV in 1-keV steps. When the ratio of the generated X-ray range to the photon mean free path is much smaller than one, the emission X-ray range is equal to the generated X-ray range, but when this ratio is much greater than one, the emission X-ray range is constant and is given by the product of the effective photon mean free path multiplied by the sine of the take-off angle.

  10. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    SciTech Connect

    Mainardi, Enrico; Donahue, Richard J.; Blakely, Eleanor A.

    2002-09-11

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using this code if comparing with event-by-event Monte Carlo codes like PITS. This preliminary work has been important to address dosimetric estimates at low electron energies. It demonstrates that codes like PENELOPE can be used for Dose evaluation, even with such small geometries and energies involved, which are far below the normal use for which the code was created. Further work (initiated in Summer 2002) is still needed however, to create a user-code for PENELOPE that allows uniform comparison of exact cell geometries, integral volumes and also microdosimetric scoring quantities, a field where track-structure codes like PITS, written for this purpose, are believed to be superior.

  11. Statistical investigation of IMF Bz effects on energetic (0.1- to 16-keV) magnetospheric O+ ions

    NASA Astrophysics Data System (ADS)

    Lennartsson, O. W.

    1995-12-01

    More than 2 years of magnetospheric O+ data from the Plasma Composition Experiment on the ISEE 1 spacecraft are compared, in a statistical manner, with concurrent data on the interplanetary magnetic field (IMF) and the solar wind plasma in an attempt to clarify the geophysical responses to varying solar wind inputs, in particular to variations in the GSM Bz component of the IMF. It is found that the energy density of 0.1- to 16-keV O+ ions in the plasma sheet, inside of 23RE, is well correlated with the average solar wind energy flux during the preceding few hours, whether that flux is measured by its electromagnetic (Poynting) component P or by its far greater kinetic component K. Although P and K are well correlated with each other, the correlation of the O+ energy density is slightly better with K than with P during times of positive Bz, while the opposite holds for negative Bz. In either case the O+ energy density is more nearly proportional to K, and, given a typical value of K, there is at most a marginal (less than a factor of 2) increase in this density associated with a negative Bz. Except for this latter effect, which can perhaps be taken as evidence that a change in polarity of Bz from positive to negative may induce ``unloading'' of internal tail energy, there is no evidence in these O+ data, including data from the inner magnetosphere (L<10), that a negative, or southward, Bz is inherently favorable to the transfer of solar wind power across the magnetopause. These findings, together with the results of correlating the hourly AE index with P and K, suggest that the strong dependence of the AE on the Bz polarity is substantially exaggerated by the lack of AE magnetometers above 71° magnetic latitude.

  12. An Examination of Directional Discontinuities and Magnetic Polarity Changes around Interplanetary Sector Boundaries Using E > 2 keV Electrons

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Lin, R. P.

    1995-10-01

    Past studies of interplanetary magnetic sector boundaries have been based on the assumption that one can determine the field polarities by comparing the field directions with those of the nominal Parker spiral angles. Previous investigators have found evidence for decreases of ∣B∣, the magnitude of the magnetic fieldB, and increases of Θ, the angle betweenB and the ecliptic plane, at sector boundaries. Others have argued that the characteristic thickness of sector boundaries exceeds that of tangential discontinuities, making sector boundaries a separate class of structures. We use a simple technique for inferring the polarities of interplanetary magnetic fields based on the assumption thatE > 2 keV electrons are always flowing along the magnetic field away from the Sun. Electron data from the UC Berkeley experiment on the ISEE-3 spacecraft are used to examine periods around several apparent sector boundaries in 1978 and 1979. We compare properties of (a) boundaries with field polarity changes and (b) large-angle (ω > 60°) directional discontinuities with no field polarity changes. We find no significant differences between the sector boundaries and the directional discontinuities in terms of associated decreases in ∣B∣ or of values of Θ. These results suggest no significant difference between sector boundaries and directional discontinuities other than the change in field polarities. Within limited statistics we find that about half the polarity changes would not have been identified using a requirement thatω > 90° and that half of theω > 120° discontinuities would have been misidentified as polarity changes.

  13. The determination of interplanetary magnetic field polarities around sector boundaries using E greater than 2 keV electrons

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Lin, R. P.

    1994-01-01

    The determination of the polarities of interplanetary magnetic fields (whether the field direction is outward from or inward toward the sun) has been based on a comparison of observed field directions with the nominal Parker spiral angle. These polarities can be mapped back to the solar source field polarities. This technique fails when field directions deviate substantially from the Parker angle or when fields are substantially kinked. We introduce a simple new technique to determine the polarities of interplanetary fields using E greater than 2 keV interplanetary electrons which stream along field lines away from the sun. Those electrons usually show distinct unidirectional pitch-angle anisotropies either parallel or anti-parallel to the field. Since the electron flow direction is known to be outward from the sun, the anisotropies parallel to the field indicate outward-pointing, positive-polarity fields, and those anti-parallel indicate inward-pointing, negative-polarity fields. We use data from the UC Berkeley electron experiment on the International Sun Earth Explorer 3 (ISSE-3) spacecraft to compare the field polarities deduced from the electron data, Pe (outward or inward), with the polarities inferred from field directions, Pd, around two sector boundaries in 1979. We show examples of large (greater than 100 deg) changes in azimuthal field direction Phi over short (less than 1 hr) time scales, some with and some without reversals in Pe. The latter cases indicate that such large directional changes can occur in unipolar structures. On the other hand, we found an example of a change in Pe during which the rotation in Phi was less than 30 deg, indicating polarity changes in nearly unidirectional structures. The field directions are poor guides to the polarities in these cases.

  14. SU-D-201-01: Attenuation of PET/CT Gantries with 511 KeV Photons

    SciTech Connect

    Busse, N

    2015-06-15

    Purpose: PET shielding requires the use of large amounts of lead because of the penetrating nature of 511 keV photons. While the uptake rooms generally require the thickest lead, the scan room often requires substantial shielding. Attenuation by the PET/CT gantry is normally assumed to be zero, but may be significant in directions perpendicular to the scanner axis. Methods: A 5 mL tube was filled with between 14.7 and 20.5 mCi of F-18 and inserted into a phantom (70 cm NEMA PET Scatter Phantom). Exposure rates were recorded at several distances and 15° intervals with a pressurized ionization chamber (Ludlum 9DP) both with the phantom outside the gantry and centered in the CT and PET acquisition positions. These measurements were repeated with three scanners: Siemens Biograph TruePoint 6, GE Optima 560, and Philips Gemini 64. Measurements were decay corrected and normalized to exposure rates outside the gantry to calculate percent transmission. Results: Between 45° to 135° (measured from the patient bed at 0°), average transmission was about 20% for GE, 35% for Philips, and 30% for Siemens. The CT gantry was roughly twice as attenuating as the PET gantry at 90° for all three manufacturers, with about 10% transmission through the CT gantry and 20% through the PET gantry. Conclusion: The Philips system is a split-gantry and therefore has a narrower angle of substantial attenuation. For the GE and Siemens systems, which are single-gantry design, transmission was relatively constant once the angle was sufficient to block line-of-sight from the phantom. While the patient may spend a greater fraction of time at the PET position of the scanner, transmission characteristics of the two components are similar enough to be treated collectively. For shielding angles between 45° and 135°, a reasonably conservative assumption would be to assume gantry transmission of 50%.

  15. Evaluation of the 239Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of 239Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  16. Generalized spectra model for 1-100 keV X-ray emission from Cygnus X-3 based on EXOSAT data

    NASA Astrophysics Data System (ADS)

    Rajeev, M. R.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.

    1994-03-01

    The X-ray spectrum of the highly variable X-ray source, Cyg X-3, has so far defied a consistent explanation based on simple emission models. We have extracted two of the best data sets from the EXOSAT archives and performed a detailed spectral analysis for its 'high' and 'low' states. The analysis of the less frequently occurring 'low' state is presented for the first time for the EXOSAT data. Combining data from the medium-energy argon and xenon detectors and the gas scintillation proportional counter, with a better energy resolution, and carrying out a simultaneous fit, we find that the X-ray continuum in both the 'high' and 'low' state can be explained as a sum of a blackbody emission and emission from a Comptonized plasma cloud with a common absorption. The Comptonization model is sufficient as well as preferable to many other models, in explaining the observed X-ray emission up to 100 keV. In addition, we find an emission-line feature due to ionized iron (Fe XX-Fe XXVI) and absorption features due to cold iron (Fe I) as well as highly ionized iron (Fe XXV-Fe XXXVI). The presence of absorption due to Fe I has been shown for the first time here. This is the simplest and the most generalized spectral model for the 1-100 keV X-ray emission from Cyg X-3, to date. We find that the blackbody temperature derived in the 'high ' state (1.47 keV) is much lower than that derived for the 'low' state (2.40 keV) and is associated with an increase in the blackbodly radius in the 'high' state. The ratio of blackbody flux to the total flux is approximately 0.61 in the 'high' state and approximately 0.44 in the 'low' state. The Fe line energy is significantly higher in the 'high' state (approximately 6.95 keV) compared to the 'low' state (approximately 6.56 keV). The Comptonization parameter changes from 2 to approximately 15 in going from the 'high' to the 'low' state implying a highly saturated Comptonization in the 'low' state. The Comptonized region has high electron

  17. mFISH analysis of irradiated human fibroblasts: a comparison among radiations with different quality in the low-dose range.

    PubMed

    Berardinelli, F; Nieri, D; Tanzarella, C; Cherubini, R; De Nadal, V; Gerardi, S; Sgura, A; Antoccia, A

    2015-09-01

    The present investigation aimed to characterise the shape of dose-response curve and determining the frequency distribution of various aberration types as a function of dose and radiation quality in AG01522 primary human fibroblasts in the 0.1- to 1-Gy dose range. For this purpose, the cells were irradiated with 7.7 and 28.5 keV µm(-1) low-energy protons, 62 keV µm(-1 4)He(2+) ions (LNL Radiobiology facility) or X rays and samples collected for 24-colour mFISH analysis. X rays and 7.7 keV µm(-1) protons displayed a quadratic dose-response curve solely for total and simple exchanges, whereas for high-linear energy transfer radiations, a linear dose-response curve was observed for all the aberration categories, with the exception of complex exchanges.

  18. Die chemische Fixierung von Kryptonisotopen in Zeolith 5 A — Voraussetzung für die Messung von 25 keV Neutroneneinfang- querschnitten mit der Aktivierungstechnik/ The Chemical Fixation of Kr Isotopes in Zeolite 5 A.- Prerequisite for the Determination of 25 keV Neutron Capture Cross Sections with the Activation Method

    NASA Astrophysics Data System (ADS)

    Penzhorn, R.-D.; Walter, G.; Beer, H.

    1983-07-01

    By chemical fixation of Kr in zeolite 5 A adequate samples can be obtained to determine the capture cross section of reactions such as 84 Kr (n, γ) 85Krm and 86Kr (n, γ) 87Kr. The employed zeolite loading was of the order 52-66 [cm3 STP Kr/g zeolite]. The capture cross section of the reaction 84Kr(n, γ) 85Krm was determined at thermal and 25 keV neutron energy. The value obtained at 25 keV is of relevance to the stellar nucleosynthesis of heavy elements.

  19. Astrophysical data on 5 eV to 1 keV radiation from the radiative decay of fundamental particles - Current limits and prospects for improvement

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    Line emission from the decay of fundamental particles, integrated over cosmological distances, can give rise to detectable spectral features in the diffuse astronomical background between 5 eV and 1 keV. Spectroscopic observations may allow these features to be separated from line emission from the numerous local sources of radiation. The current observational status and existing evidence for such features are reviewed. No definitive detections of nongalactic line features have been made. Several local sources of background mask the features at many wavelengths and confuse the interpretation of the data. No systematic spectral observations have been carried out to date. Upcoming experiments which can be expected to provide significantly better constraints on the presence of spectral features in the diffuse background from 5 eV to 1 keV are reviewed.

  20. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.